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9.1 INTRODUCTION

The use of solid dispersions of drugs in highly water-soluble carriers to increase their 

solubility and dissolution rate, and therefore bioavailability, has been widely studied and 
reviewed1,2.

Inclusion complexation of lipophilic drug molecules with cyclodexrins has been 

extensively applied to optimize the biopharmaceutical parameters such as solubility, 

stability, and bioavailability. Beta-cyclodextrin (p-CD) is one of the natural cyclodextrins 

and numerous works concerning its effect on improving the physicochemical 
characteristics of many lipophilic drugs have been published3 7. In this study, an attempt 

was made to enhance the dissolution of lamotrigine and its oral bioavailability 

characteristics by inclusion complex formation with P-CD. The inclusion complexes were 

formulated into tablets. Dissolution rate and dissolution efficiency (DE) values of these 

tablets were investigated.

Lamotrigine is practically insoluble in water and its oral absorption is dissolution rate 

- limited. The poor dissolution characteristics of relatively insoluble drug have long been a 

problem to pharmaceutical industries. The poor aqueous solubility of the drug causes 

difficulties in formulation of dosage forms and may leads to a variable bioavailability, 

the'refore the attempt was made to enhance the aqueous solubility of lamotrigine by 

complexation with p-CD. The prepared solid dispersions were characterized and 

formulated as tablets using direct compression method. Such tablets were subjected to 

quality control tests and were evaluated for dissolution

Neural network (NN) models might generalize better than regression models since 

regression analyses are dependent on predetermined statistical significance levels (i.e. 

less significant terms are not included in the model). With the NN method all data are 
used potentially making the models more accurate8. Hence NN was selected for modeling 

and evaluating tool.
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NN operation is based upon the simulation of biological neural process abilities in the 

human brain. NN are very useful in modeling of systems where independent and 

dependent variable relationships are not well known. They are characterized by 
architecture, transfer function and learning paradigm9'11. NN consists of a number of 

processing elements (neurons) which are interconnected forming input and output layers 

and one or more hidden layers (figure 9.1).

Figure 9.1. Architecture of three-layer neural network.

The use of at least one hidden layer enables the NNs to describe nonlinear systems8,12. 

One layer is usually sufficient to provide adequate prediction even if continuous variables 
are adopted as the units in the output layer13 and also there is a little evidence to suggest 

that a larger number of hidden layers improves performance14. Processing elements on 

the input layer receive input signals, process them and send them to the output layer 

through hidden layers by the network connections (synapses). Each connection is 

characterized by a synaptic strength (weight). Learning of NN with known independent
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and dependent variables based on an experimental design results in a condition for using 

that network for modeling. It begins with a random set of synaptic weights and proceeds 

in epoch (iterations). During each epoch connection weights are adapted via back 

propagation to minimize so-called ‘error <?,(«)’ which is the difference between the 

momentary network signal at neuron i at iteration n, y ,(n), and the aimed signal based 

on experimental results d> (n) .

In each hidden layer and output layer the processing unit sums its input from the previous 

layer and then applies the non-linear sigmoidal function to compute its output to the next 

layer according to equations:

where w is the weight of the connection between neuron j in the current layer to neuron 

i in the previous layer, jc , is the output value from the previous layer, / (y ]) is

conducted to the next layer as an output value, and cris a parameter relating to the shape 

of the sigmoidal function. Nonlinearity of the sigmoidal function is strengthened with an 

increase in 0.

The three most common criterions to stop training are: to cap the number of iterations, to 

threshold the output mean square error, or to use cross validation. If a network is left to 

train for too long, it will overtrain and will lose the ability to generalize. Cross validation 

is more powerful of the three since it stops the training at the point of best generalization. 

When the performance starts to degrade in the validation set, training is stopped and

ei(n) = di(n)-yi(n) 0)

y-i =Zw.jxj (2)

(3)
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connection weights become the memory units. Then trained NN can be used for output 

prediction on the basis of new input values.

The multilayer perceptron (MLP) is one of the most widely implemented neural network 
topologies14 and is important in the study of nonlinear dynamics. MLPs are normally 

trained with the backpropagation algorithm18. Two important characteristics of the 

multilayer perceptron are: its nonlinear neurons which have a nonlinearity that must be 

smooth (the logistic (sigmoidal) function is the most widely used); and their massive 

interconnectivity (i.e. any element of a given layer feeds all the elements of the next 

layer).

In present study, MLP with a training rule of momentum learning was applied which uses 

a memory term (the past increment to the weight) to speed up and stabilize convergence. 

The equation to update the weights (wtJ) can be represented as:

Wy(n +1)= Wjj(n) + T|8j (n)x i (n) + a(w 5j (n) - w;j (n -1)) (4)

The local error 8i (n) can be directly computed from et(n) at the output neuron or can 

be computed as a weighted sum of errors at the internal neurons. The constant rj is called 

the step size and a is the momentum. Normally a should be set between 0.1 and 0.9.

NN has been successfully applied to many pharmaceutical areas in recent years11 e.g.: 

quantitative structure activity relationship analysis16, pharmacokinetic-pharmacodynamic 

studies17, pharmaceutical formulation development10,17, optimization of manufacturing 

processes19, in vitro-in vivo correlations20, etc.

9.2 EXPERIMENTAL

9.2.1 Materials
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P-Cyclodextrin was purchased from S. D. Fine Chem. Ltd., Mumbai, India and 

lamotrigine was received as a gift sample from Torrent Pharmaceutical Ltd., Ahmedabad, 

India. All other compounds and solvents used in this study were of analytical reagent 

grade.

9.2.2 Phase Solubility Study

Solubility measurements were performed by the method of Higuchi et al 21' Solution of p- 

CD of different concentrations (0.5, 1, 1.5, 2, 3, 3.5 mM/litre) with lamotrigine were 

shaken in sealed flasks in a water bath at temperature of 37 °C for 72 hrs. The aliquots 

were withdrawn and filtered through 0.45-pm filters. A portion of the filtrate was then 

diluted with water and analyzed spectrophotometrically at 305 nm. The solubility 

constant and the ratios of lamotrigine/ |3-CD in the complexes were calculated from the 

phase solubility diagram.

9.2.3 Preparation of Solid Complexes

The solid complexes of lamotrigine-and [LCD were prepared by using the following three 

different methods.

1. Physical mixture method

The Physical mixture was prepared by a simple dry mixing of lamotrigine and [L CD (1:1) 

in a mortar for 10 minutes.

2. Coprecipitation method

The mixture of lamotrigine and (LCD (1:1) was dissolved in 50 % ethanol, the solvent 

was allowed to evaporate, and then it was further dried under vacuum at 50 °C for 24 

hour.

3. Cogrinding method

The mixture of lamotrigine, P~CD (1:1) and solubilizing agent was eogrinded in the 

mortal. The cogrind solid dispersion was processed as shown in coprecipitation method.
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9.2.4 Experimental Design

To optimize the concentration of solubilizing agents, a central composite design was 

adopted using the concentration of transcutanol (Xj), maisine (X2) and peceol (X3) as 

independent variables. The time required for 50 % dissolution (T50%), and dissolution 

efficiency were selected as response variables. The factors and responses are shown in 

table 9.1.

Table 9.1. Matrix of the Experiments, Results for the Measured Responses. Each 

value is mean of three replicates.

Run
no. Xi

Trancutanol 
concentration 

(% v/w) x2
Maisine
(%v/w) x3

Peceol
concentration

(%v/w)
T50%
(min)

Dissolut
efficien

(%)
1 1 , 3 1 3 -1 1 4 70.62
2 1.7 3.7 0 2 0 2 2.5 79.22
3 -1 1 1 3 1 3 5 60.81
4 -1 1 -1 1 -1 1 9 38.22
5 1 3 1 3 1 3 3.5 79.04
6 0 2 0 2 -1.7 3 7 56.2S
7 1 3 -1 1 1 3 2.5 86.12
8 0 2 0 2 1.7 37 6 59.4S
9 -1.7 3 0 2 0 2 8 44.82

10 0 2 1.7 37 0 2 5.5 56.3
11 0 2 0 2 0 2 4.5 67.92
12 0 2 0 2 0 2 4 73.84
13 1 3 -1 1 -1 1 7.5 38.06
14 0 2 0 2 0 2 4.5 63.35
15 0 2 -1.7 3 0 2 5 61.82
16 -1 1 -1 1 1 3 5.5 58.22
17 0 2 0 2 0 2 4 75.13
18 -1 1 -1 1 -1 1 10 34.47
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9.2.5 Neural Network Software and Network Topology

The Microsoft®-Windows® based neural network software; NeuroSolutions® Version 

4.24 (Neuro Dimension, Inc., USA) was used. A multilayer perceptron (MLP) with single 

hidden layer architecture was chosen. The experimental matrix of 18 input:desired output 

data sets (table 9.2) was inserted in to the model, with three input neuron (transcutanol 

concentration, maisine concentration and peceol concnetration), one hidden layer and two 

output neuron (T50, and dissolution efficiency) as shown in Figure 1. Various adjustable 

parameters like number of neurons in hidden layer, step size and momentum of hidden 

layer and output layer, etc. were optimized.’

268



Table 9.2. Matrix of the Experiments, Neural Network Predicted Responses. Each 

value is mean of three replicates.

Run

no.
X,

Trancutanol

concentration

(%)

x2

Maisine

concentration

(%)

x3

Peceol

concentration

(%)

Ts0%

(min)

Dissolut

efficien

(%)

1 1 3 1 3 -1 1 4.48 66.44

2 1.7 3.7 0 2 0 2 3.56 73.7

3 -1 1 1 3 1 3 4.79 64.56

4 -1 1 -1 1 -1 1 8.91 40.25

5 1 3 1 3 1 3 3.40 75.32

6 0 2 0 2 -1.7 3 7.77 46. n
7 1 3 -1 1 1 3 3.57 73.6£

8 0 2 0 2 1.7 37 3.62 73.42

9 -1.7 3 0 2 0 2 8.074 44.97

10 0 2 1.7 37 0 2 4.44 66.9;

11 0 2 0 2 0 2 4.90 63.59

12 0 2 0 2 0 2 4.90 63.59

13 1 3 -1 1 -1 1 5.22 61.03

14 0 2 0 2 0 2 4.90 63.5S

15 0 2 -1.7 3 0 2 5.63 58.61

16 -1 1 -1 1 1 3 5.44 60.14

17 0 2 0 2 0 2 4.90 63.59

18 -1 1 -1 1 -1 1 8.91 40.25

The neural network was trained with 1 to 15 hidden neurons with 2000 training epochs 

and performance was tested after each 1 addition of neurons. Training was repeated for 3 

times for optimization of all parameters. At the start of the training run, weights were 

initialized with random values. During training, 5 additional data sets of inputrdesired 

output were used for the cross-validation and was back-propagated through the network 

to evaluate the trained network. A mean square error (MSE) termination criterion was
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based on the cross validation set. By selecting this option training stops when the MSE of 

the cross validation set begins to increase, a sign of network overtraining when network 

simply memorizes the training set and is unable to generalize the problem. The network 

trained under optimum conditions was used to predict responses at different factor values 

and response surface were generated for interpretation.

9.2.6 Characterization of Complexes

Powder X-ray difftractometry was carried out using a Rigaku DMAX- III 3 KVA 

diffractometer (Geigerflex Horizontal Goniometer, Japan). The operating conditions were 

as follows: target, Cu; filter, Ni; voltage, 40 kV, current, 10 mA; receiving slit, 0.15 mm; 

scanning speed, 5°/min. The drug powder was measured using the KBr method. 

Differential scanning calorimeter (DSC) with a Shimadzu DT-60 was used for each 

sample at a constant scanning speed of 10 °C/min between 40°C and 300°C. The samples 

of 5-7 mg were accurately weighted into solid aluminum pans without seals.

9.2.7 Preparation of Tablets

The prepared solid complexes were formulated into tablets by direct compression 

method. The composition of the prepared tablets was as follow: lamotrigine (5 mg), p-CD 

(5mg), transcutanol (0.02) lactose anhydrous (10 mg), microcrystalline cellulose (20 mg), 

mannitol (10 mg), cross carmellose (8 mg), magnesium stearate (0.5 mg). Each time a 

batch of tablets containing 5 mg lamotrigine with an average weight of 63 mg was 

prepared using cadmach single punch tablet machine

9.2.8 In Vitro Dissolution Study

The dissolution of lamotrigine from inclusion complxes and tablets were studied using 

USP USP 25 Paddle apparatus (Model TDT-06P, Electrolab, Mumbai, India) at 37+ 0.5 

°C using 900 ml of 0.1 N hydrochloric acid containing 0.5 % sodium lauryl sulphate 

(SLS) as dissolution medium with stirring speed of 75 rpm. SLS (0.5%) was added to 

maintain the sink condition. The inclusion complex equivalent to 20 mg of lamotrigine or
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one tablet containing 20 mg of lamotrigine was used in each test. At suitable intervals, 

samples of 5 ml were taken and immediately replaced with equal volume of fresh 

dissolution medium (maintained 37 ± 0.5°C) to maintain a constant volume for drug 

dissolution. The withdrawn samples were filtered through 0.45-pm membrane filters and 

assayed spectrophotometrically at 305 nrn (Model UV-1601, UV Visible 

spectrophotometer, Shimadzu, Japan). The absorbance values were transformed to 

concentration by reference to a standard calibration curve obtained experimentally (r = 

0.9968). Samples of solid dispersions were stored for 3 months at room temperature and 

at 45°C, and evaluated again for reliability of dissolution profiles.

9.2.9 Solubility Study

Solubility of lamotrigine and lamotrigine (3-CD complex were studied at pH 1.2. To this 

aim, an excess amount of lamotrigine (an amount of lamotrigine, more that could be 

dissolved) was added to a closed flask with pH 1.2, and then mixed with a magnetic 

mixer at 37 °C for 72 hr. Thereafter, the liquid phase was filtered through 0.45-pm filters 

and the amount of lamotrigine in this solution was determined. Solubility of lamotrigine 

was calculated by the point measured during formation of the equilibrium status.
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9.3 RESULTS AND DISCUSSION

The phase solubility diagram for lamotrigine and (LCD is shown in figure 9.2.

Concentration of p-eyclodextrin 
(mM/liter)

Figure 9.2. Phase solubility diagram of the lamotrigine-jl-cyclodextrin system. Each 

values is mean ± S.D. of five experiments.

The solubility curve can be classified as type AL according to Higuchi et al21. Because the 

straight line had a slope less than unity, it was assumed that the increase in solubility 

observed was due to the formation of a 1:1 complex. The 1:1 stability constant (Ku) of 
the soluble complex was calculated according to Eq. (5) and was found to be 3.05 M"1.

slope
S0(l-slope) (5)

Where So is the solubility of lamotrigine in absence of [i-CD.

A three-factor spherical second order central composite experimental design was adopted 

using the concentration of transcutanol (Xi), maisine (X2) and peceol (X3) to study the 

effect of the solubilizing agents. The results of dependent variables such as the T5q% and
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Step size of output layer

Figure 9.3. Optimization of neural network: (A) optimization of step of hidden 

layer, and (B) optimization of step size of output layer.

Optimum number of neurons in hidden layer was found to be 5, while optimum step size 

for hidden layer and output layer was 0.2 and 0.9 respectively (out of 0.1 to 1.0). 

Optimum momentum for hidden layer and output layer was found to be 0.8 and 0.4

dissolution efficiency of different runs are shown in Table 1. Optimization of various 

parameters like number of neuron in hidden layer, step size and momentum of hidden and 

output layer was carried out. For optimization, the training was carried out three times 

and the minimum of average MSE was the optimization criteria. Results of various run 

are summarized in figure 9.3.
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respectively (out of 0.1 to 1.0). For prediction purpose, the neural network was 

constructed using the optimum conditions and trained (n=3) along with cross validation 

data set. The matrix of the experiments and neural network predicted responses are given 

in Table 2. The predicted responses were plotted to generate the contour plots for 

interpreting the effect of various process factors.

50 % of drug should be released in minimum time to exert maximum action at the site of 

release. The transcutanol concentration was the most positively influencing factor 

amongst all three. Similarly, all three factors had positive effect on the dissolution 

efficiency and transcutanol concentration was the most positively influencing factor. This 

may be due to the higher wetting of the drug by transcutanol. The liquid solid dispersion 

system containing drug and vehicles was studied by Spireas and Sadhu. The drug 

remained in a solubilized state within the substrate of the liquidsolid dispersion system. It 

is well known better bioavailability of an orally administered poorly water soluble drug 

can be achieved when it is in solution form. There is a possibility for the drug to 

precipitate out of the vehicle because of surface adsorption onto the carrier system. The 

precipitated drug particles may be in amorphous or solvated form possessing improved 

solubility. The relation between process variables and response factors was derived using 

multi-linear regression (MLR) which can be represented as:

p50% = 4.256-1.338X, -0.391X2 -0.928X3 +0.303X,2 + 0.303X2 +

0.735X3 +0.156X]X2 +0.906X2X3 +0.113X,X3
(R2 = 0.8837; DF - 9,17; F = 6.754) (6)

Dissolution efficiency = 69.999+ 8.463X; +3.348X2 +6.115X3 -2.376X2 -3.402X2 

-3.810X2 -0.585X,X2 -8.078X2X3 +4.276X]X3 

(R2 = 0.8265;DF = 9,17;F = 4.325) (7)

The equation 7 showed that transcutanol has largest negative effect on the time required 

for 50% dissolution of lamotrigine while equation 8 showed that transcutanol has the 

largest positive effect on the dissolution efficiency of the lamotrigine. Therefore, In order
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to assess the reliability of the model, five cross-validation experiments were conducted 

by varying the process variables at values other than that of the model and responses 

were predicted using the trained network. A comparison between the experimental and 

predicted values of the responses for these additional experiments is presented in table 

9.3.

Table 9.3. Comparison of Responses between Predicted and Experimental Values 

for the Cross-Validation Set.

Responses Test
Factors/levels Experimental Predicted

Bias%
A B C values values

T50% 1 -1 -0.6 -0.6 9.50 9.73 2.36

2 -0.6 0.0 0.4 7.50 7.4 1.35

3 -0.4 0.6 0.0 7.00 6.83 2.48

4 0.0 -0.4 0.6 6.50 6.30 3.17

5 0.4 0.4 -0.4 5.00 5.20 3.84

Dissolution

efficiency (%)
1 -1 -0.6 -0.6

36.71 37.38 1.79

2 -0.6 0.0 0.4 50.27 53.74 6.45

3 -0.4 0.6 0.0 55.34 57.93 4.47

4 0.0 -0.4 0.6 59.09 58.93 0.27

5 0.4 0.4 -0.4 65.72 64.83 1.37

Bias was calculated by the following equation:

Bias =
(predicted value - experimental value) 

predicted value
xlOO (8)

It can be seen that in all cases there was a reasonable agreement between the predicted 

and the experimental value, since low value of the bias were found. For this reason it can 

be concluded that the NN predicted responses describe adequately the influence of the
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selected process variables on the responses under study and NN can be used successfully 

as a predictive and optimizing tool.

The DSC, XRD, SEM and in vitro dissolution studies were used to characterize the solid 

dispersions. Supporting evidence for complex formation was also obtained from DSC 

studies (figure 9.4).

Lamotrigine

50 100 150 200 250 300

T emp eratur e (°C)

Figure 9.4. DSC thermograms of lamotrigine, p-cyclodextrin, physical mixture 

(lamotrigine: p-CD: 1:1), coprecipitation solid dispersions (lamotrigine: p- 

CD:transcutanol: l:l:0.03)and cogrinding solid dispersions (lamotrigine: p- 

CD:transcutanol: 1:1:0.03).

The endothermic peak of lamotrigine at 210 °C, which correspondence to its melting 

point, was considerably broadened in the coprecipitated and cogrinding method. The
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P-Cyclo dextrin

Physical mixture

Coprecipitation solid dispersions

Cogrinding solid dispersions

• 1 ‘ * * - ■ Jlu i |i"ii"*ll"f"'i..»"»'» II I I

10 20 30 40
Position [°2ThetaJ

Figure 9.5. Powder x- ray diffraction patterns of lamotrigine, p-cyclodextrin, 

physical mixture (lamotrigine: p-CD: 1:1), coprecipitation solid dispersions 

(lamotrigine: p-CD:transeutanol: 1:1:0.03) and cogrinding solid dispersions 

(lamotrigine: p-CD:transcutanol: 1:1:0.03).

DSC thermogram of the physical mixture was a combination of the thermograms of 

lamotrigine and P-CD. DSC study indicated no interaction between lamotrigine and p~ 

CD.
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The diffraction pattern of lamotrigine showed that lamotrigine has high crystallinity 

because of the presence of numerous distinct peaks. The x-ray patterns of the physical 

mixture of lamotrigine and |3-CD was simply a superimposition of each component with 

the peaks having lower intensity (figure 9.5). The solid dispersions produced my 

coprecipitated method and cogrinding method showed a broad, diffuse pattern indicating 

that the process of coprecipitation and cogrinding led to a grater amount of amorphous 

nature. The scanning electron photomicrographs (SEM) of lamotrigine, P-CD, physical 

mixture and various solid dispersions in figure 9.6.
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(e)

Figure 9.6. Scanning electron photomicrographs of (a) lamotrigine, (b) p- 

cyclodextrin, (c) physical mixture (lamotrigine: P-CD: 1:1), (d) solid dispersions 

produced by coprecipitation method (lamotrigine: p-CD:transcutanol: 1:1:0.03), (e) 

solid dispersions produced by cogrinding method (lamotrigine: p-CD:transcutanol: 

1:1:0.03).

Analysis of SEM revealed that the elongated crystalline forms of lamotrigine and 

relatively larger elongated crystals of P-CD, clearly visible in the physical mixture were 

transferred to less crystalline structures in the solid dispersions. These observations _ 

provided further evidence of solid solution formation, and are in accordance to the results 

obtained from DSC and x-ray diffraction studied.

Figure 9.7(a) shows the dissolution profiles of the different dispersion samples. The 

cogrinding solid dispersion dissolved completely to give a clear solution almost 

instantaneously. Lamotrigine dissolved only to the extent 36 % at the end of 3 hr. All 

other samples displayed better dissolution of the dug. The % drug dissolved from the 

physical mixture, coprecipitation method and cogrinding method was about 72 %, 91 % 

and 97 %, respectively. The coprecipitation treated lamotrigine and cogrinding-treated 

drug was slightly more soluble in comparison with intact lamotrigine, because the 

crystallinity of the dug was decreased by coprecipitation and cogrinding treatment. 

Samples stored at room temperature and at 45 °C showed no changes in dissolution 

patterns [figure 9.7 (b) and 9.7(c)] at the end of 3 months.
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0 30 60 90 120 150 180 
Time (min)

Figure 9.7. (a) Dissolution of lamotrigine from solid dispersions, (b) Dissolution of 

lamotrigine from solid dispersions (lamotrigine: p-CD:transcutanol: 1:1:0.03) stored 

at room temperatures for 3 month, (c) Dissolution of lamotrigine from solid 

dispersions (lamotrigine: p-CD:transcutanol: 1:1:0.03) stored at 45 °C for 3 month. 

Each value is mean ± of S.D. five experiments.

Coprecipitation method and cogrinding method gave a solid mass which was denser than 

the physical mixture and had better flow and compressibility. AH the tablets prepared 

were found to contain lamotrigine within 100 ± 5% of the labeled claim. Hardness of the 
tablets was in the range of 4-7 kg/cm2 and was satisfactory. The percentage weight loss in 

the friability test was less than 1% in all the batches prepared. The tablets disintegrated 

rapidly within 2 minutes fulfilling the official disintegration time specification for 

uncoated tablets. Figure 9.8 shows the dissolution of profiles of the tablets.
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Figure 9.8. Percent lamotrigine dissolved from tablets made from the different solid 

dispersion versus time. Each value is mean + S.D. of five experiments.

The time taken for 50 % (tso%) of lamotrigine is in table 9.4.

Table 9.4. T50 % values of tablets made from different method (n=5).

Tablets made from:

Time (min) Lamotrigine

Physical Coprecipitation

mixture method

Cogrinding

method
t50% 18 ±1.06 7+0,74 4 ±0.37 2.5 ±0.06

Tablets compressed from solid dispersions prepared with cogrinding method showed 

higher dissolution rates and high dissolution efficiency than tablets prepared from other 

solid complex method or lamotrigine alone. Thus the dissolution rates of lamotrigine can 

be significantly enhanced by its solid dispersion prepared with cogrinding method using 

P-CD and transcutanol. These dispersions could be formulated into tablets by direct 

compression method. The resulting tablets, apart from fulfilling all official and other 

specifications, exhibited higher dissolution rates of lamotrigine.
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9.4 CONCLUSIONS

Solid dispersions with |3-CD improved solubility of lamotrigine. The optimization of the 

process using the neural netowrk resulted to the optimum values of the factors at which 

the goal of the dissolution enhancement of lamotrigine could be fulfilled. Studies on 

solubility, DSC, x-ray diffraction, SEM, and powder dissolution indicated complex 

formation. Interaction between [LCD and lamotrigine was greater after the 

coprecipitation and cogrinding processes than physical mixture. Solubility of lamotrigine 

increased significantly due to complexation and amorphization. Solid dispersions with [T 

CD were compressed into tablets. Tablets so compressed had good in vitro dissolution 

profile.
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