III. LIST OF FIGURES

.

Figure	Title	Page
No.		No.
2.1	Structure of the oral mucosa	9
2.2	Time required for the onset of action through oral, dermal and sublingual route	13
2.3	The percent absorption of the drug through oral, dermal and sublingual route	14
2.4	Modified disintegration apparatus	25
2.5	Franz diffusion cell	28
3.1	Structure formula of salbutamol sulphate	53
3.2	UV Spectrum of salbutamol sulphate	57
3.3	Infra-red spectrum of salbutamol sulphate	57
3.4	Mass spectrum of salbutamol sulphate	58
3.5	Structure formula of ondansetron hydrochloride	59
3.6	UV spectrum of ondansetron hydrochloride	63
3.7	Mass spectrum of ondansetron hydrochloride	64
3.8	Structural formula of lamotrigine	65
3.9	UV spectrum of lamotrigine	69
3.10	Infra-red spectrum of lamotrigine	69
3.11	Mass spectrum of lamotrigine	70
4.1	Calibration curve of salbutamol sulphate in distilled water	82
4.2	Calibration curve of salbutamol sulphate in 0.1 N HCl	83
4.3	Calibration curve of salbutamol sulphate in simulated saliva (pH 6.8)	84
4.4	Calibration curve of salbutamol sulphate in simulated gastrointestinal fluid (pH 1.2)	85
4.5	Calibration curve of ondansetron hydrochloride in distilled water	86
4.6	Calibration curve of ondansetron hydrochloride in 0.1 N HCl	87

..

,

4.7	Calibration curve of ondansetron hydrochloride in simulated saliva	88
	(pH 6.8)	
4.8	Calibration curve of ondansetron hydrochloride in gastrointestinal	89
	fluid (pH 1.2)	
4.9	Calibration curve of lamotrigine in distilled water	90
4.10	Calibration curve of lamotrigine in 0.1N HCl	91
4.11	Calibration curve of lamotrigine in simulated saliva (pH 6.8)	92
4.12	Calibration curve of lamotrigine gastrointestinal fluid (pH 1.2)	93
4.13	Chemical structure of (A) salbutamol sulphate and (B) internal	95
	standard (chloramphenicol)	
4.14	Representative chromatogram of blank rabbit plasma	99
4.15	Representative chromatogram of plasma spiked with 300 ng/ml	99
	salbutamol sulphate (peak 1) and 2000 ng/ml chloramphenicol (peak	
	2)	
4.16	Chemical structures of ondansetron hydrochloride and	103
	chlorpromazine hydrochloride (Internal standard)	
4.17	Chromatogram of blank rabbit plasma	107
4.18	Chromatogram of extracted rabbit blood spiked with 100 ng/ml	107
	ondansetron hydrochloride (peak 1) and 1000 ng/ml internal	
	standard (peak 2)	
4.19	Chemical structures of lamotrigine and phenobarbitone (internal	111
	standard)	
4.20	Chromatogram of blank rabbit plasma	115
4.21	Chromatogram of 1000 ng/ml lamotrigine (peak 1) and 10 µg/ml	115
	internal standard (peak 2)	
51		
5.1	Conceptual structure of a biological neuron	127
5.1	Conceptual structure of a biological neuron A common design of a node in an artificial neural network	127 128
5.2 5.3	Conceptual structure of a biological neuron A common design of a node in an artificial neural network A three layered artificial network	127 128 131
5.1 5.2 5.3 6.1	Conceptual structure of a biological neuron A common design of a node in an artificial neural network A three layered artificial network Permeation profiles of salbutamol sulphate through porcine buccal	127 128 131 165

٠

r		r
	8.0, (•) pH 9.0. Each point represents the mean \pm S. D. of five	
	experiments	
6.2	Effect of donor concentration of salbutamol sulphate on steady state	167
	flux at pH 7.4. Each point represents the mean \pm S. D. of five	
	experiments	
6.3	Effect of pH on permeability coefficient and partition coefficient of	169
	salbutamol sulphate: (\Box) Permeability coefficient × 10 ⁻⁵ , (\blacktriangle)	
	Partition coefficient, (•) Fraction of ionized species, (0) Fraction of	
	unionized species. Each point represents the means \pm S. D. of five	
	experiments	
6.4	Correlation between observed permeability coefficient and	171
	calculated permeability coefficient. Each point represents the means	
	± S. D. of five experiments	
6.5	Permeation profiles of ondansetron hydrochloride through porcine	174
	buccal mucosa: (□) pH 4.0, (a) pH 6.0, (▲) pH 6.8, (○) pH 7.4, (Δ)	
	pH 8.0, (•) pH 9.0. Each point represents the mean ± S. D. of five	
	experiments	
6.6	Effect of donor concentration of ondansetron hydrochloride on	176
	steady state flux at pH 7.4. Each point represents the means \pm S. D.	
	of five experiments	
6.7	Effect of pH on permeability coefficient and partition coefficient of	177
	ondansetron hydrochloride: (\Box) Permeability coefficient × 10 ⁻⁵ , (\blacktriangle)	
	Partition coefficient, (•) Fraction of ionized species, (0) Fraction of	
	unionized species. Each point represents the means \pm S. D. of five	
	experiments	
6.8	Correlation between observed permeability coefficient and	179
	calculated permeability coefficient. Each point represents the means	
	\pm S. D. of five experiments	
6.9	Permeation profiles of lamotrigine through porcine buccal mucosa.	181
	(□) pH 4.0, (m) pH 6.0, (▲) pH 6.8, (○) pH 7.4, (△) pH 8.0, (●) pH	
	9.0. Each point represents the mean \pm S. D. of three experiments	

~

.

..

6.10	Effect of donor concentration of lamotrigine on steady state flux at	182
	ph 7.4. Each point represents the mean \pm S. D. of three experiments	
6.11	Effect of pH on permeability coefficient and partition coefficient of	184
	lamotrigine: (n) permeability coefficient, (o) partition coefficient.	
	Each point represents the mean \pm S. D. of three experiments	
6.12	Correlation of 1-octanol/buffer partition coefficient and permeability	185
	coefficient	
6.13	Correlation between observed permeability coefficient and	186
	calculated permeability coefficient	
6.14	Relationship between permeability coefficient and the fraction of	187
	different species of lamotrigine: (•) fraction of ionized species, (o)	
	permeability coefficient, (A) fraction of unionized species. Each	
	point represents the mean \pm S. D. of three experiments	
6.15	Relationship between partition coefficient and the fraction of	188
	different species of lamotrigine: (m) fraction of ionized species, (o)	
	partition coefficient, (A) fraction of unionized species. Each point	
	represents the mean \pm S. D. of three experiments	
6.16	Content of salbutamol sulphate (µg) in mucosa after run at various	191
	pH. Each point represents the means \pm S. D. of five experiments	
6.17	Content of ondansetron hydrochloride (µg) in mucosa after run at	192
	various pH Each point represents the means \pm S. D. of five	
	experiments	
6.18	Content of lamotrigine (µg) in mucosa after run at various pH	193
	Each point represents the means \pm S. D. of five experiments	
7.1	PAMPA Log Pe ^{7.4} vs. Human Absorption Values 1	201
7.2	UV spectra of the equilibrium samples in the 96-well plate	207
7.3	UV spectra of the samples incubated for 6 hrs and 24 hrs in the 96-	212
	well plate	
8.1	Contour plot for tensile strength (), % drug release at 2	235
	minutes () and over all desirability () keeping amount of	- 1

.

	-	
	mannitol at 0 level	
8.2	Contour plot for tensile strength (), % drug release at 2	235
	minutes () and over all desirability () keeping amount of poly	
	vinyl alcohol at 0 level	
8.3	Contour plot for tensile strength (), % drug release at 2 minutes	236
	() and over all desirability () keeping amount of glycerol at 0	-
	, level	
8.4	SEM micrograph of salbutamol sulphate film at 2000X	239
	magnification	
8.5	SEM micrograph of salbutamol sulphate film at 4500X	239
	magnification	
8.6	DSC of thermograms of salbutamol sulphate optimized film	240
8.7	Comparative dissolution profiles of salbutamol sulphate film in	241
	distilled water (\blacktriangle), simulated saliva (pH 6.8) (\blacksquare) and simulated	
	gastric fluid (pH 1.2) (•)	
8.8	Dissolution of the film of salbutamol sulphate in distilled water in	242
	beaker (A) film outside the beaker, (B) film in distilled water (C)	
	film in distilled water after 30 seconds, (D) film distilled water after	
	60 seconds	
8.9	Dissolution of the film of salbutamol sulphate in guinea pig buccal	243
	mucosa (A) buccal mucosa without film (B) film put over the buccal	
	mucosa (C) film over the buccal mucosa after 30 seconds, (D) film	
	over the buccal mucosa after 60 seconds	
8.10	SEM micrographs of ondansetron hydrochloride film at (A) 1000X	246
	(B) 2000X magnification	
8.11	DSC of thermograms ondansetron hydrochloride film	247
8.12	Comparative dissolution profiles of ondansetron hydrochloride in	249
	distilled water (\blacktriangle), simulated saliva (pH 6.8) (\blacksquare) and simulated	
	gastric fluid (pH 1.2) (•)	
8.13	SEM micrograph of lamotrigine film at (A)1000X and (B) 2000X	251

	magnification	
8.14	DSC of thermograms lamotrigine film	252
8.15	Comparative dissolution profiles of lamotrigine film in distilled	254
	water (A), simulated saliva (pH 6.8) (a) and simulated gastric fluid	
	(pH 1.2) (•)	
9.1	Architecture of three-layer neural network	263
9.2	Phase solubility diagram of the lamotrigine-β-cyclodextrin system	272
9.3	Optimization of neural network: (A) optimization of step of hidden	273
	layer, and (B) optimization of step size of output layer	
9.4	DSC thermograms of lamotrigine, β-cyclodextrin, physical mixture	276
	(LM: β -CD: 1:1), coprecipitation solid dispersions (LM: β -	
	CD:transcutanol: 1:1:0.03)and cogrinding solid dispersions (LM: β-	
	CD:transcutanol: 1:1:0.03)	
9.5	Powder x- ray diffraction patterns of lamotrigine, β -cyclodextrin,	277
	physical mixture (LM: β -CD: 1:1), coprecipitation solid dispersions	
	(LM: β-CD:transcutanol: 1:1:0.03)and cogrinding solid dispersions	
	(LM: β-CD:transcutanol: 1:1:0.03)	
9.6	Scanning electron photomicrographs of (a) lamotrigine, (b) β -	279
	cyclodextrin, (c) physical mixture (LM: β -CD: 1:1), (d) solid	
	dispersions produced by coprecipitation method (LM: β -	
	CD:transcutanol: 1:1:0.03), (e) solid dispersions produced by	
	cogrinding method (LM: β-CD:transcutanol: 1:1:0.03)	
9.7	(a) Dissolution of lamotrigine from solid dispersions. (b) Dissolution	280
	of lamotrigine from solid dispersions (LM: β -CD:transcutanol:	
	1:1:0.03) stored at room temperatures for 3 month. (c) Dissolution	
	of lamotrigine from solid dispersions (LM: β -CD:transcutanol:	
	1:1:0.03) stored at 45 °C for 3 month	
9.8	Percent lamotrigine dissolved from tablets made from the different	281
	solid dispersion versus time	
10.1	Contour plot of tensile strength obtained from simplex lattice design	298

.

~ ·

10.2	Contour plot of disintegration time obtained from simplex lattice	299
	design	
10.3	Superimposed contour plots of tensile strength and disintegration	301
	time for optimum region	
10.4	Comparative dissolution profile of tablets of ondansetron	306
	hydrochloride in distilled water (\blacktriangle) and simulated saliva (pH 6.8)	
	(=)	
10.5	Disintegration of the fast dissolving tablet of ondansetron	307
	hydrochloride in distilled water in glass. (A) tablet put into the glass,	
	(B) tablet at 10 seconds, (C) tablet after 15 seconds, (D) tablet after	
	20 seconds	
10.6	Comparative dissolution profile of tablets of salbutamol sulphate in	313
	distilled water (\blacktriangle) and simulated saliva (pH 6.8) (\blacksquare)	
10.7	Comparative dissolution profile of lamotrigine tablets in distilled	319
	water (\blacktriangle) and simulated saliva (pH 6.8) (\blacksquare)	
11.1	Comparison of pharmacokinetic profiles of different formulations of	335
	sabutamol sulphate. (0) Conventional tablet, (1) fast dissolving	
	tablet, (▲) fast dissolving film	
11.2	Comparison of pharmacokinetic profiles of different formulations of	338
	ondansetron hydrochloride. (0) Conventional tablet, (1) fast	
	dissolving tablet, ($f A$) fast dissolving film	
11.3	Comparison of pharmacokinetic profiles of different formulations of	341
	lamotrigine. (0) Conventional tablet, (n) fast dissolving tablet, (A)	
	fast dissolving film	