8. STATISTICAL ANALYSIS

8. Statistical comparison of the results obtained by the developed

methods by ANOVA and T – test

F and T values were computed and compared with the standard tabulated values at 5% level (P=0.05)

The experimental (calculated) F values did not exceed the tabulated values of F and T in the analysis of variance; indicating that there was no significant difference among the methods.

8.1. Ezetimibe

8.1.1. Spectroscopic methods

To compare the differences among the methods, an ANOVA test was applied to **five** different spectroscopic methods: Simple, 1st derivative, 2nd derivative, difference and IR spectroscopy.

Source	Degree of freedom	Sum of Squares	Mean Squares	F-test
Among Samples	4	8.88	4.43	
Within Replicates	20	20.64	1.72	<u>2.58</u>
Total	24	29.52		

 Table 8.1.1: Result of one way ANOVA of Spectroscopic methods

*F theoretical = 3.01 at P = 0.05

Conclusion: The calculated F values did not exceed the theoretical F values, at 0.05 level of significance, thus proposed methods give reproducible results.

8.1.2. Chromatographic methods

To compare the differences among the methods, an ANOVA test was applied to **FOUR** different chromatographic methods: HPLC, HPTLC-1(peak area and height) and HPTLC -2.

Table 8.1.2: Result of one way ANOVA of Chromatographic methods

Source	Degree of freedom	Sum of Squares	Mean Squares	F-test
Among Samples	3	7.77	2.89	
Within Replicates	16	20.64	1.29	<u>2.01</u>
Total	19			

*F theoretical = 3.24 at P = 0.05

Conclusion: The calculated F values did not exceed the theoretical F values, at 0.05 level of significance, thus proposed methods have no significant difference.

8.2. Pravastatin

8.2.1. Spectroscopic methods

To compare the differences among the methods, an ANOVA test was applied to **SIX** different spectroscopic methods: Simple, 1st, 2nd, difference, three wavelength and IR spectroscopy.

 Table 8.2.1: Result of one way ANOVA of Spectroscopic methods

Source	Degree of freedom	Sum of Squares	Mean Squares	F-test
Among Samples	5	4.95	2.47	
Within Replicates	24	14.65	1.22	<u>2.03</u>
Total	29	19.60		

*F theoretical = 2.62 at P = 0.05

Conclusion: The calculated F values did not exceed the theoretical F values, at 0.05 level of significance, thus proposed methods give reproducible results.

8.2.2. Chromatographic methods

To compare the differences among the methods, an ANOVA test was applied to **FOUR** different chromatographic methods: HPLC, HPTLC-1(peak area and height) and HPTLC -2.

Table 8.2.2: Result of one way ANOVA of Chromatographic methods

Source	Degree of freedom	Sum of Squares	Mean Squares	F-test
Among Samples	3 **	9.36	3.12	
Within Replicates	16	23.68	1.48	2.11
Total	19			

*F theoretical = 3.24 at P = 0.05

Conclusion: The calculated F values did not exceed the theoretical F values, at 0.05 level of significance, thus proposed methods have no significant difference.

8.3. Rosuvastatin

8.3.1. Spectroscopic methods

To compare the differences among the methods, an ANOVA test was applied to **FOUR** different spectroscopic methods: Simple, 1st, difference and IR spectroscopy.

Source	Degree of freedom	Sum of Squares	Mean Squares	F-test
Among Samples	3	10.7	5.38	
Within Replicates	16	21.96	1.83	<u>2.94</u>
Total	19			

 Table 8.3.1: Result of one way ANOVA of Spectroscopic methods

*F theoretical = 3.24 at P = 0.05

Conclusion: The calculated F values did not exceed the theoretical F values, at 0.05 level of significance, thus proposed methods give reproducible results.

8.3.2. Chromatographic methods

To compare the differences among the methods, an ANOVA test was applied to FOUR different chromatographic methods: HPLC, HPTLC-1(peak area and height) and HPTLC -2.

Table 8.3.2: Result of one way ANOVA of Chromatographic methods

Source	Degree of freedom	Sum of Squares	Mean Squares	F-test
Among Samples	3	13.95	4.65	
Within Replicates	16	20.88	1.93	<u>2.41</u>
Total	19			

*F theoretical = 3.24 at P = 0.05

Conclusion: The calculated F values did not exceed the theoretical F values, at 0.05 level of significance, thus proposed methods have no significant difference.

8.4. Simvastatin

8.4.1. Spectroscopic methods

To compare the differences among the methods, an ANOVA test was applied to **FIVE** different spectroscopic methods: Simple, 1st, 2nd, difference and IR spectroscopy.

Table 8.4.1: Result of one way ANOVA of Spectroscopic methods

Source	Degree of freedom	Sum of Squares	Mean Squares	F-test
Among Samples	4	9.36	4.68	
Within Replicates	20	23.04	1.92	<u>2.44</u>
Total	24			

*F theoretical = 3.01 at P = 0.05

Conclusion: The calculated F values did not exceed the theoretical F values, at 0.05 level of significance, thus proposed methods give reproducible results.

8.4.2. Chromatographic methods

To compare the differences among the methods, an ANOVA test was applied to **FOUR** different chromatographic methods: HPLC, HPTLC-1(peak area and height) and HPTLC -2.

Source	Degree of freedom	Sum of Squares	Mean Squares	F-test
Among Samples	3	8.52	2.84	
Within Replicates	16	22.72	1.42	<u>2.03</u>
Total	19			

*F theoretical = 3.24 at P = 0.05

Conclusion:The calculated F values did not exceed the theoretical F values, at 0.05 level of significance, thus proposed methods have no significant difference.

8.5. Lovastatin

8.5.1. Spectroscopic methods

To compare the differences among the methods, an ANOVA test was applied to **FIVE** different spectroscopic methods: Simple, 1^{st} , 2^{nd} , difference and IR spectroscopy.

Source	Degree of freedom	Sum of Squares	Mean Squares	F-test
Among Samples	4	16.14	5.38	
Within Replicates	20	29.24	1.83	<u>2.94</u>
Total	24			

 Table 8.5.1: Result of one way ANOVA of Spectroscopic methods

*F theoretical = 3.24 at P = 0.05

Conclusion:The calculated F values did not exceed the theoretical F values, at 0.05 level of significance, thus proposed methods give reproducible results.

8.5.2. Chromatographic methods

To compare the differences among the methods, an ANOVA test was applied to **FOUR** different chromatographic methods: HPLC, HPTLC-1(peak area and height) and HPTLC -2.

Source	Degree of freedom	Sum of Squares	Mean Squares	F-test
Among Samples	3	9.11	4.55	
Within Replicates	16	18.36	1.53	<u>2.98</u>
Total	19			

 Table 8.5.2: Result of one way ANOVA of Chromatographic methods

*F theoretical = 3.01 at P = 0.05

Conclusion:The calculated F values did not exceed the theoretical F values, at 0.05 level of significance, thus proposed methods have no significant difference.

8.6. Ezetimibe and Simvastatin

8.6.1. Spectroscopic methods

To compare the differences among the methods, an ANOVA test was applied to **FIVE** different spectroscopic methods: ratio derivative, FDZC, IR and Chemometric (ILS & CLS) spectroscopy.

Source	Degree freed		Sum Square	of	Mean Squar			st
	EZE	SIMVA	EZE	SIMVA	EZE	SIMVA	EZE	SIMVA
Among Samples		4	8.59	18.62	1.28	2.84		
Within Replicates		20	5.12	11.36	0.42	0.93	<u>2.98</u>	<u>3.05</u>
Total		24						

 Table 8.6.1: Result of one way ANOVA of Spectroscopic methods

*F theoretical = 3.24 at P = 0.05

Conclusion:The calculated F values did not exceed the theoretical F values, at 0.05 level of significance, thus proposed methods give reproducible results.

8.6.2. Chromatographic methods

To compare the differences among the methods, T - test was applied to TWO different chromatographic methods: HPLC and HPTLC

Table 8.6.2: Result of one way ANOVA of Chromatographic methods

Methods/	EZE		SIMVA	
parameters	HPLC	HPTLC	HPLC	HPTLC
Mean %	100.41	99.64	102.19	100.83
SD	0.78	0.42	0.52	0.72

Ν	5	5	5	5	
T-test		1.21	1.02		
T- tab	1.860				

Conclusion: The calculated T values did not exceed the theoretical T values, at 0.05 level of significance, thus proposed methods have no significant difference.

8.7. Ezetimibe and Pravastatin

8.7.1. Spectroscopic methods

To compare the differences among the methods, an ANOVA test was applied to **FIVE** different spectroscopic methods: DDZC, FDZC, IR and Chemometric (ILS & CLS) spectroscopy.

Source	Degree of freedom		Sum of Squares		Mean Squares		F – test	
	EZE	PRAVA	EZE	PRAVA	EZE	PRAVA	EZE	PRAV A
Among Samples		4	6.68	7.69	3.34	3.84		
Within Replicates	2	20	15.36	21.48	1.28	1.79	<u>2.61</u>	<u>2.15</u>
Total	4	24						

 Table 8.7.1: Result of one way ANOVA of Spectroscopic methods

*F theoretical = 3.01 at P = 0.05

Conclusion:The calculated F values did not exceed the theoretical F values, at 0.05 level of significance, thus proposed methods give reproducible results.

8.7.2. Chromatographic methods

To compare the differences among the methods, an ANOVA test was applied to **THREE** different chromatographic methods: HPLC, HPTLC (peak area and height).

Source	Degree of freedom		Sum of Squares		Mean Squares		F –test	
	EZE	PRAVA	EZE	PRAVA	EZE	PRAVA	EZE	PRAV A
Among Samples		2	9.89	9.03	4.94	4.51		
Within Replicates		12	21.12	23.16	1.76	1.93	<u>2.81</u>	<u>2.34</u>
Total		24						

Table 8.7.2: Result of one way ANOVA of Chromatographic methods

*F theoretical = 3.89 at P = 0.05

Conclusion: The calculated F values did not exceed the theoretical F values, at 0.05 level of significance, thus proposed methods have no significant difference.

8.8. Ezetimibe and Rosuvastatin

8.8.1. Spectroscopic methods

To compare the differences among the methods, an ANOVA test was applied to **FOUR** different spectroscopic methods: FDZC, IR and Chemometric (ILS & CLS) spectroscopy.

Source	Degree freed		Sum Square	of	of Mean Squares		F-test	
	EZE	ROSU	EZE	ROSU	EZE	ROSU	EZE	ROSU
Among Samples		3	5.55	6.15	1.85	2.05		
Within Replicates		16	12.54	11.84	0.78	0.74	<u>2.36</u>	<u>2.77</u>
Total		19						4

Table 8.8.1: Result of one way ANOVA of Spectroscopic methods

*F theoretical = 3.01 at P = 0.05

Conclusion: The calculated F values did not exceed the theoretical F values, at 0.05 level of significance, thus proposed methods give reproducible results.

8.8.2. Chromatographic methods

To compare the differences among the methods, an ANOVA test was applied to **FOUR** different chromatographic methods: HPLC A, HPLC B, HPTLC (peak area and height).

Source	Degree of freedom				F –te	st	
	EZE ROSU	EZE	ROSU	EZE	ROSU	EZE	ROSU
Among Samples	3	11.39	10.25	3.79	3.41		
Within Replicates	16	32.10	25.92	2.01	1.62	<u>1.89</u>	<u>2.11</u>
Total	19						

Table 8.8.2: Result of one way ANOVA of Chromatographic methods

*F theoretical = 3.24 at P = 0.05

Conclusion: The calculated F values did not exceed the theoretical F values, at 0.05 level of significance, thus proposed methods have no significant difference.

8.9. Ezetimibe and Lovastatin

8.9.1. Spectroscopic methods

To compare the differences among the methods, an ANOVA test was applied to **FIVE** different spectroscopic methods: ratio derivative, FDZC, IR and Chemometric (ILS & CLS) spectroscopy.

Source	e Degree of Sum of freedom Squares		Mean Squares		F test		
	EZE SIMVA	EZE	SIMVA	EZE	SIMVA	EZE	SIMVA
Among Samples	4	8.56	11.44	2.14	2.88		
Within Replicates	20	14.86	18.33	0.74	0.91	<u>2.88</u>	<u>3.12</u>
Total	24]					

 Table 8.9.1: Result of one way ANOVA of Spectroscopic methods

*F theoretical = 3.24 at P = 0.05

Conclusion: The calculated F values did not exceed the theoretical F values, at 0.05 level of significance, thus proposed methods give reproducible results.

8.9.2. Chromatographic methods

To compare the differences among the methods, T - test was applied to TWO different chromatographic methods: HPLC and HPTLC

Table 8.9.2: Result of one way ANOVA of Chromatographic methods

Methods/	EZE		LOVA			
parameters	HPLC	HPTLC	HPLC	HPTLC		
Mean %	100.90	99.71	101.23	100.88		
SD	0.12	0.38	0.24	0.28		
N	5	5	5	5		
T-test		0.93	1	.11		
T- tab	1.860					

Conclusion: The calculated T values did not exceed the theoretical T values, at 0.05 level of significance, thus proposed methods have no significant difference. So, there is no significant difference among the methods.