List of Tables

Table No.	Name	Page No.
Chapter-1	Introduction	
1.1	Types of hyperlipidemia	3
1.2	Single and combination drugs for hyperlipidemia	6
Chapter-2	Drug selected for the study	
2.1	Efficacy of various statins in LDL-Cholesterol Lowering ²³	20
Chapter-3	Review of literature	
3.1	List of reported methods for EZETIMIBE	23
3.2	List of reported methods for PRAVASTATIN	25
3.3	List of reported methods for ROSUVASTATIN	29
3.4	List of reported methods for SIMVASTATIN	31
3.5	List of reported methods for LOVASTATIN	38
Chapter-4	Aim of the present work	
4.1	Newly developed analytical methods	53
Chapter-5	Approach to the development of analytical methods	
5.1	Integrated rate equation and half life equation	56
5.2	Result of one way ANOVA	75
5.3	Result of two way ANOVA	76
	Preliminary work	
6.1	Melting point of drugs reported and taken	80
6.2	Functional group peak of drugs	82
6.3	Solubility of drug in different solvent	83
6.5	Marketed formulation selected for single component analysis	87
6.6	Marketed formulation selected for combination analysis	88
Chapter -7		1
7.1.1.1.1	Calibration data of EZE by Spectrophotometric methods	93
7.1.1.1.2	Intraday precision data of EZE by Spectrophotometric methods	95
7.1.1.1.3	Interday precision data of EZE by Spectrophotometric methods	95
7.1.1.1.4	Reproducibility data of EZE by Spectrophotometric methods	95
7.1.1.1.5	Accuracy data of EZE by Spectrophotometric methods	96
7.1.1.1.6	Estimation of EZE in Tablet by Spectrophotometric methods	97
7.1.1.1.7	Summary of Validation parameters of Spectrophotometric methods	97
7.1.1.2.1	Calibration data of EZE by difference UV Spectroscopy	100
7.1.1.2.2	Intraday and Interday precision data of EZE by difference spectroscopy	101
7.1.1.2.3	Reproducibility data of EZE method	101
7.1.1.2.4	Accuracy data of EZE by Spectrophotometry	101
7.1.1.2.5	Estimation of EZE in Tablet by Spectrophotometry	102
7.1.1.2.6	Summary of Validation parameters of Difference Spectroscopy	102
7.1.1.3.1	Calibration data of EZE by Infrared Spectroscopy	105
7.1.1.3.2	Intraday and Interday precision data of EZE by FTIR Spectroscopy	106
7.1.1.3.3	Reproducibility data of EZE by FTIR Spectroscopy (15 µg/mg)	106
7.1.1.3.4	Accuracy data of EZE by FTIR Spectroscopy	106

Hasumati A. Raj

7.1.1.3.5	Estimation of EZE in Tablet by FTIR Spectroscopy	107
7.1.1.3.6	Summary of Validation parameters of Spectrophotometry	107
7.1.1.3.0	Determination of mobile phase	107
7.1.1.4.1	Determination of Flow rate	110
7.1.1.4.3	Selection of column	110
7.1.1.4.4	Calibration data of EZE by HPLC with UV detection	110
7.1.1.4.5	Intraday and interday precision data of EZE by HPLC	112
7.1.1.4.6	Repeatability data of EZE by HPLC	113
7.1.1.4.7	Accuracy data of EZE by HPLC with UV detection	113
7.1.1.4.8	Estimation of EZE in Tablet by HPLC with UV detection	113
7.1.1.4.9	Percentage degradation of EZE by force degradation	114
7.1.1.4.10	System suitability parameters of EZE	117
7.1.1.4.11	Summary of Validation parameters by HPLC with UV detection	117
7.1.1.4.11	Calibration data of EZE by HPLC with UV detection	113
7.1.1.5.2	Intraday precision data of EZE by HPLC with UV detection	123
7.1.1.5.2	Reproducibility data of EZE (150 ng/ml) by HPLC	124
7.1.1.5.4	Accuracy data of EZE by HPLC with UV detection	124
7.1.1.5.5	Freeze and thaw stability.	124
7.1.1.5.6	Short term temperature stability	125
7.1.1.5.7	Long term stability	120
7.1.1.5.8	Stock solution stability	120
7.1.1.5.9	Matrix effect	127
7.1.1.5.11	Estimation of EZE in Tablet formulation by HPLC	128
7.1.1.5.12	Summary of Validation parameters by HPLC with UV detection	120
7.1.1.6.1	Calibration data of EZE by HPTLC with UV detection	130
7.1.1.6.2	Reproducibility data of EZE by HPTLC with UV detection (400ng/ml)	133
7.1.1.6.3	Intraday precision data of EZE by HPTLC	134
7.1.1.6.4	Interday precision data of EZE by HPTLC	134
7.1.1.6.5	Accuracy data of EZE by HPTLC with UV detection	134
7.1.1.6.6	Estimation of EZE in Tablet by HPTLC with UV detection	136
7.1.1.6.7	Summary of Validation parameters by HPTLC	138
7.1.2.1.1	Calibration data of PRAVA by Spectrophotometry methods	141
7.1.2.1.2	Intraday precision data of PRAVA by Spectrophotometric method	142
7.1.2.1.3	Interday precision data of PRAVA by Spectrophotometric method	142
7.1.2.1.4	Reproducibility data of PRAVA	143
7.1.2.1.5	Accuracy data of PRAVA by Spectrophotometry methods	144
7.1.2.1.6	Estimation of PRAVA in tablet by Spectrophotometry	145
7.1.2.1.7	Summary of Validation parameters of Spectrophotometry	145
7.1.2.2.1	Calibration data of PRAVA by spectrophotometric methods	147
7.1.2.2.2	Intraday precision data of PRAVA by spectrophotometric method	148
7.1.2.2.3	Reproducibility data of PRAVA	149
7.1.2.2.4	Accuracy data of PRAVA by spectrophotometry	149
7.1.2.2.5	Estimation of PRAVA in tablet by spectrophotometry methods	150
7.1.2.2.6	Summary of Validation parameters of spectrophotometry	150
7.1.2.3.1	Calibration data of PRAVA by Infrared Spectroscopy	152

1

Ph. D. Thesis

List of Tables

7.1.2.3.2	Intraday precision data of PRAVA by FTIR Spectroscopy	150
7.1.2.3.3		152
	Reproducibility data of PRAVA (50 µg/mg) by FTIR Spectroscopy	153
7.1.2.3.4	Accuracy data of PRAVA by peak area	154
7.1.2.3.6	Estimation of PRAVA in tablet by FTIR Spectroscopy	155
7.1.2.3.7	Summary of Validation parameters of FTIR Spectroscopy	155
7.1.2.4.1	Determination of mobile phase	156
7.1.2.4.2	Determination of Flow rate	157
7.1.2.4.3	Column	157
7.1.2.4.4	Calibration data of PRAVA by HPLC with UV detection	158
7.1.2.4.5	Intraday precision data of PRAVA by HPLC with UV detection	159
7.1.2.4.7	Reproducibility data of PRAVA (150 µg/ml) by HPLC	160
7.1.2.4.8	Accuracy data of PRAVA by HPLC with UV detection	160
7.1.2.4.9	Estimation of PRAVA in tablet by HPLC with UV detection	161
7.1.2.4.10	System suitability parameters of PRAVA	163
7.1.2.4.11	Percentage degradation of PRAVA by force degradation	163
7.1.2.4.12	Summary of Validation parameters by HPLC	164
7.1.2.5.1	Calibration data of PRAVA by HPLC with UV detection	165
7.1.2.5.2	Reproducibility data of PRAVA (150 ng/ml) by HPLC with UV detection	166
7.1.2.5.3	Intraday precision data of PRAVA by HPLC with UV detection	167
7.1.2.5.4	Accuracy data of PRAVA by HPLC with UV detection	167
7.1.2.5.5	FrePRAVA and thaw stability of PRAVA	168
7.1.2.5.6	Short term temperature stability	169
7.1.2.5.7	long term stability	169
7.1.2.5.8	Stock solution stability	170
7.1.2.5.9	Matrix effect for PRAVA	170
7.1.2.5.10	Estimation of PRAVA in tablet by HPLC with UV detection	171
7.1.2.5.11	Summary of Validation parameters by HPLC with UV detection	173
7.1.2.6.1	Determination of mobile phase	175
7.1.2.6.2	Calibration data of PRAVA by HPTLC with UV detection	175
7.1.2.6.3	Intraday precision data of PRAVA by HPTLC	177
7.1.2.6.4	Interday precision data of PRAVA by HPTLC	177
7.1.2.6.5	Reproducibility data of PRAVA by HPTLC with UV detection(400 ng/ml)	177
7.1.2.6.6	Accuracy data of PRAVA by HPTLC with UV detection	178
7.1.2.6.7	Estimation of PRAVA in tablet by HPTLC with UV detection	179
7.1.2.6.8	Summary of Validation parameters by HPTLC	180
7.1.3.1.1	Calibration data of ROSU by Spectrophotometry	182
7.1.3.1.2	Intraday precision data of ROSU by Spectrophotometry	184
7.1.3.1.3	Interday precision data of ROSU by Spectrophotometry	184
7.1.3.1.4	Reproducibility data of ROSU method	185
7.1.3.1.5	Accuracy data of ROSU by Spectrophotometry	185
7.1.3.1.6	Estimation of ROSU in tablet by Spectrophotometric methods	186
7.1.3.1.7	Summary of Validation parameters of Spectrophotometric methods	187
7.1.3.2.1	Calibration data of ROSU by Infrared Spectroscopy	189

7.1.3.2.2	Intraday precision data of ROSU by FT-IR Spectroscopy	190
7.1.3.2.3	Interday precision data of ROSU by FT-IR Spectroscopy	190
7.1.3.2.4	Reproducibility data of ROSU (50µg/mg) by FT-IR Spectroscopy	190
7.1.3.2.5	Accuracy data of ROSU by peak area	191
7.1.3.2.6	Estimation of ROSU in tablet by FTIR Spectroscopy	. 191
7.1.3.2.7	Summary of Validation parameters of FTIR Spectroscopy	192
7.1.3.3.1	Determination of mobile phase	193
7.1.3.3.2	Determination of Flow rate	194
7.1.3.3.4	Calibration data of ROSU by HPLC with UV detection	195
7.1.3.3.5	Intraday and interday precision data of ROSU by HPLC	196
7.1.3.3.6	Reproducibility data of ROSU(150 µg/ml) by HPLC	196
7.1.3.3.7	Accuracy data of ROSU by HPLC with UV detection	197
7.1.3.3.8	Estimation of ROSU in tablet by HPLC with UV detection	197
7.1.3.3.9	Percentage degradation of ROSU by force degradation	201
7.1.3.3.11	System suitability parameters of ROSU	201
7.1.3.3.12	Summary of Validation parameters by HPLC with UV detection	202
7.1.3.4.1	Calibration data of ROSU by HPLC with UV detection	204
7.1.3.4.2	Intraday precision data of ROSU by HPLC with UV detection	205
7.1.3.4.4	Reproducibility data of ROSU (150 ng/ml) by HPLC	205
7.1.3.4.5	Accuracy data of ROSU by HPLC with UV detection	205
7.1.3.4.6	Freeze and thaw stability	206
7.1.3.4.7	Short term temperature stability	207
7.1.3.4.8	Long term stability	207
7.1.3.4.9	Stock solution stability	208
7.1.3.4.10	Matrix effect	209
7.1.3.4.11	Estimation of ROSU in tablet by HPLC with UV detection	209
7.1.3.4.12	Summary of Validation parameters by HPLC with UV detection	210
7.1.3.5.1	Determination of mobile phase	211
7.1.3.5.2	Calibration data of ROSU by HPTLC with UV detection	213
7.1.3.5.3	Intraday precision data of ROSU by HPTLC with UV detection	215
7.1.3.5.4	Interday precision data of ROSU by HPTLC with UV detection	215
7.1.3.5.5	Reproducibility data of ROSU by HPTLC (400 ng/spot)	215
7.1.3.5.6	Accuracy data of ROSU by HPTLC with UV detection	216
7.1.3.5.7	Estimation of ROSU in tablet by HPTLC with UV detection	217
7.1.3.5.8	Summary of Validation parameters by HPTLC	218
7.1.4.1.1	Calibration data of SIMVA by Spectrophotometry	221
7.1.4.1.2	Intraday precision data of SIMVA by Spectrophotometry	223
7.1.4.1.3	Interday precision data of SIMVA by Spectrophotometry	223
7.1.4.1.4	Reproducibility data of SIMVA by Spectrophotometry	223
7.1.4.1.5	Accuracy data of SIMVA by Spectrophotometry	224
7.1.4.1.6	Estimation of SIMVA in tablet by Spectrophotometry	225
7.1.4.1.7	Summary of Validation parameters of Spectrophotometry	225
7.1.4.2.1	Calibration data of SIMVA by 3-wavelength	227
7.1.4.2.2	Intraday precision data of SIMVA by 3-wavelength method	228
7.1.4.2.3	Reproducibility data of SIMVA	228

.

7.1.4.2.4	Accuracy data of SIMVA by 3-wavelength method	228
7.1.4.2.5	Estimation of SIMVA in tablet by 3-wavelength method	229
7.1.4.2.6	Summary of Validation parameters by 3-wavelength method	229
7.1.4.3.1	Calibration data of SIMVA by FTIR Spectroscopy	231
7.1.4.3.2	Intraday and interday precision data of SIMVA by FTIR Spectroscopy	232
7.1.4.3.3	Reproducibility data of SIMVA by FT-IR Spectroscopy (15 µg/mg)	233
7.1.4.3.4	Accuracy data of SIMVA by peak area	233
7.1.4.3.5	Estimation of SIMVA in tablet by FTIR Spectroscopy	233
7.1.4.3.6	Summary of Validation parameters of FTIR Spectroscopy	234
7.1.4.4.1	Determination of mobile phase	236
7.1.4.4.2	Calibration data of SIMVA by HPTLC with UV detection	238
7.1.4.4.3	Intraday precision data of SIMVA by HPTLC with UV detection	240
7.1.4.4.4	Interday precision data of SIMVA by HPTLC with UV detection	240
7.1.4.4.5	Reproducibility data of SIMVA (300 ng/spot) by HPTLC	240
7.1.4.4.6	Accuracy data of SIMVA by HPTLC with UV detection	241
7.1.4.4.7	Estimation of SIMVA in tablet by HPTLC with UV detection	242
7.1.4.4.8	Summary of Validation parameters by HPTLC	243
7.1.5.1.1	Calibration data of LOVA by Spectrophotometry	246
7.1.5.1.2	Intraday precision data of LOVA by Spectrophotometry	248
7.1.5.1.3	Interday precision data of LOVA by Spectrophotometry	248
7.1.5.1.4	Reproducibility data of LOVA by Spectrophotometry	248
7.1.5.1.5	Accuracy data of LOVA by Spectrophotometry	249
7.1.5.1.6	Estimation of LOVA in tablet by Spectrophotometry	250
7.1.5.1.7	Summary of Validation parameters of Spectrophotometry	250
7.1.5.2.1	Calibration data of LOVA by 3-wavelength photometric method	252
7.1.5.2.2	Intraday precision data of LOVA by 3-wavelength method	253
7.1.5.2.3	Reproducibility data of LOVA	253
7.1.5.2.4	Accuracy data of LOVA by 3-wavelength method	253
7.1.5.2.5	Estimation of LOVA in tablet by 3-wavelength method	254
7.1.5.2.6	Summary of Validation parameters by 3-wavelength method	254
7.1.5.3.1	Calibration data of LOVA by Infrared Spectroscopy	256
7.1.5.3.2	Intraday and interday precision data of LOVA by FTIR Spectroscopy	257
7.1.5.3.4	Reproducibility data of LOVA (50 µg/mg) by FT-IR Spectroscopy	257
7.1.5.3.5	Accuracy data of LOVA by peak area	258
7.1.5.3.6	Estimation of LOVA in tablet by FTIR Spectroscopy	258
7.1.5.3.7	Summary of Validation parameters of FTIR Spectroscopy	259
7.1.5.4.1	Determination of mobile phase	260
7.1.5.4.2	Calibration data of LOVA by HPTLC with UV detection	261
7.1.5.4.3	Intraday precision data of LOVA by HPTLC with UV detection	264.
7.1.5.4.4	Interday precision data of LOVA by HPTLC with UV detection	264
7.1.5.4.5	Reproducibility data of LOVA (400 ng/spot) by HPTLC	264
7.1.5.4.6	Accuracy data of LOVA by HPTLC with UV detection	265
7.1.5.4.7	Estimation of LOVA in tablet by HPTLC with UV detection	265
7.1.5.4.8	Summary of Validation parameters by HPTLC with UV detection	267
7.2.1.1.1	Optimization of divisor concentration of EZE for SIMVA	271

Hasumati A. Raj

Ph. D. Thesis

p

7.2.1.1.2	Optimization of divisor concentration of SIMVA for EZE	271
7.2.1.1.3	Calibration data of EZE and SIMVA by FDZC method	274
7.2.1.1.4	Calibration data of EZE and SIMVA by Ratio derivative method	275
7.2.1.1.5	Intraday precision data of EZE and SIMVA by Spectrophotometric methods	276
7.2.1.1.6	Interday precision data of EZE and SIMVA by Spectrophotometric methods	276
7.2.1.1.7	Reproducibility data of EZE and SIMVA by Spectrophotometric methods	276
7.2.1.1.8	Accuracy data of EZE and SIMVA by Spectrophotometric methods	277
7.2.1.1.9	EZE and SIMVA in tablet by Spectrophotometric methods	278
7.2.1.1.10	Summary of Validation parameters by Spectrophotometric methods	278
7.2.1.2.1	Calibration data of EZE and SIMVA by IR Spectroscopy	281
7.2.1.2.2	Intraday precision data of EZE and SIMVA by IR Spectroscopy	282
7.2.1.2.3	Interday precision data of EZE and SIMVA by IR Spectroscopy	282
7.2.1.2.4	Reproducibility data of EZE and SIMVA by IR Spectroscopy	282
7.2.1.2.5	Accuracy data of EZE and SIMVA by IR Spectroscopy	283
7.2.1.2.6	Estimation of EZE and SIMVA in tablet by IR spectroscopy	284
7.2.1.2.7	Summary of Validation parameters of IR method	284
7.2.1.3.1	Composition of Calibration (training) set for EZE and SIMVA	286
7.2.1.3.2	Absorbance data for the calibration set at 21 wavelengths	286
7.2.1.3.3	Absorbance data for the calibration set at 21 wavelengths	287
7.2.1.3.4	Composition of Validation set for EZE and SIMVA	289
7.2.1.3.5	Data for precision study using one-way ANOVA	291
7.2.1.3.6	Actual, predicted and residual values for ILS	292
7.2.1.3.7	Actual, predicted and residual values for CLS	293
7.2.1.3.8	RMSEP values for EZE and SIMVA	295
7.2.1.3.9	Estimation of EZE and SIMVA in tablet by CLS method	295
7.2.1.3.10	Summary of Validation parameters by ILS and CLS methods	296
7.2.2.1.1	Calibration data of EZE and PRAVA by FDZC and DDZC methods	299
7.2.2.1.3	Intraday precision data of EZE and PRAVA by spectrophotometeric method	301
7.2.2.1.4	Interday precision data of EZE and PRAVA by spectrophotometeric method	301
7.2.2.1.5	Reproducibility data of EZE and PRAVA by spectrophotometeric method	301
7.2.2.1.6	Accuracy data of EZE and PRAVA spectrophotometeric method	302
7.2.2.1.7	Estimation of EZE and PRAVA in tablet by spectrophotometeric method	303
7.2.2.1.8	Summary of Validation parameters of spectrophotometeric method	303
7.2.2.2.1	Calibration data of EZE and PRAVA by IR Spectroscopy	305
7.2.2.2.2	Intraday and Interday precision data of EZE and PRAVA by IR Spectroscopy	306
7.2.2.2.3	Reproducibility data of EZE and PRAVA by IR Spectroscopy	307
7.2.2.2.4	Accuracy data of EZE and PRAVA by IR Spectroscopy	307
7.2.2.2.5	Estimation of EZE and PRAVA in Tablet by IR spectrosopy.	308

7.2.2.2.6	Summary of Validation parameters of IR spectroscopic method	308
7.2.2.3.1	Determination of mobile phase	310
7.2.2.3.2	Selection of column	310
7.2.2.3.3	Calibration data of EZE by HPLC with UV detection	312
7.2.2.3.4	Intraday and interday precision data of EZE and PRAVA by RP-HPLC method	313
7.2.2.3.5	Reproducibility data of EZE and PRAVA by RP-HPLC method	314
7.2.2.3.6	Accuracy data of EZE and PRAVA by RP-HPLC method	314
7.2.2.3.7	Estimation of EZE and PRAVA in tablet by RP-HPLC method.	316
7.2.2.3.8	Percentage degradation of EZE and PRAVA	318
7.2.2.3.9	System suitability parameters of EZE and PRAVA	318
7.2.2.3.10	Summary of Validation parameters by HPLC	318
7.2.2.4.1	Determination of mobile phase	320
7.2.2.4.2	Calibration data of EZE by HPTLC with UV detection	321
7.2.2.4.3	Calibration data of PRAVA by HPTLC with UV detection	321
7.2.2.4.4	Intraday and interday precision data of EZE and PRAVA by HPTLC (peak area)	323
7.2.2.4.5	Intraday and interday precision data of EZE and PRAVA by HPTLC (peak height)	323
7.2.2.4.6	Reproducibility data of EZE and PRAVA by HPTLC	323
7.2.2.4.7	Accuracy data of EZE and PRAVA by HPTLC	324
7.2.2.4.8	LOD and LOQ data of EZE and PRAVA by HPTLC	324
7.2.2.4.9	Estimation of EZE and PRAVA in tablet by RP-HPTLC method	325
7.2.2.4.10	Summary of Validation parameters by HPTLC with UV detection	325
7.2.2.5.1	Composition of Calibration (training) set for EZE and PRAVA	328
7.2.2.5.2	Absorbance data for the calibration set at 21 wavelengths	329
7.2.2.5.3	Absorbance data for the calibration set at 21 wavelengths	330
7.2.2.5.4	Composition of Validation set for EZE and PRAVA	331
7.2.2.5.5	Data for precision study using one way ANOVA	331
7.2.2.5.6	Actual, predicted and residual values.	333
7.2.2.5.7	Actual, predicted and residual values	333
7.2.2.5.8	RMSEP values for EZE and PRAVA	335
7.2.2.5.9	Estimation of EZE and ROSU in tablet by ILS & CLS methods	336
7.2.2.5.10	Summary of Validation parameters of CLS method	336
7.2.3.1.1	Calibration data of EZE and ROSU by FDZC method	340
7.2.3.1.2	Intraday precision data of EZE and ROSU by FDZC Method	341
7.2.3.1.3	Reproducibility data of EZE and ROSU by FDZCMethod	341
7.2.3.1.4	Accuracy data of EZE and ROSU by spectrophotmetery method	342
7.2.3.1.5	Estimation of EZE and ROSU in tablet by FDZC method	343
7.2.3.1.6	Summary of Validation parameters of FDZC method	343
7.2.3.2.1	Calibration data of EZE and ROSU by IR Spectroscopy	345
7.2.3.2.2	Intraday precision data of EZE and ROSU by IR Spectroscopy	346
7.2.3.2.3	Reproducibility data of EZE and ROSU by IR Spectroscopy	347
7.2.3.2.4	Accuracy data of EZE and ROSU by IR Spectroscopy	347
7.2.3.2.5	Estimation of EZE and ROSU in tablet by IR spectroscopy	348

7.2.3.2.6	Summary of Validation parameters of IR method	348
7.2.3.3.1	Determination of mobile phase	350
7.2.3.3.2	Selection of column	350
7.2.3.3.3	Calibration data of EZE and ROSU by HPLC method A	352
7.2.3.3.4	Calibration data of EZE and ROSU by HPLC method B	353
7.2.3.3.5	Intraday precision data of EZE and ROSU by RP-HPLC method	354
7.2.3.3.6	Interday precision data of EZE and ROSU by RP-HPLC method	354
7.2.3.3.7	Reproducibility data of EZE and ROSU by RP-HPLC method	355
7.2.3.3.8	Accuracy data of EZE and ROSU by RP-HPLC method	355
7.2.3.3.9	Estimation of EZE and ROSU in tablet by RP-HPLC method A	356
7.2.3.3.10	Percentage degradation of EZE and ROSU	360
7.2.3.3.11	System suitability parameters of EZE and ROSU	360
7.2.3.3.12	Summary of Validation parameters by HPLC with UV detection	360
7.2.3.4.1	Determination of mobile phase	362
7.2.3.4.2	Calibration data of EZE by HPTLC with UV detection	364
7.2.3.4.3	Calibration data of ROSU by HPTLC with UV detection	364
7.2.3.4.4	Intraday precision data of EZE and ROSU by HPTLC	366
7.2.3.4.5	Interday precision data of EZE and ROSU by HPTLC	366
7.2.3.4.6	Reproducibility data of EZE and ROSU by HPTLC (peak area)	366
7.2.3.4.7	Reproducibility data of EZE and ROSU by HPTLC (peak height)	367
7.2.3.4.8	Accuracy data of EZE and ROSU by HPTLC	367
7.2.3.4.9	Estimation of EZE and ROSU in tablet by RP-HPTLC method	367
7.2.3.4.10	Summary of Validation parameters by HPTLC methods	368
7.2.3.5.1	Composition of Calibration (training) set for EZE and ROSU	370
7.2.3.5.2	Absorbance data for the calibration set at 21 wavelengths	371
7.2.3.5.3	Absorbance data for the Validaiton set at 21 wavelengths	372
7.2.3.5.4	Composition of Validation set for EZE and ROSU	373
7.2.3.5.5	Data for precision study using one way ANOVA	375
7.2.3.5.6	Actual, predicted and residual values	376
7.2.3.5.7	Actual, predicted and residual values	377
7.2.3.5.8	RMSEP values for EZE and ROSU	379
7.2.3.5.9	Estimation of EZE and ROSU in tablet by CLS method	379
7.2.3.5.10	Summary of Validation parameters of CLS method	380
7.2.4.1.1	Calibration data of EZE by FDZC method	385
7.2.4.1.2	Calibration data of EZE and LOVA by RDZC method	386
7.2.4.1.3	Intraday precision data of EZE and LOVA by spectrophotmetery Method	387
7.2.4.1.4	Interday precision data of EZE and LOVA by spectrophotmetery Method	387
7.2.4.1.5	Reproducibility data of EZE and LOVA by spectrophotometry Method	388
7.2.4.1.6	Accuracy data of EZE and LOVA by spectrophotometry method	388
7.2.4.1.7	Estimation of EZE and LOVA in tablet by spectrophotometric methods	389
7.2.4.1.8	Summary of Validation parameters of spectrophotmetery method	390
7.2.4.2.1	Calibration data of EZE and LOVA by IR Spectroscopy	391
7.2.4.2.2	Intraday precision data of EZE and LOVA by IR Spectroscopy	393

•

.

.

7.2.4.2.3	Interday precision data of EZE and LOVA by IR Spectroscopy	393
7.2.4.2.4	Reproducibility data of EZE and LOVA by IR Spectroscopy	393
7.2.4.2.5	Accuracy data of EZE and LOVA by IR Spectroscopy	393
7.2.4.2.6	Estimation of EZE and LOVA by IR spectrosopy.	394
7.2.4.2.7	Summary of Validation parameters of FDZC method	395
7.2.4.3.1	Composition of Calibration (training) set for EZE and LOVA	393
7.2.4.3.2	Absorbance data for the calibration set at 21 wavelengths	397
7.2.4.3.3	Absorbance data for the validation set at 21 wavelengths	398
7.2.4.3.4	Composition of Validation set for EZE and LOVA	400
7.2.4.3.5	Data for precision study using one way ANOVA	400
7.2.4.3.6	Actual, predicted and residual values	402
7.2.4.3.7	Actual, predicted and residual values	403
7.2.4.3.8	RMSEP values for EZE and LOVA	404
7.2.4.3.9	Estimation of EZE and LOVA in tablet by CLS method	403
7.2.4.3.9	Summary of Validation parameters by ILS and CLS methods	400
7.2.5.1	Determination of mobile phase	400
7.2.5.2	Calibration data of SIMVA and NICO by HPTLC method	408
	Intraday and interday precision data of SIMVA and NICO by HPTLC	410
7.2.5.3	(peak area)	411
7.2.5.4	Reproducibility data of SIMVA and NICO by HPTLC (peak area)	411
7.2.5.5	Accuracy data of SIMVA and NICO by HPTLC (peak area)	412
7.2.5.6	Estimation of SIMVA and NICO in tablet by RP-HPTLC method	412
7.2.5.7	Summary of Validation parameters by HPTLC	413
7.2.6.1	Determination of mobile phase	414
7.2.6.2	Calibration data of EZE and SIMVA by HPTLC method	415
7.2.6.3	Intraday precision data of EZE and SIMVA by HPTLC	417
7.2.6.4	Reproducibility data of EZE and SIMVA by HPTLC (peak area)	417
7.2.6.5	Accuracy data of EZE and SIMVA by HPTLC (peak area)	418
7.2.6.6	Estimation of EZE and SIMVA in tablet	418
7.2.6.7	Summary of Validation parameters by HPTLC	419
7.2.7.1	Determination of mobile phase	421
7.2.7.2	Selection of column	422
7.2.7.3	Calibration data of EZE by HPLC with UV detection	424
7.2.7.4	Calibration data of SIMVA by HPLC with UV detection	424
7.2.7.5	Calibration data of LOVA by HPLC with UV detection	424
7.2.7.6	Intraday precision data of EZE, SIMVA and LOVA by RP-HPLC method	426
7.2.7.7	Interday precision data of EZE, SIMVA and LOVA by RP-HPLC method	426
7.2.7.8	Reproducibility data of EZE and SIMVA by RP-HPLC method	426
7.2.7.9	Accuracy data of EZE and SIMVA by RP-HPLC method	426
7.2.7.10	Estimation of SIMVA in tablet by HPLC with UV detection	428
7.2.7.11	Estimation of LOVA in tablet by HPLC with UV detection	428
7.2.7.12	Estimation of EZE and SIMVA in tablet by RP-HPLC method A	428
7.2.7.13	Estimation of EZE and LOVA in tablet by RP-HPLC method A	436

Ph. D. Thesis

0

List of Tables

7.2.7.14	Percentage degradation of EZE, SIMVA and LOVA by force degradation.	436
7.2.7.15	System suitability parameters of EZE, SIMVA and LOVA	436
7.2.7.16	Summary of Validation parameters by HPLC with UV detection	437
7.2.8.1	Calibration data of SIMVA by HPLC with UV detection	440
7.2.8.2	Calibration data of LOVA by HPLC with UV detection	440
7.2.8.3	Intraday precision data of SIMVA by HPLC with UV detection	442
7.2.8.4	Intraday precision data of LOVA by HPLC with UV detection	442
7.2.8.5	Reproducibility data of SIMVA and LOVA(150 ng/ml) by HPLC	442
7.2.8.6	Accuracy data of SIMVA and LOVA by HPLC with UV detection	443
7.2.8.7	Freeze and thaw stability of SIMVA and LOVA	443
7.2.8.8	Short term temperature stability of SIMVA and LOVA	445
7.2.8.9	long term stability of SIMVA and LOVA	446
7.2.8.10	Stock solution stability of SIMVA and LOVA	447
7.2.8.11	Matrix effect for SIMVA and LOVA	448
7.2.8.12	Estimation of SIMVA in tablet by HPLC with UV detection	448
7.2.8.13	Summary of Validation parameters by HPLC	449
8.1.1	Result of one way ANOVA of Spectroscopic methods	450
8.1.2	Result of one way ANOVA of Chromatographic methods	450
8.2.1	Result of one way ANOVA of Spectroscopic methods	451
8.2.2	Result of one way ANOVA of Chromatographic methods	451
8.3.1	Result of one way ANOVA of Spectroscopic methods	452
8.3.2	Result of one way ANOVA of Chromatographic methods	452
8.4.1	Result of one way ANOVA of Spectroscopic methods	452
8.4.2	Result of one way ANOVA of Chromatographic methods	453
8.5.1	Result of one way ANOVA of Spectroscopic methods	453
8.5.2	Result of one way ANOVA of Spectroscopic methods	454
8.6.1	Result of one way ANOVA of Spectroscopic methods	454
8.6.2	Result of one way ANOVA of Chromatographic methods	454
8.7.1	Result of one way ANOVA of Spectroscopic methods	455
8.7:2	Result of one way ANOVA of Chromatographic methods	455
8.8.1	Result of one way ANOVA of Spectroscopic methods	456
8.8.2	Result of one way ANOVA of Chromatographic methods	456
<u>8.9.1</u>	Result of one way ANOVA of Spectroscopic methods	457
8.9.2	Result of one way ANOVA of Chromatographic methods	457

Hasumati A. Raj

. .

Ph. D. Thesis