Figure No.	Name	Page
U		No.
Chapter-1 Intro	oduction	
1.1	Plaque deposits in artery	1
1.2	Progression of blood vessel blockage	1
1.3	Structure of cholesterol.	2
1.4	Pathophysiology of lipid transport.	4
1.5	Control of hyperlipidemia	7
Chapter-5 App	roach to the development of analytical methods	
1.1	3-wavelength photometric method	56
Chapter-6 Pr	eliminary work	
6.1	IR spectra of EZE	82
6.2	IR spectra of SIMVA	82
6.3	IR spectra of LOVA	82
6.4	IR spectra of ROSU	83
6.5	IR spectra of PRAVA	83
6.6	IR spectra of NICO	83
6.7	UV spectra of EZE in different solvent	84
6.8	UV spectra of PRAVA in different solvent	84
6.9	UV spectra of ROSU in different solvent	85
6.10	UV spectra of SIMVA in different solvent	85
6.11	UV spectra of LOVA in different solvent	85
Chapter -7 E	xperimental work	
7.1.1.1	UV spectra of EZE by Simple UV Spectroscopy	94
7.1.1.2	Calibration curve of EZE by Spectrophotometric method	94
7.1.1.3.	First derivative UV spectra of EZE	94
7.1.1.4	Calibration curve of EZE by 1 st derivative Spectroscopy	94
7.1.1.5	2 nd derivative UV spectra of EZE	94
7.1.1.2.1	Calibration curve of standard EZE by 2 nd derivative	94
7.1.1.2.2	UV spectra of EZE by Difference Spectroscopy	100
7.1.1.2.3	Calibration curve of EZE by Difference Spectroscopy	100
7.1.1.3.1	FTIR spectra of EZE by Peak Area	105
7.1.1.3.2	FTIR spectra of EZE by Single Wavelength Number	105
7.1.1.3.3	Calibration curve of EZE by peak area	105
7.1.1.3.4	Calibration curve of EZE by single wavelength number	105
7.1.1.4.1	Single Peak of ACN	112
	Blank by HPLC with UV detection	
7.1.1.4.2	Single Peak of EZE by HPLC with UV detection	112
7.1.1.4.3	Calibration curve of EZE by HPLC (Peak Area	112
7.1.1.4 (A)	Chromatograms of acid hydrolysis- degraded EZE	115
7.1.1.4 (B)	Chromatograms of base hydrolysis-degraded EZE	116
7.1.1.4 (C)	Chromatograms of 100 ug/ml EZE in Neutral condition standard, 0 min,	117
	10 min, 30 min, 60 min, 120 min, 180 min and 240 min (4hr) reflux at 80	1

Hasumati A. Raj

	C	
7.1.1.4.4	Chromatograms of 100 ug/ml EZE in 30 % H2O2 after 48 hrs at room	117
	temperature	
7.1.1.4.5(A)	Chromatograms of EZE in UV/vis after 48 hrs in photostability chamber	117
<u>7.1.1.4.5(B)</u>	Chromatograms of EZE in thermal 80C after 48 hrs in Stability oven	117
7.1.1.4.10	Overlain FTIR spectra of water degraded product and EZE standard	119
7.1.1.5.1	Single Peak of ACN blank by HPLC with UV detection	123
7.1.1.5.2	Single Peak of ACN Blank by HPLC with UV detection	123
7.1.1.5.3	Single Peak of EZE by HPLC with UV detection	123
7.1.1.5.4	Calibration curve of EZE by HPLC (Peak Area)	123
7.1.1.6.1	Calibration curve of EZE by HPLC (Peak Area)	134
7.1.1.6.2	Calibration curve of EZE by HPTLC by method B (Peak Area)	134
7.1.1.6.3	Calibration curve of EZE by HPTLC by method A. (Peak Area)	134
7.1.1.6.4	Calibration curve of EZE by HPTLC by method B. (Peak Height)	134
7.1.1.6.5	Single Spectrum of EZE by HPTLC by method A	134
7.1.1.6.6	Single Spectrum of EZE by HPTLC by method B	134
7.1.1.6.7	3D Spectra of EZE by HPTLC by method A	134
7.1.1.6.8	3D Spectra of EZE by HPTLC by method B	134
7.1.1.6.9	Chromatogram of EZE with UV detection (After detection)	134
7.1.1.6.10	Chromatogram of EZE with UV detection (After detection)	137
7.1.1.6.11	TLC plate of EZE and its alkaline, acidic and neutral degradation product	137
	in UV (after develope)	
7.1.1.6.12	TLC plate of EZE in it alkaline, acidic and neutral degradation product in	137
	florescence light (after develope)	
7.1.1.6.13	overlain Chromatograph of EZE in it alkaline, acidic and neutral	137
	degradation product in UV	
7.1.1.6.14	vertical Chromatograph of EZE in it alkaline, acidic and neutral	138
	degradation product in UV	
7.1.1.6.15	Photograph of TLC plate of EZE and its water degraded product in UV	138
	(left) and florescent light (right)	
7.1.1.6.16	overlain Chromatograph of EZE and it neutral degradation product in UV	138
7.1.1.6.17	Chromatograph of neutral degradation of EZEproduct in UV	138
7.1.2.1.1	UV spectra of PRAVA by Simple UV Spectrophotometry	142
7.1.2.1.2	Calibration curve of PRAVA by Simple UV Spectrophotometry	142
7.1.2.1.3	First derivative UV spectra of PRAVA	142
7.1.2.1.4	Calibration curve of PRAVA by 1 st derivative Spectrophotometry	142
7.1.2.1.5	2 nd derivative UV spectra of PRAVA	142
7.1.2.1.6	Calibration curve of standard PRAVA by 2 nd derivative	142
7.1.2.2.1	Difference spectra of PRAVA	148
7.1.2.2.2	Calibration curve of PRAVA by Difference Spectrophotometry	148
7.1.2.2.3	UV spectra of PRAVA by 3-wavelength method	148
7.1.2.2.4	Calibration curve of PRAVA by 3-wavelength method	148
7.1.2.3.1	Overlain IR spectra of PRAVA	152
		150
7.1.2.3.2	IR spectra of PRAVA of Peak Area	152
7.1.2.3.2 7.1.2.3.3	IR spectra of PRAVA of Peak Area Calibration curve of PRAVA by peak area	152

Hasumati A. Raj

•

.

7.1.2.3.5	Calibration curve of PRAVA by single wavelength number	152
7.1.2.4.1	Simple UV spectrum of PRAVA in acetonitrile	156
7.1.2.4.2	Single Peak of ACN Blank by HPLC with UV detection	159
7.1.2.4.3	Single Peak of PRAVA by HPLC with UV detection	159
7.1.2.4.4	Overlain Peak of PRAVA by HPLC with UV detection	159
7.1.2.4.5	Calibration curve of PRAVA by HPLC	159
7.1.2.4.6	Chromatograms of acid hydrolysis of PRAVA in 0.5 M HCl at 0 min. 24	162
///////////////////////////////////////	hrs and 48 hrs	102
7.1.2.4.7	Chromatograms of base hydrolysis of PRAVA in 0.1 M NaOH at 0 min.	162
	at 24 hrs and 48 hrs	
7.1.2.4.8	Chromatograms of neutral (H2O) – degraded PRAVA	162
7.1.2.4.9	Chromatograms of oxidative of PRAVA in 30 % H2O2 at 0 min, 24 hrs	162
	and at 48 hrs	
7.1.2.4.10	Chromatograms of thermal 80C at stability oven -degraded PRAVA	163
7.1.2.4.11	Chromatograms of UV/VIS photo stability chamber degraded PRAVA	163
7.1.2.5.1	Single Peak of ACN blank by HPLC with UV detection	166
7.1.2.5.2	Single Peak of plasma blank by HPLC with UV detection	166
7.1.2.5.3	Single Peak of PRAVA by HPLC with UV detection	166
7.1.2.5.4	Overlay Peak of PRAVA by HPLC with UV detection	166
7.1.2.5.5	Calibration curve of PRAVA by HPLC with UV detection (Peak Area)	166
7.1.2.6.1	Calibration curve of PRAVA by HPTLC by method A	175
	(Peak Area)	
7.1.2.6.2	Calibration curve of PRAVA by HPTLC by method A (Peak Height)	175
7.1.2.6.3	Calibration curve of PRAVA by HPTLC by method B (Peak Area)	175
7.1.2.6.4	Single Spectrum of PRAVA by HPTLC by method A	176
7.1.2.6.5	Single Spectrum of PRAVA by HPTLC by method B	176
7.1.2.6.6	3D Spectra of PRAVA by HPTLC by method A	176
7.1.2.6.7	3D Spectra of PRAVA by HPTLC by method B	176
7.1.2.6.8	Chromatogram of PRAVA by method A (After detection)	176
7.1.2.6.9	Chromatogram of PRAVA by method B (After detection)	176
7.1.2.6.10	Reproducibility data of PRAVA by HPTLC with UV detection(400	179
	ng/ml)	-
7.1.2.6.11	Chromatogram of PRAVA in acidic degradation with UV detection	
	(Atter detection)	1.00
7.1.2.6.12	Chromatogram of PRAVA in acidic degradation (acidic degradation	180
A12 (12)	snow three degradation product)	100
7.1.2.6.13	vertical Unromatogram of PRAVA in acidic degradation (acidic	180
81211	degradation show three degradation products)	107
7.1.3.1.1	Coliberation and a f DOSU by Simple UV Spectrophotometry	103
71212	Canoration curve of KOSU by Simple UV Spectrophotometry	103
71214	Calibration approved of ROSU by 1 st derivative Spectrophotometry	184
71215	LIV spectra of POSI by 2 wavelength method	104
71216	Calibration aurue of POSU by 3 wavelength method	184
71271	Overlain FT ID spectra of POSH	180
71277	FT-IR spectra of ROSII by peak area	180
1.1.3.4.4	1 1-11 Spulla of 1050 by peak area	107

7.1.3.2.3	FT-IR spectra of ROSU by peak height	189
7.1.3.2.5	Calibration curve of ROSU by peak area	189
7.1.3.2.6	Calibration curve of ROSU by peak height	189
7.1.3.3.2	Single Peak of ACN Blank by HPLC with UV detection	196
7.1.3.3.3	Single Peak of ROSU by HPLC with UV detection	196
7.1.3.3.4	Single Peak of ROSU by HPLC with UV detection	196
7.1.3.3.5	Calibration curve of ROSU by HPLC with UV detection (Peak Area)	196
7.1.3.3.5(A)	Chromatograms of ROSU in 0.5 N HCl at 0 min, 24 hr and after 48 hrs at	198
	room temperature	
7.1.3.3.5	Chromatograms of ROSU in 1 N HCl at 0 min, 30 min, 1 hr, 2 hr, 3 hr, 4	198
	hr and after 5 hrs reflux at 80	
7.1.3.3.6(A)	Chromatograms of ROSU in 1 N NaOH at 0 min, 2 hr, 24 hr and after 48	199
	hrs at room temperature	
7.1.3.3.6(A)	Chromatograms of ROSU in 1 N NaOH at 0min, 30 min, 1 hr, 2 hr, 3 hr	199
	and after 4 hrs reflux at 80 C	
7.1.3.3.6(A)	Chromatograms of ROSU in neutral at 0 min, 24 hr and after 48 hrs at	199
	room temperature	
7.1.3.3.7(A)	Chromatograms of ROSU in neutral at 0 min, 30 min, 1 h, 3 hr and after	199
	5 hrs reflux at 80 C	
7.1.3.3.7	Chromatograms of neutral (H2O) – degraded ROSU	200
7.1.3.3.8(A)	Chromatograms of ROSU in 30 % H2O2 at 0 min, 24 hr and after 48 hrs	200
	at room temperature	
7.1.3.3.8(A)	Chromatograms of ROSU in 30 % H2O2 at0 min, 30 min, 1 h and after 3	200
	hrs reflux at 80 C	
7.1.3.3.8	Chromatograms of oxidative-degraded ROSU	200
7.1.3.3.9	Chromatograms of Thermal-degraded ROSU	200
7.1.3.3.10	Chromatograms of UV/254 and Vis/366-degraded ROSU	200
7.1.3.4.1	Single Peak of ACN blank by HPLC with UV detection	204
7.1.3.4.2	Single Peak of plasma blank by HPLC with UV detection	204
7.1.3.4.3	Single Peak of ROSU by HPLC with UV detection	204
7.1.3.4.4	Single Peak of ROSU by HPLC with UV detection	204
7.1.3.4.5	Calibration curve of ROSU by bioanalytical method	204
7.1.3.5.1	Calibration curve of ROSU by HPTLC by method A (Peak Area)	214
7.1.3.5.2	Calibration curve of ROSU by HPTLC by method A (Peak Height)	214
7.1.3.5.3	Calibration curve of ROSU by HPTLC by method B(Peak Area)	214
7.1.3.5.4	Single Spectrum of ROSU by HPTLC by method A	214
7.1.3.5.5	Single Spectrum of ROSU by HPTLC by method B	214
7.1.3.5.6	3D Spectra of ROSU by HPTLC by method A	214
7.1.3.5.7	3D Spectra of ROSU by HPTLC by method B	214
7.1.3.5.8	Chromatogram of ROSU by method A (After detection)	214
7.1.3.5.9	Chromatogram of ROSU by method B (After detection)	214
7.1.3.5.10	HPTLC Chromatogram of ROSU and its acidic degradation in UV	217
	detection	
7.1.3.5.11	Overlain and vertical HPTLC Chromatogram of ROSU and its acidic	218
	degradation products	
7.1.4.1.1	UV spectra of SIMVA by Simple UV Spectrophotometry	222

Hasumati A. Raj

7.1.4.1.2	Calibration curve of SIMVA by Simple UV Spectrophotometry	222
7.1.4.1.3	First derivative UV spectra of SIMVA	222
7.1.4.1.4	2 nd derivative UV spectra of SIMVA	222
7.1.4.1.5	Calibration curve of SIMVA by 1 st derivative Spectrophotometry	222
7.1.4.2.1	Calibration curve of standard SIMVA by 2 nd derivative	227
7.1.4.2.1	UV spectra of SIMVA for 3-wavelength method	227
7.1.4.2.2	Calibration curve of SIMVA by 3-wavelength method	227
7.1.4.3.1	Overlay FT-IR spectra of SIMVA	231
7.1.4.3.2	FT-IR spectra of SIMVA by Peak Area and peak height	232
7.1.4.3.3	FT-IR spectra of SIMVA by Peak height	232
7.1.4.3.4	Calibration curve of SIMVA by peak area	232
7.1.4.3.5	Calibration curve of SIMVA by peak height	232
7.1.4.4.1	Calibration curve of SIMVA by HPTLC method A (Peak Area)	238
7.1.4.4.2	Calibration curve of SIMVA by HPTLC method A (Peak Height)	238
7.1.4.4.3	Calibration curve of SIMVA by HPTLC method B(Peak Area)	238
7.1.4.4.4	Single Spectrum of SIMVA by HPTLC by method A	239
7.1.4.4.5	Single Spectrum of SIMVA by HPTLC by method B	239
7.1.4.4.6	3D Spectra of SIMVA by HPTLC by method A	239
7.1.4.4.7	3D Spectra of SIMVA by HPTLC by method B	239
7.1.4.4.8	Chromatogram of SIMVA by method A (After detection)	239
7.1.4.4.9	Chromatogram of SIMVA by method B (After detection)	239
7.1.4.4.10	TLC plate of SIMVA & SIMVA ACID by method A (After detection)	242
7.1.4.4.11	TLC plate of SIMVA & SIMVA ACID by method B (After detection)	242
7.1.4.4.12	Vertical chromatogram of SIMVA and SIMVA acid	243
7.1.4.4.13	Vertical chromatogram of SIMVA and SIMVA acid	243
7.1.4.4.14	Chromatogram of SIMVA acid by method B	243
7.1.5.1.2	UV spectra of LOVA by Simple UV Spectrophotometry	247
7.1.5.1.3	Calibration curve of LOVA by Simple UV Spectrophotometry	247
7.1.5.1.4	First derivative UV spectra of LOVA	247
7.1.5.1.5	Calibration curve of LOVA by 1 st derivative Spectrophotometry	247
7.1.5.1.6	2 nd derivative UV spectra of LOVA	248
7.1.5.1.7	Calibration curve of standard LOVA by 2 nd derivative	248
7.1.5.2.1	UV spectra of LOVA by 3-wavelength method	252
7.1.5.2.2	Calibration curve of LOVA by 3-wavelength method	252
7.1.5.3.1	Overlay FT-IR spectra of LOVA	256
7.1.5.3.2	FT-IR spectra of LOVA by Peak Area	256
7.1.5.3.3	Calibration curve of LOVA by peak area	256
7.1.5.3.4	FT-IR spectra of LOVA by Single Wavelength Number	257
7.1.5.3.5	Calibration curve of LOVA by single wavelength number	257
7.1.5.4.1	Calibration curve of LOVA by HPTLC by method	262
	(Peak Area)	
7.1.5.4.2	Calibration curve of LOVA by HPTLC by method A (Peak Height)	262
7.1.5.4.3	Calibration curve of LOVA by HPTLC by method B (Peak Area)	262
7.1.5.4.4	Single Spectrum of LOVA by HP1LC by method A	262
7.1.5.4.5	Single Spectrum of LOVA by HPTLC by method B	262
7.1.5.4.6	3D Spectra of LOVA by HPTLC by method A	263

Hasumati A. Raj

7.1.5.4.7	3D Spectra of LOVA by HPTLC by method B	263
7.1.5.4.8	Chromatogram of LOVA by method A (After detection)	263
7.1.5.4.9	Chromatogram of LOVA (After detection) by method B	263
7.1.5.4.10	TLC plate of LOVA by method a (After detection)	266
7.1.5.4.11	TLC plate of LOVA by method B (After detection)	266
7.1.5.4.12	Vertical chromatogram of LOVA and LOVA acid	266
7.1.5.4.13	Chromatogram of LOVA acid	267
7.2.1.1.1	Overlain zero order spectra of EZE and SIMVA and binary mixture 1:1	270
7.2.1.1.2	Overlain 1st order UV spectra of EZE and SIMVA	270
7.2.1.1.3	1 st order derivative UV spectra of EZE and SIMVA	270
7.2.1.1.4	Ratio spectra of EZE (40 µg/ml SIMVA as divisor)	272
7.2.1.1.5	Ratio spectra of SIMVA (10 µg/ml EZE as divisor)	272
7.2.1.1.6	Ratio spectra of EZE and SIMVA (10 µg/ml EZE as divisor)	272
7.2.1.1.7	Ratio derivative spectra of EZE and SIMVA (10 µg/ml EZE as divisor)	272
7.2.1.1.8	ratio spectra of EZE and SIMVA (40 µg/ml SIMVA as divisor)	272
7.2.1.1.9	Ratio derivative spectra of EZE and SIMVA(40 ug/ml SIMVA as	272
	divisor)	
7.2.1.1.10	Calibration curve of EZE at 265.2 nm by FDZC method	275
7.2.1.1.11	Calibration curve of SIMVA at 245.4 nm by FDZC method	275
7.2.1.1.12	Calibration curve of EZE and SIMVA ratio derivative method	275
7.2.1.2.1	Overlain IR spectra of EZE and SIMVA	281
7.2.1.2.2	Overlain IR spectra of SIMVA and EZE at 1614 cm ⁻¹	281
7.2.1.2.3	Overlain IR spectra of SIMVA and EZE at 3550 cm ⁻¹	281
7.2.1.2.4	Calibration curve of EZE at 1614cm ⁻¹ by IR method	282
7.2.1.2.5	Calibration curve of SIMVA at 3550 cm ⁻¹ by IR method	282
7.2.1.3.1	Overlain spectra of EZE, SIMVA and their binary mixture showing	285
	spectral region 237 nm to 268 nm (21 wavelengths)	
7.2.1.3.2	Equation of ILS	289
7.2.1.3.3	Equation of CLS	289
7.2.1.3.4	Linearity plots of EZE and SIMVA for validation set	290
7.2.1.3.5	Linearity plots of EZE and SIMVA for validation set	293
7.2.1.3.6	Linearity plots of EZE for validation set	293
7.2.1.3.7	Linearity plots of SIMVA for validation set	293
7.2.1.3.8	Residual vs. predicted concentration plot for EZE and SIMVA	294
7.2.1.3.9	Residual vs. predicted concentration plot for EZE and SIMVA	294
7.2.1.3.10	Residual vs. predicted concentration plot for EZE	295
7.2.1.3.11	Residual vs. predicted concentration plot for SIMVA	295
7.2.2.1.1	Overlain zero order UV spectra of EZE and PRAVA	300
7.2.2.1.2	Overlain 1 st order derivative UV spectra of EZE and PRAVA	300
7.2.2.1.3	Calibration curve of EZE at 237.2 nm by FDZC method	300
7.2.2.1.4	Calibration curve of PRAVA at 218.2 nm by FDZC method	300
7.2.2.1.5	Overlain zero order difference spectra of EZE and PRAVA	300
7.2.2.1.6	Overlain difference 1 st derivative spectra of EZE and PRAVA	300
7.2.2.1.7	Calibration curve of EZE at 250.4 nm by DDZC method	300
7.2.2.1.8	Calibration curve of PRAVA at 243 6 nm by DDZC method	300
	Construction out to or reaction that the above monoid	1

Hasumati A. Raj

7.2.2.2.1	Overlain IR spectra of EZE and PRAVA	306
7.2.2.2.2	Overlain IR spectra of PRAVA and EZE at 1566.38 cm ⁻¹	306
7.2.2.2.3	Overlain IR spectra of PRAVA and EZE at 2354.92 cm ⁻¹	306
7.2.2.2.4	Calibration curve of EZE at 2354.92cm ⁻¹ by IR method	306
7.2.2.2.5	Calibration curve of PRAVA at 1566.38 cm ⁻¹ by IR method	306
7.2.2.3.1	overlain UV spectrum of EZE and PRAVA in acetonitrile	309
7.2.2.3.2	Peak of ACN Blank by HPLC with UV detection	312
7.2.2.3.3	Peak of EZE(22 ug/ml) and (B) PRAVA(22 ug/ml) and (C) combination	312
	of EZE and PRAVA by HPLC with UV detection	
7.2.2.3.4	Overlain Peaks of EZE and PRAVA by HPLC with UV detection	312
7.2.2.3.5	Calibration curve of EZE by HPLC with UV detection (Peak Area)	313
7.2.2.3.6	Calibration curve of PRAVA by HPLC with UV detection (Peak Area)	313
7.2.2.3.7	Chromatograms of acid hydrolysis in 0.5 N HCL after 0 min . 24 hrs and	316
	after 48 hrs degraded EZE and PRAVA	
7.2.2.3.8	Chromatograms of base hydrolysis in 0.1N NaOH after 0 min, 24 hrs	316
	and after 48 hrs degraded -degraded EZE and PRAVA	
7.2.2.3.9	Chromatograms of Neutral hydrolysis in 0.1N NaOH after 0 min, 24 hrs	317
	and after 48 hrs degraded -degraded EZE and PRAVA	
7.2.2.3.10	Chromatograms of oxidative in 30 % H2O2 after 0 min, 24 hrs and after	317
	48 hrs -degraded EZE and PRAVA	
7.2.2.3.11	Chromatogram of EZE (30 µg/ml) and PRAVA (40 µg/ml) in UV/vis	317
	after 48 hrs in photostability chamber	
7.2.2.3.12	Chromatogram of EZE (26 µgml) and PRAVA (20 µg/ml) in thermal 80C	317
	after 48 hrs in Stability oven	
7.2.2.4.1	Calibration curve of EZE by HPTLC with UV detection	322
	(Peak Area)	
7.2.2.4.2	Calibration curve of EZE by HPTLC with UV detection (Peak Height)	322
7.2.2.4.3	Calibration curve of PRAVA by HPTLC with UV detection	322
	(Peak Area)	
7.2.2.4.4	Calibration curve of PRAVA by HPTLC with UV detection	322
	(Peak Height)	ļ
7.2.2.4.5	Spectrum of EZE and PRAVA by HPTLC with UV detection	322
7.2.2.4.6	Overlain Spectra of EZE and PRAVA by HPTLC with UV detection	322
7.2.2.4.7	ILC plate of EZE and PRAVA with UV detection (After detection)	323
7.2.2.5.1	Overlain spectra of EZE, PRAVA and their binary mixture showing	326
72252	spectral region 230 nm to 250 nm (21 wavelengths)	207
1.2.2.5.2	Equation of ILS	321
7.2.2.5.3	Equation of CLS	328
7.2.2.5.4	Linearity plots of EZE and PKAVA for validation set	332
1.2.2.3.5	Linearity plots of EZE and PKAVA for validation set	332
1.2.2.5.6	Linearity plots of EZE for validation set	334
7.2.2.5.7	Linearity plots of PRAVA for validation set	334
1.2.2.5.8	Kesigual vs. predicted conc. plot for EZE and PKAVA	533
777754		225
7.2.2.5.9	Residual vs. predicted conc. plot for EZE and PRAVA	335

Hasumati A. Raj

7.2.2.5.11	Residual vs. predicted conc. plot for PRAVA	335
7.2.3.1.1	Overlain zero order spectra of EZE and ROSU and binary mixture (1:1)	339
7.2.3.1.2	Overlain 1st order derivative spectra of EZE and ROSU	339
7.2.3.1.3	Calibration curve of EZE at 290.0 nm by FDZC method	341
7.2.3.1.4	Calibration curve of ROSU at 245.6 nm by FDZC method	341
7.2.3.1.1	Overlain IR spectra of EZE and ROSU	345
7.2.3.2.2	Overlain IR spectra of ROSU and EZE at 1879 cm ⁻¹	345
7.2.3.2.3	Overlain IR spectra of ROSU and EZE at 965 cm ⁻¹	345
7.2.3.2.4	Calibration curve of EZE at 1879cm ⁻¹ by IR method	346
7.2.3.2.5	Calibration curve of ROSU at 965 cm ⁻¹ by IR method	346
7.2.3.3.1	overlain UV spectrum of EZE and ROSU in acetonitrile	349
7.2.3.3.2	Peak of EZE(104 ug/ml) and ROSU(113 ug/ml) by HPLC Method A	352
7.2.3.3.3	Peak of EZE(104 µg/ml) and ROSU(113 µg/ml) by HPLC Method A	352
7.2.3.3.4	Calibration curve of EZE by HPLC (Peak Area)	352
7.2.3.3.5	Calibration curve of ROSU by HPLC (Peak Area)	352
7.2.3.3.6	(A) Peak of EZE(104 μ g/ml) and (B) ROSU(113 μ g/ml) and (C)	352
	combination of EZE and ROSU by HPLC with UV detection	
7.2.3.3.7	Peaks of binary mixture of EZE and ROSU by HPLC By method B	352
7.2.3.3.8	Calibration curve of EZE by HPLC (Peak Area) method B	354
7.2.3.3.9	Calibration curve of ROSU by HPLC (Peak Area) Method B	354
7.2.3.3.10	Chromatograms of neutral degradation at Rt of EZE and ROSU	357
7.2.3.3.11	Chromatograms of oxidative-degraded of EZE and ROSU at RT	357
7.2.3.3.12	Chromatogram of EZE and ROSU in photostability chamber	357
7.2.3.3.13	Chromatogram of EZE and ROSU in thermal 80C after 48 hrs in	358
	Stability oven	
7.2.3.3.14	Chromatograms of acid hydrolysis of EZE and ROSU at R	358
7.2.3.3.15	Chromatograms of base hydrolysis of EZE and ROSU at RT	358
7.2.3.3.16	Chromatogram of degradation of EZE and ROSU in all condition by	359
	method B	0.50
7.2.3.3.17	Chromatogram of degradation of EZE and ROSU in all condition by	359
500/1	method B after 48 hrs	264
7.2.3.4.1	Calibration curve of EZE by HPILC with UV detection (Peak Area)	304
1.2.3.4.2	Calibration curve of EZE by HPTLC with UV detection (Peak Height)	304
1.2.3.4.3	Calibration curve of KUSU by HP1LC with UV detection	504
	(reak Area)	
77344	Calibration curve of ROSU by HPTI C with UV detection (Peak Height)	364
72345	Single Spectrum of FZF and ROSU by HPTLC with UV detection	365
1 **** *** *******	Single Speen and of EZE and ROSO by III The with OV detection	505
7.2.3.4.6	Overlain Spectra of EZE and ROSU by HPTLC with UV detection	365
7.2.3.4.7	Chromatogram of EZE and ROSU with UV detection (After detection)	365
7.2.3.5.1	Overlain spectra of EZE, ROSU and their binary mixture showing	369
	spectral region 248 nm to 268 nm (21 wavelengths)	-
7.2.3.5.2	Equation of ILS	373
7.2.3.5.3	Equation of CLS	374

Hasumati A. Raj

-		- <u></u>
7.2.3.5.4	Linearity plots of EZE and ROSU for validation set	377
7.2.3.5.5	Linearity plots of EZE and ROSU for validation set	377
7.2.3.5.6	Linearity plots of EZE for validation set	378
7.2.3.5.7	Linearity plots of ROSU for validation set	378 .
7.2.3.5.8	Residual vs. predicted concentration plot for EZE and ROSU	378
7.2.3.5.9	Residual vs. predicted concentration plot for EZE and ROSU	378
7.2.3.5.10	Residual vs. predicted concentration plot for EZE	379
7.2.3.5.11	Residual vs. predicted concentration plot for ROSU	379
7.2.4.1.1	Overlain zero order spectra of EZE and LOVA and binary mixture 1:1	383
7.2.4.1.2	Overlain 1st order UV spectra of EZE and LOVA	383
7.2.4.1.3	Overlain 1 st order derivative UV spectra of EZE and LOVA	383
7.2.4.1.4	Overlain ratio spectra of EZE (5 µg/ml LOVA as divisor)	384
7.2.4.1.5	Overlain ratio spectra of LOVA (10 µg/ml EZE as divisor)	384
7.2.4.1.6	Overlain ratio spectra of EZE (5 µg/ml LOVA as divisor)	384
7.2.4.1.7	Overlain ratio derivative spectra of EZE (5 µg/ml LOVA as divisor)	384
7.2.4.1.8	Overlain ratio spectra of LOVA (10 µg/ml EZE as divisor)	384
7.2.4.1.9	Overlain ratio derivative spectra of LOVA (10 µg/ml EZE as divisor)	384
7.2.4.1.10	Calibration curve of EZE at 265.2 nm by FDZC method	384
7.2.4.1.11	Calibration curve of LOVA at 245.4 nm by FDZC method	386
7.2.4.1.12	Calibration curve of EZE and LOVA by RDZC method	386
7.2.4.2.1	Overlain IR spectra of EZE and LOVA	395
7.2.4.2.2	Overlain IR spectra of LOVA and EZE at 1510.16 cm ⁻¹	395
7.2.4.2.3	Overlain IR spectra of LOVA and EZE at 3542.99cm ⁻¹	395
7.2.4.2.4	Calibration curve of EZE at 1510.16cm ⁻¹ by IR method	395
7.2.4.2.5	Calibration curve of LOVA at 3542.99cm ⁻¹ by IR method	395
7.2.4.3.1	Overlain spectra of EZE, LOVA and their binary mixture showing	396
	spectral region 237 nm to 258 nm (21 wavelengths)	
7.2.4.3.2	Equation of ILS	400
7.2.4.3.3	Equation of CLS	401
7.2.4.3.4	Linearity plots of EZE and LOVA for validation set	403
7.2.4.3.5	Linearity plots of EZE and LOVA for validation set	403
7.2.4.3.6	Linearity plots of EZE for validation set	404
7.2.4.3.7	Linearity plots of LOVA for validation set	404
7.2.4.3.8	Residual vs. predicted concentration plot for EZE and LOVA	405
7.2.4.3.9	Residual vs. predicted concentration plot for EZE and LOVA	405
7.2.4.3.10	Residual vs. predicted concentration plot for EZE	405
7.2.4.3.11	Residual vs. predicted concentration plot for LOVA	405
7.2.5.1	Calibration curve of SIMVA by HPTLC (Peak Area)	410
7.2.5.2	Calibration curve of NICO by HPTLC (Peak Area)	410
7.2.5.3	Chromatogram of SIMVA and NICO (After detection)	410
7.2.5.4	Single Spectrum of SIMVA and NICO by HPTLC	411
7.2.5.5	Vertical Spectra of SIMVA and NICO by HPILC	411
7.2.6.1	Calibration curve of EZE, SIMVA and LOVA by HPTLC (Peak Area)	416
7.2.6.2	Chromatogram of EZE and SIMVA with UV detection (After detection)	416
7.2.6.3	Chromatogram of EZE and LOVA with UV detection (After detection)	416
7.2.6.4	Single Spectrum of EZE and SIMVA by HPTLC	417

Hasumati A. Raj

~

		- 3
7.2.6.5	Vertical Spectra of EZE and SIMVA by HPTLC	417
7.2.6.6	Single Spectrum of EZE and LOVA by HPTLC	417
7.2.6.7	Vertical Spectra of EZE and LOVA by HPTLC	417
7.2.7.1	overlain UV spectrum of EZE, SIMVA and LOVA in ACN	421
	Optimization of mobile phase	
7.2.7.2	Peak of ACN Blank by HPLC with UV detection	425
7.2.7.3	Peak of (A) SIMVA, (B) EZE, (C) LOVA and (D) EZE, SIMVA and	425
-	LOVA by HPLC with UV detection	
7.2.7.4	Calibration curve of EZE, SIMVA and LOVA by HPLC method	425
7.2.7.5	Chromatogram of SIMVA in acidic condition	430
7.2.7.6	Chromatogram of SIMVA in basic condition	430
7.2.7.7	Chromatogram of SIMVA in Neutral condition	430
7.2.7.8	Chromatogram of SIMVA in thermal condition	430
7.2.7.9	Chromatogram of SIMVA in oxidative	430
7.2.7.10	Chromatogram of SIMVA in photolytic condition	430
7.2.7.11	Chromatogram of EZE and SIMVA in neutral condition (water) at 7 pH	430
7.2.7.12	Chromatogram of EZE and SIMVA in 30 % H2O2 at room temperature	430
7.2.7.13	Chromatogram of EZE and SIMVA in 0.5 N HCL	431
7.2.7.14	Chromatogram of EZE and SIMVA in 0.1N NaOH	431
7.2.7.15	Chromatogram of EZE and SIMVA in photostability chamber	431
7.2.7.16	Chromatogram of EZEand SIMVA in Stability oven	431
7.2.7.17	Chromatogram of LOVA in 0.5 N HCl	431
7.2.7.18	Chromatogram of LOVA in 0.1 N NaOH	431
7.2.7.19	Chromatogram of LOVA in Neutral	431
7.2.7.20	Chromatogram of LOVA in 30% H2O2	431
7.2.7.21	Chromatogram of LOVA in stability oven	432
7.2.7.22	Chromatogram of LOVA in photo stability condition	432
7.2.7.23	Chromatogram of EZE and LOVA in neutral condition (water) at 7 pH	432
7.2.7.24	Chromatogram of EZE and LOVA in 30 % H2O2 at room temperature	432
7.2.7.25	Chromatogram of EZE and LOVA in 0.5 N HCL	432
7.2.7.26	Chromatogram of EZE and LOVA in 0.1N NaOH	432
7.2.7.27	Chromatogram of EZE and LOVA in photostability chamber	432
7.2.7.28	Chromatogram of EZE and LOVA in Stability oven	432
7.2.7.29	Chromatogram of (A) LOVA acid std. (B) SIMVA acid std, and (C)	433
B A B A	EZE, SIMVA and LUVA std.	422
7.2.7.30	chromatogram of EZE, SIMVA and LOVA in 0.5N HCL at room temp.	433
7 7 7 71	at omin, 24 n and 48 n.	124
1.4.7.31	- SIMIVA (C) 0 min LOVA (D) 0 min EZE (E) 48 h SIMIVA (E) LOVA	454
	A h and (G) A h EZE SIMVA and LOVA in 0.5 N HCl at room term	
7 7 7 37	(0) + 0 in L2L, SHVEVA and LOVA in 0.5 N field at 100m temp.	434
1 + J + J + J + + + + + + + + + + + + +	SIMVA (C) $0 \min I OVA$ (D) $0 \min FZF$ (F) 48 h SIMVA (F) I OVA	FUT
	48 h and (G) 48 h EZE, SIMVA and LOVA in 0.1 N NaOH at room	
	temp.	
7.2.7.33	Chromatogram of (A) 0 min EZE, SIMVA and LOVA, (B) 0 min	434
	SIMVA, (C) 0 min LOVA, (D) 0 min EZE, (E) 48 h SIMVA, (F) LOVA	

Hasumati A. Raj

8

List of Figures

[48 h and (G) 48 h EZE, SIMVA and LOVA in H2O at room temp.	
7.2.7.34	Chromatogram of (A) 0 min EZE, SIMVA and LOVA, (B) 0 min	435
	SIMVA, (C) 0 min LOVA, (D) 0 min EZE, (E) 48 h SIMVA, (F) LOVA	
	48 h and (G) 48 h EZE, SIMVA and LOVA in 30% H2O2 at room temp	
7.2.7.35	Chromatogram of (A) 0 min EZE, SIMVA and LOVA, (B) 0 min	435
	SIMVA, (C) 0 min LOVA, (D) 0 min EZE, (E) 48 h SIMVA, (F) LOVA	
	48 h and (G) 48 h EZE, SIMVA and LOVA in stability oven at 80C	
7.2.7.36	Chromatogram of (A) 0 min EZE, SIMVA and LOVA, (B) 0 min	435
	SIMVA, (C) 0 min LOVA, (D) 0 min EZE, (E) 48 h SIMVA, (F) LOVA	
	48 h and (G) 48 h EZE, SIMVA and LOVA in stability chamber	
7.2.8.1	ACN, plasma blank, SIMVA and SIMVA acid by HPLC with UV	441
	detection	
7.2.8.2	Linearity of SIMVA by HPLC with UV detection	441
7.2.8.3	ACN, plasma, LOVA and LOVA acid by HPLC with UV detection	441
7.2.8.4	Linearity of LOVA by HPLC with UV detection	441
7.2.8.5	Calibration curve of SIMVA by HPLC with UV detection (Peak Area)	441
7.2.8.6	Calibration curve of LOVA by HPLC with UV detection (Peak Area)	441

·