INDEX

CONTENT OVERVIEW

S.No.	Content		Page
			No.
1.	Chapter 1:	Introduction	1
2.	Chapter 2:	Review of Literature	7
3.	Chapter 3:	Aims & Objectives	45
4.	Chapter 4:	Materials & Methods	49
5.	Chapter 5:	NLRX1 acts as a tumor suppressor by modulating TNF-	
		α -regulated mitochondrial function and apoptosis in	74
		cancer cells	
6.	Chapter 6:	NLRX1 localizes to mitochondrial RNA granules and	
		regulates mitochondrial RNA processing and metabolic	92
		adaptation	
7.	Chapter 7:	NLRX1 regulates TNF-α-induced mitochondria-	
		lysosomal crosstalk to maintain the tumorigenic poten-	116
		tial of breast cancer cells	
8.	Chapter 8:	Summary and Conclusion	141
9.	Chapter 9:	Bibliography	157
10.	List of public	ations	168
11.	Reprints of P	ublished articles	174

DETAILED CONTENTS

CONTENT		PAGE
CONTENT		NO.
CHAPTER 1:	INTRODUCTION	1
1.1. THE GLOBAL E	PIDEMIOLOGY OF CANCER	2
1.2. TUMOR-ASSOCIA	ATED INFLAMMATION: OUTCOME OF TUMOR-IMMUNE	2
1.3 IMMUNO-METAB	BOLIC INTERACTIONS IN TUMOR MICROENVIRONMENT	3
1.4 MITOCHONDRIO	N: AN EMERGING REGULATOR OF IMMUNOMETABOLISM	4
1.5 NLRX1: AN INNA TABOLISM	TE IMMUNE RECEPTOR REGULATING MITOCHONDRIAL ME-	6
CHAPTER 2:	REVIEW OF LITERATURE	7
2.1 CANCER EPIDEM	IIOLOGY: THE GLOBAL TREND AND BURDEN	8
2.2 BREAST CANCER	R EPIDEMIOLOGY IN INDIA	8
2.3 TUMOR HETERO	GENIETY OF BREAST CANCER	9
2.4 TUMOR MICROE	NVIRONMENT: A PREMETASTATIC NICHE	11
2.5 CHRONIC INFLAN	MMATION AND CANCER	11
2.6 IMMUNOSUPPRE	SSIVE TME IN BREAST CANCER	14
2.7 MOLECULAR ME	DIATORS OF CHRONIC INFLAMMATION	15
2.7.1 Cancer cell-intrin	esic control of inflammatory pathways	15
2.7.2 Inflammation-indu	uced cytokines in intratumoral crosstalk	18
2.7.2.1 TNF-α: role in α	chronic inflammation and cell death	20
2.8 METABOLIC ALT	ERATIONS IN THE TUMOR MICROENVIRONMENT	23
2.8.1 Tumor cell-intrinsic metabolic reprogramming		23
2.8.2 Metabolic adapta	tion by autophagy	25
2.8.3 Metabolic interac	tions with tumor microenvironment	27
2.8.4 Role of TNF-α in	metabolic remodeling in cancer cells	29
2.9 DIVERSE ROLE O ES	OF MITOCHONDRIA IN METABOLISM AND IMMUNE RESPONS	31
2.9.1 Mitochondria : an	n essential organelle for bioenergetic adaptation in cancer cells	31
2.9.2 Mitochondria: a f	fundamental hub for innate immune signaling	33

2.9.2.1 MAVS and STING: Mitochondrial Adaptor proteins regulating cytosolic DNA and RNA induced innate immune pathways		
2.9.2.1.1 MAVS -Mitochondria Anti-Viral Signaling protein		
2.9.2.1.2 STING -STimulator of INterferon Genes	36	
2.9.2.2 NOD-like receptors - Emerging family of intracellular PRRs	38	
2.9.2.2.1 Inflammosome forming NLRs	38	
2.9.2.2.2 NLRX1: Modulator of innate immune signaling	40	
2.9.2.2.3 NLRX1 : Unique NLR protein, regulator of mitochondrial function	41	
CHAPTER 3: AIMS AND OBJECTIVES	45	
3.1 RATIONALE AND HYPOTHESIS	46	
3.2 OBJECTIVES OF THE STUDY	47	
CHAPTER 4: MATERIALS AND METHODS	49	
4.1 MATERIALS	50	
4.1.1 Cell lines	50	
4.1.2 Constructs	50	
4.1.3 Generation of stable cell lines	50	
4.1.4 Generation of knockout lines using CRISPR/cas9 gene editing	51	
4.1.5 Antibodies	51	
4.1.6 Chemicals and reagents	51	
4.1.7 Breast cancer patient tissues and ethics statement		
4.2 METHODOLOGY		
4.2.1 Immunohistochemistry	53	
4.2.2 Transfection of cell lines	53	
4.2.3 Cell survival and cell death assays	53	
4.2.3.1 Trypan blue dye exclusion assay	53	
4.2.3.2 Cellular proliferation assay using MTT		
4.2.3.3 Caspase-8 luciferase assay		
4.2.3 Fluorescence microscopy	54	
4.2.3.1 Monitoring of autophagy flux using GFP-LC3, mCherry-GFP-LC3 and mCherry-GFP- p62constructs	54	
4.2.3.2 Analysis of ROS generation	55	

4.2.4 Confocal microscopy	55
4.2.4.1 Subcellular localization analysis	55
4.2.4.2 TFEB-GFP translocation assay	56
4.2.4.3 Image quantitation	57
4.2.4.4 Bromouridine (BrU) staining, immunocytochemistry and image quantitation	58
4.2.5 Super-resolution microscopy : 3D-Structured Illumination Microscopy (SIM)	58
4.2.6 Subcellular fractionation	59
4.2.6.1 Isolation of mitochondria, mitoplasts and cytosolic fraction	59
4.2.6.2 Proteinase K protection assay and isolation of integral proteins of the inner mitochondrial membrane	59
4.2.6.3 Isolation of nuclear fraction	60
4.2.7 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analysis	60
4.2.8 Blue Native-PAGE, In-gel assays and immunoblotting	61
4.2.9 Co-immunoprecipitation and western blotting	61
4.2.10 Analysis of mitochondrial function	61
4.2.10.1 Complex I enzyme activity	62
4.2.10.2 Complex II enzyme activity	62
4.2.10.3 Complex III enzyme activity	63
4.2.10.4 Complex IV enzyme activity	63
4.2.10.5 ATP luciferase assay	63
4.2.10.6 Analysis of mitochondria-derived ATP synthesis	64
4.2.10.7 NADH measurements	64
4.2.11 Analysis of lysosomal function	64
4.2.11.1 Flow cytometry analysis	64
4.2.11.2 Cathepsin B enzyme activity	65
4.2.11.3 Lysosomal acid lipase activity	65
4.2.11.4 Lysosomal acid phosphatase assay	66
4.2.12 Quantitative analysis of gene expression	66
4.2.12.1 Analysis of mitochondrial DNA copy number	66
4.2.12.2 RNA isolation and expression analysis	66

4.2.12.3 Analysis of mitochondrial RNA processing	67
4.2.12.4 RNA immunoprecipitation	67
4.2.13 Analysis of translation of mtDNA-encoded genes by CLICK-IT [®] assay	
4.2.14 Cell proliferation assay	
4.2.15 Soft agar assay:	69
4.2.16 Colony formation assay	69
4.2.17 Scratch assay	70
4.2.18 Animal experiments:	70
4.2.19 Statistical analysis:	71
RESULTS AND DISCUSSION	74
CHAPTER 5: NLRX1 ACTS AS A TUMOR SUPPRESSOR BY MODU-	
LATING TNF-α-REGULATED MITOCHONDRIAL	74
FUNCTION AND APOPTOSIS IN CANCER CELLS	
5.1 NLRX1 SENSITIZES TNF-α-INDUCED CELL DEATH BY ACTIVATING CASPASE-8.	75
5.2 NLRX1 PROMOTES CASPASE-8 ACTIVATION BY ASSOCIATING WITH TNF-α IN-	70
DUCED COMPLEX-II.	79
5.3 NLRX1 LOCALIZES TO MITOCHONDRIA AND REGULATES TNF- α- INDUCED	80
ROS GENERATION.	
5.4 NLRX1 ALTERS CELLULAR ATP LEVELS BY MODULATING TNF-α-REGULATED MITOCHONDRIAL FUNCTION.	84
5.5 NLRX1 SUPPRESSES TUMORIGENIC POTENTIAL OF CANCER CELLS BOTH <i>IN</i>	
VITRO AND IN VIVO.	86
5.6 DISCUSSION	89
CHAPTER 6: NLRX1 LOCALIZES TO MITOCHONDRIAL RNA	
GRANULES AND REGULATES MITOCHONDRIAL	92
RNA PROCESSING AND METABOLIC ADAPTATION	
6.1 NLRX1 LOCALIZES TO THE MITOCHONDRIAL MATRIX	93
6.2 NLRX1 INTERACTS WITH FASTKD5 AND COLOCALIZES WITH MITOCHONDRI	06
AL RNA GRANULES	96
6.3 NLRX1 REGULATES THE POST-TRANSCRIPTIONAL PROCESSING OF NON-	
CANONICAL PRECURSOR TRANSCRIPTS IN MITOCHONDRIA	
6.4 NLRX1 REGULATES THE BINDING OF MITOCHONDRIAL RNA TRANSCRIPTS TO	103
FASTKD5	

6.5 THE LRR DOMAIN OF NLRX1 IS REQUIRED FOR ITS ASSOCIATION WITH		
FASTKD5 AND MITOCHONDRIAL RNA BINDING		
6.6 NLRX1 REGULATES THE TRANSLATION OF MTDNA-ENCODED PROTEINS		
AND ASSEMBLY OF OXPHOS SUPERCOMPLEXES		
6.7 NLRX1 REGULATES OXPHOS-DEPENDENT CELL PROLIFERATION OF	110	
CANCER CELLS.	110	
6.8 DISCUSSION		
CHAPTER 7: NLRX1 REGULATES TNF-α-INDUCED MITOCHON-		
DRIA-LYSOSOMAL CROSSTALK TO MAINTAIN THE	116	
TUMORIGENIC POTENTIAL OF BREAST CANCER		
CELLS		
7.1 NLRX1 EXPRESSION IS UPREGULATED IN INVASIVE BREAST CANCER CELL	117	
LINES AND METASTATIC TUMORS	117	
7.2 DEPLETION OF NLRX1 REPRESSES TNF-α-INDUCED AUTOPHAGY IN BREAST	119	
CANCER CELLS		
7.3 NLRX1 DEPLETION IMPAIRS MITOCHONDRIAL FUNCTION IN THE PRESENCE	122	
OF TNF-α IN BREAST CANCER CELLS	122	
7.4 NLRX1 SILENCING ALTERS MITOCHONDRIAL DYNAMICS AND INHIBITS TNF- α -	125	
INDUCED MITOPHAGY IN BREAST CANCER CELLS	123	
7.5 DEPLETION OF NLRX1 CAUSES ABNORMAL ACCUMULATION OF LYSOSOMAL		
VACUOLES AND INCREASES LYSOSOMAL BIOGEN ESIS IN THE PRESENCE OF	129	
TNF-α.		
7.6 NLRX1-REGULATED MITOCHONDRIAL FUNCTION MODULATES LYSOSOMAL	132	
ACTIVITY IN THE PRESENCE OF TNF- α IN BREAST CANCER CELLS	132	
7.7 LOSS OF NLRX1 INHIBITS OXPHOS-DEPENDENT CELL PROLIFERATION, CLON-	134	
OGENIC ABILITY AND MIGRATION OF BREAST CANCER CELLS	134	
7.8 DISCUSSION	136	
CHAPTER 8: SUMMARY AND CONCLUSION	141	
8.1. SUMMARY	142	
8.1.1 NLRX1 acts as a tumor suppressor by modulating TNF-α-regulated mito-	142	
chondrial function and apoptosis in cancer cells		
8.1.2 NLRX1 localizes to mitochondrial RNA granules and regulates mitochon- drial RNA processing and metabolic adaptation 145		

maintain the tumorigenic potential of breast cancer cells		
8.2 CONCLUSION		
8.3 LIMITATIONS OF THE STUDY		
8.4 FUTURE PERSPECTIVE	156	
CHAPTER 9: BIBLIOGRAPHY	157	
LIST OF PUBLICATIONS		
A. PUBLICATIONS FROM PH.D. THESIS WORK	169	
B. PUBLICATIONS FROM OTHER ASSOCIATED PROJECTS DURING PH.D. TENURE	170	
REPRINTS OF PUBLISHED ARTICLES		