LIST OF FIGURES AND TABLES

Figures

S No	Figure	Page
B.110.	rigure	No.
1.	Figure 2.1: Tumor-Immune crosstalk	12
2.	Figure 2.2: Cell-intrinsic sensors of danger signals	18
3.	Figure 2.3: TNF-α signaling pathway:	22
4.	Figure 2.4: Intratumoral metabolic crosstalk in TME	28
5.	Figure 2.5: Mitochondria RNA granules (MRGs)	33
6.	Figure 2.6: Mitochondria in innate immunity	34
7.	Figure 2.7: NLR family proteins in innate immune signaling	40
8.	Figure 2.8: Inflammasome-forming and Non-inflammasosme-forming NLRs in innate immune signaling:	42
9.	Figure 3.1: Key Questions	46
10.	Figure 5.1: NLRX1 regulates TNF- α -induced cell death by promoting caspase-8 activation.	77
11.	Figure 5.2: NLRX1 increases caspase-8 activation by interacting with TNF-α- induced complex-II.	80
12.	Figure 5.3: NLRX1 localizes to mitochondria and regulates mitochondrial ROS generation during TNF-α-induced caspase-8 activation.	82
13.	Figure 5.4: NLRX1 regulates ATP levels by modulating mitochondrial complex I and complex III activity.	85
14.	Figure 5.5: NLRX1 expression regulates the tumorigenicity of cancer cells both in vitro and in vivo.	87
15.	Figure 6.1: NLRX1 resides in the mitochondrial matrix.	95
16.	Figure 6.2: NLRX1 interacts with FASTKD5 and resides in the mitochondrial RNA granules.	98
17.	Figure 6.3: NLRX1 affects the post-transcriptional processing of mitochondrial transcript regulated by FASTKD5.	102
18.	Figure 6.4: NLRX1 binds to mitochondrial RNA and regulates the processing by FASTKD5.	104
19.	Figure 6.5: NLRX1 interacts with FASTKD5 and binds to mitochondrial RNA through LRR domain.	106
20.	Figure 6.6: NLRX1 expression decreases the levels of mtDNA-encoded protein subunits, OxPhos activity and assembly	109
21.	Figure 6.7: Ectopic expression of NLRX1 decreases the proliferation of OxPhos-	111

	deficient cells.	
22.	Figure 7.1: Analysis of expression of NLRX1 in breast cancer cell lines and tumor tissues of breast cancer patients.	119
23.	Figure 7.2: Knockdown of NLRX1 leads to accumulation of autophagosomes in the presence of TNF- α in breast cancer cells.	121
24.	Figure 7.3: NLRX1 knockdown alters TNF-α-regulated mitochondrial bioenergetic capacity in breast cancer cells.	124
25.	Figure 7.4: NLRX1 knockdown alters mitochondrial dynamics and represses TNF-α-regulated mitophagy flux in breast cancer cells.	128
26.	Figure 7.5: NLRX1 depletion initiates nuclear translocation of TFEB to induce lysosomal biogenesis in the presence of TNF- α .	131
27.	Figure 7.6: NLRX1 regulates lysosomal function in the presence of TNF- α in breast cancer cells.	133
28.	Figure 7.8: NLRX1 regulates mitochondrial respiration-dependent cell proliferation, clonogenic ability and migration of breast cancer cells in the presence of TNF-α.	135
29.	Figure 8.1: NLRX1 acts as a tumor suppressor in cancer cells of different origin.	144
30.	Figure 8.2: NLRX1 localizes to mitochondrial RNA granules and regulates RNA processing and OxPhos assembly.	148
31.	Figure 8.3: NLRX1 regulates TNF-α-induced mitochondria-lysosomal crosstalk to maintain the tumorigenic potential of breast cancer cells	152
32.	Figure 8.4: NLRX1-mediated control of mitochondrial gene expression and OxPhos capacity regulates the tumorigenicity of breast cancer cells.	154