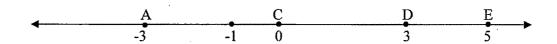
APPENDIX - C First Draft of Achievement Test

Achievement Test

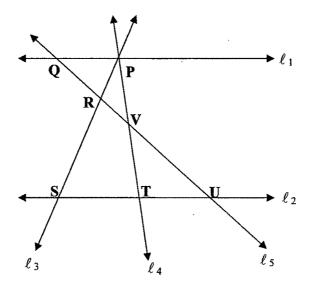

Name of the Student:
Name of the School:
Date:
Note: - Read the questions properly
- Number on the on the right side in bracket indicates total marks
for each Question
Q.I Fill in the blanks by selecting the correct alternative from the options
given on the right. (40)
1. Every line has atleast distinct points.
(0,1,2)
2. If $\overrightarrow{XY} = \overrightarrow{YZ}$ then Y \overrightarrow{XZ} .
(⊂, ∈, ∉)
3. Exactly lines can be determined by three distinct non-
collinear points.
(1,2,3)
4. If $P \in \overrightarrow{QR}$ then P, Q, R are
(equal, collinear, non-collinear)
5. Two distinct points P,Q are on both the lines ℓ_1 and ℓ_2 , then ℓ_1
$= \ell_2. $ $(=, \neq, \in)$
6. If $P \in L \& Q \notin L$, then $\overrightarrow{PQ} \subseteq L$.
$(=,\neq,\subset)$
7. Two distinct lines intersect in exactly one point. Then they are
lines.
(parallel, non parallel, same)
8. If $R \in PQ$ & $S \notin PQ$, then $PQ \cap RS = $
({S}, {P}, {R})
9. For points P, Q, R , PQ+QR PR.
(=, ≤, ≥)
10.For distinct collinear points P, Q & R if RP+PQ=QR, then
(P-Q-R, R-P-Q, R-Q-P)

11. A & B are the end points of
$(\overrightarrow{AB}, \overrightarrow{AB}, \overrightarrow{AB})$
12. Line-segments having equal lengths are called line-segments.
(congruent, parallel, same)
13. If P-Q-R & then Q is a midpoint of a line-segment \overline{PR} .
(PQ=PR, PR=QR, PQ=QR)
14. Every line-segment has mid-point.
(0, 1, 2)
15. For D-E-F-G, $\overline{DE} \cap \overline{EG} = \phantom{AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA$
$(\overline{DE}, \overline{FG}, \overline{EF})$
16. For \overrightarrow{AB} , is called the initial point.
(A, {A}, {B})
17. For \overrightarrow{PQ} , the ray extends infinitely towards
(P, Q, nowhere)
18. \overline{AB} \overline{AB} .
(∈, =, ⊂)
19. $\overline{AB} \cup \{P/A-B-P\} = \underline{\hspace{1cm}}$
(PB, BP, \overline{AB})
20. For E-D-F, will be the opposite rays.
(ED&DF, FD&DE, DE&DF)
21. A has a bisector.
(line, line-segment, ray)
22. If MN=PQ, then \overline{MN}_{PQ} .
(=, ⊂, ≅)
23. Three non-collinear points determine plane.
(more than two, two, one and only one)
24. For plane $lpha$, it contains atleast non-collinear points.
(1,2,3)
25. If P & Q are points of plane α then \overrightarrow{PQ} α .
(∈, =, ⊂)
26. The intersection of two intersecting distinct planes is a
(line, ray, plane)

27. Let X_1 & X_2 be two half planes formed by line I & plane α , then
$X_1 \cap X_2 = \underline{\hspace{1cm}}.$
(X_1, ℓ, ϕ)
28. If A & B are in the same half plane made by / then $\overline{AB} \cap \ell = \underline{\hspace{1cm}}$.
(A, ϕ, I)
29. For points P & Q and a plane X, $P \neq Q$ & P, $Q \in X$; $X \cap \overrightarrow{PQ} = \underline{\hspace{1cm}}$.
$(\{P,Q\}, Plane X, \overrightarrow{PQ})$
30. If three non-collinear points A, B, C are in plane X as well as in plane Y, then
(X=Y, X≠Y, X⊂Y)
31. For an angle $\angle ABC$ if A-O-C, then O is in the of $\angle ABC$.
(exterior, cross, interior)
32. If D is in the of an angle $\angle ABC$, then \overline{BD}
intersects \overline{AC} .
(interior, exterior, union)
33. An angle has measure between 0 & 180.
(exactly one, more than one, no)
34. For point D in the interior of $\angle BAC$, m $\angle BAD$ + = m $\angle BAC$.
$(m \angle ACD, m \angle DAC, m \angle ADC)$
35. An angle has bisector.
(one, two, no)
36. If two congruent angles are supplementary, then each of them is a angle.
(right, acute, obtuse)
37. If one angle of a pair of supplementary angles is acute then the
other is angle. (acute, right, obtuse)
38. The bisector of $\angle MON$ is \overrightarrow{OP} . If $m \angle MOP = .45^{\circ}$, then $\angle MOP$ is
to $\angle MON$. (supplementary, obtuse, complementary)
39. If S is in the interior of $\angle PQR$ then point P is in the exterior of
$\underline{\hspace{1cm}}(\angle PQS , \angle SQR , \angle SPQ)$
40. Each of the angles from a pair of complementary angles is
(obtuse, right, acute)

Q.II Look at the following figures and answer the respective questions:

[A] Figure – 1 (05)

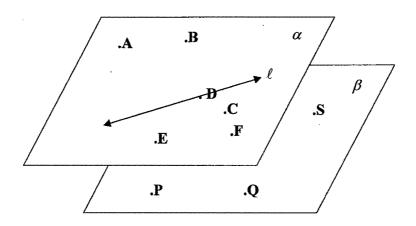

- 1. Is $\overline{AC} \cong \overline{CD}$? Ans. _____
- 2. What will be the number corresponding to the mid-point of \overline{BD} ?
- 3. What will be \overline{AE} ?
- 4. For the point F, if A-F-E and \overline{AF} =4, then what will be the number corresponding to F?

 Ans. _____
- 5. For C-O-P-E, if OP=2=PE, then what will be CO?

Ans. _____

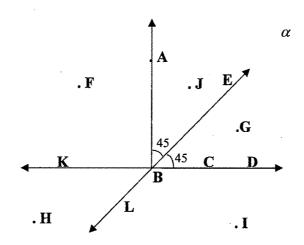
[B] Figure - 2

(15)


- 1. What is $I_1 \cap I_2$?
- 2. Which are the points on line I₄?
- 3. Which four points are collinear?
- 4. Which are the lines that intersect in P?
- 5. If PT=9.5 & PV=3, then what is VT?

- Ans. _____
- Ans. _____
- Ans. _____
- Ans. ____
- Ans. ____
- 6. If T is a mid-point of \overline{SU} & numbers corresponding to S & U are -6 & 7 respectively, then what is the number corresponding to T?

 Ans. _____
- 7. Are lines $\overrightarrow{QV} \& \overrightarrow{ST}$ intersecting?
- 8. What is the intersection of \overline{RV} & \overline{UV} ?
- 9. What is $\overline{QV} \cap \overline{RU}$?
- 10. What is $\overline{PV} \cap \overline{TU}$?
- 11. What is the intersection of \overrightarrow{UQ} & \overrightarrow{TS} ?
- 12. What is the intersection of \overrightarrow{UV} & \overrightarrow{PQ} ?
- 13. Are $\overrightarrow{RQ} \& \overrightarrow{VU}$ opposite rays?
- 14. What is the intersection of line I_1 and \overrightarrow{QP} ?
- 15. What is $\overline{RS} \cap I_3$?


- , (113). _____
- Ans. _____
- Ans.
- Ans. _____
- Ans. _____
- Ans. _____
- Ans. _____
- Ans. ____
- Ans. _____
- Ans. _____

[C] Figure – 3 (10)

1. Which points are in the plane α ?	Ans
2. Are planes α & β parallel?	Ans
3. Of which plane is \overrightarrow{PS} subset?	Ans
4. Are \overrightarrow{AF} and I intersecting lines?	Ans
5. $\overrightarrow{AC} \& \overrightarrow{PQ}$, are they coplanar or skew lines?	Ans
6. Mention the points of α lying in the same ha	If planes?
	Ans
7. Are $\overrightarrow{AE} \& \overrightarrow{QS}$ intersecting each other?	Ans
8. What is the intersection of planes $\alpha \& \beta$?	Ans
9. Is / a subset of closed half plane of α ?	Ans
10. Is P, Q & S coplanar points?	Ans

[D] Figure – 4 (15)

1.	Name the arms of $\angle ABC$?	Ans
2.	List the points in the exterior of \angle EBC?	Ans
3.	List the points in the interior of $\angle ABD$?	Ans
4.	List the points on the ∠ABD?	Ans
5.	Which rays will intersect \overline{AD} ?	Ans
6.	Are ∠ABC & ∠BCA same?	Ans
7.	Are ∠ABE & ∠EBA same?	Ans
8.	Are \angle ABK & \angle KBL adjacent angles?	Ans
9.	Which is the bisector of $\angle ABD$?	Ans
10.	Which are the complementary angles?	
	Ans	
11.	Are \angle ABL & \angle ABE supplementary angles?	Ans
12.	Is \angle ABD & \angle ABL linear pair of angles?	Ans
13.	Are \angle EBD & \angle KBL congruent angles?	Ans
14.	Are \angle EBA & \angle LBD vertically opposite angles?	Ans
15.	∠ABL is which type of angle?	Ans

- Q.III: Represent each of the following by a figure:
- (15)

1. $P \notin \overrightarrow{AB}$ but $Q \notin \overrightarrow{BP}$.

2. $\overrightarrow{AB} = \overrightarrow{PQ}$, but $\overrightarrow{AB} \neq \overrightarrow{PR} \& S \in \overrightarrow{QR} \& R-Q-S$.

3. A-B-C, C-D-E, A-F-E, D-G-A.

4. $R \in \overrightarrow{PQ} \& S \notin \overrightarrow{PQ}, \overrightarrow{PQ} \cap \overrightarrow{RS} = \{R\}.$

5. For distinct lines ℓ_1 , ℓ_2 , ℓ_3 ; $\ell_1 \cap \ell_2 = \phi$ and $\ell_1 \cap \ell_3 = \{X\}$.

6.
$$\overrightarrow{AB} = \overrightarrow{CD} \neq \overrightarrow{CE}$$
.

7. X,Y and Z are collinear, I is a line, $X \notin I$, $Y \in I$, $Z \notin I$.

8. P,Q,R & P,S,T are non-collinear triplets; but P,Q,S & P,R,T are not.

9. $\overrightarrow{PQ} \subset \overrightarrow{AB} \neq \overrightarrow{PR}$.

10. A, O, B are 3 non-collinear points and $\overrightarrow{AO} \cap \overrightarrow{OB} = \{O\}$.

11. I_1 , I_2 and I_3 are three distinct lines and $\ell_1 \cap \ell_2 \cap \ell_3 = \{P\}$.

12. $A \notin \overrightarrow{PQ}$ but $B \in \overrightarrow{AQ}$.

13. X,Y and Z are non-collinear points and $\emph{\textbf{J}}$ is a line, $X\!\in\!\ell$, $Y\!\in\!\ell$ and $Z\!\notin\!\ell$.

14. $\overrightarrow{RQ} \subset \ell_1$ and $S \in \ell_1$, S-R-Q.

15. $\overrightarrow{PQ} \cap \ell_1 \cap \ell_2 = \{P\}; Q \notin \ell_1, Q \notin \ell_2$.