APPENDIX – H First Draft of Parallel Test

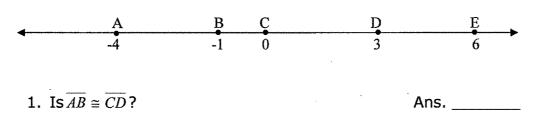
Achievement Test

Name of the Student:	Date:
Name of the School:	Division:
Note: - Read the questions properly	y
- Number on the on the right Question	t side indicates total marks for each
Q.I Fill in the blanks by selecting th	e correct alternative from the options
given on the right.	(40)
1. A line is determined by	distinct points.
	(0,2,1)
2. If $\overrightarrow{AB} = \overrightarrow{BC}$ then B	\overrightarrow{AC} .
	(⊂,∉,∈)
3. Three distinct non-collinear lines.	points determines exactly
	(3,2,1)
4. If $A \in \overrightarrow{BC}$ then A,B,C are	
5. Two distinct points A and B	are on both the lines ℓ_1 and ℓ_2 . So ℓ_1
ℓ ₂ .	
* Z *	(=, ≠, ∈)
6. If $A \in \ell$ & $B \notin \ell$, then \overrightarrow{AB}	
	$(\subset,\neq,=)$
7. Two distinct intersecting line	
7. Two distinct intersecting inte	(parallel, non-parallel, same)
8. IF A $\in \overrightarrow{BC}$ & O $\notin \overrightarrow{BC}$, then \overrightarrow{AC}	
8. IF A $\in BC$ & $O \notin BC$, then AC	
9. For points A, B, C , AB+BC _	({C}, {A}, {B})
	AC. (=, ≤, ≥)
10 For distinct collinear points A	$(-, \leq, \geq)$ A, B & C if CA+AB=BC, then
10.1 of distinct comited points A	(A-B-C, C-A-B, C-B-A)
11. P & Q are the end points of	
	$(\overleftarrow{PQ},\overrightarrow{PQ},\overrightarrow{PQ})$
	336

Line-comments having equal lengths are called
2. Line-segments having equal lengths are called line-segments.
(same, congruent, parallel)
3. If A-B-C & then B is a midpoint of a line-segment \overline{AC} .
(AB=BC, AB=AC, AC=BC)
I. Every line-segment has mid-point.
(2, 0, 2)
5. For A-B-C-D, $\overline{AC} \cap \overline{BD} = $
$(\overline{AC}, \overline{BC}, \overline{BD})$
5. For \overrightarrow{PQ} , is called the initial point.
({P}, P, {Q})
7. For \overrightarrow{AB} , the ray extends infinitely towards
(A, B, nowhere)
$\overrightarrow{PQ} = \overrightarrow{PQ}.$
(=, ⊂, ∈)
$\overline{RS} \cup \{P/R-S-P\} = \$
$(\overrightarrow{BP}, \overrightarrow{PB}, \overrightarrow{AB})$
). For P-Q-R, will be the opposite rays.
$(\overrightarrow{RQ} \otimes \overrightarrow{QP}, \overrightarrow{QP} \otimes \overrightarrow{QR}, \overrightarrow{PQ} \otimes \overrightarrow{QR})$
. A has a bisector.
(line, ray, line-segment)
2. If AB=CD, then $\overline{AB} _ \overline{CD}$.
$(=,\cong,\subset)$
3 non-collinear points determines one and only one
plane.
(three, two, four)
A contains atleast three non-collinear points.
(point, line, plane)
5. If A & B are points of plane α then $\overline{AB}_{\alpha} = \alpha$. $(=, \subset, \in)$
5. Two intersecting distinct planes intersect in a
(ray, plane, line)
7. Let $Y_1 \& Y_2$ be two half planes formed by line ℓ & plane α , then
$Y_1 \cap Y_2 = \underline{\qquad} (Y_1, \phi, \ell)$
337

•

28. If P & Q are in the same half plane made by ℓ then $\overline{PQ} \cap \ell$ =


 (ϕ, P, ℓ) 29. For points A & B and a plane Y, $A \neq B$ & A, $B \in Y$; $Y \cap AB =$ _____. (Plane Y, $\{A,B\}, AB$) 30. If three non-collinear points P, Q, R are in plane X as well as in plane Y, then _____. $(P \neq Q, P = Q, P \subset Q)$ 31. For an angle $\angle PQR$ if P-O-R, then O is in the _____ of $\angle PQR$. (interior, exterior, cross) 32. If S is in the _____ of an angle $\angle PQR$, then QSintersects PR. (interior, exterior, intersection) 33. There _____ measure of an angle between 0 & 180. (is exactly one, are more than one, is no) 34. For point D in the interior of $\angle PQR$, m $\angle PQD$ + ____ = m $\angle PQR$. $(m \angle DQR, m \angle RQP, m \angle RDQ)$ 35. An angle has _____ bisector. (two, no, one) 36. For two supplementary angles, if they are congruent then each of them is a _____ angle. (acute, right, obtuse) 37. If one angle of a pair of supplementary angles is obtuse then the other is _____ angle. (right, acute, obtuse) 38. The bisector of $\angle ABC$ is BO. If $m \angle ABO = 45^{\circ}$, then $\angle ABO$ is $_$ to $\angle OBC$. (complementary, obtuse, supplementary) 39. If O is in the interior of $\angle ABC$ then point A is in the exterior of

 $(\angle OBC, \angle ABO, \angle ABC)$

40. For a pair of complementary angles, each of the angles is _____. (obtuse, right, acute)

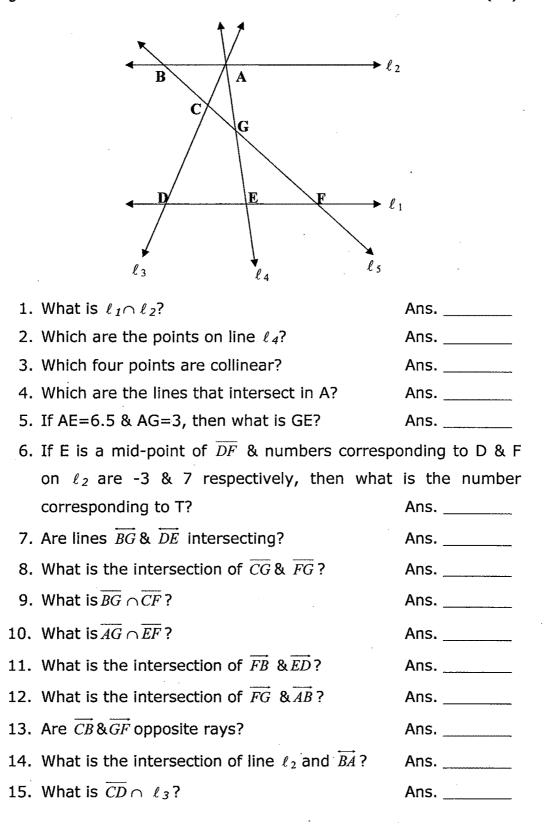
338

Q.II [A] Look at the following figure of the number-line and answer the respective questions: Figure – 1 (05)

2. What will be the number corresponding to the mid-point of \overline{BD} ? Ans. _____

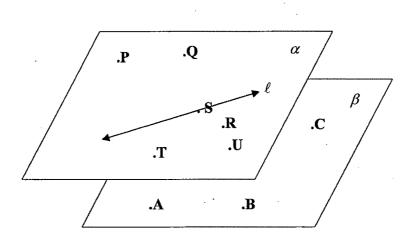
3. What will be AE? Ans. _____

4. For the point F, if A-F-E and AF=5, then what will be the number corresponding to F? Ans. _____


5. For C-O-P-E, if OP=2=PE, then what will be CO?

.

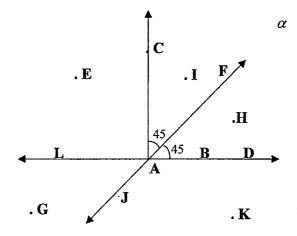
Ans. _____


Q.II [B]

Look at the following figure and answer the respective questions: Figure – 2 (15)

۰.

Q.II [C] Look at the following figure and answer the respective questions: Here α & β are parallel planes. Figure – 3 (10)



1.	Which all points are in the plane α ?	Ans
2.	What is the intersection of the line ℓ and \overrightarrow{AC} ?	Ans
3.	Of which plane is \overrightarrow{AC} subset?	Ans
4.	Are \overrightarrow{PU} and ℓ intersecting lines?	Ans
5.	$\overrightarrow{AC} \& \overrightarrow{PQ}$, are they coplanar or skew lines?	Ans
6.	Mention the points of α lying in the same half p	blane?
		Ans
7.	Are $\overrightarrow{PT} \otimes \overrightarrow{BC}$ intersecting each other?	Ans
8.	What is the intersection of planes $\alpha \& \beta$?	Ans
9.	Is ℓ a subset of closed half plane of α ?	Ans
10.	Are A, B & C coplanar points?	Ans

Q.II [D]

Look at the following figure and answer the respective questions: Figure – 4 (15)

.

1.	Name the arms of $\angle DAB$	Ans
2.	List the points in the exterior of \angle FAB?	Ans
3.	List the points in the interior of $\angle DAC$?	Ans
4.	List the points on the \angle DAC?	Ans
5.	Which rays will intersect \overline{DC} ?	Ans
6.	Are \angle DAB & \angle ABD same?	Ans
7.	Are \angle DAF & \angle FAD same?	Ans
8.	Are \angle DAL & \angle LAJ adjacent angles?	Ans
9.	Which is the bisector of $\angle DAC$?	Ans
10. Which is the complementary angle to an \angle DAF?		
		Ans
11.	Are \angle DAJ & \angle DAF supplementary angles?	Ans
12.	Is $\angle DAC \& \angle DAJ$ a linear pair of angles?	Ans
13.	Are \angle FAC & \angle LAJ congruent angles?	Ans
14.	Are \angle FAD & \angle JAC vertically opposite angles?	Ans
15.	\angle DAJ is which type of angle?	Ans

Q.III: Represent each of the following by a figure:

.

1. $Q \notin \overrightarrow{AB}$ but $P \in \overrightarrow{BQ}$.

.

2. $\overrightarrow{AB} = \overrightarrow{PR}$, but $\overrightarrow{AB} \neq \overrightarrow{PQ}$ & S $\in \overrightarrow{QR}$ & R-Q-S.

3. P-Q-R, R-S-O, P-T-O, S-U-P.

4. $O \in \overrightarrow{PQ} \& R \notin \overrightarrow{PQ}, \overrightarrow{PQ} \cap \overrightarrow{OR} = \{R\}.$

5. For distinct lines ℓ_1 , ℓ_2 , ℓ_3 ; $\ell_1 \cap \ell_2 = \{X\}$ and $\ell_1 \cap \ell_3 = \phi$.

-

343

(15)

6.
$$\overrightarrow{PQ} = \overrightarrow{RS} \neq \overrightarrow{RO}$$
.

7. A, B and C are collinear, ℓ is a line, $B \notin \ell$, $A \in \ell$, $C \notin \ell$.

8. A,B,C & A,D,E are non-collinear triplets; but A,B,D & A,C,E are collinear points.

~

•

9. $\overrightarrow{AB} \subset \overrightarrow{PQ} \neq \overrightarrow{AC}$.

10. P, O, Q are 3 non-collinear points and $\overrightarrow{PO} \cap \overrightarrow{OQ} = \{O\}$.

11. ℓ_1 , ℓ_2 and ℓ_3 are three distinct lines and $\ell_1 \cap \ell_2 \cap \ell_3 = \{O\}$.

12. $B \notin \overrightarrow{PQ}$ but $A \in \overrightarrow{BQ}$.

13. A,B and C are non-collinear points and ℓ is a line, $A \in \ell$, $B \in \ell$ and $C \notin \ell$.

14. $\overrightarrow{PQ} \subset \ell_1$ and $R \in \ell_1$, R-P-Q.

15. $\overrightarrow{AB} \cap \ell_1 \cap \ell_2 = \{A\}; B \notin \ell_1, B \notin \ell_2$.

345