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Chapter 3

Experimental and Computational 
Techniques

A tissue is a highly scattering medium. As the light propagates through a tissue, 
the transmitted light is comprised of three components: unscattered (or coher­
ently scattered), weakly scattered, and multiply scattered light. These different 
components can be visualized by taking an example of a short pulse of laser light 
propagating through a tissue.

The coherently scattered light, called the ballistic photons, propagate in the 
direction of the incoming beam. They, therefore, travel the shortest path and 
emerge first from the tissue. Ballistic photons carry maximum information on 
the internal structure of the tissue. The portions of the light, that scatter slightly 
more, but still in the forward direction, are called snake photons because of their 
wiggly trajectories in the forward direction. These photons are time-delayed 
with respect to the ballistic photons but still carry significant information on the 
scattering medium. However, most, portions of the light beam undergo multiple 
scattering and travel long distances within the medium. They emerge even later 
and are called diffuse photons. They carry little information on the microstruc­
ture of the tissue and have to be discriminated in order to image using ballistic 
and snake photons (1). One of the techniques to isolate the ballistic from diffuse 
photons is Optical Coherence Tomography (OCT). OCT utilizes an interfero­
metric method to enhance contrast in reflection geometry and has emerged as a



3.1 Experimental Technique

powerful technique for three-dimensional imaging of highly scattering biological 
media such as a tooth.

Fluorescence microscopy is highly sensitive and the most widely used tech­
nique for optical bioimaging (1). It provides a comprehensive and detailed prob­
ing of the structure and dynamics for in vitro, as well as in vivo, biological 
specimens of widely varying dimensions. Fluorescence emission dependent on 
specific wavelengths of excitation light and the energy of excitation under one 
photon absorption is greater than the energy of emission (the wavelength of ex­
citation light is shorter than the wavelength of emission light). Fluorescence has 
the advantage of providing a very high signal-to-noise ratio, which enables us to 
distinguish spatial distributions of even low concentration species.

3.1 Experimental Technique
For biological applications, it is important to develop instruments, which can 
collect spectral information rapidly ensuring that the sample remains unchanged 
by exposure to the intense source. On the other hand, low intensity of signal 
causes several problems in the fluorescence based experimental techniques. Hence 
keen understanding of instrumentation is essential for successful application of 
fluorescence. The description of instrumentation involved in the fluorescence 
spectroscopy is described here.

3.2 Experimental setup for breast tissue
The experimental setup used in the measurements of breast fluorescence is shown 
in fig 3.1.

The three major components in the experimental setup are:
•Excitation source 
•Spectrometer 
•Detection system
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Figure 3.1: Experimental set-up.

3.2.1 Excitation Source (Ar+ LASER):
For the collection of fluorescence a Spectra Physics Model 165(5W) Argon ion 
laser is used as an excitation source with the range from UV/Visible wavelength 

of 457.9nm to the 514nm. It is capable of operating in the TEMm mode at any 
one of more than 20 spectral lines or at several lines simultaneously. This model 
consists of the laser head and the Model 265-exciter connected by an 8 feet long 
umbilical. External thumb wheel controls are provided for wavelength selection 
and change of intra-cavity aperture. The laser head was designed to a minimum 
size and weight to take full advantage of the superior operating characteristics 
of the BeO plasma tube (closed at both ends by Brewster’s angle windows). In 
addition to the plasma tube, laser head contains a solenoid, an optical resonator 
formed by a spherical reflector at the output end and a prism (for wavelength 
selection) assisted by a flat mirror at the back end.

The 265 Exciter contains all the necessary electronic circuits to create, sus­
tain and monitor the ion discharge in the plasma tube; to monitor and control 
the output power; and to supply and regulate the solenoid current. With a start 
boost circuit (by 7 kV pulse), the exciter generates a discharge in the plasma 
tube. This exciter contains a fully regulated power supply that controls the ion 
discharge current in the plasma tube to provide constant laser performance. The
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3.2 Experimental setup for breast tissue

Model 165 is designed to use ordinary tap water for cooling of the transistor 
passbank in the power supply, the magnetic field solenoid and the BeO tube.

NESLAB HX-500 chiller unit provides a continuous flow of de-ionized water 
at constant temperature (20°C) and pressure (30psi) to the laser head. This is a 

complete self-contained unit consisting of a stainless steel reservoir, temperature 
controller, re-circulating pump and refrigeration system. This system design has 
the ability to track a set temperature virtually independent of changing heat 
loads. Once the calibrated temperature dial is set, the recalculating temperature 
will not shift more than a few tenths of a degree. The refrigerator coil immersed 
in it cools the de-ionized water. It is circulated in a closed loop by the pump. 
The compressor is water cooled from an external tap.

3.2.2 Spectrometer
In the spectrometer the beam of light is filtered by a double grating, that allows a 
single wavelength of light to reach the sample. Then in the sample compartment, 
the sample responds to the incoming radiation. And the resulting radiation is 
filtered by a double grating emission spectrometer that feeds the signal to a photo 
multiplier detector. The main parts of this spectrometer are as follows:

3.2.2.1 Lasermate

The 1450 tunable excitation filter is a compact grating monochromator used 
to eliminate plasma emissions from incident visible laser before the light passes 
through the sample (3). Figure 3.2 shows the ray diagram for the optical path in 
the lasermate. This lasermate is attached to the SPEX 1877E triplemate.

3.2.2.2 SPEX 1877E Triplemate

The SPEX 1877 triplemate has two major sections a) the filter stage and b) the 
spectrograph stage. The filter stage consists of two modified Czerny-Turner 50 
mm x 50 mm plane gratings having 600 grooves/mm, coupled in a subtractive 
mode, and giving a bandpass of about 1000 cm-1 on a 5 mm intermediate slit 
setting. The focal length of the stage is 0.22 m. It acts as a variable wavelength,
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3.2 Experimental setup for breast tissue
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Figure 3.2: Optical diagram of the 1450 tunable excitation filter.

selectable bandpass filter that feeds a non-dispersed segment of radiation from a 
sample into the entrance slit of spectrograph stage. The spectrograph stage is a 
0.6 m, single monochromator which disperses the radiation over the detector. It 
consists of an asymmetric Czerny-Turner mount with 64mm x 64mm plane grating 
having 1200 grooves/mm and is used to produce a dispersion of 1.4nm/mm. 
To vary the dispersion and coverage at the focal plane, the spectrograph has 
provisions for mounting three gratings of different groove densities on a manually 
activated turret. The dispersed radiation is then detected by a thermoelectrieally 
cooled PMT.

3.2.3 Detector

The detection system used for the present fluorescence measurement is a pho­
tomultiplier tube (PMT), followed by an amplifier, as a photon detector in all 
fluorimeters. The PMT is a photosensitive device consisting of a photoemissive 
cathode followed by focusing electrodes, an electron multiplier and an electron 
collector in a vacuum tube. When light enters the photocathode, the photodiode 
emits photoelectrons into a vacuum. These are then directed by the focusing
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3.3 Experimental setup for cervical tissue

electrodes voltages towards the electron multiplier when electrons are multiplied 
by the process of secondary emission. The multiplied electrons are then collected 
by the anode as an output signal. For the detection purpose an end window 
type RCA C31034 GaAs PMT is used. This PMT has a maximum efficiency in 
the range 230-880 nm and exceedingly small dark current. The tube is kept at 
low temperatures (—30°C) using the Peltier effect principle for the best spectral 
response (6). As the current passes through the thermocouple, the cold junc­
tion ultimately reaches —30°C while the hot junction is continuously cooled by 

flowing tap water. It takes nearly 90 minutes to attain this temperature. The 
pulse trains from the photomultiplier tube pass through an energy gate (preamp- 
discriminator), which is designed to discriminate real pulse from spurious ones 
and amplify them. The data then passes into either a digital photon counter or a 
suitably interfaced microcomputer fast enough to monitor individual pulses. The 
output is then recorded in a computer.

3.3 Experimental setup for cervical tissue

The fluorescence spectra of the cervical tissues were recorded using Fluorolog-3 
Spectrofluometer (Jobin Yvon, USA) (2) The block diagram of the experimental 
setup used is shown in fig.3.3.

The essential parts of fluorometer are:
• Excitation source: Xenon lamp
• Excitation-Emission spectrometer
• Sample compartment
• Detector (PMT, Model: R928)
The output of the detector was connected to computer for data acquisition 

and analysis.

3.3.1 Excitation Source: Xenon Lamp

The light sources are the high-pressure (10 atmospheres) 450 W Xenon lamps. 
Xenon lamp (Model 1007) provides a relatively continuous light output from 
240nm to 850nm for sample excitation (2). Starting of the lamp requires 20-40
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3.3 Experimental setup for cervical tissue
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Figure 3.3: Experimental Setup (Fluorolog-3, Model FL3-22).

KV and 25A current. Xenon lamps emit light as a result of the recombination of 
electrons with ionized Xe ions. The lamp has an approximate life of 2000 hours 
and is Ozone-free.

3.3.2 Monochromators

A monochromator is an optical device that transmits a mechanically selectable 
narrow band of wavelengths of light chosen from a wider range of wavelengths 
available at the input.

Light (A) is focused onto an entrance slit (B) and is collimated by a curved 
mirror (C). The collimated beam is diffracted from a rotatable grating (D) and 
the dispersed beam re-focussed by a second mirror (E) at the exit slit (F). Each 
wavelength of light is focussed to a different position at the slit, and the wave­
length which is transmitted through the slit (G) depends on the rotation angle 
of the grating.

The Fluorolog-3 comes equipped with a double-grating spectrometer in the 
excitation and emission positions. This is because when a diffraction grating is 
used, the diffraction pattern has overlapping orders. Sometimes extra, broadband 
filters are inserted in the optical path to limit the width of the diffraction orders 
so they do not overlap. This is done by using a prism in one of the monochro­
mators of a dual monochromator design. Double-Grating spectrometers offer a
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3.3 Experimental setup for cervical tissue

Figure 3.4: Monochromator.

significant increase in sensitivity, resolution and stray-light rejection. In addi­
tion. a monochromator includes entrance and exit slits and appropriate mirrors, 
connected to a small motor which rotate to set the slit's opening as set by the 
user. In selecting a monochromator for fluorescence spectroscopy, one looks fol­
low stray light levels to avoid problems due to scattered stray light.

Gratings used in this system:

The excitation and emission spectrometer gratings are 1200 groove/mm, mea­
sure 50mm x 50mm and are blazed at 300nm and 500nm. By definition, a diffrac­
tion grating is a piece of polished aluminum onto which a large number of grooves 
have been etched (typically 10.000 to 15.000 lines/mm).

Slits:

The slits in a fluorescence instrument are used to determine the band pass and 
have a profound effect on the amount of light that is passed by the monochroma­
tor to the next component in the optical system (4). The slit widths are generally 
variable and a typical monochromator will have both an entrance and exit slit. 
The fight intensity which passes through a monochromator is approximately pro­
portional to square of the slit width (if the slit width is doubled, four times as
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3.3 Experimental setup for cervical tissue

much light is passed). Larger slit widths yield increased signal levels, and there­
fore higher signal-to-noise ratios (5). Smaller slit widths yield higher resolution, 
but at the expense of light intensity. All the fluorescence spectra were taken at 
a slit width of 5mm and elastic scattering spectra were taken at a slit width of 
1mm of both excitation and emission monochromator.

Sample Compartment:

Fluorescence spectra were measured using a sample holder on which Quartz 
plate was placed with tissue sample on it. Quartz plate has an advantage that 
it does not give fluorescence. The standard sample-compartment module is a 
T-box, which provides efficient throughput with a choice of standard Right An­
gle (RA) or Front-Face (FF) emission collection. The Fluorescence spectra from 
solid samples (tissues) were measured in FF geometry (at an angle of 22.5° from 

the incident direction). This orientation minimizes stray and reflected light off 
the surface of the sample. In this case the fluorescence signal is collected from 
the sample’s surface. RA detection is used primarily for dilute solutions. The 
sample compartment module comes equipped with a silicon photodiode reference 
detector to monitor and compensate variations in the Xenon lamp output.

Detectors: PMT

A photo multiplier tube (PMT) followed by an amplifier is used as a photon 
detector in all fluorimeters. The PMT is a photosensitive device consisting of 
a photoemissive cathode followed by focusing electrodes, an electron multiplier 
and an electron collector in a vacuum tube. When light enters the photocathode, 
the photodiode emits photoelectrons into a vacuum. These are then directed by 
the focusing electrodes voltages towards the electron multiplier when electrons 
are multiplied by the process of secondary emission. The multiplied electrons are 
then collected by the anode as an output signal. A PMT is best regarded as a 
source of current, which is proportional to the light intensity. Although a PMT 
responds to individual photons, these individual pulses are generally detected as 
an average signal. The PMT is supplied a high voltage of 950 volts to operate in
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3.4 Measurement of Fluorescence Polarization

the linear range. The PMT (R 928) is cooled in the room temperature. It can 
measure Intensity upto 1.6 x 106 cps, and beyond this the PMT saturates.

3.4 Measurement of Fluorescence Polarization

The concept of molecular movement and rotation is the basis of fluorescence po­
larization. The measurement of polarized emission of fluorescence allows for the 
observation of rotational motions in fluorophores during the lifetime of excited 
state. A group of similarly oriented molecules are chosen or photoselected us­
ing a polarizer in the excitation path. The polarized components of fluorescence 
emission are measured using polarizer in the emission path (2). Polarization mea­
surements are performed by measuring the vertically and horizontally polarized 
components of the emission.

Polarization is defined as the ratio of the linearly polarized component’s in­
tensity divided by the natural light component’s intensity. In an ideal system, 
polarization is measured only the vertically polarized excitation with the hori­
zontal and vertical emission components. These measurements are designated as 
lyv or I|| and Ivh or I± respectively; the first subscript indicating the position 
of the excitation polarizer and the second subscript indicates the emission polar­
izer. Vertically oriented polarizers (V) are said to be at 0° (from normal) and 
horizontal polarizers (H) are said to be at 90°.

Polarization measurements are taken in two geometries, called L and T for­
mat. An L-Format polarizer system is shown in figure 3.5. L-format utilizes 
two polarizers with the emission polarizer rotated between horizontal and ver­
tical polarizations for measurements (2). The entrance and exit polarizers are 
fully automated and adjustable to within 1° rotations. Insertion and removal of 

polarizers from the optical path is controlled by the computer. All the Spectra 
were taken in L-Format polarizer system.
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3.4 Measurement of Fluorescence Polarization

Exeitationlight

Detector

Figure 3.5: L-Format Polarization.

3.4.1 G-Faetor:
In a monochromator system, the G factor must be included to correct for the 
wavelength response to polarization of the emission optics and detectors. A pre­
calculated G factor may be used when all other experimental parameters are 
constant. G factor improves the S/N ratio for weak signals. Polarization mea­
surements that involve scanning the emission monochromator must have the G 
factor measured for each emission wavelength position. The G factor is defined 

as:

G = G(Xem) = (3.1)
Ihh

In the experiments performed, measurements of Jyy, Ivh> Ihv, Ihh were all 
taken and finally used in the intrinsic fluorescence model, taking into account the 
g-factor.
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3.5 Material and method

3.5 Material and method

Pathologically characterized fresh Breast and Cervical tissue samples with their 
normal counterparts were obtained from G.S.V.M. Medical College, Kanpur within 
two hours of surgery and were kept in refrigerator until used. These were analyzed 
in close collaboration with the pathologist of the hospital. The age of patients 
spanned over a broad range, from 16-85 years, coming from varied economic 
backgrounds. The collected samples were analyzed on the same day, without any 
chemical treatment. During experiments, the tissue was at room temperature 
and kept moist with isotonic saline. The tissue was placed on a quartz plate of 
size 3cm x 1cm x 2mm during experiment.

The breast samples were excited by 4S8nm wavelength plane polarized light 
from an Ar-ion laser and the cervical samples were excited by 350nm from Xenon 
lamp. The unpolarized and polarized fluorescence spectra were collected in right 
angle geometry. For polarized fluorescence, a depolarizer was used after the 
analyzer, in order to ensure that there was no preference of the selected directions 
of polarized fluorescence by the detection system. The components of fluorescence 
light which are parallel and perpendicular to the incident polarized light were 
measured in the 500 to 700nm wavelength region in case of breast tissue and in 
cervical it was from 380 to 650nm.

The dominant fluorophores in cervical tissue are collagen (peak around 400 
nm) and NADH (peak around 460 nm) at excitation wavelength 350 nm. In 
case of breast tissue FAD (peak around 530 nm) and Porphyrin (peak around 
630 nm) are dominant fluorophores for excitation wavelengths 436, 470 and 488 
nm. The samples were excited with vertically polarized light and the parallel 
(both polarizer and analyzer are in same state, W) and perpendicular (Polar­
izer and analyzer are in orthogonal state, VH) components of the fluorescence 
were collected in the reflection geometry. VV is the observed intensity when the 
observing polarizer is oriented parallel to the direction of the polarized excita­
tion and VH is the observed intensity when the polarizer is perpendicular to the 
polarized excitation.
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3.6 Computational Techniques

3.6.1 Wavelet Transform

Wavelets refer to small waves and wavelet transform refers to the representa­
tion of a signal in terms of a finite length or fast decaying oscillating waveform. 
This waveform, known as the mother wavelet, is scaled and translated to match 
the input signal. In this representation, a wavelet series, which is the coordi­
nate representation of a square integrable function with respect to a complete, 
orthonormal set of basis functions for the discrete wavelets under consideration.

The word wavelet is due to Morlet and Grossman in the early 1980s. They 
used the French word ondelette, meaning ” small wave”. A little later it was trans­
formed into English by translating ”onde” into ’’wave”, giving wavelet. Wavelet 
transforms are broadly classified into the discrete wavelet transform (DWT) and 
the continuous wavelet transform (CWT). The principal difference between the 
two is that the continuous transform operates over every possible scale and trans­
lation, whereas the discrete ones use a specific subset of all scale and translation 
values. Furthermore, the discrete wavelet has a strictly finite size.

Wavelet transforms may be considered to be forms of time-frequency repre­
sentation and are, therefore, related to the subject of harmonic analysis. Almost 
all practically useful discrete wavelet transforms make use of filter-banks contain­
ing finite impulse response filters. The wavelets forming a CWT are subject to 
Heisenberg’s uncertainty principle and equivalently, discrete wavelet bases may 
be considered in the context of other forms of the uncertainty principle.

3.6.1.1 Multiresolution analysis

Although the time and frequency resolution problems are results of a physical 
phenomenon (the Heisenberg uncertainty principle) and exist regardless of the 
transform used, it is possible to analyze any signal by using an alternative ap­
proach called the multiresolution analysis (MRA). MRA, as implied by its name, 
analyzes the signal at different frequencies with different resolutions. Every spec­
tral component is not resolved equally as was the case in the STFT (fig.3.6).

48



3.6 Computational Techniques

m
Time

STFT (Gabor)
Time

Wave let Ana lysis

Figure 3.6: Time and frequency resolutions.
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MRA is designed to give good time resolution and poor frequency resolution 
at high frequencies and good frequency resolution and poor time resolution at low 
frequencies. This approach makes sense especially when the signal at hand has 
high frequency components for short durations and low frequency components 
for long durations. Fortunately, the signals that are encountered in practical 
applications are often of this type. This is the special feature due to which 
wavelet transform has become so popular.

3.6.1.2 Discrete Wavelet Transform

Wavelet transform is known as mathematical microscope which provides a multi­
resolution analysis of the data under consideration. The data is separated into 
high frequency and low frequency components at multiple scales, known respec­
tively as high pass and low pass coefficients. For example, high pass coefficients at 
level-1 represent variations at smallest scale and the subsequent higher level co­
efficients represent variations over bigger window sizes. The low pass coefficients 
at various levels represent average behavior of data over corresponding window 
sizes. In discrete wavelet transform (DWT), the basis functions consist of father
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wavelet <f>{x) and mother wavelet ip(x) satisfying

= 0 and

4> and ip are also square integrable:

(3.2)

J \<f>\2dx = i = j \i>\2(h. (3.3)

Where, A is an arbitrary constant. Both of these functions belong to the 
square integrable class. Two operations crucial to the construction of a complete 
orthonormal basis are translation and scaling. It can be checked that the following 
scaled and translated wavelets and scaling functions are square integrable;

= 2j/2ip(2H - k), (3.4)

4>j,k = 2^V(2n - k) (3.5)

Here, k is the translation parameter and j is the scaling parameter in the 
dyadic basis. 2^2 is the normalization factor at scale j, which takes integral values 

starting from zero. The original mother wavelet corresponds to ^o,o whereas 
the father wavelet is given by $0>o- Higher values of j lead to the so called 
daughter wavelets which are of the similar form as the mother wavelet, except 
that these are thinner and taller by a factor of 2J/2. The translation unit k/2J 

is also commensurate with the thinner size of the daughter wavelet at scale j. 
In a given wavelet basis only one scaling function and its translations are taken, 
since others are not orthogonal to the wavelets. In the above construction the 
translated scaling functions are given by (j>o,k = <fik = 4>{x — k). In the limit 
j —* oo and for integral values of k, in the range — oo < k < oo, the above basis 
becomes a complete set. Hence any finite energy signal f(t) € L2(R) (7) can be 
expanded as

OO OO OO

/(*)= ckMt)+
fc=—oo fc=—oo j=0

(3.6)
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Cj,Jt = (/(')• o,.A.(/.)> = / f{t)4>hk{t)dt, (3.7)

and

dj.fc = </(*). = j fiWjAWt (3-8)

Since <j>j%k is a scaling function located at k and having a finite window size 
commensurate to scale j, Cjtk represents the average value of the signal over the 
same window at location k, dj<k, as we will become clear from latter discussions, 
represent variations of the signal in the same window size. Father wavelets or 
scaling functions are used for extracting the low frequency, smooth component 
of the signal. On the other hand the wavelets extract the higher frequency de­
tail component at various scales. Broadly speaking, father wavelets are used 
for finding the trend components and wavelets pick out the deviations from the 
trend. All wavelet basis functions satisfy the dilation equation, also known as the 
multiresolution analysis (MRA) equation(H);

<p(t) = 22 h{n)yf 2 <f>(2t - n), (3.9)

and

il>(t) = '22 h(n)y/2 4>{2t — n) (3.10)
n

It is worth noting that both scaling function coefficients (low-pass coefficients) 
and wavelet coefficients (high-pass coefficients) at a given scale j can be obtained 
from only low-pass coefficients at a higher scale. As the scale value j increases 
for fixed k, the scaling function becomes thinner and taller representing approx­
imately a Dirac delta function (fig.3.7). The corresponding low-pass coefficient 
is then nothing but the sample of the signal at the location k. Hence starting 
from the samples of the signal at the finest resolution one can obtain all the other 
scaling function and wavelet coefficients through the MRA equation. One only
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3.6 Computational Techniques

needs to know the filter coefficients h(n) and h(n), without explicitly knowing the 
forms of the wavelet functions. In this sense, wavelet transform is significantly 
different from Fourier transform.

For the Haar wavelet

h(0) ~ h(l) = 1/^/2 and h(0) = -h(l) = 1/^2, (3.11)

whereas for the Daubechies-4 basis:

m = -a(3) = i±^. mi)=m = (3.i2>_

A(2) = ~S(1) = and h(3) = h(0) = (3.13)

It is clear that Haar basis is special, since it is the only wavelet which Is sym­
metric and compactly supported and is the simplest one since the interpretation 
of the wavelet coefficients are quite transparent here; it is also free from artifacts 
arising due to the finite size of the data. There are infinite varieties of discrete 
wavelets, the choice of a basis set depends on the application at hand.

The pictorial demonstration of discrete wavelet transform is presented in 
fig.3.8. N = 0 level represents the original signal. In level one i.e., N — 1 
Haar wavelet decomposition, the nearest neighbor averages and differences are 
calculated with the normalization factor of l/-\/2, which leaves half of the data in 

the form of low-pass coefficients and the other half in terms of level-1 high-pass 
coefficients. Subsequently, the same procedure can be applied once more to the 
low-pass coefficients to decompose them into level-2 high-pass coefficients and 
level-2 low-pass coefficients. In total N level decomposition can be carried out.

3.6.1.3 Continuous Wavelet Transform

The continuous wavelet transform was developed as an alternative approach to the 
short time Fourier transforms to overcome the resolution problem. The wavelet 
analysis is done in a similar way to the STFT analysis, in the sense that the signal 
is multiplied with a function, similar to the window function in the STFT, and
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Figure 3.8: Pictorial demonstration of Discrete Wavelet Transform.

the transform is computed separately for different segments of the time-domain 
signal. However, there are two main differences between the STFT and the CWT:

1. The Fourier transforms of the windowed signals are not taken, and therefore 
single peak will be seen corresponding to a sinusoid, i.e., negative frequencies are 
not computed.

2. The width of the window is changed as the transform is computed for every 
single spectral component, which is probably the most significant characteristic 
of the wavelet transform.

In the continuous wavelet transform (CWT), a function ip, which in practice 
looks like a little wave, is used to create a family of wavelets ip (at + 6), where a 
and b are real numbers, a dilating (compressing or stretching) the function ip and 
b translating (displacing) it (9; ID). In continuous wavelet transform, one uses 
functions which are smooth, but do not have strictly finite extent. For example, 
the extensively used Morlet wavelet is a product of a Gaussian function with a 
cosine: ip = ce cos(uit)\ u> and sigma (width of the Gaussian) are related (9). 
The fact that the Gaussian function provides a window to the analyzing func­
tion eos(u>t,), Morlet wavelet closely resembles window Fourier transform, which
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allows one to pick out local variations. The Gaussian window can be made small 
or large by changing the width (scale). It can be translated to identify varia­
tions in the data at different locations and at different scales. The continuous 
wavelets provide an overcomplete basis, as compared to discrete wavelets, which 
form a complete orthonormal basis. Unlike the smooth Morlet wavelet, the dis­
crete wavelets possess only finite number of derivatives, some of them have fractal 
character. They are often used to extract variations over average behavior de­
scribed by a polynomial function. Morlet wavelet is well suited for analyzing 
the fluorescence spectra containing different fluorophores having Lorentzian line 
shapes and smooth dips due to absorbers like blood.

The simplest example of an over complete basis can be visualized in a three 
dimensional Cartesian space. The fact that there are three orthogonal directions 
X, Y and Z, requires three unit vectors i, j & k along respective directions, 
to describe an arbitrary vector A = axi + ayj + azk. Here, i2 = j2 = k2 = 1, 

i-j = j- k = k-i — 0, making these unit vectors an orthogonal basis. ax, 
ay and az are components of A along X, Y and Z directions respectively, and 
can be obtained by projecting vector A along these directions, e.g., ax — A ■ i 
. If more than three unit vectors are used to describe vector A, the basis is 
said to be overcomplete. If there are less than three unit vectors then basis 
set is not complete. As is obvious, an arbitrary vector A can not be expanded 
in an incomplete basis. In case of wavelet transform, discrete wavelets form 
complete orthogonal basis, whereas continuous wavelets are overcomplete. In 
physical terms, strictly complete basis does not have any redundant information, 
whereas in overcomplete basis redundancy is present. Often this property is 
quite useful in pin pointing weak features in data sets thereby making continuous 
wavelet transform a useful tool for data analysis (9).

In a properly normalized form, the continuous wavelet transform (CWT) of a 
function f(t), using wavelet ijj, can be written as:

CWT*m(T,a) = J (3.14)

As mentioned earlier, the transformed signal is a function of two variables, 
r and s, the translation and scale parameters, respectively. The translation pa-
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rameter is related to the location of the wavelet window, as the window is shifted 
through the signal. The scale parameter is defined as 1/frequency and relates to 
the zooming action of the wavelets. The wavelet coefficients are the function of 
both scale and wavelength.

3.6.2 Singular Value Decomposition and Principal Com­
ponent Analysis

Principal Component Analysis (PCA) dimensionally reduces the spectral data 
into a smaller orthogonal set of linear combinations of the emission variables that 
account for most of the variance of the spectral data set. Let X denote an mxn 
matrix of real-valued data and rank r, (the rank of a matrix is the number of 
linearly independent rows or columns), where without loss of generality m> n, 
and therefore r < n. The equation for singular value decomposition of X is the 
following:

X = USVT (3.15)

where U is an m x n matrix, S is an n x n diagonal matrix, and VT is 

also an n x n matrix. The columns of U are called the left singular vectors, 
Uk, and form an orthonormal basis for the assay expression profiles, so that UiUj 
= 1 for * = j, and u^j — 0 otherwise. The rows of VT contain the elements 

of the right singular vectors, vk, and form an orthonormal basis for the gene 
transcriptional responses. The elements of S are only nonzero on the diagonal, 
and are called the singular values. Thus, S = diag(si, ...,sn). Furthermore, 
Sfc > 0 for 1 < k < r, and s* = 0 for (r +1) <k< n. By convention, the ordering 
of the singular vectors is determined by high-to-low sorting of singular values, 
with the highest singular value in the upper left index of the S matrix. Note that 
for a square, symmetric matrix X, singular value decomposition is equivalent to 
diagonalization, or solution of the eigenvalue problem.

One way to calculate the SVD is to first calculate VT and S by diagonalizing

XTX = VS2VT (3.16)

56



3.6 Computational Techniques

and then to calculate U as follows:

U = XV S~x (3.17)

where the (r + 1),n columns of V for which sk = 0 are ignored in the matrix 
multiplication of equation 3.16.

For a square symmetric matrix X, singular value decomposition is equal to 
diagonalization or solution of the eigenvalue problem. There is a direct relation 
between PCA and SVD in case where principal components are calculated from 
the covariance matrix.

For the construction of the empirical correlation matrix (7, 5Ii(k) is computed 
through mean subtraction of the original values 2*. Here i takes values from 1 
to n. Index k represents the sample number. The 8Fs have been normalized to 
have unit variance. Explicitly

(li'jEWiW (3.18)

v fc=l

Here, Afk = 5Ii(k) and correlation matrix is of the form C = (ATA)/N.
If the correlation matrix is derived from random numbers (11) the correspond­

ing eigenvalues have maximum and minimum values given by (12):

AX = tr2(l + l/(3±2yi7g)
Here, a2 is the variance (1 for the present case) and Q — n/N. 

eigenvalues A lie between Amin and Xmax with a density p of the form:

(3.19) 

All the

Pc{X)
Q \/{Xmax X) (A Amin)

27T0-2 A
(3.20)
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3.6.3 Autocorrelation

Autocorrelation is one of the commonly used tool for time series analysis and is 
employed mainly to detect periodicity buried under noise. As the name suggests, 
auto-correlation measures the degree of correlation present in a time series with 
itself, over different time scales. Measuring the correlation between observations 
of a given time series as a function of their temporal differences gives an estimate 
as to whether there is any underlying recurrence pattern in the signal, and if so, 
what is the period of such recurrence. The autocorrelation of a discrete process 
denoted by Xt for t = 1, 2, ..., N, can be represented as,

where R(t) denotes the correlation for lag r lying within the range [0, rmaa;], N 

is the length of the time series, the value of maximum lag allowed rmax is chosen 
as 3JV/4, fi\ denotes the mean of the first half of the time series ranging from X\ 
to XN-r, jJ-z denotes the mean of the other half of the time series ranging from 
Xi+T to Xn, whereas cy and <t2 are corresponding standard deviations of the two 
halves. Note that for r equal to zero, we are basically measuring the correlation 
of a time series with itself, hence for lag zero, the value of autocorrelation would 
be one.

3.6.4 Kernel-Smoother (ks) density

Kernel density estimation is a non-parametric way of estimating the probability 
density function of a random variable.

A kernel is a non-negative real-valued integrable function K satisfying the 
following two requirements:

JV-r

R(r) = 1/(JV - T - 1) - fJL^Xt+r - /i2)Ma2 (3.21)
t=i

K(u)du = 1; (3.22)

K(—u) = K(u) for all values of u. (3.23)
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The first requirement ensures that the method of kernel density estimation re­
sults in a probability density function. The second requirement ensures that the 
average of the corresponding distribution is equal to that of the sample used.

If if is a kernel, then so is the function K* defined by K*(u) = A_1if(A_1«), 
where A > 0. This can be used to select a scale that is appropriate for the data.

If Zi,x2,..., xn ~ / is an independent and identically-distributed sample of a 
random variable, then the kernel density approximation of its probability density 
function is

where K is some kernel and h is a smoothing parameter called the bandwidth. 
Quite often K is taken to be a standard Gaussian function with mean zero and 
variance 1. Thus the variance is controlled indirectly through the parameter h:

(3.24)

(3.25)
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