


Chapter 2. Distributed Computing

2.1. Introduction

The field of distributed computing deals with all aspects of information 

access and computing across multiple processing elements connected by 

any form of communication network, be, it local or wide-area in 

coverage14. One can define Distributed Computing as computing or 

performing the processing using spatially distributed systems. Thus, 

Distributed Computing makes use of Distributed system. Distributed 

system is "A collection of independent computers that appear to users 

of the system as a single computer."15 Therefore, distributed computing 

deals with computing using multiple computers placed remotely from 

each other, where each computer taking part in the distributed 

computing, plays some role in a computational problem or information 

processing.

The major difference between networking and distributed computing is 

that, in networking, two or more computers interact with each other, 

but typically are not sharing the processing of a single program. Besides, 

in distributed computing the interaction between computers is 

transparent to the user. Distributed computing is natural result of the 

use of networks for allowing efficient communication between 

computers but this communication for data access or processing 

happens without the knowledge of the end user, transparently.

14 Ajay D. Kshemkalyani et al.. Distributed Computing: Principles, 
Algorithms and Systems, UK, CUP, 2008.15 Andrew S. Tanenbaum et al., Distributed Systems: Principles and 
Paradigms, NJ, Prentice-Hall, 2003.

1 1



A distributed system is one in which both data and transaction 

processing is divided between one or more computers connected by a 

network, each computer playing a specific role in the system16. 

Distributed computing includes the use of remote machines for storage, 

retrieval, and processing of data across the network. Consequently, a 

database application processing system, that software developers more 

commonly refer to as a client-server database application system is also 

a distributed application17, which makes use of distributed computing 

concepts.

2.1.1. Characteristics of Distributed Computing

• Resource Sharing

• Transparency

• Concurrency Control

• Scalability

• No Global Clock

2.1.2. Features of Distributed System

The features to be dealt with in Distributed Computing include:

• Transparency - Distribution of data/computation without end 

user being aware of it

• Loose coupling - Alteration of resources of Distributed System 

is possible without affecting the remaining part of the system.

16 http://docs.oracle.com/cd/A57673_01/D0C/server/doc/SD173/chi.htm 
27 http://www.oracle.com

12



• Heterogeneous computing - Components could include variety 

of platforms

• Scalability i.e. increasing or reducing the resources dynamically

• Fault-tolerance or handling of failure

• Concurrency control - Simultaneous access of resources by 

multiple users

2.13. Motivation for implementing Distributed System

The motivation for implementing distributed computing is:

• Possibility or need for inherent distributed computations, 

when designing applications

• Requirement of resource sharing

• Security of data

• Accessibility to remote data or remote resources

• Availability of resources

• Need of scalability

• Purpose to improve performance to cost ratio 

2.1.4. Models for Implementing Distributed System

To implement the distributed system various models of distribution and 

architecture available are:

• Client Server model

• Processor Pool model

• N-tier architecture

13



• M-V-C architecture

2.1.5. Issues of Distributed System

The issues that need to be tackled during development and 

implementation of distributed system are:

• Transparency to the user about resource location and 

processing environment

• Resource sharing

• Applying concurrency controls and synchronization techniques 

on shared resources

• Applying appropriate controls for security and accessibility of 

resources

• Heterogeneous processing environments in terms of network 

protocols, hardware architectures, operating systems, 

database servers, file servers, application standards, 

middleware etc.

• Scalability of data and resources

• Availability of resource on user requests

• Coupling of components between clients and business logic

• Granularity of data and code hiding

• Protocols to be used in terms of proprietary, open or standard 

protocols

• Form of storing data and information in flat, un-structured, 

structured, semi-structured form.

14



• Data formats which are customized to applications

• Development methodologies in terms of sequential, 

structured, object oriented, component based or service 

oriented development

• Technologies and Standards used for Middleware like Multi­

threading, Remote Procedure Calls (RPC), Java RMI, COM- 

DCOM, MPI interface, .Net Remoting etc.

• Openness of distributed system in terms of hardware 

implementations, operating system communications, 

application portability and compatibility

• Communication and scheduling platforms available like MPI, 

Java RMI, .Net Remoting, Matlab, Globus, Hadoop, Condor etc.

• The research work includes the above aspects of Distributed 

Computing in various ways, while developing the Web-based 

application using distributed approach for storing and 

retrieving DNA sequencing data.

2.2. Motivation of Applying Distributed Computing in 

Bioinformatics

The ultra-high throughput data generated at an accelerated rate through 

next generation DNA sequencing18 techniques need secured storage, 

speedy retrieval, quick and efficient processing, to gain genetic 

knowledge at appropriate and requisite time. Cost effectiveness and

18 Ronaghi Mostafa, Pyrosequencing Sheds Light on DNA Sequencing 
Genome Res. 11 (2001) 3-11

15



technical viability of high-performance, high-throughput computer in an 

organization, where both the data storage and processing is happening 

on a single machine, are often the matters of concern. To such queries, 

distributed computing is the best alternative. Hence, a distributed web 

applications are developed, where the data storage and business logic 

required for querying the stored data, are, located on different 

machines. Primary purpose of improving efficiency of storage, 

processing and analysis of DNA sequences is, to get timely genetic 

information of an individual or organism, because, their major 

application is for identification and treatment of diseases like cancer and 

HIV, drug designing, controlling spread of epidemics by identifying 

micro-organisms involved in disease causing and prohibiting their 

growth, enhancing crop breeds, to meet the drought situation, 

improving animal breeds that provide food, nourishment, medicines or 

income; for phylogeny identification and in forensics.

Globally accessible, centralized repository of NCBI19 (National Centre for 

Biotechnology Information) is available for storage (albeit, physically 

they are scattered like Swiss-Prot or DDBJ. Centralized storage is only a 

logical view that is transparently presented to the user) and processing 

of genomic data. But, at times, it is not possible to upload and disclose 

the confidential data of some genomes into the centralized repository of 

NCBI, particularly, when the project is sponsored and controlled under 

some specified guidelines and contract (Eg. Govt, of any country would 

not like to publish that some particular disease is prevalent in that 

country, to avoid affect to tourism). Although, one can upload data and 

keep it private in NCBI, but that is permissible, only till the manuscript

19 http://ncbi.nlm.nih.gov/

16



describing the data gets published. If the sequencing data is uploaded at 

NCBI, eventually, it becomes an open data in public domain.

To avoid this disclosing, but at the same time use all the web based 

facilities for storage, retrieval and customized algorithms for processing 

of DNA sequencing data within an organization, a distributed application 

has been developed, which is discussed in this thesis.

Moreover, in a spatially located organization or research organization 

where the data generation experiments like DNA sequencing are 

conducted at scattered locations or laboratories with the need to 

exchange data between various locations, it is advisable to maintain the 

central repository (at least, the common interface, which provides the 

single point of access to distributed data). This central repository or at 

least the logical representation of centralized repository, maximizes of 

utilization of DNA data, at the same time relieves the biological 

researcher from obtaining the knowledge and responsibility of storage 

or security of data. The backup and recovery activity, botheration of 

security or availability of data, then becomes the responsibility of 

database administrator. Also, the biological researcher need not get 

involved in knowledge of computer science, in particular, database 

administration or network administration, and hence can concentrate in 

his actual research domain, which usually would be biology related.

2.3. Description of the Distributed Application

The first portion consists of a web application for storage and retrieval of 

DNA sequencing data. The web application uses the Client-Server model

17



as shown in Figure 3, with M-V-C architecture as a design pattern20. The 

application is initiated by making use of it to upload the FASTA files 

containing DNA sequencing data to the Application Server. These FASTA 

files can be uploaded by any registered user of the system. The 

registered user uploads the data file in FASTA format, which contains 

raw data generated after the DNA sequencing experiments in 

Sequencing Laboratories. Since, DNA sequencing processes are very 

complex, time consuming and expensive, it becomes essential to have 

secured storage of these data files. Hence, this distributed application 

provides the facility to store these original raw data files on central File 

Server, which can be referred for future use, if required. The privileged 

user can then upload the data file to Database Server, which provides 

the abstraction of central repository of the data with secured storage. 

The Database Server contains the DNA sequenced data in a structured 

format, which can be used to fire any types of queries in relational 

context and with different criteria as per user's need.

As a part of the research work, a distributed application has been 

designed, for storing, maintaining, and retrieving the DNA sequencing 

data into a centralized File Server and Database Server. Web-Server 

facilitates the access to this data stored on File and Database Server. 

Thus, the distributed application is location independent as well as 

transparency. The relational data dictionary designed for storing the 

DNA sequencing data particularly the pyrosequencing data helps in

20 Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design 
Patterns:Elements of Reusable Object-Oriented Software, Addison 
Wesley, USA, 1994

18



storing data in a structured form. The advantage of designing the 

Distributed Application for DNA sequencing data is that, it facilitates 

resource sharing across local area network/intranet, it provides 

centralized repository of DNA sequencing data, which is easier to 

manage and would help in efficient backup and recovery. Distributed 

approach also allows utilization of low cost resources available across 

network, instead of implementing the entire set of features i.e. Web­

server, File-Server, and Database-Server on a single computer. This 

Distributed Application becomes very essential to store the DNA 

sequencing data in an efficient and secured manner, because the 

process of DNA sequencing is very expensive and hence its data loss or 

corruption is not affordable.

In this research work, Distributed Application has been designed 

uses, the Client-Server model with M-V-C architecture as a design 

pattern. The Web-Server manages the entire application. The Web­

server provides the client interface, the control mechanism, as well as 

accessibility to the remote resources. Thus, the distributed application is 

location independent and uses Thin Client concept. Thus, no part of 

application requires installation or processing on the client's machine. 

The application helps in uploading the FASTA files containing DNA 

sequencing data to the File-Server or Database Server, which works like 

a central repository of the data with secured storage. The centralized File 

Server facilitates storing of data in unstructured form. The Database 

Server provides facility to store the data in the structured form. Since, 

the implementation of Database is using a Relational Database 

Management System; the data is stored in structured form with 

possibility to query using various Relational aspects. The system

19



executes the SQL queries on the basis on parameters sent through 

requests across the Web. In all, multithreading is used for concurrent 

execution and synchronization, Java Servlets, Hibernate and Struts is 

used for Web-based/network based invocation, database independent 

storage and operating system independent computing is applied. Besides 

Java RMI and multithreading is used for distributing the same algorithm 

on multiple machines for execution using different datasets.

2.4. Implementation details of the Distributed Application

Front End Middleware Back End

Client-Server Model Implemented for Distribution

Figure 3. Client Server Model Implemented for Distributed Application

As shown in Figure 3, there are multiple database servers, which store 

the data in duplicate, which guarantees data availability. The centralized 

File-Server is also configured as a part of the distributed system, that

20



allows storage of original files as generated by DNA sequencing 

equipment. The application allows retrieving the data back from the File 

Server in unstructured form. The database server provides facility to 

store the data in the structured form with relational integrity. The 

relational integrity enables the user to acquire the information in terms 

of joins and sub-queries, thus, fetching more than just a raw data as was 

available in a FASTA file. The system executes the SQL queries based on 

a request received across the Web. The POJO's are written to read the 

raw FASTA files using org.biojavax21 and java.util.regex API's, to convert 

the data, so that they can be appropriately stored as tuples in database. 

The system also contains POJO's developed using Java RMI, to transfer 

the data to remote File Server and back, when needed. The end-client 

can request to download the data stored in the database in form of a 

webpage or can request to download the FASTA file from file server. The 

end-users can request for data, using various criteria like a particular 

species, or sequencing run, or reads of a specific length. The DNA 

sequencing reads may be stored organism wise. Moreover, many 

sequencing runs may be executed for each organism or species. The 

reads table maintains records along with this species and run 

information. To store analysis data generated after analyzing these raw 

DNA reads, the database has also been designed. The system has tables 

for storing contigs, repeats, coding regions, and genes. Data can be 

stored in these tables and retrieved across the web. Table 1, Table 2 and 

Table 3, displays the data dictionary for storing this data. This is just the 

minimal set of data dictionary used in storing various DNA sequencing 

and analysis data. The list could be extended when further analysis is to

21 http://www.biojava.org

21



be done to store appropriate analyzed data. For handling multiple 

requests from various clients, Multithreading22 is used.

In addition to the Web-based application, the research work also 

involves the distributed processing using multi-threading and RMi 

programming in Java. The distributed processing has been applied for 

Recognizing Identical Reads from more than one Fasta files 

simultaneously. The system can be implemented by initially identifying 

how many nodes are available for processing. The Java program is 

developed for finding out available number of active nodes. Once the list 

of available nodes is identified, based on this dynamic status, load 

balancing is performed. The Java RMI programs using multiple threads, is 

executed to do processing of more than one FASTA files for recognizing 

identical reads. Thus, simultaneous execution of the same program using 

different data sets can be implemented. Thus, distributed processing for 

more than one data sets is implemented as part of this research work. 

The details of RMI programs is mentioned in List of Programs developed 

in Java. The sample of programs are also put in Appendix D.

2.4.1. Data Dictionary for DNA Sequencing Data

The Data Dictionary defined for storing DNA sequencing data is as 

specified below:

(The entire SQL create script for storing various DNA sequencing and 

analysis data in Oracle Database is given in Appendix A )

22 Guy Steele, Gilad Bracha, Bill Joy, James Gosling, The Java 
Language Specifications, SunMicrosystems

22



Table 1. Table structure for storing the species details, for the species or organisms, whose DNA 
sequencing is performed

Table Name Species

Column Name Type Constraints Description

Speciesjd Integer(lO) Primary key Id of a species

Species_name Varchar(lOO) Not Null Name of species

Table 2. Partial snapshot of the table structure for storing the details of the runs or DNA sequencing

experiments, performed for the species

Table Name Run

Column Name Type Constraints Description

Speciesjd Integer(lO) Foreign key,

References

Species Table

Id of a species

Runjd lnteger{2) Id of run

(Number of runs executed

for the given species)

Dt_of_run Date Not Null The Date on which run

was executed

Table 3. Table structure for storing the details of the Reads generated from DNA sequencing of 
the given species and during a given run

Table Name Read

Column Name Type Constraints Description

Id Integer(lO) Auto generated Id of the read

Speciesjd Integer(lO) Foreign Key,

References

Species Table

Id of a species

23



Runjd !nteger{2) Foreign Key,

References Run

Table

Id of Number of runs

Readjd Integer(lO) Id of a each read

Read_name Varchar(lOO) Not Null Id generated by the

DNA sequencing

machine, for each

read

Read_rank Integer(lO) Rank of each read

Read_x Decimal(10,3) Not Null X attribute of each

read

Read_y Decimal(10,3) Not Null Y attribute of each

read

Readjength lnteger{6) Not Null Length of each read

Read_sequence Long Text /

CLOB

Not Null Sequence of each

read

File_name Varchar(lOO) Name of the file

24



2.5. Features/Technologies Implemented In Distributed 

Application

The technologies/architecture/features implemented in Distributed 

Application consist of (As shown Figure 4.)

• Web-based application - The client may use any Web-browser 

to access the software for Distributed application. The 

application has been tested using Internet Explorer and Mozilla 

Firefox

• Open Standard - The web-application uses XML open standard 

for interfacing between various loosely coupled components, 

which are communicating with the Web-Server,

• M-V-C Architecture - The software has been developed using 

Model-View-Controller design pattern. Hence, all the 

components of the application such as the model, view, and 

controller are all separate from each other and put in different 

classes working as independent layers or components of an 

application, which are easy to manage. View contains the user 

interface, the model comprises of the set of programs 

containing business logic as well as data and the controller is 

the set of programs which controls the flow of application

• Distributed approach - Application has been developed and 

tested such that all the components i.e. Web-Server, Database- 

Server, File-Server and client are placed/ executed on different 

computers of a network.

25



• Transparency - The end-user of the system i.e. the client, 

submits the request to the Web-server through web-browser. 

All the back-end distributed usage and execution is unknown to 

the client. Hence, transparency feature of Distributed 

Computing has been implemented. The end-user is unaware of 

where the application is executing or where the data is stored. 

Without having the explicit knowledge about the application, 

the end-user can access the application by simply submitting 

the URL of the application, over the Intranet/Internet.

• Loose coupling of systems, heterogeneous computing 

capability and fault-tolerance, or handling of failure is used for 

the distribution of components. Since, the application is 

developed using layered approach of M-V-C architecture, each 

layer or component can be easily altered without disturbing 

any of the other components. Loose coupling of systems has 

been implemented by writing server-end programs like 

Servlets/JSP, for handling user requests across the Web. 

Implementing the business-logic for storing the FASTA files into 

File Server, extracting the data from FASTA files and converting 

it into appropriate form so that it can be inserted into various 

tables of the database, Handling JDBC connectivity, Forming 

SQL statements based on users parameters, for executing 

queries, generating proper format of the output of queries, in 

form of web-page. All the above programming aspects are 

written in separate classes and each class communicates with 

the other using message-passing techniques like RMI.

26



• Heterogeneity - As shown in Figure 4, Heterogeneity is 

handled as components like File Servers were implemented 

both on Windows as well as on Linux file systems. Different 

Database Servers like Oracle and MySQL were used to store 

data in databases. Java programming language is primarily 

used for application development, so that program 

communication can be handled seamlessly across platforms. 

Moreover, the Web-Server used for testing is Apache Tomcat 

server, but the application can be deployed on any Application 

Server like WebSphere or WebLogic which supports Java based 

applications.

• Load Balancing and Scalability - Since the application is 

deployed in Apache Tomcat load balancing can be achieved by 

configuring it for Load Balancing and Scalability. To do so 

Apache HTTP server is also required.

• Various Exceptions were handled for smooth communication 

between components.

• Thin client application - The application developed does not 

require any programs/software to be installed on the client 

machine, for executing the application. The application can be 

accessed by merely submitting the HTTP request to the Web 

Server where the application is hosted. The execution of 

business logic takes place on the server side, since Servlets are 

used in development.

• Multiple Client Accessibility - Many clients can access the 

Distributed Application concurrently. This facility is provided by

27



implementing the application in multithreaded Web-Container 

environment.

Database Management System Independent - The data 

storage can be done on any Database. It has been tested to 

work on Oracle lOg and MySQL 5.5 Database Server. Apache 

Tomcat also facilitates JDBC Connection Pool, which is used to 

store/acquire data from multiple database.

Operating System Independent - Can be executed on any 

Operating System. Application has been tested on Windows 

and Linux operating systems.

File System Independent - The File-Server has been developed 

for centralized storage of DNA sequencing data files. The File- 

Server can be implemented on FAT 32, NTFS and ext3 file 

system.

Location Independent - The application being Web-based is 

accessible from any location on the network/internet from 

wherever the URL is accessible i.e. security privilege is 

provided.

Open Source - All the tools and technology used in developing 

the Distributed Application like Java Development Kit, Apache 

Tomcat Web Server, MySQL Database Server, Struts Web 

Framework, Hibernate ORM tool,

Linux OS, Mozilla FireFox are Open Source under General 

Public License. (Albeit, application has also been tested to work 

on proprietary software).



DB Serverl 
(Oracle)

Web Web
^______

Ap
ti

a

Client
HTML/JSP/
A _ 1 _ _

Server
Se

Applets
Apache RMI
Tomcat/ Server/
Java Network
Servlets/ Server/
Struts / Business
Hibernate Logic

View Controller

Model

Figure 4. Technologies used to implement the Distributed Application

• The Distributed application uses Java POJO's for business logic.

• Servlets on the Server side as a controller, JSP as a view.

• Struts Web Framework is used to implement the M-V-C 

architecture.

• Hibernate is used for Object-Relational Mapping.

29



2.6. Facilities provided through Distributed Application

The facilities provided by the Distributed Application for Bioinformatics 

data are:

i
V 17224.6.104 P-8C»i|tinatii4______«■£

Fit Ed* Fivontts Tod} Htip

Figure 5. User Interface with the Distributed Web Application, to Upload the FASTA fde
containing DNA Sequencing Data

• Uploading of Data Files which are in FASTA format (As shown in 

Figure 5)

• Storage of Data Files on central File Server

• Storage of Data Files on central Database Server

30



Figure 6. Webpage displaying the Result of the query fired on the database residing on the remote

machine

Search for DNA data based on various criteria (As shown in Figure 6.)

• Possibility of firing customized queries or native SQL

• Download the search result in Web-Page or in FASTA file

• Download the original data file, if required for further 

processing

• Centralized storage of data

• Data sharing within the organization

• User Registration for open accessibility

• User-wise accessibility for security/privacy of data

31



2.7. Implementation Issues

The implementation issues tackled during the development of the 

Distributed Application are:

• Making use of Open Standards, so that appropriate 

collaboration can take place between the distributed 

components.

• Tackling with transparency, heterogeneity, and failure 

handling, through appropriate message passing and exception 

handling concept implementation.

• Identifying and Designing the components of a Distributed 

Application, so that they are placed/ distributed appropriately 

at different locations/computers on a network.

• Developing all the collaborating interfaces, so that each 

component can communicate with each other as required.

• Installing and Configuring the Web-Server, the Database 

Server, the File Server for various facilities.

• Providing appropriate privileges across all the components and 

computers to make the application working

• Dealing with Firewalls implemented on different computers of 

the network

• Writing POJO's using regular expressions, to read and extract 

the information from the data files. This was important 

because data files are unique in format for the biological data. 

These programs were essential for converting the unstructured

32



data into objects, which, could then be stored in a structured 

format in the database using Object-Relational Mapping.

• Using specialized API like org.biojavax to apply it for 

bioinformatics data.

2.7.1. Practical issues dealt with while developing, executing and deploying 
Distributed Application

Besides dealing with conceptual aspects, several miscellaneous small 

and big issues were tackled while developing, executing or deploying the 

distributed application like:

• Just to open the huge Fasta file containing just a single 

chromosome, it needed a gvim software which is vi editor for 

Windows because the Windows editors like Notepad or 

Wordpad simply hang, as they are not designed to handle such 

big files. Opening in MS Word is dangerous because even 

slightest formatting happening to the text will add some 

control characters to the file, and hence the original data can 

get corrupted. Eg.: A single file containing only one dataset i.e. 

Chromosome 7 of Human Being is 1259 pages long when 

opened with MS Word. The actual size of FASTA file is 4780 KB.

• To execute a java program dealing with this large data, one 

needs to use java -Xms and -Xmx option to deal with Out of 

Memory errors.

• Simply running java command with -Xms and -Xmx is not 

enough. One needs to increase the default Virtual Memory size 

in Windows OS so that additional heap space can be allocated 

to complete the java command with these options.

33



• When trying to insert the large dataset into MySQL Database 

with default parameter settings will not be sufficient. SET 

GLOBAL max_allowed_packet parameter needs to be modified, 

to enable insertion of a single large dataset.

• The appropriate JDBC Driver API versions or driver types and 

correct, precise versions of connector classes or url should be 

used to establish JDBC connection. Either the incorrect driver 

version or the mismatched Database version will keep one 

struggling to resolve errors in ones own program but the fault 

is lying outside the program.

• While implementing File server, read/write/execute privileges 

must be pre-assigned in file system, so that application can 

read/write data on the given File Server.

• While implementing the distributed processing the security 

controls defined in Anti-Virus software or firewall settings need 

to be modified, to enable the processing to begin on that 

machine. Just availability of machine or privileges through 

operating system, is not sufficient.

• When working with Java APIs, appropriate classpath settings 

need to be done particularly when using sub-packages or 

packages available in form of .jar files.

• While working with RMI programs the exceptions of type 

Remote Exceptions which deal with number of communication 

related exceptions are very tricky and have to be handled 

carefully.

34



• The resource locking for concurrency controls, should be taken 

care using synchronized methods, when writing multithreaded 

programs.

• When working with Matlab, the Wavelet Toolbox and 

Bioinformatics Toolbox should be procurred, as they are add­

on toolboxes in Matlab. These would be required to run the 

program for recognizing identical reads, using distributed 

processing.

• The default port 8080 of Apache Tomcat server should be 

changed, before use, because, if Oracle 8i or above DBMS 

software is installed on the same machine, then the request to 

port 8080 is always redirected to Oracle Homepage and not 

Apaches' Homepage, hence disallowing access to web- 

applications.

35



List of Java Programs that are developed for various aspects of applications are stated 
in the following table.

2.7.2. List of Java Programs

Program 1. FinalMainMenu.java
Program 2. FinalMainRead.java
Program 3. Read.java
Program 4. ReadFromFastaFile.java
Program 5. ReadToDB.java
Program 6. ReadFromDB.java
Program 7. CreatelnsertScriptFUe.java
Program 8. GenerateDNAToken.java
Program 9. GenerateDNALookupTable.java
Program 10. ConvertSequenceToBinary.java
Program 11. ConvertSequenceToLookupArray.java
Program 12. FinalMainContig.java
Program 13. Contig.java
Program 14. ContigFromFastaFile.java
Program 15. ContigToDB.java
Program 16. ContigFromDB.java
Program 17. CreatelnsertScriptFUe.java
Program 18. FinalMainChromosome.java
Program 19. Chromosome.java
Program 20. ChromosomeFromFastaFile.java
Program 21. ChromosomeToDB.java
Program 22. ChromosomeFromDB.java
Program 23. IPDemo.java
Program 24. Scan.java
Program 25. DistServer.java
Program 26. Distlmpl.java
Program 27. DistCUentjava

36



Table 4. Brief Description of Java Programs

Sr.
No

Name of Java File Java Class Name Purpose

1. FinalMainMenu.java FinalMainMenu The class that provides Menu,

the Interface to work with

different form of DNA

sequencing data like Reads,

Contigs, Chromosomes

2. FinalMainRead.java FinalMainRead The class that provides Menu,

the Interface to work with

different operations on the

Reads

3. Read.java Read The class that defines the

attributes and methods for

Read objects

4. ReadFromFastaFile.ja
va

ReadFromFastaF

ile

The class that does file

handling to read the data

related to DNA sequencing

READs from the Fasta files.

5. ReadToDB.java ReadToDB The class that writes the

records about the DNA

sequencing READs to a Table

storing the Reads in the

Database Server

6. ReadFromDB.java ReadFromDB The class that fetches the

READs from the Database and

displays it to the client

37



7. CreatelnsertScriptFile
.java

CreatelnsertScri

ptFile

The class which creates the

SQL Insert script dynamically

through a Java code, after

reading the data from the

FASTA file about the READS

that exist in the FASTA file.

This is needed because the

Inserrt script could be used

independently to insert the

data into the Database

directly without involving the

Java program if the need be.

8. GenerateDNAToken.j
ava

GenerateDNATo

ken

The class that defines the

objects for defining the

mapping between

nucleotides bases in DNA

sequence to binary values

using 2-bit indicators and

then combining binary values

of 4 nucleotides to define a

single byte value. This class is

used in algorithm designed

for Data Reduction

9. GenerateDNALookup 
Table, java

GenerateDNALo

okupTable

The class used to fetch the

value for the group of four

nucleotides into the int value

store in one byte.

38



10 ConvertSequenceToBi
nary.java

ConvertSequenc

eToBinary

The class that actually does

the mapping to convert DNA

sequence into binary form

and then store four binary

vlues in a single byte. The

mapping can be used for

forward as well as reverse

conversion

11 ConvertSequenceToL
ookupArray.java

ConverSequence

ToLookupArray

The class that generates the

array of integers,

representing the single DNA

sequence into an array of

numbers, which are used as

an initial Digital Signal, which

is further processes using

Wavelet Transforms, for Data

Reduction.

12 FinalMainContig.java FinalMainContig The class which displays the

menu to perform various

operations related to the

Contig data

13 Contig.java Contig The class that defines the

objects which deal with the

Contigs data which are store

in The FASTA files containing

the Contigs.

39



14 ContigFromFastaFile.
java

ContigFromFasta

File

The class that does file

handling in java to read the

data from FASTA files

containing the Contigs

15 ContigToDB.java ContigToDB The class that contains the

JDBC code to interact with

the Database to store the

Contigs data into the Contig

Table created in the

Database.

16 ContigFromDB.java ContigFromDB The class that contains the

Java code to fetch the data

from Contigs table and give it

to end-user.

17 CreatelnsertScriptFile
.java

CreatelnsertScri

ptFile

The class that reads the

Contigs data from the FASTA

file and creates the SQL Insert

Script dynamically using Java

program so that it can be

used later on for offline to do

insertion into database tables

offline if required.

18 FinalMainChromoso 
me. java

FinalMainChrom

osome

Class which displays the

menu to perform various

operations related to data

handling for Chromosomes

40



19 Chromosome.java Chromosome The class which defines the

object members for the

Chromosome data.

20 ChromosomeFromFas ChromosomeFro The class that reads the

•

taFileJava
mFastaFile FASTA file containing the

Chromosome data

21 ChromosomeToDB.ja ChromosomeTo The class that uses JDBC code

va BD to do insert operations on

table storing Chromosome

data

22 ChromosomeFromDB ChromosomeFro The class that fetches the

•

.java
mDB Chromosome data from the

table in database

23 CreatelnsertScriptFile CreateinsertScri The class that creates SQL
.java

ptFile insert script to perform

insertion of Chromosome

data into table after reading

the FASTA file. This program

dynamically creates the Insert

Script.

24 IPDemo.java iPDemo Takes the two IP Addresses as

parameters and calls the Scan

program which scans whether

the Machines having the IP

Addresses falling in the given

range are active or not at the

given point of time.

41



25 Scan.java Scan Class containing the code

which Does the actual scan to

check whether a machine

with the particular IP Address

is actually active or not so

that it can be used for

processing the application

which needs to be Distributed

across the network. It uses

several network related

commands and algorithms.

26 DistServer.java DistServer The RMI program containing

the server part of the code

which maps the object of the

class with URL to call the

particular method which

needs to be invoked

remotely.

27 Distlmpl.java Distlmpl The class containing the code

of the method which needs to

be actually invoked remotely.

This is needed because the

client which requests for

processing does not actually

have the code of the process,

it needs to execute.

42


