


Chapter 4. Signal Processing and 

Wavelet Transformations

4.1. Introduction

"Signal" is a formal representation of phenomenon evolving over time or 

space45.

One can define Signal as a function, which is dependent on one or more 

independent variable.46 When the function depends on a single variable, 

one can define the signal to be one-dimensional and when the function 

depends on two or more variables, the signal is describe to be 

multidimensional47. More precisely, "Signal" is a function of time48 or 

space.

Given a function /, over a duration or time t, the values of the signal can 

be represented asf(t), where t e [t0, tn] or t e [a, b] or t e [0,°°).

Example 1:

, /27rl5t\
f(t)= C0S(—)

Example 2: 

f(0= Sin(f)

45 Book, P. Prandoni , M. Vetterli, Signal Processing For 
Communication, EPFL Press, 2008
46 http: //
www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Comm%20Engg/Signals%20and 
%20System/ Course_homel.2.html
47 http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT- 
KANPUR/Digi_Sign_Pro/ui/ Course_homel_l .htm
48 Lecture Notes, Stephen P. Boyd,
www.Stanford.edu/~boyd/ee102/signals.pdf
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Figure 12. Signal Representation of the function stated in Example I - A Stationary Signal

Figure 13. Signal Representation of the function stated in Example 2 - A Non-Stationary Signal

The raw format of the signal is usually represented in time-domain, 

which means that whatever the signal is measuring, is a function of time.
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The plots of such signals, where one of the axes is time and other is the 

amplitude, give time-amplitude representation of the signal, as shown in 

Figure 12 and Figure 13.

The Figure 12 representing the function f(t) given in Example 1 is a signal 

whose frequency contents do not change in time. Such signals are called 

stationary signals, whereas, in Figure 13 representing function f(t) in 

Example 2, the frequency contents of the signals change with time. Such 

signals are known as the "chirp" or non-stationary signals.

The function f(tj which may be real or complex, is referred to as 

dependent variable over the time t. The time t is referred as an 

independent variable, which is a real value. The independent variable, t 
means sample time or epoch, not necessarily the actual time in seconds. 

The range of values of t is known as a domain of the signal49. If the 

function has a uniformly sampled points or is equally spaced, then for 

every t € [t0, tn], where t0 is the initial value, the kth element tk, of a signal 

can be defined, as shown in [4.1]

tk = tO + kh where, k= 0, +1, +2,... [4.1]50

In Example 1 and 2 above, If we sample the functions f(t) at 0.1 unit time 

steps, the discrete values of the signals can be generated as shown in 

Figure 14 and Figure 15.

The sequences of these values can be regarded as discrete time signal or 

digital signal.

43 http://nptel.iitm.ac. in/courses/Webcourse-contents/IIT-
KANPUR/Digi_Sign_Pro/pdf/ehl.pdf
50 Lecture Notes, Stephen P. Boyd,
www.Stanford.edu/~boyd/ee102/signals.pdf
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Figure 14. Discrete-Time Signal Representation of the function stated in Example 1

Figure 15. Discrete-Time Signal Representation of the function stated in Example 2
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The term "digital" is derived from digitus, the Latin word for finger; 

which means countable; or representation as an integer number55. A 

digital signal, also known as discrete-time signal, is the representation of 

sequence of discrete values. It refers to the series of numerical values, 

drawn from the finite set of values permissible for a given application or 

that it takes values from the countable set52. In brief, a digital signal is a 

signal with amplitude that takes only a finite number of values. In a 

discrete-time signal, magnitudes are defined at specific instants of time 

only and are undefined elsewhere.

For example, the valid set of percentage of marks an undergraduate 

engineering student can score in four years of his study may be like {55, 

75, 68, 90]. Here the values cannot be negative, nor can it be greater 

than 100, and we assume that percentage is given as an integer value. 

Thus, in the mentioned example, a digital signal f(t) can take values [55, 

75, 68, 90]. The co-domain of the signal is [0, 100] i.e. f(t) e [0, 100] and 

the values of t = 1,2,3,4 are derived from equally spaced four academic 

years of engineering study. Here t0 = 1 and each tk= t0 + k*h where k = 

1,2,3,4 is the element index and the step size h is 1. However, it is not 

necessary that ail the academic years are of equal duration; in that case, 

the value of h may be varying.

Thus, a "discrete signal" is a function of time with values occurring at 

non-continuous or discrete positions. Equation [4.2] describes a discrete­

time signal/by,

f(t) = ft Where, t e {0,1,2,...n} [4.2]

Where, n is a positive integer, which we shall refer to as the length off.

51 Book, P. Prandoni , M. Vetterli, Signal Processing For 
Communication , EPFL Press, 2008
52 http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT- 
KANPUR/Digi_Sign_Pro/pdf/chi.pdf
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The values of fare the n real numbers £0, fl, £2, . . . , fn

These values are typically measured values of an analog signal g, 

measured at the time values t = t0, tlt t2, ... , tn.

When the values of fare an equally spaced sample values, it means the 

increment of time that separates each pair of successive time values is 

the same in a discrete signal53.

4.2. Signal Processing, Transformation and Convolution

Raw signal is normally time-domain signal. Raw signal would hence 

provide limited information. To obtain further information of the signal, 

it is required to do some processing on the signal.

"Signal Processing" means operating on a signal using some function, to 

extract out the information preserved in the signal.

"Digital Signal Processing" is based on processing sequences of 

samples54. It refers to the processing of discrete-time signal represented 

as a sequence of numbers or symbols. Discrete time signals are usually 

periodic in nature.

Signal processing either continuous or discrete, deals with 

representation, transformation, or manipulation of a signal and its 

contained information55.

"Transform of a signal" is just a different form or a method of 

representing the signal. Signal transformation does not alter the 

information content existing in the original signal.

A Transformation56 can be represented mathematically as a function

53 A Primer an Wavelets and their Scientific Applications, James S. 
Walker, Taylor & Francis Group, 2008
54 ibid., Discrete-Time Signal Processing, Alan v. Oppenheim, Ronald 
W. Schafer, John R. Buck, Prentice Hall, 2nd Edition, 1998
55 Discrete-Time Signal Processing, Alan v. Oppenheim, Ronald W. 
Schafer, John R. Buck, Prentice Hall, 2nd Edition, 1998.
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F: X -> X 

or a function

F: X ->Y [4.3]

Or Transformation can also be represented as Y = f(X).

If X is a signal or a sequence consisting of {x(l), x(2), x(3),....x(n)} i.e.

{x(t)}, t € [l,n], n denotes the length of the signal.

Then

Y = f(X) => y(t) = f[x(t)], [4.4]

Where,

t denotes the time or position of the signal.

Thus, “Transformation", in terms of mathematics is, any function 

mapping a signal X to another signal or to itself. The signal X may have 

some algebraic properties or geometric structure and on 

"transformation", a function from X to itself, preserves this properties or 

structure. Briefly, a transformation refers to changing the form of data 

from one form to another, without changing the fundamental properties 

or behaviour of the data.

Transformation can be applied to a signal because several Arithmetic 

operations are possible on a signal57 such as:

1) Product of two Signals:

Z = X.Y=> z(t) = x(t).y(t), fort e [0,n-l]

2) Multiplication with a Scalar:

56 Statistics and Computing - The Grammar of Graphics, Leland 
Wilkinson, Springer, 28-Jan-2006 - Computers - 708 pages
57 Notes of : Professor David Heeger, Signals, Linear Systems, and 
Convolution, September 26, 2000

69



Z = Z= aX => z(t) = a.x(t), for t E[0.n — 1]

3) Addition of two Signals:

Z = X + Y => z(t) = x(t) + y(t), for t e [0, n — 1]

4) Shifting of a Signal:

z(t) = x(t + s), for t e [0, n — 1], where s is a shift unit

Thus, any digital signal X, may be represented as the sum of scaled and 

shifted unit impulses.

More precisely, since, an Integral is the limiting case of summation

■C -oo *(*)•dt = lims->o I“=-oo x(k. S).8 [4.5]

Equation [4.5] represents an analog signal as a limiting case of digital 

signal when the time increment approaches to zero.

A signal X can be expressed as an infinite sum of scaled and shifted unit 

impulses.

"Linear System" or a "Linear Transformation" is one which satisfies the 

rule of Homogeneity i.e. Scalar multiplication and Additivity i.e. Addition 

of two signals. The system which satisfies these two rules of 

Homogeneity and Additivity are also said to satisfy the Principle of 

Superposition58.

Shift Invariance: A system is said to be a Shift-Invariant System if and 

only if,

58 Ibid : Notes of : Professor David Heeger, Signals, Linear Systems, 
and Convolution, September 26, 2000
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y (t) = f [x (t) ] => y(t-s) = f[x (t-s) ] [4.6]

i.e. the output to the signal gets shifted in time when the corresponding 

shift in time is defined for the input signal, it is defined as the Shift- 

invariant Linear System.

Eg.: Differentiation is a shift-invariant linear operation.

The three conditions for a shift-invariant linear system for a function y 

given as

y(t) = Jtm
• Shift-invariance: ^ [x(t — 5)] = y(t — s)

• Homogeneity: ^ [ax(t)] = cr.y(t)

• Additivity: ^ [xl(t) + x2 (£)] = yl(t)+ y2(t)

Thus, differentiation can be expressed as convolution.

By definition, the "Convolution" is the area of the overlap of two 

functions59.

Let f (t) and g(t) be two functions. The convolution of f and g, denoted by 

f * g, is the function of product of two functions f and g on t > 0, given

by,

if * g)(t) = £0 f(x)g(t -x)dx [4.7]

If we define f and g as the pair of bounded and integrable functions 

where f: R -> C and g: R->C, then the convolution of the functions f and 

g, as defined above is given as f*g and can be also stated as in Equation 

[4.8]

59 http://www.r21abs.org/references/Convolution.pdf
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[4.8 ](/ * g)(t) = -= - x)g(x)dx

For any given signal, the concepts of Signal-processing can be applied in 

three steps60:

• Analysis

• Processing

• Synthesis

The Analysis phase decomposes the signal into its basic components, if 

we consider the space of all possible signals as a vector space then on 

decomposing it to cummulation of subspaces, each subspace captures a 

special feature of the signal.

The Processing phase performs the alteration to the basic components 

to make it relevant to the application or study the basic components to 

find the inferences in context of the given application.

The Synthesis phase does the reconstruction of the signal from its basic 

components, either in altered form or without alteration. If the 

reconstruction from the basic components happens in such a way that 

the reconstructed signal looks exactly same as the original signal, then it 

is said to be perfect reconstruction or lossless synthesis.

If some elements of the original signal are lost from the reconstructed 

signal, it is called lossy reconstruction. Lossy reconstruction would occur 

when some of the basic components, which are acquired after analysis 

phase, are discarded, due to its irrelevance from application point of 

view. Hence, perfect reconstruction cannot be guaranteed, in such 

cases.

60 Lecture Notes : Willard Miller, Introduction to the Mathematics of 
Wavelets, May 3, 2006
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4.2.1. Various types of Transformation of a signal:

• Fourier Transform

• Hilbert Transform

• Short-time Fourier Transform

• Radon Transform

• Wavelet Transform

Each transformation technique has its own purpose and areas of 

application alongwith advantages & disadvantages.

The Wavelet Transform (WT) is just one of the several ways of 

representing a signal from one form into another. Wavelet Transform 

provides the time-scale representation of the signal. Wavelet Transforms 

is one of the alternatives in signal-processing for analyzing the non­

stationary signals. The other examples of transform which are widely 

used and can be applied for analysis of non-stationary signals are Fourier 

Transform and Short Time Fourier Transform. The frequency content of 

a signal can be acquired using these transforms. Most distinguished 

information is contained in the Frequency content of a signal hence; 

these transforms prove to be of worth.
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(d) Wavelet Analysis 

Figure 16. Various domains in which signals are represented

Figure 16. displays various domains in which the signals are represented. 

The signals can be given as:

• Shannon's Representation (Time Domain): Time vs. Amplitude

-.................

Time

(c) Gabor’s Representation (STFT)
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Gabor's Representation (Short Time Fourier Transform): Time 

vs. Frequency

• Wavelet Analysis: Time vs. Scale (Scale is an inverse of 

Frequency)

4.3.1. Similarities and Differences amongst Wavelet Transforms, Fourier 
Transforms and Short Time Fourier Transforms

• Development of Wavelet Transform happened to overcome 

the shortcoming of the Fourier Transform and Short-Time 

Fourier Transform (STFT), which analyze non-stationary signals, 

with longtime intervals, rather than fixed sized small windows.

• Wavelet Transforms represent non-stationary signals in both 

frequency and time domains61.

• Wavelet Transforms use functions that are localized in space 

whereas sine and cosine functions are not, which are used in 

Fourier Transforms62.

• When applying Fourier analysis, the time information is lost as 

Fourier Transform converts a signal from time-domain to 

frequency-domain. Therefore, it is difficult to identify when a 

particular event had occurred. Whereas, the Wavelet Analysis, 

converts the time-amplitude signal into time-scale domain, 

thus, preserving the time information63.

61 "The Wavelet Tutorial", R. Polikar, Rowan University, 2001.
Website: http://users.rowan.edu/~polikar/WAVELETS/WTtutorial.html
62 Mara Graps, An Introduction to Wavelets
63 http://www.mathworks.coia [Matlab documentation].
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• STFT, at all frequencies gives a constant resolution whereas the 

Wavelet Transform uses multi-resolution technique to analyze 

frequencies with diverse resolutions.

• Wavelet Transforms provides a variable resolution whereas 

Short-Time Fourier Transform (STFT) uses a fixed resolution at 

all times.

• Fourier Transform and STFT use waves, more precisely Sine or 

Cosine, to analyze signals whereas the Wavelet Transform uses 

wavelets of finite energy. A wave is a function of time or space 

and is oscillating and periodic function. Eg: Sine Waves. 

Wavelets conversely, are localized waves, which have their 

energy concentrated in time or space and are appropriate for 

analysis of transient signals Eg: Daubechies (db2 or db4) 

wavelets.

• Fourier analysis consists of breaking up of a signal into sine 

waves of various frequencies, whereas, Wavelet Analysis 

consists of breaking up of signal into shifted and scaled version 

of the mother wavelet.

• Both, the Fast Fourier transform (FFT) and the discrete wavelet 

transform (DWT) are linear operations that generate a data 

structure that contains log2n segments of various lengths, 

usually filling and transforming it into a different data vector of 

length 2". Moreover, the mathematical properties of the 

matrices involved in the transforms are also similar64.

64 Amara Graps, An Introduction to Wavelets
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• The wavelet analysis is similar to the STFT analysis. In STFT, one 

needs to multiply the window function with a signal to be 

analyzed, whereas in Wavelet Transform, the scalar product of 

signal to be analyzed and a wavelet function, is performed. The 

transform is computed for every generated segment.

• In STFT, size of the window remains invariable, whereas in 

Wavelet Transform, the width of the wavelet function, can be 

altered, with each spectral component.

• in Wavelet Analysis, high frequency components of signals 

have a short duration while low frequency components have a 

long duration.

• Discrete Wavelet Transform has the inverse transform matrix, 

which is the transform of the original signal, same as Fourier 

Transform. Hence, one can view both transforms as a rotation 

in function space to a different domain65.

65 Ibid. Amara Graps, An Introduction to Wavelets
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4.4. Wavelet Transformation

Wavelet Transformation is a linear transformation of a signal or data 

into co-efficients, on a basis of wavelet functions66. The wavelet 

transformations represent the data from one domain into another, from 

where hidden information can be explored. Wavelet Transform provides 

Time-Scale information67.

A Basic Wavelet can be defined as a function i|j e L2(R) which satisfies 

the admissibility conditions

C =f°°MM>tdw<00 [4.9]
V J-00 |w|

Where,

w refers to the frequency window 

Cy refers to the continuous wavelet function 

\p is called a wavelet.

i|j e l?(R) satisfies the admissibility condition as t i|/(t) e h2(R) hence 

we can prove that |t|1/2 vJj e 1?{R) and i|/ e ^(R). Moreover, it proves 

that it is a continuous function, so the finiteness of implies t/J (0) = 0 

or equivalently i|/ (t)| dt = 0, as per Fourier Transforms.

Thus, vjf is called a wavelet.

66 . J.K. Meher, M. R. Panigrahi, G. N. Dash, P. K. Meher, "Wavelet 
Based Lossless DNA Sequence Compression For Faster Detection Of 
Eukaryotic Protein Coding Regions ," I.J. Image, Graphics And Signal 
Processing 2012, 47-53
67 . I. Daubechies, "Ten Lectures On Wavelets", 1992
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Wavelet Transforms apply a wavelet function that consists of two 

parameters, the translation parameter, and the scale parameter. The 

translation parameter t denotes the location of the wavelet function 

while it is shifted through the signal. Thus, it denotes the time or 

positional details in the Wavelet Transform.

The scaling parameter s corresponds to frequency information. Scaling 

either expands a signal, also known as dilation, or compresses a signal, 

also known as reduction. The scale parameter s is inversely proportional 

to the frequency of the signal i.e. s a 1/frequency. Large scales are 

associated with low frequencies and small scales are associated with 

high frequencies. Large scales expand the signal and provide detailed 

information hidden in the signal, while small scales condense the signal 

and provide global information about the signal. Low scales last for a 

short time in form of short bursts, in a signal, whereas large scales 

usually exist throughout the duration of the signal.

Thus, Wavelet Analysis deals with extraction of information from the 

signal at different positions/time and scales68.

There are 3-ways of describing the Wavelets:

• Signal Processing - Convolution with Basis Functions (A. V. Haar)

• Multiresolution Analysis69 (MRA) or Vector Space - (Ingrid 

Daubechies}

• Multirate Filtering / Filter Bank70

68 Introduction to Wavelet Analysis, G. H. Watson, Paper presented 
at the RTO SCI Lecture Series on 'Application o£ Mathematical Signal 
Processing Techniques to Mission Systems", held in Kiiln, Germany, 1- 
2 November 1999; Paris, Prance, 4-5 November 1999; Monterey, USA, 9- 
10 November 1999, and published in RTO EN-7.
69 D. Lee Fugal, Conceptual Wavelets in Digital Signal Processing, 
2009 Space & Signals Technologies LLC, All Rights Reserved. 
www.ConceptualWavelets.com
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Wavelet Transform of a signal performs the convolution of the signal to 

be analyzed with the basis function.

Thus, Wavelet Transform WT can also be represented as in [4.10],

WT=X.W, [4.10]

Where,

X is the original signal

w = my,m]
Wavelet function f (t) consists of convolution of the basis functions 

4>(t) and \J/(t) as in [4.11]

W = f(t) = [4.11]

Relative to every basic wavelet the Continuous Wavelet Transform on 

L2(R) is defined by

(W$f)(b,d) = |ap(~) d(t),f E L2 (R) [4.12]

Where,

a, b e R, with a =£ 0

_By assigning ipb>CL = | (a) | 2 )

The Continuous Wavelet Transform can be defined using Equation [4.12] 

as
f (b, a) = {f, ipbia) [4.13]

70 Ibid. D. Lee Fugal, Conceptual Wavelets in Digital Signal 
Processing, 2009 Space & Signals Technologies LLC, All Rights Reserved. 
www.ConceptualWavelets.com
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Thus, the Wavelet Transform of a function f is the convolution of the 

function with the mother wavelet.

The series exapansion of a signal or function f(x) can often be better 

analyzed as a linear combination of expansion functions.

f(*) = Efe M>k00 [4.14]

Where,

k is an integer index of the finite or infinite sum

ak are real valued expansion co-efficients

tj>k are real valued expansion functions or scaling functions.

As per Shannon's Sampling Theorem, every band limited signal can be 

perfectly recovered from its discrete sample, provided that the sampling 

period is sufficiently small.

If we consider the set of expansions composed of integer translates and 

binary scaling of the real, square integrable function c|)k(x) as the set of

{(<i>j,k(x)}

Where,

4>j k(x) = 2i 4>(2Jx — k) Vj, k G Z and cj>(x)e L2(R) [4.15]

Where,

k determines the position of <$>jk(x) along the X-axis

j determines width of cf>jk(x) along the X-axis
1

2z controls the height or amplitude of cj>j k(x)

By selecting 4>(x) appropriately, (4>jjk(x)} can be made to span L2(R)
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A function f can be uniquely expressed as f(x) = fa(x) + fd(x).

Where,

fa(x) represents an approximation of f(x) using scaling function 

fd(x) represents the difference f(x) - fa(x)

The two expansions divide the f(x), similar to a lowpass and highpass 

filters.

The low frequencies of f(x) are captured in fa(x) and the high frequencies 

details are expressed in fd(x).

Henceforth, we represent approximate co-efficients fa(x) as Ca and 

detail co-efficients fd(x) as Cd.

For a Discrete wavelet representation, the wavelet series expansion of 

function f(x) e L2(R) , relative to the mother wavelet i|j{x) and scaling 

function t|)(x) can be generated in accordance with decomposition L2(R) 

using Vector Space concept or Multi Resolution Analysis (MRA). For any 

scaling function cj>(x) that meets the requirement of MRA, we can define 

the wavelet function i|/(x) that, alongwith its integer translates and 

binary scale, covers the difference between any two adjacent scaling 

subspaces.

Therefore, for any function f(x) € L2(R), using Equation [4.13], [4.14] and 

[4.15] we can write

/(*) = Zkez Cajo (x) + I j= j0 llcez Cdj i^j.k 0) [4.16]
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The Caj0(k)'s are called the approximation or scaling coefficients and 

Cdj(k)'s are referred to as detail or wavelet coefficients, and can be 

obtained through convolution of a signal function with mother wavelet.

Thus, if the expansions functions form an orthonormal basis or tight 

frame, which is often the case, the expansion coefficients are calculated 

as:

If the function being expanded is a sequence of numbers, like samples of 

a continuous function f(x), the resulting coefficients are called the 

discrete wavelet transform (DWT) of f(x). In this Scaling and Wavelet 

coefficients becomes the DWT transform pair as

Cajo(.k) = if(x),(pjok (x)) = infix') (f)jok (x) dx 

Cdj(k) = (f(x),ilJj>k 0)> = J_°^/(x) (x) dx

[4.17]

[4.18]

W* (/„,*) = ^£*/(x)0Jofc(x) 

WfyO;,k) = j^Lxf{x)\pjk(x) [4.20]

[4.19]

For j> j0

fix') = j^licW^Qo.kXx) <pjok (x) + j= joWyp(j,k)ix)ipjik (x)

[4.21]
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In the Equation [4.21], the f(x), 0;-ofc(x) , are functions of

discrete variable x = 0, 1, 2, ..., (n-1). Usually, j0 takes value 0 and n is 

selected to be the power of 2.

Thus, n = 2J

Hence the summations are performed over the discrete values of the 
signal at

x = 0,1, 2,... (n-1)

For resolution levels as 

j — 0,1, 2, ...(J-l)

And co-efficient vectors at each resolution level as 

k = 0,1, 2,... 2j -1

Note that the integrations in the series expansions have been replaced
1by summations, and normalizing factor has been added to both the 

forward and inverse expressions.

This factor could alternatively be incorporated only into one of the
1either forward or inverse transforms as
n

These equations are valid only for orthonormal basis and tight frame, 

and not for bi-orthogonal basis.

Thus, the wavelet transform is an inner product of the time series with 

the scaled and translated wavelet function.

4>(t) is called a scaling function and i|/(t) is known as a mother wavelet 

function. On performing convolution of these basis functions with the 

original signal X, wavelet co-efficients WT are obtained. The scaling 

function (j>(t) is utilized to obtain the approximation co-efficient Ca and 

the wavelet function i|/(t) is utilized to obtain the detail co-efficient Cd.
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Since, the Wavelet Transform is used to decompose the signal into two 

sub-vectors - the approximation co-efficient vector and the detail co­

efficient vector, this phase of Wavelet Transform is known as an 

"Analysis Phase". The wavelet co-efficients are later on used to 

synthesize the original signal.

When a Wavelet Transform is performed on a signal, the signal is 

decomposed into primarily two co-efficient vectors, the approximation 

co-efficient vector and the detail co-efficient vector. The stages of 

decomposition are known as "Resolution Level" The co-efficient vectors 

capture trends at different resolution levels71. These co-efficient vectors 

of different resolution levels represent the characteristics of the data, at 

each different scale.

In an analysis phase of Wavelet Transform, performing wavelet 

transform on a given signal X consists of passing through low-pass and 

high-pass decomposition filters and down sampling by 2 which in turn, 

generate two co-efficient vectors.

71 Charu C. Aggarwal, "On The Use Of Wavelet Decomposition For String 
Classification," Springer - Data Mining And Knowledge Discovery, 10, 
117-139, 2005
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Figure 17. Wavelet Transform (Analysis Phase)

As shown in

Figure 17, the original signal is denoted by the sequence Xn, where n is 

an integer number referring to the number of elements in the signal X. 

The low-pass filter is denoted by h0 while the high-pass filter is denoted 

by g0. At each level, the low-pass filter associated with scaling function 

produces coarse approximations Ca, while the high-pass filter produces 

detail co-efficients Cd72. The number of co-efficients generated will be 

approximately half the length of the original input on passing the signal 

simultaneously through low-pass and high-pass filters and subsequently 

performing down-sampling.

72 MATLAB manual: http://www.mathworks.in/products/wavelet
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When a discrete-time signal X passes through low-pass filters (scaling 

functions) and high-pass filters (wavelet functions) simultaneously, it is 

defined as performing the "Discrete Wavelet Transform" (DWT). In DWT, 

a time-scale representation of the digital signal is obtained on passing a 

signal through filters with different cut-off frequencies at different 

scales, "Filters" are the functions used in signal processing. The filtering 

operations performed on a signal determine the resolution of the signal. 

The resolution is a measure of the amount of detail information in the

Figure 18. “Maliat-Tree” for Three Level Wavelet Decomposition

87



signal. The sub-sampling operations (i.e. up-sampling and down- 

sampling) determine the scale.

When a signal Xr> of length n, is transformed using the Discrete Wavelet 

Transform then, the transformation process consists of at most Iog2n 

stages73. Thus, there are at most log2n resolution levels in DWT.

If the length of each filter is equal to 2N and let n = length(Xn), then the 

signals H and G generated after passing through the low-pass filter and 

high-pass filter respectively, are of length n+ 2N -1, and the length of co­

efficients Cai and Cdx, as shown in [4.18] is

Length (Cdl) = ^n~— + ivj 

[4.22]

Where,

n, is the length of the original signal 

2N, is the length of a filter, N = {1, 2, 3....}

Since, the length of a signal and the length of the basis-vectors are 

different, multi-level decomposition is essential to decompose the entire 

signal, using the available basis vector74. The Mallat-Tree 

decomposition75 is obtained when one computes Discrete Wavelet 

Transform by successive low-pass and high-pass filtering of the discrete 

time-domain signal.

4.5. Characteristics of Wavelet Transforms

73 Ibid, MATLAB manual: http://www.mathworks.in/products/wavelet
74 Musawir Ali, An Introduction to Wavelets and the Haar Transform 
(www.cs.ucf.edu/~mali/haar/)
75
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The following characteristics of Wavelet Transforms have made it 

possible to use these transforms in variety of applications. The 

characteristics are:

• The Wavelet Transforms follow the Nyquist rule76. The Nyquist 

criterion states that, the minimum sampling rate that allows 

reconstruction of the original signal is 2w radians, where w is 

the highest frequency in the signal. Therefore, as the scale goes 

higher (lower frequencies), the sampling rate can be decreased 

thus reducing the number of computations. Thus, according to 

the Nyquist theorem, the highest frequency a signal can 

properly hold is half the number of samples per second in the 

signal77.

• Multi-Resolution Analysis of Wavelet Transforms is possible. 

The resolution is the measure of amount of detail information 

in the signal. Wavelet Transforms can be acquired by applying 

iteration of filters with rescaling.

• The low pass filter associated with scaling function produces 

coarse approximations, a[n], whereas the high pass filter 

produces fine approximations.

• Wavelet Transforms has the ability to reduce distortion in the 

reconstructed signal while retaining all the significant features 

present in the signal.

76 D. Lee Fugal, Conceptual Wavelets in Digital Signal Processing, 
Space and Signals Technologies, 2006
77

http://courses.ae.utexas.edu/ase463q/design_pages/fall02/wavelet/4_wa 
velet_theory.htm
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Compaction of Energy is possible through Wavelet Transforms78. Eg: The 

First level Haar Wavelet transform distributes the energy of a signal in 

such a way that over 98% of energy is concentrated into the sub-signal 

Ca which is just half the length of the original signal. Further level of 

decomposition to second and third level reduces the energy level to 90% 

and 88% respectively. The second level of transform reduces the length 

of the signal to one-fourth and third level to one-eigth of the length of 

the original signal79.

Thus, Wavelet Transforms are suitable for compaction or reduction of 

data, without much loss of information. (The slight reduction in energy 

levels is due to Heisenberg's Uncertainty Principle in Quantum Theory, 

which describes that it is impossible to localize a fixed amount of energy 

into an arbitrarily small time interval.)

4.6. Haar Wavelet Transform in Decomposition Phase

The Haar Transform is the simplest and oldest compact, dyadic, 

orthonormal wavelet transform80. The Haar wavelet is discontinuous 

with a Haar function being an odd rectangular pulse pair, with compact 

support that provides good possibility for local analysis of signal81.

Haar wavelets are conceptually simple, fast and memory efficient82 83, 

can be computed in place, without a temporary buffer, are exactly

78 A Primer on Wavelets and their Scientific Applications, James S. 
Walker, Taylor & Francis Group, 2008
79 ibid. A Primer on Wavelets and their Scientific Applications, 
James S. Walker, Taylor & Francis Group, 2008
80 Moharir P.S., "Pattern recognition transforms,"New York: Wiley, 
1992
81 Radomir S. Stankovic, Bogdan J. Falkowski, "The Haar wavelet 
transform: its status and achievements,"Elsevier
82 Ibid[28] Radomir S. Stankovic, Bogdan J. Falkowski, "The Haar 
wavelet transform: its status and achievements,"Elsevier
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reversible and can be perfectly reconstructed, if no elements of co­

efficient vectors are discarded at some threshold values. Since at each 

transform, only half the values of the given signal needs to be processed, 

its performance efficiency is linear in time and space, excluding other 

overheads.

Applying the Haar Transform on a discrete signal Xn involves passing the 

signal Xn through the two filters, a low-pass filter (h0) and the high-pass 

filter (g0) and consequent down-sampling by two. ("Downsampling by 2" 

means discarding every second signal sample. For example a sequence 

of numbers (signal) [6 4 2 1] becomes [6 2] or [4 1] depending on where 

one begins with). This is also referred as "Decimation by2's4 in wavelets' 

terminology). This decomposes the original signal Xn into two sub-signals 

of half its length. One sub-signal is a running average or trend (Ca); the 

other sub-signal is a running difference or fluctuation (Cd)*5.

Xn
Haar Wavelet

CCa I Q )

Given a one-dimensional data vector

X[n] = [18, 16, 6, 6, 12, 20, 4, 12]

[4.23]

Where, X is having number of elements n = 8, which is usually the power 

of 2.

83 Ruiz G, Michell JA, Buron A, "Switch-level fault detection and 
diagnosis environment for MOS digital circuits using spectral 
techniques," IEEE Proc Part E, 1992; 139(4):293-307
84 D. Lee Fugal, Conceptual Wavelets in Digital Signal Processing, 
Space and Signal Technologies, 2006
85 I. Daubechies, "Orthonormal Bases of Compactly Supported 
Wavelets, "Comm. Pure Appl. Math, Vol 41, 1988, pp. 906-966
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Iteratively performing pairwise averaging and semi differencing86 can 

compute Haar Wavelet Transform of the signal X.

The Approximate Coefficient can be obtained as shown in Equation

[4.24]

Ca = (X2i~i + X2t) / V2, for i e [1,2,3,... n/2]

[4.24]

And Detailed Coefficient can be obtained as,

Cd = (X2j_i — X2i) / V2 for i £ [1,2,3,... n/2]

[4.25]

More precisely, Computing of Haar Wavelet Transform is done by
1 1convolving the Signal X with the basis vector < ^=, — > .

For a given signal, Xn, the first level decomposition will create the 

Approximate co-efficient at level Ai and the Detailed co-efficient at level 

Dx. On further decompositions, we can get co-efficient at level A2, D2 and 

A3, D3 etc., which is presented in Table 5.

As shown in Table 5, we can observe that, the Haar Transform WTof the 

original signal Xn as given in Equation [4.23] is:

WT = [47/y/2, -1/V2, 11, 8, 2/V2, 0, -8/^2, -8/yf2]

[4.26]

As shown in Table 5, the decomposition is possible until a single element 

remains in the vector of approximate co-efficients, if n is in power of 2. If

86 Dimitris Sacharidis, "Constructing Optimal Wavelet Synopses", 
Proceedings of the 2006 International Conference on Current Trends in 
Database Technology EBDT '06, Pg 97-104, 2006 10.1007/11896548__10
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n is not in the power of two, the decomposition is possible until the 

number n divisible by 2.

More appropriately, if n is the length of the original signal then if 2j = n or 

2j <= n then signal can be decomposed or resolved upto j levels87 i.e. the 

number of decompositions possible of this signal is j, if n is divisible by 2 

for j times.

The output co-efficients are arranged in the vector WT in the "Maiiat 

Order"88

87 A Primer on Wavelets and their Scientific Applications, James S. 
Walker, Taylor & Francis Group, 2008
88 R
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Table 5. Representation of Computations of Haar Wavelet Transform
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In Haar Wavelet Transform, the values of these low-pass and high-pass 

filters are expressed as given in [4.29] to [4.32]
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[4.29]

[4.30]

[4.31]

[4.32]

Where,

h(0) and g(0) are analysis filters and h(l) and g(l) are synthesis filters.

In other words, these filter values can also be represented in terms of

Since, the basis vectors used in Haar Discrete Wavelet Transform are the 

smallest possible basis vectors; it is not possible to do Haar Transform in 

one-pass. Thus, it becomes essential to recursively transform the input 

signal using these basis vectors33. This concept is shown clearly in 

column (e) of Table 5.

The scaling function in Haar Wavelet Transform is defined as in [4.33]

The mother wavelet function or translation function in Haar Wavelet 

Transform is defined as in [4.34],30

89 An Introduction to Wavelets and the Haar Transform, by Musawir Ali
90 I. Daubechies, "Ten Lectures On Wavelets", 1992

[4.33]

*Kx) {
1, if,x 6 [0,0.5) 

-1, if,x 6 [0.5,1) 
0, if,x € [0,1)

[4.34]
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Thus, the Haar basis can be given using cj>(x) the scaling function and 

*|j(x) translational function or the wavelet function or wavelet basis that 

is associated with Haar Multiresolution Analysis.

Thus, if X(n) is a vector of size n, then, the approximation co-efficients Ca 

at approximation level Aj and detail co-efficients Cd at level Dj 

respectively are generated after transformation or decomposition of the 

vector X(n), at levels j e (1,... log 2(n)).

As mentioned, X(n) is a vector of size n, the approximate length of the 

vector containing approximation co-efficient Ca is ^ and similarly, the 

vector containing the detailed co-efficients Cd is also approximately of 

length | i.e. the index i e {0,1, ...| - 1}, after performing one-level of 

Haar wavelet decomposition.

The ith element of the vector containing an approximate co-efficient 

Caj and the vector containing the detail co-efficient C^at decomposition 

level j, can be given as shown in [4.35] and [4.36]

C„J= ±Xj(2i-l) + ±Xj(2Q [4.35]

-S
. II Si
b

r*
<. 1

Si
b to [4.36]

In Equations [4.35] and [4.36], the index x is positional information, in 

general, referred as time information and hence, i is same as t. As per 

specifications of Haar Wavelets, the length of original signal is expected 

to be of the power of 2. In that case, the length of the transformed 

vector containing the detailed co-efficient Cd, is usually 2j, where j is the 

decomposition level. The decomposition using Haar wavelets can be 

performed until the resolution (number of approximation co-efficient)
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becomes one or resolution level zero. Number of detailed co-efficients 

at each level j is equal to n/2j91.

4.7. Inverse Wavelet Transform

Wavelet Transform aids in perfect reconstruction of the signal. The two 

set of wavelet-transformed co-efficients i.e. Ca and Cd, acquired from 

any level of decomposition, on up sampling by 2 and then on performing 

Inverse Wavelet Transform. The reconstructed signal is exactly same as 

the original signal, if no element is discarded from the two sets of 

decomposed co-efficients. The process of synthesis consists of two 

phases, the up-sampling by 2, to acquire the exact number of co­

efficients i.e. n in each decomposed sets Ca and Cd. After up sampling 

the original signal can be acquired after performing inverse wavelet 

transform. "Upsampling by 2"92 means inserting zeros between the 

existing data points. For example, A time-sequence of the numbers [6, 

4, 3, 1] would become with upsampling by 2 [6, 0, 4, 0, 3, 0, 1] or in 

some cases [0, 6, 0, 4, 0, 3, 0,1, 0] containing a leading and/or a trailing 

zeros.

In Synthesis phase, applying Inverse Wavelet Transform to given two co­

efficient vectors Ca and Cd, consists of performing up-sampling by 2 and 

then passing it through a low-pass and high-pass filters used for 

synthesis, an original signal can be reconstructed.

91 J.K. Meher, M. R. Panigrahi, G. N. Dash, P. K. Meher, "Wavelet 
Based Lossless DNA Sequence Compression For Faster Detection Of 
Eukaryotic Protein Coding Regions ," I.J. Image, Graphics And Signal 
Processing 2012, 47-53 i
92 D. Lee Fugal, Conceptual Wavelets in Digital Signal Processing, 
Space and Signal Technologies, 2006
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Inverse Haar Wavelet (QIQ)

Figure 19. Inverse Wavelet Transform (Synthesis Phase)

As shown in Figure 19, the low-pass filter used in synthesis is denoted by 

hi, while the high-pass filter is denoted by gx. After up-sampling and 

applying appropriate filters, the original signal Xn can be reconstructed, 

where n is an integer number referring to the number of elements in the 

signal X.

The synthesis phase involves performing the Inverse Wavelet Transform. 

Performing Inverse Wavelet Transform means applying the convolution 

of the Wavelet Transform vector WT and the basis vectors. Since, 

forward transformation was performed recursively; the inverse 

transform also needs to be performed recursively, to acquire the original 

signal Xn.

The "Mallat-Tree" is obtained when recursive Inverse Wavelet 

Transform is applied (As shown in Error! Not a valid bookmark self­

reference.).
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On performing Inverse Wavelet Transform to Level-3 coefficient vectors 

Ca3 and Cd3, generates the Level-2 approximate co-efficient vector Ca2. 

This newly acquired vector Ca2 can be inversely transformed using 

already available detail co-efficient vector of Level-2 Cd2. On recursively 

performing this transform up to Level-1, helps in acquiring the original 

signal X. The perfect signal can be reconstructed, if no elements of any 

of the vectors, at any level of resolution were ever discarded.

Figure 20. "Mallat Tree” for Synthesis Phase
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Thus, as shown in The "Mallat-Tree" is obtained when recursive Inverse 

Wavelet Transform is applied (As shown in Error! Not a valid bookmark 

self-reference.).

On performing Inverse Wavelet Transform to Level-3 coefficient vectors 

Ca3 and Cd3, generates the Level-2 approximate co-efficient vector Ca2. 

This newly acquired vector Ca2 can be inversely transformed using 

already available detail co-efficient vector of Level-2 Cd2. On recursively 

performing this transform up to Level-1, helps in acquiring the original 

signal X. The perfect signal can be reconstructed, if no elements of any 

of the vectors, at any level of resolution were ever discarded.
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Figure 20. Signal can be reconstructed perfectly; if we can retain the 

approximation co-efficients Ca of the last level of decomposition and 

the detail co-efficients of all levels of decomposition.

Since, the original signal

X* = cal + cdl
[4.37]

And Cai = Ca2 + Cd2r

[4.38]

Similarly,

Ca2 = Ca 3 + Cd3

[4.39]

The original signal which has been decomposed up to level three can be 

reconstructed, if the co-efficients Ca3, Cd3f Cd2 and Cdl are 

given.

As a result, following can be acquired by performing,

Ca3 + Cd3 + Cd2 + Cdl

[4.40]

Using [4.37]f [4.38] and [4.39]r we can represent

[4.40] as

= Ca2 + Cd2 + Cdl 

= Cal + Cdl 

= Xn

Where, "+" operator is an addition of two vectors.
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An approximate signal, which is close to the original signal can definitely 

be acquired, in spite of discarding some of the elements using an 

appropriate threshold values. The threshold values used for discarding 

any elements should be relevant to the application, where one is trying 

to apply the Wavelet Transform.

4.8. Inverse Haar Wavelet Transform in Synthesis Phase

The synthesis phase involves performing the Inverse Haar Wavelet 

Transform. Performing Inverse Haar Wavelet Transform means, applying 

the convolution of the Haar transform WTof the original signal X and the 

basis vectors. Since, forward transformation was performed recursively; 

the inverse transform also needs to be performed recursively, to acquire 

the original signal.

The basis vectors used for Inverse Haar Wavelet Transform are
1 i ^

<V2' V2 > •

Given the Wavelet Transform WT of the signal X, it is possible to 

reconstruct the original signal, by convolving the vector containing 

wavelet co-efficients with the basis vector for Inverse Wavelet 

Transform.

Thus, given WT=[47/V2, -1/V2, 11, 8, 1/V2, 0, -8/V2, -8/V2] and

1 1Inverse Haar basis vector — >,
V2 V2

On applying the convolution of two vectors recursively, we can obtain 

the original signal X[n] = [18,16, 6, 6,12, 20,4,12]

Considering the Haar Wavelet Transform as shown in Table 6 below,
Table 6. Representation of of Haar Wavelet Transform for Xn
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Transformation Averages / Differences /
Level or Approximate Co-efficient Detail Co-
Decomposition <Ca) efficient (Cd)
Level (j) Ca = (X2i_1 + X2i)/yf2 Ca = {X2i_x-X2l)fj2

(a) ( b) (c)
Original Xn = Ac = [18, 16, 6, 6, -
Signal (0 12, 20, 4, 12]
level)
1 Ai = [34/V2, 12/V2,

0010CNI1!pH

Q

32/V2, 16/V2 /V2, -8/V2 ]
2 A2 = [23, 24] CO\—

1 \—1!i

a

3 A3 = [47/V2] D3 = [-1' V2]

Thus, from the Table 6, we can observe that Wavelet Transform

WT = [47/V2, -1/V2,11, 8,1/V2, 0, -8/V2, -8/V2]

1 1On convolution with Inverse Haar basis vector <^=, — >

And operations as defined in Equation [4.40] would result in the original 

signal Xn.

The process of Inverse Haar Wavelet Transform can be stated as follows: 

As stated in Equation [4.39]

Ca3 +Cd3 Will result in Ca2 

Thus, Using Table 6,

A3 + D3

^(47/V2) + i(-l/V2), (47/V2 ) + ^= (-1/t/2),

=23, 24

= A2

Similarly, A2 + D2 would result in Ax
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(23 ) + ^ (11), (23) + -j= (11), (24 ) + -£= (8), ^(24) +^(8}

= [34/V2,12/V2, 32/V2,16/V2

= Aj

And Thus, Ax + Dx would result in A0, which is same as Original Signal 

[18,16, 6, 6,12, 20, 4,12]

= A0 

= Xn

4.9. Applications of Wavelet Transforms

Various applications of Wavelet Transforms are

• Image Compression (JPEG 2000}93

• Video Copression (MPEG 4}94

• Audio Compression

• FBI Fingerprint Compression

• Biometrics

• Mobile Applications - Speech Compression to reduce 

transmission time, Echo Cancellation

• Pattern Recognition - For Feature extraction, Edge detection

• Analysis of Electrocardiogram

• Identification of Exons in Protein sequences

• Signal Processing - Compression, Encoding, Denoising

93 JPEG2000: Image Compression Fundamentals, Standards and Practice", 
D.Taubman, M. Marcellin, Kluwer Academic Publishers, 2001.
94 "The MPEG-4 Book", T. Ebrahimi, F. Pereira, Prentice Hall, 2002.
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