CONTENTS

I. List of tables	01
II. List of figures	02
III. Abbreviations	04
Abstract	05
Chapter 1: Review of literature	07
1.1 Plant-pathogen interactions	08
1.1.1 Plant defense mechanisms – physical and chemical	09
1.1.1.1 Plant cell wall – the primary physical barrier	13
1.2 Plant cell wall degrading enzymes (CWDEs)	17
1.2.1 CWDEs produced by fungi	17
1.3 Feruloyl esterases (Fae)	21
1.3.1 Role of Fae in plant cell wall degradation	21
1.3.2 Industrial applications of fungal Fae	23
1.4 Rice-blast pathosystem	25
1.4.1 A model system to study host-microbe interactions	26
1.4.2 Magnaporthe oryzae infection cycle and host invasion strategies	27
PRESENT STUDY: Functional characterization of gene(s) involved in pathogen	icity
of the rice blast fungus Magnaporthe oryzae	35
Chapter 2: Introduction, Objectives and Materials and Methods	36
2.1 Introduction.	37
2.2 Objectives.	40
2.3 Materials and Methods.	40
2.3.1 Fungal culture and growth conditions	40
2.3.2 <i>In silico</i> analysis of fungal <i>FAE</i> s	43
2.3.3 DNA isolation and manipulation.	44
2.3.3.1 Plasmid isolation from E. coli	44
2.3.3.2 Genomic DNA isolation from <i>M. oryzae</i>	46
2.3.3.3 PCR	48
2.3.3.4 Restriction enzyme digestion	48
2.3.3.5 Ligation	48
2.3.3.6 Southern blot hybridisation	49

	2.3.4 Protein sample preparation and estimation	50
	2.3.5 Bacterial and Yeast transformation	52
	2.3.5.1 Bacterial transformation.	52
	2.3.5.2 Yeast transformation.	53
	2.3.6 Magnaporthe oryzae protoplast transformation	54
	2.3.7 Yeast Secretion Trap (YST) approach	56
	2.3.8 Feruloyl esterase enzyme assay	57
	2.3.9 Quantitative real time reverse transcription PCR (qRT-PCR)	58
	2.3.9.1 Total RNA isolation from <i>M. oryzae</i>	58
	2.3.9.2 First-strand cDNA synthesis	59
	2.3.9.3 Quantitative real-time RT-PCR (qRT-PCR)	60
	2.3.10 Plant infection assay	60
	2.3.11 Host invasion and penetration assay	61
	2.3.12 Statistical analyses.	62
Cha	apter 3: Results	64
3.1.	In silico and expression analysis of Fae in M. oryzae	65
	3.1.1 Identification of putative <i>FAE</i> s in <i>M. oryzae</i> by <i>in silico</i> analysis	66
	3.1.2 Sequence similarity between Fae in <i>M. oryzae</i>	68
	3.1.3 Phylogenetic analysis of <i>M. oryzae</i> Fae with other fungal Fae	69
	3.1.4 Prediction of conventional signal peptide in Fae by SignalP tool	80
	3.1.5 Validation of two <i>FAE</i> s for the presence of signal peptide by YST-approach	82
	3.1.6 Effect of host leaf-extract on fungal Fae activity	84
	3.1.7 Gene expression profiling of FAEs during pathogenic development in M. oryz	zae
	by qRT-PCR	87
	3.1.7.1 Gene expression analysis under host- or pathogenicity-mimic conditions	87
	3.1.7.2 Gene expression analysis at different stages of pathogenic development	91
3.2.	Investigating the role of a feruloyl esterase (Fae1) in pathogenesis of <i>M. oryzae</i>	95
	3.2.1 Generation of $FAE1$ deletion mutant ($fae1\Delta$) of $M.$ oryzae	96
	3.2.1.1 Preparation of FAE1 deletion cassette and fungal transformation FA	<i>E1</i>
	gene (Gene ID: MGG_08737) deletion	96
	3.2.1.2 Molecular analysis and confirmation of FAE1 deletion mutant ($fae1\Delta$)	99
	$3.2.2$ fae 1Δ shows normal vegetative growth and asexual conidial development 1	02
	3.2.2.1 Vegetative growth	02
	3.2.2.2 Asexual development (conidiation)	02

3.2.3 Fae1 function is not required for appressorial development in <i>M. oryzae</i> 103
3.2.4 Development of blast disease by M. oryzae is impaired in absence of
Fae1
3.2.5 Fae1 is required specifically for host colonisation by <i>M. oryzae</i>
3.2.5.1 Invasive growth is impaired in the $fael \Delta$ mutant
3.2.5.2 Genetic complementation of $fael \Delta$ mutant rescues its host invasion
defect
3.2.5.3 Exogenous addition of the products of Fae enzyme action rescues the host
invasion defect of $fael \Delta$ mutant
3.2.5.4 Ferulic acid most likely serves as an energy/nutrient source
Chapter 4: Discussion and Conclusion
Summary
Bibliography
Publication
Oral and poster presentations