
Chapter 4

On Line Tracking of Harmonics in 
Power System

4.0 Introduction

In the view of past scenario of power system applications, due to increase 
in applications of nonlinear loads, power systems are often subject to 
harmonic injections [40-42]. The presence of harmonics in power systems 
could cause serious problems such as voltage distortion, increased losses 
and heating, and wrong operation of protective equipment [43]. Hence, 
electric utility’s are more concerned about power system harmonics and 
voltage distortion in recent years. Usually, nonlinear loads or harmonic 
sources occur possibly everywhere in power systems and operated at a 
continuous variable power. The locations and magnitudes of harmonic 
source injection depend on placements of nonlinear load devices in the 
systems and their ratings. Considering these reasons, it is beneficial to 
estimate time-varying magnitudes of harmonic injection, to eliminate 
them and provide high-quality and reliable electricity
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However, due to economical considerations, number of harmonic 
analyzers in sub-station is limited and most of the times harmonic 
measurement is done once a year. The limitation in the number of 
harmonic meters makes the harmonic state estimation an 
underdetermined problem . The quality of estimations is a function of the 
number and locations of the harmonic measurements. So, for given few 
harmonic analyzers, it is very difficult to track harmonics present in sub
station. Furthermore, in power distribution system, three phase nonlinear 
loads may be unbalanced to some extent and they may even exist in just 
one phase or two phases of the system. As a result, the unbalance of 
harmonic sources further complicates the harmonic sources tracking 
problems.

Many algorithms are available to evaluate harmonics of the system where 
Fast Fourier Transforms WT) used by Cooley and Tukey[41] which is 
widely used. Other algorithms include, recursive DFT, spectral observer, 
Hartley transform [44] for selecting the range of harmonics This thesis 
presents Kalman filtering [42] based technique for optimal harmonic 
measurement locations and dynamic estimation of unbalanced three- 
phase harmonic injections in power systems. The method is dynamic, has 
the capability of identifying, analyzing and tracking each harmonic 
injection and does not need redundant harmonic measurements.

4.1 Applications of Harmonic Measurement

Estimation of harmonic components in a power system is a standard 
approach for the assessment of quality of delivered power. There is a 
rapid increase in harmonic currents and voltages in the present AC 
systems due to huge introduction of solid state power switching devices. 
Transformer saturation in a power network produces a huge amount of
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harmonic currents. Consequently, to provide quality of the delivered 
power, it is imperative to know the harmonic parameters such as 
magnitude and phase. This is essential for designing filters for eliminating 
and reducing the effects of harmonics in power system

In fact, it is considered that harmonic distortion is the type of disturbance 
which it is most necessary to control. This means imposing limitations on 
the emission levels of equipment, and filtering the inevitable harmonic 
components present. During the past few years, several international 
organizations have made a considerable effort to elaborate norms and 
recommendations on the measurement and limitation of harmonics in 
power systems [45]. The distributed nature of harmonics-generating loads 
and their randomness means that it is essential to have a supervision 
system spread over the whole network which is capable of undertaking a 
global assessment for existing harmonic contamination

Most electronically switched industrial loads found in mining, refining 
and melting processes, paper mills, etc. are dynamic in nature. In normal 
operation, repeated stop / start and braking acceleration cycles tend to 
generate significant speed variations resulting in time-varying current 
amplitudes having substantial amount of non stationary harmonics. An 
increasing number of high voltage transmission systems have static VAR 
compensators placed at strategic locations which can inject time varying 
harmonics to the systems. The advent of FACTS devices suggests their 
use in future power transmission and distribution systems. This gives rise 
to the possibility of generation of non stationary harmonic voltages and 
currents in the power system.

132 | P a g e



On Line Tracking of Harmonics in Power Systems

The series compensation can also produce low frequency oscillations that 
interact with SVCs to produce amplitude-modulated harmonics. Several 
disturbances further complicate this phenomenon by modulating the 
fundamental frequency, which ultimately yields harmonics with changing 
amplitudes and frequency. Thus accurate measurement of harmonic 
levels is essential for designing harmonic filters, monitoring the stress to 
which the power system devices are subjected due to harmonics and 
specifying digital filtering techniques for phasor measurements and for 
relaying.

4.2 Various Harmonic Measurement Methods

In an ideal power system, voltage and current waveforms are pure 
sinusoidal. However, in practice under various circumstances, voltage 
and current waveform distortions occur. These waveform distortions are 
further discussed in terms of harmonics, being integer multiples of the 
fundamental power frequency. The measurement of these harmonics is 
important to derive power quality. However, despite that a harmonic is a 
steady-state phenomenon, in practice the measurements have to be 
performed in dynamic conditions. In such cases, the classical frequency 
domain-based methods (e.g. FFT) may fail and have to be replaced by 
alternatives running in the time domain (Kalman estimators) or time 
frequency domain (wavelet filters).
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4.2.1 Frequency domain Method

Harmonic analysis algorithms in frequency domain are based either 

on the discrete Fourier transform (DFT) or on the Fast Fourier 

transform (FFT) in order to obtain the spectra of the voltage and the 

current signals using the discrete time samples. The DFT and FFT 

transform is a useful analytical tool that has been applied to power 

system for phasor measurement and harmonic analysis [41].The 

DFT is computed using Eq. 4.1

H (£) = £n=o MnDeffl (4.1)

Where,

//(/) is a function of frequency
h(t) is a function of time
T is the time interval between the samples.
N is the number of samples in the window, 
n = 01,2,...................N-l.

There are basic assumptions embodied in implementing the DFT

(i) The sampling frequency is equal to the number of samples 

multiplied by the fundamental frequency assumed by the 

algorithm
(ii) The sampling frequency is greater than twice the highest 

frequency in the signal to be analyzed

(iii) The sampling frequency in the signal is an integer multiple 

of the fundamental frequency. The results of the DFT are 

accurate when these assumptions are true.

However misapplication of the FFT algorithm can have destructive 

side-effects that would lead to incorrect results. The major 

destructive side-effects which have to be taken care in the case of
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FFT are leakage effect, picket fence effect and aliasing error. Aliasing 

error can be alleviated by increasing the sampling frequency (/s) and 

properly designed anti-aliasing filters which completely cut-off 

frequencies above (/s/2). The FFT process is discrete, it evaluates the 

frequency content of a time signal in terms of discrete points in the 

frequency domain. The picket-fence effect offers if the analyzed 

waveform includes a frequency which is not an integer multiple of 

fundamental frequency. For example in a 400 line FFT analyzer on a 

20 kHz span there will be magnitude of the signal at every 50Hz, at 

50,100,150.... Suppose the signal had a one frequency component 

of say 125Hz than this will be absent in the spectrum since it falls 

between 2 frequencies. This is Picket-fencing effect. The term 

leakage refers to the apparent spreading of energy from one 

frequency into adjacent ones. It arises due to discontinuities at the 

edge of the window that leads to false results. These discontinuities 

modulate the original signal. Modulation causes sidebands, 

appearing at (f ± fs) .Some of the energy signal goes in side lobes. 

This effect is termed as leakage effect. Hence selection of appropriate 

window is required when DFT technique is applied to time varying 

signal
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□ 128 0 256 0 1024 D256H O 1024T O 1024H

Fig. 4.2.1-1 Comparison plot for different techniques

Sr.No FFT Method Irms Magnitude (A) THD (%) Computed
1 128-point FFT 3.03 25.97
2 256-point FFT 3.034 25.85
3 1024 point FFT 3.034 26.03

Table 4.2.1-1 Result for different FFT window

4.2.2 Wavelet Based Harmonic Estimation

For the method based on the (real) wavelet transform of the analytic 
representation of the signals, the following main items need to be 
considered the type of the (real) wavelet transform should be ortho
normal.

> The wavelet (filter) order, generally related to the frequency 
separation characteristic of the selected wavelet: good frequency 
separation reduces the amount of leakage energy to the adjacent 
frequency bands;

> The number of levels, related to the input frame size, e.g., if the 
number of input samples is N=2D then a maximum of D levels can
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be performed; the wavelet levels are from 0 to D-l and the scaling 

level is 0*.

All features above have an impact on the performance and the accuracy of 

harmonic measurements and consequently, need to be chosen careful.

4.3 Kalman Filter

The Kalman filter [46] is a set of mathematical equations that provides an 

efficient computational (recursive) means to estimate the state of a 

process, in a way that minimizes the mean of squared error. The filter is 

powerful in several aspects: it supports estimations of past, present, and 

even future states, and it can do so even when the precise nature of the 

modeled system is unknown.

Let x be a scalar quantity that is constant in time. If n 

measurements of x are available which are corrupted by noise 

drawn from uncorrelated zero mean Gaussian distributions of equal 

variance, the best estimate of x is the mean of all the measurements. 

Denoting the ith measurement by yh and the best estimate after n 

measurements by xn, we thus have xn given by Eq. 4.2

Xn^mxVt (4-2)

If a further measurement, denoted by yn+1 becomes available the 

new best estimate obviously follows as Eq. 4.3

*n+l = r~r2!?=i Vi+l (4.3)
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One can express this new estimate in terms of the previous one, to 

obtain the following update equation as given by Eq. 4.4

This equation can be rearranged to yield as shown in Eq. 4.5

We may interpret this equation as follows. If we have an estimate xn 

of a quantity x, and a new measurement of x becomes available, we 

may use it to update the estimate xn to an improved estimate, xn+1 

by adding to xn the difference between the new measurement and 

the previous estimate scaled by a weighting factor. This idea of 

updating an estimate in the light of a new measurement to form an 

improved estimate is central concept of kalman filtering.

® The Time Varying Case:

Consider a scalar quantity x, which is observed at discrete points in 

time. Rather than being time independent we now assume that the 

change in x from the time of nth to (n+l)th measurement can be 

modeled by an Eq. 4.6 of the form.

*n+1 = $71*71 + wn (4.6)

Where wn is drawn from -a zero mean distribution. Then wn 

effectively allows for the uncertainty in our model of the time 

variation of x as expressed by 4>n, and is known as process noise.

(4.4)

(4.5)
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If we have an estimate of xn denoted by xn (+) the best estimate 
of xn+1, which we will denote by xn+1(—) is obviously given by Eq. 4.7

%n+1( ) ^’n^n.C'b) (4.7)

If xn(+) is characterized by a variance P„(+) = £"{(xn(+) — xn)2} , where
E {.......... } denotes the expectation operator, the variance of £n+1(—)
will have a contribution of 4>^Pn(+) from the original uncertainty in 
xn(+). It will have a further contribution of Qn = £'[w^] from the 
unknown wn. Denoting the variance of xn+1(—) by Pn+1(—), we thus 
have Eq. 4.8 given as

Pn+l(-) = <*>n2Pn(+) + Qn (4-8)

Suppose a measurement is made of the scalar yn+1 which is linearly 
related to xn+1 and given by Eq. 4.9

yn+l = ffn+l*n+l (4-9)

Let the actual measurement be be given by Eq. 4.10

yn+1 = Hn+1xn+1 + vn+1 (4.10)

Where vMl is drawn from a zero mean distribution and represent 
measurement noise. If we denote the variance of this measurement 
by Eq. 4.11

fin+l = ^n2+1) (4.11)
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We may, as in the time invariant case, seek an update estimate of 

xn+i(—) which we denote xn+1 (+) of the form given by Eq. 4.12

^n+l(~k) %n+lC ) "k ^n+lDPn+l ^n+l^n+lC )1 (4.12)

We seek the Kalman Gain Kn+1 which minimizes the variance of xn+1 (+) which 

we will denote by Pn+1 (+) , and hence gives rise to an updated estimate with the 

minimum possible uncertainty.

If we use the notation A to represent a change in a variable, we have 

Eq. 4.13

Axn+i(+) — (1 kn+iHfn.-i)Axn+x( ) + kn+iAyn+i (4.13)

Hence
^n+l("h) = (1 kn+l^n+l)2fn+l( ) 4 ^n+l^n+1 (4-14)

By differentiating the Eq. 4.14 with respect to Kn+1 and setting the 

result equal to zero, we may solve for the value kn+1 that minimizes 

Pn+1(+) we get Eq. 4.15

n+1 “ H^+1Pn+i(-)+R„+1

It then follows that, with this value of kn+1,

*W+) = (1 “ K+iHn+1)Pn+ii-') (4-16)

The Kalman filter estimates a process by using a form of feedback control: 

filter estimates the process state at some time and then obtains feedback 

in the form of (noisy) measurements. As such, the equations for Kalman
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filter fall into two groups: time update equations and measurement 

update equations as shown in Fig 4.3-1. The time update equations are 

responsible for projecting forward (in time) the current state and error 

covariance estimates to obtain apriori estimates for the next time step. 

The measurement update equations are responsible for feedback—i.e. for 

- incorporating a new.

Time Update Measurement Update
(“Predict”) (“Correct'")

Fig. 4.3-1 Discrete Kalman filter cycle

The time update equations, can also be thought of as predictor 

equations, while the measurement update equations can be thought 

of as corrector equations. Indeed the final estimation algorithm 

resembles that of a predictor-corrector algorithm for solving 

numerical problems as shown below in Fig 4.3-2.

The specific equations for the time and measurement updates are 

presented below in Eq. 4.17 and Eq. 4.18.

xk = + Buk (4.17)

Pii = APk-iAT + Q (4.18)

'...-........ ...... ........ ................. ................. .........
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The Discrete kalman filter measurement update equations are given 
by Eq. 4.19

Kk = PkHT(HPkHT + i?)"1 (4.19)

%k = *k + Kk(zk - tfXfe)

Pk = (.l- KkH)P£

The first task during the measurement update is to compute the 

Kalman gain, Kk. The next step is to actually measure the process to 

obtain zk, and then to generate an state estimate by in corporating 

the measurement as in Eq. 4.19. The final step is to obtain an error 

covariance estimate.

After each time and measurement update pair, the process is 

repeated with the previous estimates used to project or predict the 

new estimates. This recursive nature is one of the very appealing 

features of the Kalman filter-it makes practical implementations 

much more feasible. Fig 4.3-2 shows below a complete picture of the 

operation of the filter combining the high level diagram with the 

equations.
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Fig. 4.3-2 High Level diagram of the Kalman filter

4.4 Harmonic Estimation using Kalman Filter

Kalman filtering technique is used in this thesis to calculate the 

amplitude and phase angle of power system harmonics up-to 25th 

order. The real time tracking of the frequency component of line 

voltage and current harmonics is performed by means of the 

application of Kalman filter to the samples of voltage and current 

signals. A mathematical model of the signals in state variable form 

is implemented including all the possible spectral components 

which may be associated with signal to be analyzed.

Kalman filtering provides means for estimating the parameters of 

time-varying signals. In case of voltage signals a natural choice of 

the model is that consists of the fundamental frequency component 

and a certain number of harmonics N
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Consider a signal with a frequency to and a magnitude of A (t), 

where A (t), represent a combination of a constant value plus a 

time-variant component. Considering a reference rotating at on, the 

noise free signal may be expressed by Eq. 4.20.

s(t) = 4(t) cos(&)t + 0) = A(t)cosdcoso)t — A(t)sindsina)t (4.20)

Let xt be 4(t) cos(0) and x2 be 4(t) sin(0); therefore, each x± and 

x2 includes two componens. One component is constant but 

unknown. The other component may be time-varying. The variables 

xx and x2 represent the in-phase and quadrature-phase components 

and referred to as state variables. This leads to the following state 

equations given by Eq. 4.21.

Where wt and w2 allow the state variables for random walk (time 

variation). The measurement equation would include the signal and 

noise and it can be represented as Eq. 4.22.

Where vk represent the high frequency noise.

State Variable Representation of a Signal that Includes n Harmonics

A noise-free current or voltage signal s(t) that includes n harmonic 

may be represented by Eq. 4.23.

(4.21)

(4.22)

144 | P a g e



On Line Tracking of Harmonics in Power Systems

s(t) = 2?=i At (t)cos (iwt + 0i) (4.23)

Where
4{(t) is the amplitude of the phasor quantity representing the 

1th harmonic at time t,

9i is the phase angle of the ith harmonic releative to a 

reference rotating at ico,

n is the harmonic order.

As indicated in the previous subsection, each frequency components 

requires two state variables. Thus, the total number of state 

variables is 2n. These state variable are defined as Eq. 4.24

xt(t) = A1(t)cos81 , x2(t) = A1(t')sin01 (4.24)

x3(t) = A2(t)cos02 , x4(t) = A2(t)sin02

%2n—1(0 — 'hi(t)ros0}l > %2n—1(0 An(t)sin8n

These state variables represent the in-phase and quadrature 

phase components of the harmonic with respect to a rotating 

reference. Thus, the state variable equations may be expressed as 

Eq. 4.25:

*i
*2

■*•271—1 

- -

1 0.0 0- r *1 i r0 1 : 0 0 x2 0C2
... .... + ... .0 0.1 0 x2n-t K2n-1-0 0:0 1-

- x2n - ■ oC2n -

(4.25)

The measurement equation can be then expressed as Eq. 4.26
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Zfr — Hkxk + vk —

■ cos (mfcAt) ’ T r *i
—sin (mfcAt) x2

cos (nmfcAt) xZn-l

—sin (ncokAt). L X2n

(4.26)

It should be indicated here that Hk in this case is a time varying 

vector. A constant Hk vector can be obtained if a stationay reference 

is used in the state variable representation.

Selection of Kalman Filter parameters

1. Initial process vector (x0)

As the Kalman filter model started with no past 

measurement, the initial process vecot was selected to be zero. 

Thus, the first half cycle (8 milliseconds) is considered to be the 

initialization period.

2. Initial covariance matrix (Pq)

The initial covariance matrix was selected to be a 

diagonal matrix with the diagonal values equal to 10 pu2.

3. Noise variance (R)

The noise variance was selected to be constant at a value 

of 0.05 pu2. This was based on the background noise variance 

at field measurement.

4. State variable covariance matrix (Q).

The matrix Q was selected to be 0.05 pu2.

The Kalman filtering technique is used here for the estimation of the 

fundamental and harmonic components of the three-phase system.
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The design of a Kalman filter required a state-space model of the 

signal to be estimated in the form

xk+1 = 0xk+wk (4.27)

zk = Hxk + vk

Where,
xk is the r x 1 process state vector at time tk 

0 is the rxr state transition matrix.
wk is a r x 1 noise vector-assumed to be white sequence with known

covariance matrix Q

zk is a m x 1 vector measurement at tk
H is the mxrmatrix giving the noiseless connection between the 

measurement and the state vector.
vk is a m x 1 vector measurement error-assumed to be white noise 

sequence with known covariance matrix R and uncorrelated with wk 

sequence.

To start the Kalman filter recursive estimation, an initial process 

vector (x0) and the associated initial covariance matrix (P0~) are 

needed. The initial covariance matrix describes in a statistical sense, 

the range of variations of the state vector x from the initial process 

vector x0. In general, the error covariance matrix (P0~) associated with 

an apriori estimate £k is defined by Eq. 4.28:

Pfc = E[ekekT] = E[(xk - xk}(xk - xk)T] (4.28)

Having an apriori estimate, xk, and the associated error covariance 

matrix, Pk, we now wish to optimally approve the estimate using the
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measurement zk. This is achieved by a linear blending of the noisy 

measurement and the prior estimate according to the Eq. 4.29

xk = xk Kk(zk HkXk) (4.29)

Where

xk is the updated estimate,

Kk is the blending factor.

The idea is to find the particular blending factor that yields an 

optimal updated estimate. This is achieved by forming first the 

expression for the error covariance matrix associated with the 

updated estimate as Eq. 4.30:

Pk =£[efcef] = E[(xk-rfc)(xfc-xfc)r] (4.30)

Now, we wish to find the particular Kk that minimizes the diagonal 

elements of the matrixPfc, because thse elements represent the 

estimation error variances of the state vector components. This 

particular blending factor is called the Kalman gain and is given as 

Eq. 4.31:

Kk = PkPl QikPkHl + RkT1 (4.31)

The covariance matrix associated with the optimal estimate may 

now be computed as shown in Eq. 4.32

Pk = {l-KkHk)Pk (4.32)

Now there is a means of assimilating the measurement at tk ,by the 

use of optimal Kk, xk and Pk . At the next step, we need xk±1 and Pk+x
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to make an optimal use of zk+1. First, the update estimate xk is 

projected ahead via state transition matrix (0fe) to obtain the apriori 

estimate £k+1. As given in Eq. 4.33

£fe+i = 0k%k (4.33)

The error covariance matrix associated with, xk+1 is then obtained 

by forming the expression for the apriori error given in Eq. 4.34

ek+1 = Xfc+i - Xk+i = 0kek + wk (4.34)

Thus,

Pk+1 = E[ek+iekIil = 0kPk0k + Qk (4.35)

It should be noted that the Kalman gain, in usual linear recursive 

Kalman filter, is independent of measurements. Thus, only equation 

B-6 and B-10 needs to be computed on-line. The Kalman gain 

vector, which is the key parameters, can be computed off-line.

Kalman Model Development

For the purpose of model development it is assumed that the voltage 

and current signals are band-limited and strictly periodic. The 

discrete-time state-space representation of a periodic signal having 

harmonic components up to nth order with samples zk at time c can 

be given by Eq. 4.36

xk+1 = 0xk (4.36)

zk =
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Where xk is a (2n+) state vectorgiven by Eq. 4.37

0 = 0
■ 0

0
f(jup)

0

O'
0
1.

(4.37)

Where 0 = coT, at is the fundamental supply frequency in randians 

per sec and T is the sampling interval in sec.

0(i<p) cos (i<p) 
.sin (tip)

-Sin.^ll=l,2,
COS (l(p) J .n

And

H = [ 1 0-0 1]

(4.38)

The harmonic components /i£(rms) are given by Eq. 4.39

tif = (xk{2i — 1) + xk(2i))/2 ,1 = 1,........ n (4.39)

hQ = xk(2n + 1)

Where i-th element of xk is represented by xk(_i)

The design of a Kalman filter involves computation of the model 

parameters 0,H, Q, R,Pq and the resulting Kalman gain Kk. The 

matrices 0 and H are obtained by assuming Xq. In order to find the 

matrices Q, R and P$, it is required to have voltage and current 

signals under various harmonic conditions. The initial estimation 

error covariance matrix Pq is assumed to be diagonal with non zero 

elements equal to the squares of the standard deviations (variances) 

of state variables. The measurement noise variance R is assumed to 

be constant and it obtained as the sum of the variances of all the 

high frequency components.
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dc, fundamental and up to twenty-fifth harmonic components of 

current signals. The real-time current and voltage signals are 

sampled and processed through this twenty six state Kalman to 

estimate the magnitude of various frequency components such as 

fundamental, second, third and so on.

Various input parameters for Kalman filter estimation are as follows: 

Sampling frequency = 100kHz

Initial state x0 = [0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0]

Measurement noise variance (Sigma n) = 0.01 

Process noise variance (Sigma v) = 0.0000005

Error Covariance
'0.48 0 0000000000000 0 000000000

0 0.48 00000000000000000000000
M =

0
0

0 0 00000 0 000000 0 0000 0 00000 0.48

(4.40)

Decaying DC parameter = 1000

oe#l> -shthi) 0 0 0 000000 0 000000000 0 0
s®(Al) cos(M) 0 0 00000000000 0 000000 0

0 0 0*0 00000000000000 0 000 0 
0 0 MB) cos(/S) 000000000000000000 0

0
0
0
0

0
0
0
0

0
0
0
0

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0

00000000000 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
00000000000

0 0 0 0 0 0 0 oae(/t23>
0 0 0 0 0 0 0 sin(H23)

000 0 000 0
0000000 0

-4si)QS) 0 0

COiKB) 0 0
0 as(/i25) -MfQS)
0 sin(A25) oMttS)

(4.41)

Where,
hi = 2*pi*f*T;
h3 = 3*2*pi*f*T; 
h25 = 25*2 *pi* f *T;
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f is the fundamental frequency 

T = l/fs is the sampling time 

B = [sigraanA2]

0
0

0 0000000000000000000000 0
sigm? 0000000000000000000000 0

0 0000000000000000000000jp
0 0000000000000000000000 0

0
0

0

sit

(4.42)
The input signal values are sampled and then given to the Kalman filter, 

Since it is required to calculate amplitude and phase angle of dc, 

fundamental and upto 25th order of harmonic. Each model of Kalman 

filter is tuned for a particular parameter. For example one model is for 

fundamental amplitude estimation, other model for 2nd harmonic and so

on.

Using these values the Kalman gain and the error covariance matrix 

values are computed and the magnitudes of fundamental and harmonic 

components were estimated.

4.5 Simulation

The Kalman filter is modeled in MATLAB software for estimation of 

harmonics up-to 25th order. Fig 4.5-1 shows the functional diagram 

of the system.
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Fig. 4.5-1 Screen shots for harmonic measurement using Matlab

The total system is divided into three minor sub-blocks. The first 

subsystem consist of all the input elements to be modeled into 

system, the second block consist of Kalman filter block and the third 

block is display block which displays harmonic magnitudes of the 

various harmonics.

Fig 4.5-2 shows the detailed of block-1. As shown in Fig 4.5-1 the 

various order of harmonics are feed into system using switch and
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magnitude, frequency were set accordingly, and can be varied 

during run time.

fir *1
r* 11 **
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Fig. 4.5-2 Screen Shot of the input block

The system is modeled for the odd harmonics, since they are more 

frequently present in the system. The magnitude of the harmonics is 

increased from 0.1 to 50% of fundamental value, the angle with 

which the harmonic component is added to fundamental is not 

considered in this thesis.
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The Kalman filter is added in block 2, Fig 4.5-3 shows the detailed 

version of block 2. As shown in Fig., program for Kalman filter is in 

m-fite which is called from block using the parameter module as 
shown in Fig 4.5-4 and Fig 4.5-5.

Fig. 4.5-4 Screen Shot of the m-file linker block

As shown in the Fig 4.5-5 the model extracts magnitude and phase 

components from the block.
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DC Amplitude

Fig. 4.5-5 Screen Shot of the output block

Fig 4.5-6 shows tracking of fundamental component and Kalman filter 
output. It can be seen from Fig 4.5-6, that magnitude of fundamental 
computed by Kalman filter and actual change in fundamental value. 
The time needed for Kalman filter to track the change in fundamental is 
less than 0.01 sec.
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Fig. 4.5-6 Simulation results of the Kalman filter

Fig. 4.5-7 Kalman filter estimated and actual signal
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As described before the system is modeled for estimation of various 

harmonics. Fig 4.5-7 shows the estimated magnitude of third 

harmonic and fundamental component. It can be seen from the Fig. 

that after initial estimation, output of Kalman filter tracks 

magnitude continuously sample by sample.

Fig. 4.5-8 Estimated Magnitude of Fundamental and Third Harmonic
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Fig. 4.5-11 Estimated Magnitude of Fundamental and Ninth Harmonic

Fig. 4.5-12 Estimated Magnitude of Fundamental and Eleventh Harmonic
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On -line estimation of various harmonics is done by kalman filter 

which enables to determine the magnitude of harmonic components 

at any instant of time. The system is also tested with harmonics up- 

to 25th order. The computation burden for such a large model has 

been increased tremendously. The signal is shown in Fig 4.5-13
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Fig. 4.5-14 Input signal with harmonic upto 25th order

The system was tested by injecting harmonic up-to 25 orders and 

then suddenly harmonic components were removed. The kalman 
filter was able to track magnitudes of harmonics. The harmonic 

magnitudes computed by Model are as shown in Table 4.5-1.

Harmonic Actual Estimated %
Order Magnitude Magnitude Error
1 100 99.99 0.01
3 50 49.74 0.52
5 25 19.76 1.16
7 25 19.43 0.32
9 20 19.97 0.005
11 15 14.53 1.2
13 15 14.74 1.2
15 15 14.68 0.6
17 15 14.94 0.004
19 10 10.01 0.001
21 10 10.01 0.001
23 10 10.01 0.001
25 10 10.01 0.001

Table 4.5-1 Simulation results
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4.6 Hardware and Software

The proposed hardware system for harmonic tracking using kalman 

filter will be as shown in the Fig 4.6-1. The system voltage and 

current signal are converted into voltage range suitable for 

measurement using potential transformer and current transformer. 
The output of P.T and C.T are converted into unipolar using a level 

shifter circuit. Three voltages and current channels are then given to 

Channel A and Channel B of the internal ADC of DSP. The Kalman 

filter is implemented into DSP. The hardware designed is a 

multiprocessor based system in which one processor continuously 

measure frequency and send’s the data to the SPI bus. The SPI bus 

is interconnected to all five DSP boards. The frequency data is used 

by Kalman filter to determine the various magnitude and phase of 

various orders of harmonics. The details of the hardware can be 

found in chapter 6.

The Software program is written in C language to model Kalman filter. As 

shown in fig the multiprocessor system developed along with the VB 

based software interface for display of various parameters on the system.
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Fig. 4.6-1 Experimental Set-up for harmonic measurement

4.7 Flowchart

The flow chart for high level software for on-line tracking of 

harmonics using Kalman filter will be as shown in Fig.4.7-1. The 

detailed description of the software!can be found in chapter 6.
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STOP

Fig. 4.7-1 Flowchart for harmonic estimation using Kalman filter

165 (Page



On Line Tracking of Harmonics in Power Systems

4.8 Results

VB based software has been developed in-house for displaying the 

various parameters computed by multiprocessor system. As shown 

in Fig 4.8-1 the waveforms of the three phase voltages and current 

signals and Fig shows the estimated magnitude of harmonics up to 

25th harmonics.The harmonic plot as computed by the system is 

shown in Fig 4.8-2.
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Fig. 4.8-1 VB Screen shot for harmonic measurement
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Fundamental Values f Frequency Waveforms JiiBonicsj

~ Fraresl B-
Parameter Vm Vim Vbn Ir ly lb
THDM 1.07 .83 .85 1.48 .8

k

'Frame15-
Hamionie Voltage Voltage Voltage Current Current Current
Order Vm Vyn Vbn Ir ly lb

1 080.88 000.88 000.86 000.85 000.91 000.83
2 000.00 008.00 000.00 000.01 000.00 000.00
3 000.01 000.00 000.00 000.00 000.00 000.00
4 000.00 000.00 000.00 000.00 000.00 00800
5 000.01 000.00 000,01 000.01 000.00 000.00
6 000.00 000.00 000.00 000.01 000.00 00800
7 000.00 000.01 000.00 000.00 000.01 00800
8 000.00 000.00 000.00 000.00 000.00 00800
S 000.00 000.00 000.00 000.00 000.00 00800

10 000.00 000.00 000.00 000.00 000.00 000.00
11 000.00 .000.00 000.00 000.00 000.00 000.00
12 000.00 000.00 008.00 000.00 000.00 00800
13 000,00 000.00 000.00 000.00 000,00 000.00

s
S‘-

Sfij

Fig. 4.8-2 Results displayed on VB Software

4.9 Conclusions:

The chapter presents one more digital technique for real time estimation 

of harmonics. The chapter covers the traditional technique used for 

measurement of harmonics and reveals the problems in these technique. 

The chapter describes the use of adaptive filter for harmonic estimation in 

power systems. The use of adaptive filter has an added advantage for 
dynamic parameter such as harmonics. Since harmonics are dependent 

on load and in an industrial/ interconnected system load varies 

frequently and Kalman filter describes is able to track the change of
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harmonics level. Based on the computation and findings of the proposed 
algorithm, following conclusions have been drawn:

• A comparison of the various methods is done which are used for 
harmonic estimation. The chapter describes the advantage and 
disadvantage of the various methods and proposes an adaptive and its 
implementation in power system.

• The chapter models the Kalman filter for real time estimation of 
harmonics using a modeling matrix. The mathematical modeling and the 
time taken for estimation of harmonics is compared with Kalman filter. 
The chapter, also covers the simulation results obtained under various 
conditions.

• The chapter also implements the Kalman filter on a digital platform and 
proves its validity.
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