
CHAPTER V
Use of More Powerful Decision Rule on Economic Design of 
x-Control Charts

S.l Woodall <1986) raised some controversy to the economic 
approach to design the control charts. He mentioned that the 
economic model balances the cost of poor quality against the cost 
of sampling and the cost of finding the assignable causes and 
repairing the process. The statistical performance of the 
economically designed control chart is ignored. He, furthermore, 
mentioned that in many cases the calculated cost savings may be 
misleading and the optimal economic control charts may have poor 
® t a tis tic a1 performsn ce.

However, we feel that there is no point in debating like 
this. One should decide in advance whether one wants to design 
the control chart

<.i) to have the minimum cost 
or (ii> to have the better statistical performance 
or <iii> to have both simultaneously.
I f one decides to have the first case one should accept 
whatsoever the design that comes up. If one decides to have the 
second case then it may be noted that he is indifferent about the 
cost aspect. However, the third case is a sort of compromize. If 
one decides to have the third case one can optimize the cost 
subject to achievement of better statistical performance. But in 
this case it is likely that one has to pay more cost, in the
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sense that the minimum cost under the third case may be more than 
the minimum cost under the first case.

In this chapter we study the effects of using a more 
powerful decision rule on the total expected cost of
Knappenberger and Brandage's <1969) cost model. It is observed 
that the total expected cost of controlling the process increases 
when the more powerful decision rule is used.

5.2 Knappenberger and Grandage's (1969) Cost Model.
Knappenberger and Bandage (1969) developed an economic model 

for x-chart for a process subject to multiplicity of assignable 
causes. Montgomery et al. (1975) used this model in the
development of np-chart. The model is well explained in chapter 
IV while studying the model under different sampling schemes. In 
the Knappenberger and Grandage's <1969) model for x-chart, it is 
assumed that the process mean p is a continuous variable which 
can satisfactorily be approximated by a discrete variable taking 
the values p0, p^, ... ps. The value p0 is associated with the
in-control state and the remaining values p1? P2# »■ »» ps are
associated with the out-of-control states.

The total expected cost per unit under the Knappenberger and 
Brandage's (1969) model (recalling <4.2.6) and making suitable 
changes for complete sampling) is

Sj+Sgri a-^a' g
---- ---- + ——-- -i- a^r' fE<C> ■ <5.2.1)



Here, the -first term of the above expression corresponds to the 
expected cost per unit o-f sampling and inspection and is denoted 
by E(Cj), the second (or the middle) term corresponds to the 
expected cost per unit o-f -finding the assignable causes and 
repairing the process and is denoted by E(C2>, the third (or the 
last) term corresponds to the expected cost per unit of producing 
nonconfoming units and is denoted by E(C^)»

The cost coefficients a^i - 1,2,3,4) involved in (5.2.1) 
are known and are independent of the design variables.

The explanation of the vector £ is as follows. The term f^ 
(i ~ 0,1, s) is the pobability of getting a nonconforming
unit when the process is in the state (i ca 0,1, ...., s) . In
the Knappenberger and 8randage's (1969) model it is assumed that 
a unit is nonconforming if its measurement falls outside -the 
limits pQ ± 3ff. Using this assumption and specifying p^ !8s p0 + iff 
(i » 1,2, s) as done by Knappenberger and Brandage (1969)
the pobabilities f^ (i = 0,1, s) can be easily obtained from
the standard normal tables.

The probability vectors q, a, r are functionally related to 
the design variables. The vector q is explained in the next 
section. For the given vector q, the procedures for evaluating a 
and n are well explained in Section 4.2.4 of chapter IV. The 
expression for vector a is given by (4.2.15) and the expressions 
for rD and r^ (i, « 1,2, ..., s) are given by (4.2.16) and
(4.2.18) respectively.



5.3 Use of More Powerful Decision Rule
The decision rule given by Knappenberger and Grandage <1969) 

on the basis of inspection of n units after the production of 
every k units is as follows s

Reject the hypothesis HQ s p » pD, if the sample point falls 
outside the control limits pQ - Lo7<J"n and pQ + Lcr/Tn. According 
to this decision rule the probability of rejecting H0 s p ~5 pQ 
under Hj : p = p^ is

q^ « P ( x>Pq + Lcr/fn | p » p^ ) + P < m<Pq - Lff/Jn | p « p^ )
83 P<x>p0 + Lcr/4'n j p = Pq + icr)+P( x<p(-) - Lff/fn | p - p$ + iff)
•- P ( Z > L - i*Tn > + F < 2 < -L - iJTn ) . . . (5.3.1)

where Z is a standard normal variable.
It may be noted that q^ represents the power of the decision rule 
when p * Pj_ < i aa 0, 1, .»», s).
The proposed more powerful decision rule is as given below.

Reject the hypothesis H0 s p 58 pQ not only when a sample 
point falls outside the control limits but also when seven 
successive sample points fall between the center line and the 
upper control limit or between the lower control limit and the 
center line.

The decision rule proposed above is a well known statistical 
technique to detect the shift in the process average. It is based 
on the theory of runs. It is discussed, for instance, by E. L» 
Grant and R. S. Leavenworth (1980). Under this new decision rule, 
the probability of rejecting HQ s p ■ p0 is given by
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Wi = Qi + C P < M0 < x < p0 + Lff/Tn [ p = l-'i n7

+ t P ( |.iC) - Lcr/Tn < x < p0 | p « Mi n7

n n d ( u) "7 ^ \a ‘J* a j£h r
Here wA (i = 0, 1, . . . , s) represents the power of the new
decision rule.

Since wA > qA we can see that the power of the new cleeision
rule is grater than that of the •former.

The total expected cost per unit for the new decision rule 
is
E (C) 53 (a^ +a^>n ) /k + a-:>|<3' w /k + a^r f . . .(5.3.3)

The breakup of the r.h.s. of (5.3.3) into E(C|), E(C^) and 
E<C^;> is as obvious as done just after (5.2.1).

It appears as if the only difference between the expressions 
(5.2.1) and (5.3.3) is that the vector q is replaced by the 
vector w. However, it is something more than this. It should be 
remembered that the vectors a and r are to be evalued a fresh 
from the expressions (4.2.15), (4.2.16) and (4.2.18) after
substitution of w in place of q. The new values obtained for the 
vectors & and r. are to be substituted in the expression (5.3.3) 
to evaluate E(C) which gives ultimately the total expected cost 
per unit for the new rule.

5.4 Comparision of the two Decision Rules from the Cost Point of 
View
5.4.1 The Sample Example

To make the comparision of the two decision rules from the 
cost point of view we consider the following example given in
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Knappenberger and Brandage <1969)
Let aj ^ $ lo, a-> ok ^ 1 , a3 “ $ lOV, a^ 5a *l» 10.
Let X ® 1, R« 1000, n " 0.376.
For this combination of the cost coefficients and systems 

parameters, the optimal values of the design variables <n, k, L) 
are obtained by Knappenberger and Brandage. We could have 
utilized these values for our study. But we prefer to recalculate 
them independently for the following reasons.
<1> The mistakes are noted in their expressions for the matrix 
B*. The corrected expressions are given in Section 8.2 of 

Chapter VIII. The numerical values of B obtained by them are 
also not correct.
(2) They give only the optimal values of the design variables 
(n, k, L) with minimum E(C). No intermediate terms such as E-iCCj), 
E(C2) s £<83) are given in their paper. So the information given 
by them is inadequate when we make a comparative study of the 
performance of the two decision rules from the cost point of 
view.

The corrected optimal values which minimize the expression 
(5.2.1) -for the total expected cost per unit of the product 
( under the original rule ) are given bellow in the tabular form.
Using these values of ( n, k , L ) we calculate E(C^) , E(C2),
E(C3) and E(C) ( under the original ru 1 e ) given by the
expression (5.2.1). Using the same values of ( n9 k, L ) we
calculate Ed^), E(C:2 >, E < C3) and E(C) under the proposed new
decision rule given by the expression / CT "i«*

\ %mf tt S»* H *3).These expected
costs are as given below



Design Variables Expected Costs Expected Costs
Used < Original Rule ) ( New Rule )

n - 3 ECC^ - 0.2826 E(C j) ■ 0.2026
k “ 46 E<C2> 88 0.1104 E<C2) 88 0.1413
L - 2.70 E<C3) ■ 0.3421 E(C3) « 0.3303

E(C) » 0.7351 E < C) “ 0.7542

We have the -following results from this example.
(1) The expected cost per jjnit of sampling, E<Cj), remains the 
same under both the decision rules and it should be the case as 
the same triplets is used for both the rules.
(2) The expected cost per unit of finding the assignable causes 
and repairing the process, E<C2>, increases when a more powerful 
decision rule is used.
(3) The -expected cost per unit of producing nonconforming items, 
E<C3>, decreases when a more powerful decision rule is used.
<4> The increase in E<C2> is grater than the decrease in £<03). 
Hence the total expected cost per unit of the product increases 
when a more powerful decision rule is used.

The probability vectors q and w found under the two decision 
rules are as follows. The optimal design variables n ™ 3, k » 46, 
L - 2.70 are used for the calculation of both qand w.
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M0 Ml l-'2 M3 M4 Ms M6

Original 
Rule (q)

. 0069 . 1665 . 7776 . 9937 .9999 1 .00 1.00

New Rule 
< !&)

.0218 a 3616 . 7776 .9937 1«00 1 .00

Differ— 
ence

.0149 .1952 0 0 0 0 0
% diffe­
rence

215.94 117.24 0 0 0 0 0

From the above figures it is ravealed that under the new 
decision rule the probability of detecting a small shift namely, 
the shift from the state p0 to state pj is increased from 0.1665 
to 0.3617. Thus there is an increase of 117.24 "A. This shows that 
the smaller shifts in the process are detected with high 
probability if the new decision rule is used. Of course, it also 
has a consequence of increasing the probability of false alarms 
( from 0.0069 to 0.0218 i.e. 215.94 "A ). The effect of this 
increase has the natural reflection into the cost aspect by 
increasing EU".^) and hence E(C).

5.4.2 Additional Examples
W® now consider 18 combinations of the cost coefficients and 

the systems parameters given by Knappenberger and Grandage 
(1969). Using Hook-Jeeves direct search technique we obtain the 
optimal values of the design variables ( n, k, L ) under the? 
original rule for all the 18 cases. These optimal values of ( n, 
k, L ) minimize the expected total cost per unit of the product
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< under the original rule ) whose expression is given by (5.2.1). 
Using these optimal values we calculate E(8j), E(82), £(83) , E<0) 
under the original rule.

Furthermore, using the same optimal values of < n, k, L ) we 
calculate E(Cj), E<C2>, E<83), E(C) < under the new rule ) whose 
expression is given by (5,3.3).

These values are given in Table 5.1. It is observed that in 
all the 18 cases the behavior of E(C^), E<82), £(83) and E(C) are 
analogous to those observed in the sample example, i.e, E(8j) 
attains the same values under both the decision rules, E<82> 
increases under the new rule whereas E<8«.T) decreases under the« W

new rule. Furthermore, it is observed that the increase in E<82) 
.is grater than the decrease in £(83), which ultimately leads to a 
higher expected total cost.

From these additional examples also we find that the use of 
a more powerful decision rule has an effect of .increasing the 
total cost of controlling the production process.

5.5 More Exact Comparision
In section 5.4 the optimal values of the design variables 

( n, k , L. ) are obtained under the original decision rule. Using 
these optimal values of ( n, k, L ) we have calculated E(8j), 
E<82), £(83) and E<8) for both the decision rules. Then 
comparisions are made between E(8j), E<82), £(83), E<8) derived 
under the two decision rules. It seems to be customary to use the 
same optimal design variables even after making some
modifications in the mathematical structure of the model such as
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using the new decision rule in place of the original rule.
For instance, in an example given in Montgomery's <1991) 

hook on page number 420 he has explained the problem of 
minimising the total expected cost. His cost model involves three 
design variables ( n, h, k ) where n is the sample size, h is the 
interval between two successive samples and k is the multiple of 
o/fn. In the solution he obtains the optimal values of (n,h,k) as 
follows, n » 5, k = 2.99, h “ 0.62. He finds that the optimal 
values of h = 0.62 is not convenient from the operation point of 
view. He proposes to take h = 0.75 < i.e. 45 minutes ) with the 
same optimal values of n and k. In reality he should have 
considered the problem of minimizing the total expected cost 
which is now a function of only two design variables < n, k ) 
with h «* 0.75 as one of the constants in addition to the set of 
constants that he already has. The optimal values of < n, k ) 
derived in this situation may not be the same as the original 
n = 5 and k = 2.99. In fact had he proposed to take h = 1, the 
optimal values for n and k would be n = 6 and k = 2.99.

Somewhat objectionable situation similar to the one as 
described in the above paragraph exists in the problem being 
studied here. The values of the design variables < n, k, L ) 
which minimize E<0) given by (5.2.1) may not be the same as the 
values of < n, k, L ) which minimize E(C) given by (5.3.3). This 
means that the optimal values of < n, k, L ) under the original 
rule may not be the same as the optimal values of < n, k, L ) 
under the new rule.
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To make the comparision more realistic one should compute 

the values of < n9 kH L ) which minimize ECO given by (5.3,3). 

These optimal values will minimize ECO under the new rule. In 

this section we obtain the optimal values of < n, k, L ) which 

minimize E(C) under the new rule for all the 18 cases studied in 

Section 5,4, The optimal design variables and the minimum ECO 

under the new rule are given in columns (7) and (8) respectively 

of Table 5-2. The optimal design variables and the minimum E(C) 

under the original rule are also given in columns (5) and <6) of 

Table 5.2 for comparision.

For all the 18 cases it is observed from columns (6) and (8) 

of Table 5.2 that the minimum ECO derived under the new rule are 

grater than the minimum ECO derived under the original rule. 

This result is the same as the one observed in Section 5,4.

Thus we find that both the comparisons - the less 

sophisticated comparision as done in Section 5,4 as well as the 

more exact comparision done in this section lead to the same 

conclusion that the use of the more powerful decision rule 

increases the total expected cost of controlling the process. If 

one wants to use a control chart with more powerful decision rule 

one should be prepared to pay a higher cost. Of course, the 

advantage in using a more powerful decision rule is obvious that 

one would'detect more often the smaller shift in the process when 

it exists.
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Table 5.1

The optimal design variables of the original rule and ECC^), E<Dj), Ett^), E(C) of 
both the rules calculated for these design variables.

al

(1)

®2

(2)

a~,r

<3)

T£

<4)

Optimal design 
variables 
(Original Rule) 

(5)

Expected costs 
(Original Rule)

(6)

Expected costs 
(New Rule)

(7)

10 1 10 0.376 n »• 2 E(Cj) «■ 0.2608 E(Cj) » 0.260S
k « 46 E(C2) * 0.0280 £([>>) » 0.0297
L - 1.70 E(Cr) » 0.3207 £(□3) ■ 0.3200

-
E(C) “■ 0.6095 E(C) ■ 0.6105

10 1 100 0.376 n ■ 3 E(C^) ■ 0.2826 E(C1) - 0.2826
k - 46 E(Co) - 0.1104u.. E(CXj) - 0.1413
L - 2.70 E(Ct> - 0.3421 E(D3) ■ 0.3303

E(C) - 0.7:351 E(C> « 0.7542

10 1 1000 0.376 853 jty E(Cj) - 0.2BOO E(CX) - O.2B00
k _« 50 E(C2) = 0.9663 E(D2) » 1.2671
L. - 3.45 E(C-y) = 0.3822O* E(C-*) - 0.3903

E(C) - 1.6285 E(C) = 1.8974

Here “ $ 10., X ~ 1R = 1000„ s ~ 6
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Table 5.1 (Continued)

al c\n> £i*3 n Optimal design Expected costs Expected costs
variables 
(Original Rule)

(Original Rule) (New Rule)

(1) (2) (3) (4) (5) (6) (7)

10 :l 10 0.597 n = 2 £(0^ = 0.3529 E(Cj) » 0,3529

k = 34 E(Co> - 0.0169 E(D2) * 0.0213

L - 2.20 E(C-.r) » 0.3945 E(Ct) ■ 0.3936

E(C) » 0.7643 E(C) » 0.7679

10 l 100 0.597 n - 2 Ed^) - 0.3636 ElCj) » 0.3636

i. .M.K sX!* E(Cr») « 0.1071 E(D2) - 0.1518

L - 2.'95 E(C3) - 0.4028 E(Dr) - 0.3987

E(C) ■ 0.8736 E(C) » 0.9142

10 l 1000 0.597 n « 3 E(Cj) ■ 0.3611 E(Ct) « 0.3611

k - 36 E(C2> 83 0.9839 £(&>) - 1.4011

L - 3.65 E(Ct) = 0.4340
._|i

£(83) « 0.4265

E(C> - 1.7790 E(C) - 2.1887
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Table 5.1 (Continued)

*1 a2 tSHf n Optimal design Expected costs Expected costs
variables 
(Original Rule)

(Original Rule) (New Rule)
<n <2> <3) (4) (5) (6) (7)

10 1 10 0.000 n » 1 E(G:l) “ 0.3793 E(Cj) » 0.3793
k ■ 29 E(Co) » 0.0161 IrKD?) - 0.0207
L - 2.35 E(C?) = 0.4296o E(C*> ■ 0.4293

• E(C> - 0.0250 E(C) - 0,8294

10 1 100 0.000 n « 1 E(C|) - 0.3928 E(C1> - 0.39.28
k - 28 E(D2) »■ 0.1093 EfCg) - 0.1623
L - 2.95 E(Ct) » 0.4304 •>< E(Ct) “ 0.4293

* E(C) ■ 0.9326 E(C) ■ 0.9044

10 1 1000 0.000 n - 2 E(C1) « 0.4000 E(C1) ■ 0.4000
k •* 30 E(C2> •" 0.9866 E(C^) *» 1.4911
L « 3.90 E(C3) » 0.4455 E(Ct> « 0.4438

- E(C) « 1.0321 E(C) » 2.3349



Table 5.1 (Continued)

al

<1)

a2

(2)

<3hr

<3>

TE

(4)

Optimal design 
variables 
(Original Rule) 

(5)

Expected costs 
(Original Rule)

(6)

Expected costs 
(New Rule)

(7)

100 1 10 0.376 n ® 4 E<C1> - 0.6887 E<01) ■ 0,6807
k ■ 151 E<D2> ■ 0.0272 E(D2) == 0.0272
L ® 1.00 E<Ct) - 0.8247 E(C3) - 0.8247

E(C) - 1.3407 E(C) ■ 1.5407

IOC) 1 100 0.376 n B! 8 E(C1) - 0.7105 E(C|) ■ 0.7105
k » 152 E(D2) - 0,1075 EtDj) - 0.1147
L - 2.20 E(C3) - 0.8417 E(C3) ■ 0.8417

E(C) * 1.6597 E(C) » 1.6669

100 :t 1000 Qm$76> n = 10 EtCj) - 0.6790 E(Cj) » 0.6790
k « 162 E<P7> - 0.9193 E(D2) ■ 0.9988
L * 3.05 E(Ct) » 0.9136 E<Ct) ** 0.9130

E(C) - 2.5120 E(C> ■ 2.5909



Table 5.1 (Continued)

al a2 a3 TE Optimal design Expected casts Expected costs
variables (Original Rule) (New Rule)
(Original Rule)

(1) <2> (3> (4) (5) (6) (7)

100 1 10 0.597 — ••3'n ~ o £(0^ » 0.9626 E(Ct) a 0.9626
k a 107 E(8?) « 0.0177 E(Gg) ■ 0.0184
L !a 1»65 E(Cir> = 1.0843 £(%) - 1.0843

E(C) - 2.0647 E(C) - 2.0653

100 1 100 0.597 n iaa 4 E(Cj) - 0.9719 E(Cj) » 0.9719
k « 107 , EdSg) ■ 0.1011 EtCp) - 0.1135
L «■ 2.65 E(Ct) 58 1.0965v>< £(83) ~ 1.0939

E(C) = 2.1696 E(C) = 2.1794

100 1 1000 0.397 n « 5 E(Cj) - 0.9545 E(Cj) « 0.9545
k «■ 110 E(CO ■ 0.9482 £(83) » 1.0755
L “ 3.35 EiC?) « 1.1315 E(Ct) “ 1.1227

E(C> ~ 3.034-3 E<C) ■ 3.1528
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Table 5.1 (Continued)

al a2 iSS/X 71 . Optimal design Expected costs Expected costs
variables 
(Original Rule)

(Original Rule) (New Rule)
<1> (2) (3) (4) (5) (6) (7)

100 1 10 O.BOO n « 2 E(Cj) « 1.1087 E(Ct> ~ 1.1087
k ■ 92 £(&?) ■ 0.0123 ElCg) » 0.01:35
L ~ 2.20 E(C3) « 1.2129 E(Ct) “ 1.2128

E(C) » 2.3339 E(C) ■ 2.3351

100 1 100 o.eoo 0 = 2 E(Cj,) - 1.1087 E(Cj) - 1.1087
k 92 E(&,) ■ 0.0997

Ju>
E^) - 0.1010

L » 2.85 E(Cr) - 1.2198o E(C-:r) - 1.2195

E(C) - 2.4283 E(C) ■ 2.4292

100 1 1000 o.aoo n 3 E(C.a) « 1.0842 E(Ci> - 1.0842
k «> 95 E(D-,) « 0.9551j!u E(C2> - 1.1043
L ■ 3.65 E(Ca) - 1.2551 E(Dt) - 1.2542*w'

E(C) - 3.2944 E(C) - 3.4427
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Table 5.2

The optiial design variables and ElCj), E(C2), ElCj), E(C) under both the rules

ai

(1)

a2

(2)

a3

13)

s

14)

Original Rule Ne« Rule

Optisai design 
variables 

(5)

Expected costs

16)

Optiial Design 
variables

17)

Expected costs

18)

10 1 10 0.376 n ■ 2 ElCj) ■ 0.2608 n ■ 2 E1C|) a 0.2608

k ■ 46 E1CZ) ■ 0.0280 k * 46 E!C2) = 0.0297

l ■ 1.70 ElCj) = 0.3207 l ■ 1.70 E!C35 ■ 0.3200

EiC) = 0,6085 EiC) = 0.6105

10 1 100 0.376 n * 3 E(Cj) - 0.2826 n ■ 3 ElCj! a 0.2653

k ■ 46 E(C2) ■ 0.1104 k * 49 E(C2! = 0.1325

L ■ 2.70 E(C3) = 0.3421 L » 2.90 E(C3) = 0.3533

EIC) ■ 0.7351 EiC) » 0.7511

10 1 1000 0.376 n * 4 ElCj) ■ 0.2800 n = 4 ElCj) ■ 0.1842

k ■ 50 E(C2) * 0.9663 k = 76 E(C2) a 1,1379

L ■ 3.45 E(C3) ■ 0.3822 L a 3.50 E(C3J = 0.5083

EIC) = 1.6285 EiC) « 1.8304

Here a$ * 10, \ = 1, R = 1000, s = 6
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Table S.2 (Continued)

Original Rule Netf Rule

ai a2 a3 i Optical design Expected costs Optimal Design Expected costs
variables variables

US (2) !3) (4) (5) 16) (7) (8)

10 1 10 0.597 n * 2 E(Cj) = 0.3529 n ■ 2 E(C|) ■ 0.3529

k ■ 34 E(C2S = 0.0169 k ■ 34 E(C2) » 0.0204

L • 2.20 E(C5S = 0.3945 L ■ 2.25 E(C3) « 0.3945

EEC)** 0.7643 EEC) » 0.7679

10 1 100 0.597 n « 2 E(Cj» = 0.3636 n * 2 EECj) ■ 0.3333

k ■ 33 E(C2! * 0.1071 k « 36 E(C2) ■ 0.1483

L * 2.95 ElCj! = 0.4026 L * 2.90 EECj) = 0.4301

E1C) ■ 0.8736 EEC) = 0,9117

10 1 1000 0.597 n = 3 E(Cj) ■ 0.3611 n ■ 3 EECj) ■ 0.2407

k ■ 36 E(C2) ■ 0.9839 k = 54 E(C2) = 1.2461

L ■ 3.65 E(C3S = 0.4340 L - 3.55 E(C3) = 0.6144

EEC) ■ 1.7790 EEC) = 2.1013
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Table 5.2 (Continued)

Original Rule Net* Rule

al a2 a3 n Optimal design Expected costs Optimal Design Expected cos'ts
variables variables

(1! (2) (3) (4) (5) (6) (7) (8)

10 1 10 0.800 n = 1 E(Cj) » 0.3793 n = 1 E(C|) = 0.3793
k ■ 29 E(C2) « 0.0161 k * 29 E(C2) ■ 0.0207
L « 2.35 EtCj) ■ 0.4296 l = 2.35 E(C3) = 0.4293

E(C) ■ 0.8250 E(C) = 0.8293

10 1 100 0.800 n = 1 E(Cj) = 0.3928 n = 1 EfCj) » 0.3666
k ■ 28 E(C2) ■ 0.1093 k = 30 E(C25 = 0.1577
l = 2.95 E(C3) = 0.4304 L = 2.95 E(C3! = 0.4573

•

E(C) = 0.9326 E(C! = 0.9817

10 1 1000 0.800 n = 2 E(Cj) = 0.4000 n = 2 EICjl = 0.2608
k = 30 E(C2) = 0.9866 k = 46 E(C2! = 1.3033
L ■ 3.90 E(Cj) = 0.4455 L = 3.70 E(C3) ■ 0.6544

E(C) * 1.8321 E(C) ■ 2.2186



Table S.2 (Continued)

Original Rule New Rule

al a2 a3 X Optimal design Expected costs Optimal Design Expected costs
variables variables

(1) (2) (3) (4) (S) (6) (7) (8!

100 1 10 0.376 n = 4 E!Cj! * 0.6887 n = 4 E(C|) » 0.6887

k = 151 E(C2) ■ 0.0272 k * 151 E(C2) ■ 0.0272

L = 1.00 E(C3) = 0.8247 L ■ 1.00 E(C3) « 0.8247

E(C) ■ 1.5407 E(C) = 1.5407

100 1 100 0.376 n > 8 EiCj) ■ 0.7105 n * 8 ECCj) ■ 0.6967

k = 152 E(C2) * 0.1075 k ■ 155 E(C2) » 0.1159

L ■ 2.20 E!C3) ■ 0.8417 L = 2.15 E(C3) h 0.8540

ESC) = 1.6597 EtC) = 1.6668

100 1 1000 0.376 n = 10 E(Cj) = 0.6790 n - 6 E(Cj) = 0.6287

k ■ 162 E(C2) * 0.9193 k * 167 E(C2) « 0.9761

L ■ 3.05 E(C3) = 0.9136 L ■ 3,25 E(C3) = 0.9767

E(C) ■ 2.5120 EtC) a 2.5815



Table 5.2 (Continued)

Original Rule fen Rule

ai a2 a3 s Optimal design Ejected costs Optimal Design Expected costs
variables variables

(1) (2) (3) (4) (5) (6) (7) (8)

100 1 10 0.597 n 8 3 E(Cj) ■ 0.9626 n = 3 E(Cj) 8 0.9626
k » 107 E(C2) ■ 0.0177 k * 107 E(C2). 8 0.0184
l * 1.65 E(Cj) ■ 1.0843 L * 1.65 E(C3) 8 1.0843

E(C) ■ 2.0647 E(C) 8 2.0653

100 1 100 0.597 n 8 4 E(C|) 8 0.9719 n 8 4 E(Cj) 8 0.9629
k ■ 107 E(C2) 8 0.1011 k 8 108 E(C2) 8 0.1124
L ■ 2.65 E(C3) * 1.0965 L 8 2.70 E(C3) 8 1.1039

• E(C) * 2.1696 E(C) 8 2.1793

100 1 1000 0.597 n 8 5 E(C|) « 0.9545 n 8 3 EtCj) 8 0.8823
k « 110 E(C2) 8 0.94B2 k 8 119 ECC2) 8 1.0573
L * 3.35 E(C3) « 1.1315 L 8 3.50 E(C3) 8 1.2064

E(C) * 3.0343 EtC) 8 3.1461



Table 5.2 (Continued!

ai
(1)

a2
(2)

a3
(3!

s
(4)

Original Rule New Rule

Optiaal design 
variables 

(5)
Expected costs

(6)
Optiaal Design 
variables 

(7!
Expected costs

(8)

100 1 10 0.800 n ■ 2 E(Cj) » 1,1087 n ■ 2 EiCj) = 1.1087
k = 92 E(C2) » 0.0123 k = 92 E(CZ) = 0.0135
L = 2.20 E(C3) ■ 1.2129 L = 2.20 E(C3) = 1.2128

E(C! ■ 2.3339 E(C) = 2.3351

too 1 100 0.800 n = 2 EiCj) ■ 1.1087 n = 2 E(Ct) ■ 1.1087
k ■ 92 E!C2) « 0.0997 k • 92 E(C2) * 0.1010
L > 2.85 E(C3) ■ 1.2198 L = 2.85 E(C3) = 1.2195

E(C) ■ 2.4283 E(C) = 2.4292

100 1 1000 0.800 n = 3 EiCj) = 1.0842 n = 3 E(Cj) ■ 1.0098
- k = 95 E(C2) ■ 0.9551 k = 102 E(C2) = 1.0901

L = 3.65 E(C3) = 1.2551 L * 3.60 E(C3) = 1.3371

E!C) = 3.2944 E(C) = 3.4370



C LISTING OF CHAPTER V 
C FILE NAME IS MAN1
C PROGRAM FOR E(C) OF KNAPPENBER-GRANDAGE MF'DEL

SUBROUTINE OBJ7 (AKE,NSTAGE,SUMN„ A1,A2,A3,A4,ALEMDA,RATE,
1 PIE,NSTAT,PIN)

DIMENSION PIN! 10> ,PZ(lO),P(10,10),QR(10),ZP!10),BZ!10),ZB!10)1 ,B(10,10), BST(10,10),CZ(i0)5ZC<ia),C(10,10),D(10,10),
1 DST(10,10),ALPHA!10),GAMMA(io),A!10,10),BSTZ(10),T(10,10),ZBST 
1 !10),-S!10,10),U(10,10),VC10,10),BB(10,10),AKE(5)

WRITE!#,5)
5 FORMAT(4X,* COST COEFFICIENTS *)

WRITE($»1)A1,A2,A3,A4
1 FORMAT(IX,4F10.4)

WRITE!#,3)ALEMBDA,RATE,PIE,NSTAT 
3 FORMAT <1X,3F12»4,13)

WRITE!#,6)(PIN!I),I=1,NSTAT)
6 FORMAT(IX,7F8»4)

SNOT = AKE!1)
SRNOT = AKE!2)
REJNOT = AKE!3)
WRITE!S,2)SNOT,SRNOT,REJ NOT

2 FORMAT!IX,‘SAMPLESIZE = ',F10„2,'INT SAM RANGE =',FI0.2,'REJ 
1 NUM=',F10.2)

POWER = ALEMDAfSRNOT/RATE 
PPOWER =—POWER 
PZ Z=EXP(PPOWER)
WRITE!7) PZZ

7 FORMAT!1X,F10.4)
NSTATE = NSTAT-1 
DEN0=1.-(1„—PIE) INSTATE 
MSNOT = SNOT
DO 10 J=1,NSTATE 
Ml = J+l 
M2 = NST ATE—J
CALL BIN(PIE,M1,M2,CPR,CPL,PI)
WRITE!S ,8) CPR,CPL,PI,J

8 FORMAT!IX,'CPR=‘„F10.6,'CPL=',F10„6,'PI=',F10.6,'J=*,12)
10 PZ!J) = PI$(1„-PZZ)/BENO

DO 600 I = 1,NSTATE 
600 ZP!I)=0»

DO 20 1=1,NSTATE 
DO 20 J=l,NSTATE 
IF!I—J)30,31,32

30 P(I,J) = PZ(J)/(l.-PZZ)
GO TO 20

31 SPZ=0.
DO 40 KK=1,I 

40 SPZ = SPZ+PZ(KK)
P(I,J) = SPZ/(1»-PZZ)
G0 TO 20

32 P(I,J)=0.
20 CONTINUE

T!1,1)=PZZ 
DO 12 I =2,NSTAT 
K=I —1

12 T(1,I) = PZ!K)
DO 13 J=2,NSTAT 
K=J—1
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13 T( J, 1)=ZP(K)
DO 14 1=2,NSTAT 
K=I-1
DO 14 J=2,NSTAT 
K1 = J-l

14 T(I,J) = P(K,K1)
WRITE(#,15)

15 FORMATtIX,'TRANSITION MATRIX')
WRITER,11) ( (T(I,J> .J = 1 ,NSTAT) , 1=1 ,NSTAT)

11 FORMAT(1X,7F10.6)
51 = SNOT
52 = SRNOT
53 = REJNOT
CALL PROBR(S1,S3,NSTATE,NSTAT,QR)
WRITE(& 5301)<QR(I) , I = 1,NSTAT)

301 FORMAT(IX,7F10.6)
DO 60 I=2,NSTAT 
DO 60 J=l,NSTAT 
IF(I-J)61,62,6361 S(I,J)=QR(i)*T<l,J)+<l-QR<I))*T(I,J)
SO TO 60

62 S(I,J)=QR(I)#T(l,I) + (i-QRd))*T(I,I)
SO TO 60

63 S(I,J)=QR(I)*T(1,J)
60 CONTINUE

DO 326 J=l,NSTAT 326 S(1,J)=T(1j J)
WRITE($,302)

302 FORMAT(IX,'MATRIX S(I,J)')
WRITE(#,303) ((S(I,J),J=1,NSTAT),1=1,NSTAT)

303 FORMAT(IX,7F10,6)
DO 330 1=1,NSTATDO 330 J=1jNSTAT
IF(I—J)331,332,331

331 U(I,J)=S(I,J)
BO TO 330

332 U(I,J)=S(I,J)-1
330 CONTINUE

WRITE(*,311)
311 FORMATdX, 'MATRIX U(I,J) ' )

WRITE(*,312)((U(I,J),3=1,NSTAT),1=1,NSTAT)
312 FORMAT(IX,7F10,6)

DO 321 1=1,NSTAT 
DO 321 J=l,NSTATE

321 V(I,J)=U(I,J+1)
DO 322 1=1,NSTAT

322 V(I,7)=1 
WRITE(#,323)

323 FORMATdX,'MATRIX V(I,J)')
WRITE(#,324) ((Vd, J) ,J=! ,NSTAT), 1=1,NSTAT)

324 FORMAT(IX,7F10,6)
DO 325 I=1,NSTAT 
DO 325 J=l,NSTAT

325 A(I,J)=V(I,J)
N=NSTAT
CALL INVRS(A,BB,N)
WRITE(#,97)
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97 FORMAT (1X ,' INVERSE MAIR IX")
WRITE!*,98) ((BB(I,J),J=1,N5TAT),1=1,NSTAT)

98 FORMAT(IX, 7F10,6)
C BB(I,J) IS INVERSE OF A(I,J)

DO 81 J=1,NSTAT
81 ALPHA(J)=BB(NSTAT,J)

WRITE!*,ISO)
150 FORMAT(IX,'VECTOR ALPHA')WRITE(&,82)’(ALPHA!J)„J=1,NSTAT)
82 FORMAT(IX,7F10.6)

C COMPUTATION OF GAMMA
ADALTA=(1.-(1.+POWER)*PZZ)/(POWER*(l.-PZZ))
WRITEC*, 160)

160 FORMAT(IX,'ADALTA')
WRITE(*,82) ADALTA
GAMMAZ=ALPHA(1)SPZZ+ALPHA(1)*ADALTA*(1-PZZ)
WRITE(*,170)

170 FORMAT(IX,'GAMMAZ')
WRITE(*,82) GAMMAZ 
DO 90 I=2,NSTAT 
13=1-2 
TERM3=0 
TERM4=0 
11=1-1 
12=1+1
IF(Il-l) 101,102,101

101 DO 100 J=1»13 
K=.J+1

100 .TERM3=TERM3+ALPHA(K)*P(J,I1)
IF(I1—6) 102,104,102

102 DO HO K=I ,NSTATE
110 TERM4=TERM4+P(I1,K)
104 GAMMA(II)=ALPHA(I)*P(I1,I1)+(1.-ADALTA)*ALPHA(1)*PZ(I1)+

1 (1.-ADALTA)* TERM3+ALPHA(I)*TERM4*ADALTA
WRITE(*,82)GAMMA(I1)

90 CONTINUE
C COMPUTATION OF EXPECTATIONS 

EC1=(A1+A2*SN0T)/SRNQT 
TERM5=0
DO 120 1=1,NSTAT

120 TERM5=TERM5+QR(I)*ALPHA(I)
EC2=A3 * TERMS/SRNOT 
TERM6=0
TERM6=TERM6+PIN(1)tBAMMAZ
DO 130 I=2,NSTAT
J=I-1

130 TERM6=TERM6+PIN(I)*GAMMA(J)
EC3=A4*TERM6 
TC=EC1+EC2+EC3 
SUMN=TC
WRITE(*,140)TC,EC1,EC2,EC3

140 FORMAT!IX,'TOTAL COST=',E18.8,'EC1=',E18.8,'EC2=',E18.8,
1 'EC3=',E18.8)

RETURN
END
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C FILE NAME IS MAN2
C PR06RAM FOR POWER OF ORIGINAL DECISION RULE 

SUBROUTINE PROBR( S1, S3,NSTATE,NSTAT,QR )DIMENSION XI(10),X2(10),P1C10),P2(l6),Qi<10)„Q2(10),Q(10) 
1 QR(10)

DO 17 1=15NSTATE 
X1 (I)=-I*SQRT(SI)+S3 
X2(I)=~I*SQRT(51)-S3 
CALL NDTR(XKI),P1(I),D)
Q1(I)=1—Pl{I)
CALL NDTR(X2(I),P2(I) , D)
Q2(I)=P2 <I)
0(1)=Q1(1)+Q2(I)

17 CONTINUE
WRITE(t,10> (Q(I>,1=1,NSTATE)10 FORMAT (i X, 6F10.6)
CALL NDTR(S3, P , D )
S=l-P
QNQT=2.0*S
WRITE(*,2)QN0T2 FORMAT(i.X ,2F10'.6)
QR(1)=QNOT
DO 20 1=1,NSTATE 
QR(1+1)=Q(I)

20 CONTINUE
WRITE(S, 3) (QR(I) ,1=1,NSTAT)

3 FORMAT(IX,7F10.6)
RETURN
END

C FILE NAME IS NMAN2
C PROGRAM FOR MORE POWERFUL RULE BASE ON 7 POINT FORMULA 

SUBROUTINE PROBR(S1,S3,NSTATE,NSTAT,QR)
DIMENSION XI (10) ,X2C10) ,P1(10) ,F2(10) ,Q1(10) „Q2(10) ,Q(10) 

1 QR(10),X3(10),ADQ(10),QN(1Q)„P3(10)
DO 17 1=1,NSTATE 
X1(I)=-ISSQRT(SI)+S3 
X2(I)=-I*SQRT(Si)-S3 
CALL NDTR(X1(I),PI(I),D)
OKI )=1—PI ( I )
CALL NDTR(X2(I),P2( I ) , D )
Q2(I)=P2(I)
Q(I)=Q1(1)+Q2(I)

17 CONTINUE
WRITE(*,10) (Q(I),1=1,NSTATE)

10 FORMAT (1X ,6FI0.<b)
DO 30 1=1,NSTATE 
X3(I)=-I*SQRT(S1)
CALL NDTR(X3(I),P3(I),D)
ADQ(I)=(P1(I)—P3(I)
QN(I)=Q(I)+ADQ(I)

30 CONTINUE
WRITE(*,10) (QN(I),1=1,NSTATE)
CALL NDTR(S3,P,D)
S=l-P



nn
 

n o
 o 

n n
 n

GNQT=2„0*S 
WRITE(* 5 2 )ONOT

2 FORMAT(1X,FiO.6)
GN0TN=GN0T+2.O*( (P-0.5)**7) 
WRITE(* „ 2)QNQTN 
QR(1)=GNDTN
DO 20 1=1,NSTATE 
QR(I+1)=QN(I)

20 CONTINUE
WRITECfs3) (GR(I) ,1=1,NBTAT)

3 FORMAT(IX,7F10.6)
RETURN
END

C FILE NAME IS MAN3 
C CALCUATION OF NORMAL INTEGRAL 

SUBROUTINE NDTR CX,P,D)
AX=ABS(X)
T=l,0/(i.0+.2316419*AX)
D=0.3989423*EXP(-X*X/2.O)
P=1.0-D*T*( ( ((1 ,330274*T-1 .821256)ST+1 =,781478)*T-0,3565638)«T 

1 +0.3193815)
IF(X) 1,2*2

1 P=1.0-P
2 RETURN 

END

SUBROUTINE INVRS(A,B,N) #
INVERSE OF A MATRIX UPTO 10*10 (GAUSS JORDAN ELIMINATI65 453864' 
A—INPUT MATRIX (DESTROYED AFTER EXECUTION)
B-OUTPUT MATRIX - INVERSE OF A 
N-ORDER OF A MATRIX 
DIMENSION A(10,10), B(10,10)
CHECK DIAGONAL ELEMENTS NON ZERO (NOT DONE)
B—IDENTITY MATRIX
WRITE(*»7) ((A(I,J),J=1,NSTAT),1=1,NSTAT>7 FORMAT(ix,7F10.6)
DO 10 1=1,N 
DO 10 J=1SM 
B(I,J)=0„
B(ISI)=1.0 

10 CONTINUE
DO 40 1=1,N
I REFERS FIRST N COLUMNS (I-PIVOT ROW)
CALCULATION OF ROWS EXCEPT PIVOT ROW

C CHECK FOR PIVOT ROW
IF (K.EQ.I) GO TO 20 
CONST = -A(K,I)/A(I,I)

C CALCULATE ROW ELEMENTS
DO 30 J=1,N
A(K,J)=A(K,J)+CONST*A(I,J)
B(K,J)=B(K,J) + CONST*B(I,J)
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30 CONTINUE
C EQUATE A (K j, I ) =0 TO BET RID OF ROUND INB ERRORS

A(K,I> = 0.
20 CONTINUE 

C REFER PIVOT ROW
CONST = A(I,I)
DO 50 J=1,N 
A(IsJ) = A(I * J)/CONST 
B (I, J) = B(I,J)/CONST 

50 CONTINUE
C . EQUATE At I,I) = 1.0 TO BET RID OF ROUNDINB ERRORS 

A< I, I> = 1.0 
40 CONTINUE

WRITECf,60) ((B(I *J),J=1sNSTAT),1=1,NSTAT)60 FORMAT(j.X,7F10.6>
RETURN
END
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