CHAPTER V
Use of More Powerful Decision Rule on Economic Design of

¥—-Control Charts

5.1 Woodall (1986) raised some controversy to the economic
approach to dssign the control charts. MHe mentioned that the
economic model balances the cost of poor quality agalnst the cost
of sampling and the cost of finding the assignable causes and
repairing the process. The statistical parformance of the
economically designed control chart is ignored. He, furthermore,
mentioned that in many cases the calculated cost savings may be
misleading and the optimal economic control charts may have poor
statistical performance.

However, we feel that there ls no point in debating 1like
this. Une should decide in advance whether one wants to design
the control chart

' (1) +to have the minimum cost

ar (i) to have the better statistical performance

or (iii) to bhave both simultansously.

If one decides to have the firsgt case one should accept
whatsosver the design that comes up. I+ one decides to have the
second case then it may be noted that he is indiffersnt about the
coslt aspect. MHowever, the third case is a sort of compromize. If
pne decides to bave the third case one can optimize the cost
subject to achievement of better statistical performance. But in

this case it is likely that one has to pay more cost, in the
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sense that the minimum cost under the third case may be more than
the minimum cost under the first case.

In this chapter we 5£udy the effects of Jsiné a more
powerful decision rule on the total axpected cost of
Knappenberger and Grandage’'s (196%) cost model. It is observed

that the total expected cost of controlling the process increases

when the more powerful decision rule is used.

5.2 Knappenberger and Grandage’'s (1969) Cost Model.

Enappenberger and Bandage (19469) developed an economic model
for ¥-chart for a process subject to multiplicity of assignable
causes. Montgomery et al. (1973) used  this model in  the
davelopment of np-chart. The model is well explalned in chapter
IV while studying the model under different sampling schemes. In
the Knappenberger and Grandage’'s (1969) model for MH-chart, it is
assumed that the process mean $ is & continuwows vardable which
can satisfactorily be approximated by a discrete variable talking
the values Po, His =2 Hgs The value p, is associated with the
in-control state and the remaining values My, Mop cons Mg are
associated with the out-of-control states.

The total expected cost per unit under the Enappenberger and
GBrandage’'s (1969) model (recalling (4.2.4) and making suitable

echanges for complete sampling) is

a4 tansn #wi’
ED) = e e it B e a4g'f (S.2.1)
y y —
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Here, the first term of the above expression corresponds to the
expected cost per unit of sampling and inspection and is denoted
by E(L4), the second (or the middle) term corresponds to the
expacted cost per unibt of %inding the assignable causes and
repairing the process and is denoted by E(Cn), the third (or the
last) term corresponds to the expected cost per unit of producing
nonconfoming units and is denoted by E(Cs).

The cost coefficients a;(i = 1,2,%,4) involved in (3.2.1)
are known and are independent of the design variables.

The explanation of the vector £ is as follows. The term F;
(i o= 0,1, ..., s8) 1is the pobabllity of getting a nonconforming
unit when the process is in the state pg (4 = 0,1, ..., ®)s In
the Knappenberger and Grandage’'s (1969) model it ils assumed that
a wunit is nmonconforming if its measurement falls outside the
limits M, % 3e. Using this assumption and specifying py = p, + ic
(d = 1,2, .uey ®) as done by W{nappmnbergmr ang Grandage (1969)

the pobhabilities f; (i = 0,1, ..., 8) wan be easily obtained from

the standard normal tables.

The probability vectors o, 4, ©r are functionally related to
the design variables. The vector q is esplained in the next
section. For the given vector g, the procedures for evaluating «
and r are well explained in 8ection 4.2.4 of chapter IV, The
expression for véctmr g is given by {(4.2.15) and the expressions

for ro oand r; (1= 1,2, ...y 8) are given by {(4.2.14) and

1

(4.2.18) respectively.
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5.3 Use of More Powerful Decision Rule

The decision rule given by Enappenberger and Brandage (1969)
on the basis of inspwmtimn of n units after the prodaction of
every k units is as follows :

Reject the hypothesis H, & = p,, if the sample point falls
outside the control limits p, — Le/dn and p, + Le/dn. According
to this decision rule the probability of rejecting H, ¢ p o=

under H1 o= Py is

gy = P Xrpug + Lo/dn | Bo=py )+ P Hipg = Le/dn | po= py )
= F-(?Z};.to + Le/dn i o= gk ode) P ?-?'-’JMC, - La/dn ’ Moo= Pt odm)
= FOCZ L= ddn )+ P 02K~k - idn ) cea (ELELLD

where Z is a standard normal variable.

It may be noted that g represents the power of the decision rule
when o= iy (4 = 0y 1y vowy 8)o

The proposed more powerful decision rule is as given below.

Reject the hypothesis H, & p = p, not only when a sample

o
point falls outside the control limits but also when seven
scecessive sample points fall between the center line and the
‘upper control limit or between the lower control limit and the
center line.

The decision rule proposed above is a well known statistical
technigque to detect the shift in the process average. It is based
on the theory of runs. It is discussed, {for instance, by E. L.
Grant and R. 8. Leavenworth (1980). Under this new decision rule,

the probability of rejecting M, ¢ p = y, is given by
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i

Wi oy +LP Cpg € € opg +Lasdn | opo= oy 037

+LF Cpg = Lo/dn € % € g | #o=py 037
I)I‘ID(SH:E;IE
Here Wi (i = 0O, 1, ..y 8) represents the power of the new

decision rule.

Since Wy * gy we can see that the power of the new decision
rule is grater than that of the %mrmafu

The total eupected cost per unit for the new decision rule
is
E(C) = (aq+aon)/k + aﬂﬁ‘ﬁ/k + &4£’ﬁ PR & RIS

The breakup pf the rh.s. of (5.3.3) into E(G,), E(,) and
E(Cz) is as obvious as done just after (5.2.1).

It appears as if the only difference between the expressions
(F5.2.1) and (5.3%.3) is that the vector q is replaced by the
vactor w. However, it is somsthing more than this. It should be
remembered that the vectors o and r are to be evalued a fresh
from the expressions (4.2.18), ((4,.2.14) and (4.2.18) after
substitution of w in place of Eu The new values obtained for the
vectors g and r are to be substituted in the expression (85.3.50
to evaluate E(C) which gives ultimately the total expected cost

per unit for the new ruale.

5.4 Comparision of the two Decision Rules from the Cost Point of
View
S+4.1 The Sample Example

To maﬁe the comparision of the two decision rules from the

cost point of view we consider the following example given in
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Enappenberger and GBrandage (1949).

i

Let ay $ 10, an = & 1, ay = % 100, ayg = % 10,

et A = 1, R\m 100G, w = 0,374,

For this combination of the cost coefficients and systems
parameters, the optimal values of the design variables (n, k, L)
are obtained by Knappanbe;ger and Grandage. We could have
utiiized these values for our study. But we prefer to recalculate
them independently for the following reasons.

(1) The mistakes are noted in their e:xpressions for the matrix
B¥. The corrected expressions are glven in Bection 8.2 of
Chapter VIII. The numerical values of B¥  pbtained by them are
also not correct.

(2) They give only the optimal values of the design variables
(ny ky L) with minimum EXC). No intermediate terms such as E(Cy),
E(Cs)y E(C=) are given in their paper. 8o the information given
by them is inadequate whean we make a comparative study of the
performance of the two decision rules from the cost point of
view.

The corrected optimal values which minimize the expression
(5.2.1) for the total expected cost per unit of the product
{ under the original rule ) are given bgllow in the tabular form.
Using these values of ( n, k, L ) we calculate E(C{), E(Cn),
E(Cz) and EC) ( under the original rule ) given by the
axpression (5.2.1). Using the same values of ( ny, ky L ) we
caleculate E(C)), E(Cs), ECz) and EM) ungder the proposed new
decision rule given by the expression (5.3.3).These expected

costs are as given below
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Design Variables Expected Costs Expected Costs
Used ( Original Rule ) ( New Rule )
o= 5 EXCy) = 0.2826 E(Cy) = 0,226
ko= 46 E(Cn) = 0.1104 E(Ca) = 0,141
L. = 2,70 E(Ce) = Q.3421 E(Cg) = 0550
E(CY = 00,7381 E(C) = 0.7542

We have the following results from this example.
(1)  The expected cost per unit of sampling, E(Cy), remains the
same under both the decision rules and it should be the case as
the same triplete is used for both the rules.
(2) The expected cogt per unit of finding the assignable causes
and repairing the process, E(Ch), increases when a more powerful
decision rule is used.
(%) The expected cost per unit of producing noncomnforming items,
E(C=), decreases when a more powerful decision rule is used.
(4) The increase in E(Co) is grater than the decrease in E(Cs).
Hemce the total expected cost per unit of the product increases
when a more powsrful decision rule is used.

The probability vectors o and w found under the two decision
rules areg as follows. The optimal design variables n = 3, k = 46,

L= 2,70 are used for the calculation of both gand w.
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From the above figures it is ravealed that under the new
decision rule the probability of detecting a small shift namely,
the shift from the state p, to state py is increased from O.1660
to Quﬁéi7u Thus there is an increase of 117.24 4. This shows thatl
the smaller shifts in the process are detected with high
probability if the new decision rule is used. O0F course, it also
has a consequence of increasing the probability of false alarms
( from CG.0069 to 0.0218 i.e. 215.94 % ). The effect of this
increase has the natural reflgction into the ocost aspect by

increasing E(C~) and hence E(D).

5.4.2 Additinnal‘E#amples

We now consider 18 combinations of the cost mpmf%imi@ntm antl
the systems parameters given by Enappenberger and Grandage
(1969). Using Hook-Jesves direct search technigue we obtain the
optimal values of the design variables ( n, ks L ) under the
original rule for all the 18 cases. These optimal values of ( n,

ky L ) minimize the expected total cost per unit of the product
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{ under the original rule ) whose expression is given by (5.2.1).
Using these optimal values we calculate E(Cy), E(Cm), E(Cg), E(C)
under the original rule.

Furthermore, using the same optimal values of ( n, k, L ) we
calculate E(Cy), E(Crp), E(Cx), E(C) ( under the new rule ) whose
expression is given by (5.35.3).

These values are given in Table 5.1. It is observed that in
all the 18 cases the behavior of E(Cy), E(Cn), E(Cx) and E(C) are
analogous to those observed in the sample example. i.e. EGy)
attains the same values under both the decision rules, E(Ca)
increases under the new rule whereas E(Cs) decreases under the
new rule. Furthermore, it is observed that the increase in E(Ch)
is grater than the decrease in E(Cz), which ultimately leads to a
higher expected total cost.

From these additional examples also we find that the use of
a more powerful decision rule has an effect of increasing the

total cost of controlling the production process.

5.9 More Exact Comparision
In section 5.4 the optimal values of the design variables

( my ky LY are obtained under the original decision rule. Using
these mptimél values of ( n, k, L ) we have calcwlated E(Cy),
E(C‘.;g‘)_u E{C») and E(C) for both the decision rules. Then
comparisions are made betwesn €(01>, E(Gg)g E(BE), E(C) derived
under the two decision rules. 1t seems to be customary to use the
same optimal design variables SBVEnN after making soma

modifications in the mathematical structure of the model such as
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using the new decision rule in place of the original rule.

For instance, in an example given in Montgomery’'s (1991)
book on page number 420 he bhas explained the problem of
minimizing the total expected cost. His cost model involves threes
design variables ( ny, h, k ) where n is the sample size, h is the
interval between two successive samples and k is the multiple of |
a/dn. In the solution he obtains the optimal values of (n.h,k) as
follows. n = 5, k = 2.99, h = 0.62. He finds that the optimal
values of h = 0,62 is not convenient from the operation point of
view. He proposes to take b = 0.75 ( i.e. 45 minutes ) with the
same optimal values of n and k. In reality he should have
considered the problem of minimizing the total spected cost
which is now a function of only two design variables ( n, k )
with h = 0.75 as one of the constants in addition to the set of
constants that he already bhas. The optimal values of ( n, k )
derived in this situwation may not be the same as the original
n =98 and k = 2.99. In fact had be proposed to take h = 1, the
optimal values for n and k would be n = & and k = 2.99.

Sompwhat objectionable situation similar to the one as
described in the above paragraph exists in the problem being
studied here. The values of the design wvariables ( n, k, L )
which minimize E(L) given by (5.2.1} may not be the same as the
values of ( n, k, L } which minimize E(C) given by (5.3.3). This
means that tﬁe optimal values of ( n, Kk, L ) under the original
rale may not be the same as the optimal values of ( n, k, L )

under the new rule.



To make the comparision more realistic one should compute
the values of ( n, ks L ) which minimize E(C) given by (5.3.3%).,
These optimal values will minimize E(C) under the new rule. In
this section we obtain the optimal values of ( n, bk, L } which
minimize E(C) under the new rule for all the 18 cases studied in
Section H5.4. The optimal design variables amd the minimum B
under the mnew rule are given in columns (7)) and (8) respectively
of Table 3.2. The optimal design variables and the minimum EC)
under the original rule are also given in columns (3) and (6 of
Table 9.2 for comparision.

For all the 18 cases it is observed from columns (&) and (8)
of Table 5.2 that the minimum E(C) derived under the new rule are
grater than the minimum E(C) derived under the original rule.
This result is the same as the one observed in Section §.4.

Thus we find that both the comparisons -~ ths less
sophisticated comparision as done in Section 9.4 as well as the
more exact comparisiomn dong in this section lead to the same

conclusion that the use of the more powerful decision rule

iy

increages the total saxpected cost of controlling the process. I
ong wants to wse a control chart with more powerful decision rule
one should bwl preapared to pay a higher cost. 0Ff course, the
advantage in using a more powarful decision rule is obvious that
one would detect more often the smaller shift in the process when

it exists.



Table 5.1

The optimal design variables of the original rule and E(Cy), E(Cy), E{C3), E(C) of

both the rules calculated for these design variables.

ay By oy i Optimal design | Bxpected costs Erpected costs
variables (Original Rule) {(Nesw Fule)

(Original Rule)
(1) (2} ) {4 (5) (&) (7)

1o i 10 0376 Pyoe R E(Cy) = 0.2608 EAC) = 0.2608

ko= 4& E(C) = 0,080

H
-
03

N
A"
i1

w O, Q29T

o = 170 E(Cey) = Q.3207 E(Cy) = 05200

#

E(C) = Q.6095 EAC) = 06105

&

10 1 00 | Q.56 mo= 3 E(Dy) = 0.2826 E(C) = 0,826

i

ko= 44 E(Cmn) = 0,1104 E(Cn) = 0.141%

o = 270 E(Cx) = 0,3421 E(C) = 0. R30%

E(C) = 0.7351 EXC) = O.7542

..... etumarne toms mannane oo e Jomser tose o smenn sire soons T oot o ot s [N RN VN

10 1 1000 | 03576 r =

.

E(C)) = Q.EB00 | E(C)) = 0.2800

.,.
i

i

Cx

E(Cn) = Q.9665 (o) = 1.2671

-
1
Lo
'S
a4

E(Cy) = 0.3823 E(Ce) = O.E30E
d ot

E(C) = 1.46385 EW) = 1.8974

i‘"!@m &4‘ e $ 1‘:’5 :)\ == 19 F\' i 1(:3:3(:)5 & w 63
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Table 5.1 (Continued)

8y

(1

&
tont

4)

Optimal dessign

variables

(Original Rule)
(5

10

10

Q.597

n o= 2

ko= 34

Lo= 2,20

Expexted costs
{Original Rule)

(&)

E(C)) = 0,359
E(Co) = 0,0169
E(C) = 0,3945

E(C) = Q.7643%

10

0.597

e
beom EX

E(C) = 0.3636
E(Cy) = 0.1071

E(Cy) = 0.4028

Expmete] costs
(M Fule)

{7)

0 E5E9

i

E(Cy)

#

E(Cs) QL0215
E(Cy) = 0,393

E(C) = 07679

BCD) ) = 005656
E(Cn) = 0,10518

BACr) = Q.3987

E(Q) = Q.8734 E(C) = 0.9142

10

1000

0.597

p |
3
£

L= 3.43

E(C)) = 0.3611
E(Co) = 0.9839
E(Cg) = 0,4340

E(C) = 1.7790

E(Cy) = 0.3611
E(C) = 1.4011
ECy) = 0.4265

EXC) = 21887
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Table 5.1 (Continued)

a3

az

-
Hut

Optimal design

Expmeted cowbs

Brpeeted oosts

E(Co) = 0.016]

E(Cg) = 0,429

variables (Original Rule (New Fule)
(Original Rule)
(1) <2 (&) (4) &) (&) (73
10 1 10 0,800 no= E(C) = 05795

E(C)) = 05793
E(C) = 0,0207
EAC) = 0.4293

() = Q.8294

10

100

0.800

o=
ko= 26

L= 2.95

E":

03
[

i

0. 3928

Q. 1095

)
#

1113
o~
]
d
~
]

= Q. 4304

E(C) = 0.93526

i

E(C) = 0.39268

E(Cm) = 0. 1623
E(Cy) = 0.4297

EXC) = 0.9344

10

1QG0

Q.B00

o

ale

3
gl

ko= 30

L= 3,90

E(Cy) = 0.4000
E(Cy) = 0.9866
E(Cy) = 00,4455

E(C) = 1.68521

B = 04000
Elln) = 1.4911

E(Cy) = 0.44358

ECD) = B,53549
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Table .1 {(Continued)

ay

(1

a2

(&)

c:\3

4

Optimal design

variahles

(Original Rule)
(&)

Exparted costs
{Original Rule)

(&)

100

10

O.376

o= 4

ko= 135

1.00

E(Cy) = 0.4887
E(Cq) = 0.0272
E(Cy) = 0.8247

E(C) = 1.5407

Expeoted costs
(Nesw Fuale)

7

ECG) = 0.6887
ElGn) = Q.0R272
E(C) = 0.85247

E(Q) = 1.,3407

100

100

o= g

= 2. 20

E(E) = 0.7108

B

E(Co) = 0,1075

E(Cx) = 0.8417

i

ECC) = 1.6597

100

1000

0378

n = 10

¢ LA

-
i

.05

QL6790

fl

E(C,)

H

E(Cn) = 0.9193

H]

E(Cy) = 0,913

B = 205150

E(G)) = 0.7105
E:.'(C“m) = Q. 1147
E.((:Z‘) = (0, 8417
ECC) = 1.6669

0.b790

i

E(C)

#

() = 0.9988

#

E(Cy) = 0.9130

ECG) = 2.0909
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Table 5.1 (Continued)

&y ) & b1 Optimal design | Expected costs Expected costs
variables (Original Rale) {New Rule)
(Original Rule)
(H 2 &} (43 $w)) (&) {7
100 1 10 0.597 n = 3 E(Cy) = Q.9626 B(Gy) = 0.9626
ko= 107 E(Cm) = Q.0177 E(C,) = 0.0184
o= 1.65 E(Cy) = 1.0843 E(Cy) = 1.0843
E(C) = 2.0647 BE(C) = 2.0655
100 1 100 | Q.5897 rn o= 4 E(C)) = 0.9719 E(Dy ) = Q.9719
ko= 107 E(Cy) = 0,1011 EACy) = O.1153
L o= 2.63 E(Cy) = 1.0965 E(C) = 1.0959
E(C) = 2.169 E(C) = 2.,1794
100 1 1000 | Q.897 rn e 5 E(Cy) = 0.9545 ECC) = 0.9545
ko= 110 E(Cn) = Q.9482 E(Cn) = 107353
L= 3,55 E(Cy) = 1.1313 E(Ce) = 1.1227
E(C) = Z.0343 E(C) = 35,1528
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Table S5.1 (Continued)

ay an dr n Optimal desiogn | Expected costs Expected costs

(Neaw Fule)

(7)

;ufu

variables Wriginal FRuale)
(Original Rulen

1 ¢2) 5 4> (5 (&)

100 1 10 QL8000 now @ EXCy ) = 1.1087

E(Cy) = 0.0123
E(Cy) = 1.2129

E(C) = 2,359

o= 2,20
100 1 100 | 0.800 n =2

"CJE

1.1087

H

E(Cy)

B

(D) = 0.0997

E{Cy)
L

B

1.2198

E(Q) = J. 42835

140

1000

0. 800

n o= A
loom 95

fo o= B3

#

E(Cy) = 1.0842

#

B

E(Cn) = 09551

g
1 1 et

#

E(Cx)

[ —— -

EXC) = 35,2944

m
>
i3

fy
o

H

= . 10E7

w0, 000

FEH

£3

5
i

m
=
R
!
A d
i

1.2128

E(C) = 1.1087
E(C) = 0.1010
ECy) = 12195
E(C) = 2,4292
E(Cy) = 1.0842
EAR) = 1,104%
E(Cy) = 1.0542

EDY = F.4427
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Table 5.2

The optisal design variables and E{C;), E(C,}, E(C3), E(C) under both the rules

Original Rule New Rule
3 3 & X Optisal design | Expected costs | Optimal Design | Expected costs
variables variables
M 2 (3] 4 N 16) {n {8)
10 i 10 | 0,376 n=2 E(C{) = 0.2608 n=2 E(Cy) = 0.2608
k= éb E{Cy) = 0,0280 k=46 ElCy) = 0.0297
L=170 E{C3) = 0.3207 L=170 E(Lz) = 0.3200
E(C) = 0.6093 E(C) = 0,8105
10 i 100 | 0.376 n=3 E(C{) = 0.2828 n=3 E(Cy) = 0.2653
k=46 E(Cy) = 0.1104 k=49 ElLy) = 0.1325
L=270 E(Cz) = 0.3421 L=29 E(C3) = 0.3533
E(C) = 0,7351 E(C) = 0.7511
10 1 1000 | 0,376 n=4 E(C{} = 0.2800 n=14 E(Cy) = 0.1842
k=50 E(Cy) = 0.9663 k=176 E(Cy) = 1.1379
L =345 E(Cz) = 0.3822 L= 3.50 E(Cz) = 0.5083
E(C} = 1.6285 E{C) = 1.,8304

Here 3 = 10, A =1, R=1000, s =

1ig




Table 5.2 {Continued)

Original Rule New Rule
3y 3 a3 X Optisal design | Expected costs | Optimal Design | Expected costs
variables variables
] @2y (3 @ {5) {&) n (8)
10 1 10 | 0.597 n=2 E(Cy) = 0.3529 n=2 E(Cy) = 0.3529
k=34 ElCy) = 0.0169 k=33 E{Cy) = 0.0204
L =220 E(Cz) = 0.3945 L=2.25 E{C3) = 0.3945
E(C) "= 0.7643 E(C) = 0.7679
10 i 100 | 0.597 n=12 E(Cy) = 0.3636 n=2 E{Cy) = 0,3333
k=33 ElCy) = 0.1074 k=3b E(Cy) = 0.1483
L=295 E(C3) = 0.4028 L=29 E(C3) = 0.4301
E(C) = 0.8735 E(C) = 0.9117
10 | 1000 § 0.597 n=3 E(Cy) = 0.3611 n=3 E(Cy) = 0.2407
k=3 E(Cy) = 0,9839 k=54 E(Cy) = 1,24b1
L=3.68 E(C3) = 0.4340 L=3.55 E(Cz) = 0.6184
E(C} = 1.7790 E(C) = 2.1013
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Table 5.2 (Continued)

Original Rule New Rule
3 3 & 1 Optimal design ; Expected costs | Optimal Design | Expected costs
variables variables

2y (3] 4) {5) (6} {7 {8)
10 { 10 | 0,800 n=i E(C)) = 0.3793 n=1 E(Cy) = 0,3793
k=29 E(Cy) = 0.0161 k=29 E(Ty) = 0.0207
L=23 E(C3) = 0.429 L=235 E(C3) = 0.4293
E(C) = 0.8250 E(C) = 0,8293
10 1 100 | 0.800 n=i E(C{) = 0.3928 n=1 E(Cy} = 0.3466
k=128 E(Cy} = 0.1093 k=30 E(Ly) = 0.1577
L=295 E(C3) = 0.4304 L=29 E(C3) = 0.4373
E(C) = 0,9326 E(C) = 0.9817
10 1 1000 | 0.800 n=2 E(Cy) = 0.4000 n=2 E(C{) = 0.2408
k=30 E(C) = 0.9886 k=86 E(Cp) = 1.3033
L =3.9 E(C3) = 0.4455 L=3.70 E(Cx} = 0.4584
E(C) = 1,8321 E(C) = 2.2188




Table 5.2 (Continued)

Original Rule New Rule
3 ) a3 X Optinal design | Expected costs | Optimal Design | Expected costs
variables variables

mip @ @ @ (3) {8) {7) {8)
160 ¢ | 10 | 0.376 n=% E(Cy) = 0.4887 n=4 E(Cg) = 0.6887
k = 151 E(Cy) = 0.0272 k=18 E(Ty) = 0.0272
L=1.00 ElC3) = 0.8247 L=1.00 E(C3) = 0.8247
E(C) = 1,5407 E(C} = 1.5407
160 { 1§ 100 | 0.376 n=8 E(Cy) = 0.7105 n=g E(C() = 0.6%7
k=132 E(Cy) = 0.1075 k =155 E{Cy) = 0.1159
L =220 E(C3) = 0.8417 L =25 E(C3) = 0.8340
E(C) = 1.6597 E(C) = 1.6668
100§ 1 1060 | 0.376 n=10 E(Cy) = 0.6790 n=b E(Cy) = 0.6287
= {62 ElCy) = 0.9193 k = 147 Elly) = 0.9761
L=3.08 E(C3) = 0.9136 L=2325 E(C3) = 0,9767
E(D) = 2.5120 E(C) = 2.5815




Table 5.2 (Continued)

friginal Rule New Rule
3y 3y 33 1 Optimal design | Expected costs | Optimal Design | Expected costs
variables variables
(N 2y By @ {(3) (&) n {8)
00} 1 10 | 0.597 n=3 E(C{) = 0.9626 n=3 E(C{) = 0.9626
k=107 E(Cy) = 0.0177 k =107 E(Cy). = 0.0184
L= 1.68 E{Cy) = 1.0843 L= 1.5 E{Cz) = 1.0843
E(D) = 2.0647 E(C) = 2,053
100 | 1 100 | 0,597 n=14 E(Gy) = 0.9719 n=4¢ E(Cy) = 0.9629
k=107 E{ly) = 0.1011 k= {08 ElCy) = 0.1124
L= 2,68 E(Cz) = 1,095 L=270 E(C3) = 1.1039
s E(C) = 2,169 E(0) = 2.1793
100 | 1 1000 | 0.597 n=3 E(Cy) = 0.9543 n=3 E(Cy) = 0.8823
k=110 E{C) = 0.9482 k= [19 E(Cy) = 1.0373
L=1338 E(Cy) = 11315 L=3.90 E{Cy) = 1.2064
E{C) = 3.0343 E(C) = 3.14b8

1R




Table 5.2 {Continued)

friginal Rule New Rule
3 3 a3 X Optimal design | Expected costs | Optimal Design | Expected costs
variables variables
@2 31 @ {5) (&) {n {8)

100 | 1 10 0.800 n=2 E(Cy) = 1.1087 n=2 E(Cy) = 1.1087
k=92 E(Cy) = 0,0123 k=92 E(Cy) = 0.0135
L=2.20 E(Cg) = 1.2129 L =22 E(Cz) = 1.2128

E(C) = 2.3339 E(C) = 2,3351

(T 100 | 0,800 n=2 E(Cy) = 1.1087 n=12 E(Cq) = 1.1087
k=92 E{Cy) = 0.0997 k=92 E(Cy) = 0.1010
L =285 E(C3) = 1.2198 L =285 E(C3) = 1,219

4

E{C) = 2.,4283 E{C} = Z.4292
106 1 1000 ¢ 0,800 n=3 E(C{) = 1.0842 ne=3 E(Cy) = 1.0098
- k=93 E(C,) = 0,9551 k=102 E(C,) = 1.0901

L=3.60 E(C3) = 1,2351 L =3.60 E(Cz) = 1,3371

E(C) = 3.,2944 E(C) = 3.4370

g
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C LISTING OF CHAFTER V¥
C FILE NA&ME IS HMANI .
= FROGRAM FOR E{(C) OF KNAPPEMBER-GRAMDABE MFDEL

ot

“

4G

=2

b,

20

1

1
i

SUBRDUTINE OBJ7 (AKE,NSTAGE,SUMN.A1,AZ,AS,A4,ALEMDA,RATE,
FPIE,NSTAT.PIN)
DIMENSION PIN(10),PZ{i0)},P(10,10),0R{10),ZP(10),BZ(10},ZB(1M
JB(10,10) ,BST{10,10),CZ(10),ZC{10),00(10,10),D(10,10),
DST(10,10) ,ALPHA(10) ,BAMMA(10} ,A(10,10) ,BSTZ(10),T(10,10) ,ZBST
(10),5(10,307,U(10,10) ,V(10,10) ,BE{10,10) (AKE(5)
WRITE(%,5}
FORMAT (4X, ' COST COEFFICIENTS®)
WRITE(®,1)01,82,83,84
FORMAT(1X,4F10.4) .
WRITE(%,3)ALEMBDA,RATE ,PIE,NSTAT
FORMAT{1X,3F12.4,13)
WRITE(%,6) (PINCI),I=1,NSTAT)
FORMAT(1X,7F8.4)
SNDOT = AKE(1)
SRNOT = AKE(2)
REJNDT = AKE(3I)
WRITE (% ,2)SNOT,SRNOT .REINOT
FORMAT(1X, ‘SAMPLESIZE =" ,F10.2,  INT SAM RANBE =‘,F10.2,°REJ
NUM=" ,F10.2}
POWER = ALEMDA%SRMOT/RATE
PPOWER =—POWER
PZZ=EXP {PPOWER)
WRITE(%,7) PZZ
FORMAT(1X,Fi0.4)
NSTATE = NSTAT-1
DENO=1.—(1.-PIE)¥¥NSTATE
MSNOT = SNOT
DO 10 J=1,NSTATE
Ml = J+1
M2 = NSTATE-J
CALL BIN(PIE,Mi,M2.CPR,CFL,.FI)
WRITE(%,8) CPR,CPL,PI,J
FORMAT(iX, CPR=',F10.6, CPL=" ,F10.&, 'PI=",F10.&, 'Jd=",12)
PZ{J) = PI%(1.~PZZ)}/DEND
DO 600 I = 1,NSTATE
ZP{11=0.
DO 20 I=1,NSTATE
DO 20 J=1,NSTATE
IF(I-J)30,31,32
P{I,J) = PZ(J)}/{1.-PZZ)
60 TO 20
SPZ=0.
DO 40 KK=1,I
SPZ = SPZ+PZ(KK)
F(I,Jd) = SPZ/{1.-PZZI)
B0 TO 20
F(I,J)=0.
COMT INUE
T(1,1)=PZZ
DO 12 I =2,NSTAT
K=1-1
T(1,I} = PZ{K)
DO 13 J=2,NSTAT
K=J-1
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T(J,1)=ZP(K)

D0 14 1=2,NSTAT

K=I-1

D0 14 J=2,NSTAT

Ki = J-1

T(I,J) = P(E,Ki)

WRITE(%,15)

FORMAT(1X, TRANSITION MATRIX’)

WRITE(%,11)({T(I,d),Jd = 1,NSTAT),I=1,NSTAT)

FORMAT(1X,7F10.6)

51 = GNOT
52 = SRMOT
53 = REJNOT

CALL PROBR(S1,53,NSTATE,NSTAT,0R)

WRITE(%,301)(QR(I),I = 1,NSTAT)

FORMAT(1X,7F10.6)

DO &0 I=2,NSTAT

D0 60 J=1,NSTAT

IF(I-J)61,462,63
S{I,d)=OR(IIET{1,I)+{1-AR(I)IET(I,J)

60 TO &0

S(I,d)=ER(IIET(1,I)+(i-OR(IDIRT(I,I)

B0 TO &0

S(I,J)=0R(II¥T(1,J)

CONTINUE

DO 326 J=1,.NSTAT

S(1,J)=T{1,J}

WRITE(%,302)

FORMAT(1X, ‘MATRIX S(I,J)°)

WRITE(X,303) ((S(I,d),J=1,MS5TAT),I=1,NSTAT)

FORMAT(1X,7F10.8)
DO 330 I=1,NSTAT
DO 330 J=1,NSTAT
IF(I-J)331,3352,351
UCT,J)=8(1,J)
B0 TO 330
U(I,d)=8(1,J)-1
CONT INUE
WRITE(%,311)
FORMAT(1X, “MATRIX U(I,J)"}

WRITE(X,I12Y{({(UC(I,J),J=1,NSTAT) I=1 NSTAT?

FORMAT(1X,7F10.6&)

DO 321 I=1,NSTAT

DO 321 J=1,NSTATE
VET,Jr=U(I,J+1}

DO 322 I=1,NSTAT
Y(I,7)=1

WRITE(%,323)
FORMAT(1X, "MATRIX V(I,J)°)

WRITE(®,324) ({(V(1,d),J=1,METAT),I=1,NSTAT)

FORMAT(1X,7F10.56)

DD 325 I=1,NSTAT

DO 325 J=1,NSTAT
ACI,JI=V(I . J)

MN=NSTAT

CALL IMVRS(A,BB,N)

WRITE(%,97)

-
]
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97 FORMAT(1X,  IMVERBE MATRIX")

WRITE(x .98} {((BB{(I,Jd).d=1,NETAT),I=1.,NSTAT)
78 FORMAT(1X,7F10.6)
cC BB{I.J) IS8 INVERSE OF A(I,J}

DO 81 J=1,NSTAT

81 ALPHA(J ) =BB{NSTAT ,J)
WHITE(® ;1503
156G FORPMAT(1X . "VECTOR ALFHA™)
WRITE(%,82) (ALPHA(J) o J=1,NETAT)
82 FORMAT{1X,.7F10.&)

C COMPUTATION OF GAMMA
ADALTA=({1.~{1.+POWER)¥PZZ) / (POWER%(1.-FZZ))
WRITE(%,1460)

i&0 FORMAT(1X, ADALTA’ )

WRITE(%,.B82) ADALTA

GAMMAZ=ALPHA (1) ¥PZZ+ALPHA( 1) $ADALTAX(1-PZZ)

WRITE{(%,1703)

FORMAT(1X, ' BAMMAZ )

WRITE(% .82) BAMMAZ

DO 90 I=2,NSTAT

I1Z=1~2

TERMS=0

TERM4=0

I1=1I-1

I2=1+1"

IF(Ii—-1} 161,102,101

101 DO 100 J=1.I3
E=J+1

1040 . TERM3=TERM3-+ALPHA(K)¥P(J, 11}
IF(I1-6) 102,104,102

102 DO 110 K=I,NSTATE

110 TERMA=TERM4+F{(I1,kK)

104 GAMMA(TIL)=ALPHA(I)¥P(I1,11)+(1.-ADALTAYXALPHA(L I RPZ(I1)+

1 (1.-ADALTAYXTERMI+ALPHA(I ) XTERMAXADALTA

WRITE(%,82)GAMMACIL)

90 CONTINUE

.  COMPUTATION OF EXPECTATIONS
ECi=(A1+A2%SNOT ) /SRNOT
TERMS=0
DO 120 I=1,NSTAT

120 TERMS=TERMS+IR{ 1) ¥8LPHA(I)
ECZ=OZ%TERMS/SRNOT
TERM&=0
TERMO=TERMO+PIMN{ 1} ¥5AMMAZ
DO 130 I=2.NSTAT
J=I—-1
130 TERM&=TERMSHPIN{ I ) XGAMMA(JI)
ECI=A4%XTERM&
TC=EC1+EC2+ECS
SUMN=TC
WRITE(%,140)TC,EC1 ,ECZ,ECS .
140 FORMAT(1X, TOTAL COST=',E18.8, ECi=",E18.8, EC2=",E18.8,

‘ECE=" L,E18.8)

RETURN

END

:3
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C FILE NAME IS MANZ
C PROGRAM FOR POWER OF DRIGINAL DECISION RULE
SUBROUTINE PROBR(S1,S3,NSTATE,NSTAT,BR)
DIMENSION X1(10),X2(i0),P1{10),P2{10),81(10),82(10),8(10),
1 OR(1O
DD 17 I=1,NSTATE
X1{I)=—I%SART(S1)+53
X2(1)=-I%SORT(51)-53
CALL NDTR(X1{I),F1¢(I),D)
QI(I)=1-P1(I}
CALL NDTR(X2{I),P2(1),D)
R2(1)=P2(1)
R(II=01(II+B2(1)
17  CONTINUE
WRITE(%,10) (@(I},I=1,NSTATE)
10 FORMAT(1X,&6F10.4)
CALL NDTR{S3,P,D)
g=1-P
ANOT=2.0%S
WRITE(%,2)0ONOT
FORMAT(1X,2F10.6)
QR (1)=aNOT
DO 20 I=1,NSTATE
GROI+1)=G(1)
20  CONTINUE
WRITE(%,3) (GR(I),I=1,NSTAT)
FORMAT(1X,7F1G.6)
RETURN
END

t

2

C FILE NAME IS NMANZ
C PROSRAM FOR MORE POWERFUL RULE BASE ON 7 POINT FORMULA
SUBROUTINE PROBR({S1,S3,NSTATE,.NSTAT,QR)
DIMEMSION Xi(101,%X2{(10),P1(10),P2(10),81(10),02(10),8(10),
1 GRO10),X3I(10),ADE(10),ON{10) ,PI(10)

DO 17 I=1,NSTATE
X1(I1)=—I%SART(S1)+53
X2(I)=—I%SORT(51)~53
CALL NDTR(X1{I),P1(1),D)
@1(I)=1—-P1(1)
CALL NDTR(X2(I),.P2(I),D)
E2(I1)=P2(1)
QCI)=01(1)+B2(I)

17  CONTINUE
WRITE(%,10) (Q(I),I=1,NSTATE)

10 FORMAT(1X,&6F10.4&)
DO 20 I=1,NSTATE
XZ(I)=—I%SART(51)
CALL NDTR{XZ(I},P3(I),D}
ADE(I)=(P1{I1)~P3(I))%%7
ON(I)=0{I}+ADACI}

30  CONTINUE
WRITE(%,10) ¢ON(I),I=1,NSTATE}
CALL NDTR(S3,.F,D}
S=1-P
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LA

GNOT=2.0%8

WRITE(x ,230N0T

FORMAT({iX ,F1G. 42
ANOTN=ONOT+2 . 0% {( (FP-0.51¥%X7)
WRITE (X 2)BRNOTH

GRO1 )=0BNOTN

DO 20 I=1,NSTATE
GR{I+1)Y=0M(I)

CONTINUE

WRITE(%,3) (GR{I),I=1i,MS5TAT)
FORMAT(1LX,7F10.6)

RETURM

END

€ FILE NAME IS5 HMANZ
L CALCUATION OF MORMAL INTEGRAL

arnan

0

30

Wl

10

SUBRDUTINE NDTR{X . P,D}
AX=ARE(X)
T=1.0/(1.0+.23156419%8X}
D=0 ,Z982423kEXP (~X{%X/2.0)

P=l.O-DETE(C({L 33027487 -1 . B21386)ET+1L . 7814781 ¥7-0.

+0.5193815)
IF(XY 1,2,2
P=1,0-F
RETURM

END

SUBROUTINE INVRG(A,B,M)

FN60638YRT

INVERSE OF A HQTRIX UPTG 10%10 (BAUSS JORDAM ELIHINGTI&q 4538464 °

A~INPUT MATRIX (DESTROYED AFTER EXECUTIOM)
B~-DUTPUT MATRIX — INVERSE OF &

N~ORDER OF A MATRIX

DIMENSION A(10,10), B(i0,10)

CHECK DIAGONAL ELEMENTS NON ZERD (NOT DONE)
B-IDENTITY MATRIX

WRITE(%,7) ((A(I,d),J=1,NSTAT),I=1,NSTAT)
FORMAT(1X,7F10.6)

DO 10 I=1,N

DO 10 J=1,N

B(I,d)=0.

B{I,1)=1.0

CONT INUE

DO 40 I=1,H

1 REFERS FIRST N COLUMNS (I-PIVOT ROW)
CALCULATION DF ROWS EXCEPT PIVOT ROW

CHECK FOR PIVDT ROW

IF (K.EQ.I) 60 TO 20

COMST = —A(K,I)/A(I,I)
CALCULATE ROW ELEMENTS

PO 30 J=1,N
AK,J)=A(K,J)+CONST#A(I,d)
B(K,J)=R{K,J) + CONST%B(I,J)
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CONT INUE
EQUATE A(K,I)=0 TO BET RID OF ROUMDING ERRORS
AlK,TIY = G.

CONT INUE

REFER PIVOT ROW

CONST = A{I,I}

DO 50 J=1,N

A(I,J) = A(I,J)/CONST

B(I,d) = B(I.J)/CONST

CONT INUE

EQUATE A{(I,I) = 1.0 TO BET RID OF ROUNDING ERRORS
A(I,IY = 1.0

CONT INUE

WRITE(X,50) ((B(I,J),J=1,NSTAT),I=1,NSTAT)
FORMAT(1X,7F10.6)

RETURN

END
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