Chapter VIII

The Miscellaneous Froblems

B.1 The Semi—Economic Design of np~Control Chart

8.1.1 Early Work on Semi-Economic Design

The economic design of conventional Shewhart type control
charts was investigated by several early researchers. Most of
their work can be classified as semi-economic design, procedures
in that either the proposed model did not consider all relevent
costs or no optimization technigues were applied.

Weiler (1952) obtained for an ¥-—chart the optimum sample
size that would minimize the total amount nof inspection required
to detect a specified shift. Weiler (1952) did not Fformally
consider costs; the implication is that winimizing total
inspection will minimize total cost. Another type of semi-
economic design was studied by Cowden (1957) who considered all
three major catagories of costs but offered no optimization
technique. Cowden’'s (1957) work is also on %~chart.

In this section we obtain, for np-control chart, the optimal
sample size that minimizes the total amount of inspection

required to detect a specified shift in the process.



B.1.2 The Most Economical Sample Size for np-Control Chart

The production process starts in an in~gontrol state in
which 4t produces a known acceptable proportion, pg,., of
nonconforming units. As time passes the process may d@t@wimraﬁm
and start producing a nonacceptable proportion, Poyw of
noncconforming wiits. The out-of-control state of the process is
represented by pg.

This production process is monitored by an np-chart with the
upper control limit np,+3ApoTI=pgY. The lower control limit is
assumed to be zero. The inspection procedure is as follows. AL
fived intervals of time the samples of size n are taken. Let d be
the nonconforeaing units found in the sample. The various values
af d are entered in the chart in cronclogical order, and as soon
as one such value falls outside the contirol limits, the process
is declared to be out of control. The production is stopped to
allow investigation.

We want to find the optimal valus of n which would minimize

the average total inspection reguired to detect the shift.

B.1.3 The Average Amount of Inspection
When the shift ovcurs, the probability that it will be

detected on any subseguent sample is
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where m o= npy + BMAPGTI=RLTY .

We know thalt the number of samples required to detect the

ghitft giveﬁ that the shift has occured is a gepmebtric random



variable. Hence the expectsd number of samples required to detect
the shift is 1/gq4. This follows that on an average n/qq units
have tn be examined to detect the shift. Therefore the average
total inspection required to detect the shift is

Aln) = n/gy e a(B.1.2)

B.1.4 To Minimize the Average Total Insepction

We find the value of n which would minimize
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where m = NPL+EL AP IRy ) euu (B.1.4)

The difference between the two successive terms An) and

Alnkl) can be written as
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where m’ = (n+l)p +38 THFITRSTT=p,) e (Ba1.6)

Bince p, represents the proportion of nonconforming units
produced when the process is in the ip-control state, the value
of py is likely to be very small. Assuming that p, is very small

we have m” * m. We therefore have,
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Using the relation
Blmy ntly pyd = pyBm=1, 1y pyd) + (1=py? Blmy ny pyg)
vao(f3.1.8)
in the expression (B.1.7) we derive the following result:

Alntil) ~ A(n) > Q0 4iFfF n < Blmy n, pyd/Lfpybim-i, ny, py)l
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= 0 if n = Bmy n, pP)/ipghtm-l, ny, pydl
L0 if n o Blmy ny pi)/Epib(m~1g My Pyl
vau(B.1.9)
From (8.1.9) it follows that the minimum\ value of AN} is
a£tainmd when
n = Blm, ny, p/lpybim=1, n, py 1 vea (81100

The above result helps in finding the optimal value of n by

successive approximation method.

8.1.5 Poisson Approximation
Assuming that the value of n is large and the value of p; is

relatively small we may write

o exp(~-x)aHsx een{Balal1)
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Under Poisson approximation the expression for A(n) is

!
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Ditferentiating A{n) with respect to n and equating to zero we

have
n = F‘(mg :)\) / l:pl'F('n'"'ip :’\):’ uun(&ulul:‘z)
“ Y4
where F(fns :}\) uz \.f'E:ﬂ‘} (:?H]:.\("}\):)\"‘/N! nnn(mnlai‘q')
and Flm=1,%) = expl-03""1/(m-1! ean (B.1.15)

The expressions for optimal n obtained by using the binomial
law and the Poisson law as given by (8.1.10) and (8.1.13%) are
almost similar in the nature. The numerator on the right side in
both the sxpressions is 1 minus the distribution function and the
denominator is the product of p; and the individual probability

mass function.

Numerical Example
A computer program on Fortran is developed for the

computation of the R.H.8 of the squation ((8.1.10 for n =
12,3302+  This program uses a subroutine for the computation of
cummulative and individual binomial probabilities. The values p,
and py are assumed to be known. We choose that value of n as
optimal for which eguation (8.1.100 is satisfied. While
evaluating Bimyn,pylinvolved in (8.1.10) we have taken the value
of m to be the integer part of npy+t3Mp,(I-ppT. The listing of

the program is given at the end of this chapter. The following
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Table B.1 gives the optimal values of n in column (3) for various
values of p, and py. The values of qq and the avarage amount of

ingpection derived at the optimal stage are given as columns (4)

and (5).
Table B.1
g py  Optimal Sample | a; | A
Size(n)

----- ?&) (2 B - 3 “ (4)M. (5)
0.01 0.06 T 30 MMQ.8437 56.56
.01 0.08 22 0. 84073 26.18
0.01 0.10 i8 0.8499 21.18
0.0%0 0.15 52 0.8782 36.44
0.03 0.17 10 6.8448 11.84
0.05 0,20 51 0.9077 56.19

We illustrate t?@ use of the above Table 8.1 as given below.

Suppose, using the np-control chart with the usual control
limits, it is decided to control the proportion of nonconforming
units at a level pg = 0.01(1%4) and to detect the shift in the
proportion of nonconforming units at-a level py = 0.10104). Then
reterring to the table, one can see that one has to take & sample
of 18 wunits. Thereby the probability of detecting the above
stated shift is 0.8499 and the average amount of dnspection is

21.18.



8.2 Some Corrections in Knappenberger and Grandage’'s (1%949) Model
for X-Chart

Iin this gsection some corrections are made in Knappenberger
and GBrandage’'s (1969) model. We correct some expressions  and
numarical results which are npt consistent with the procedurs
desiribed by the authors(l969).

Knappenberger and Grandage's (1969) model is well axplained
in the Section 3.2 of chapter V and hence it is not described
again. The total expected cost per unit of the product under this
model is

E(C) = (aj+ann)/k + agg'ﬂfk + a4g‘i e (B.201)

The cost coefficients a (i = 1,2,%,4) and the probability
vectors G @y ts i are as euplained in the section 5.20f chapter
V. The cost coefficients a; (1 = 1,2,3,4) are assumed to be known
and are dindependent of the design variables (n, ky, L). The
probability vector i i also independent of the design vardables.
The probability vectors O s [ are functionally related to the
design variables (n, k, L). We have observed some fallacies in
the svaluation of vector g which are corrected in this section.

The evaluation of the vector g depends upon the Pransitimn
probability matrix B. The element by (i, = QOuly o=y B
repreasents the probability of the process shifting from state py
to the state M during the production of k units between two
suwccessive samples. The expressions for hij ara glven by
(4.2.101), (4,2.12), (4.2.13) and (4.2.14). The expressions bij

(i, = 0,1, .suuy ) depend upon the transition probability matrix

(pij) and the probability vector g. The expressions P j (i, =
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Gal, 2uay 83 are given by (4.2.9) and (4.2.10). The probability
vector q is given by (9.3%.1).
Once B matrix is determined, the vector @ is obtained by
solving the equation
@B =g e (B2
This procedure for cbtaining g is described by the authors
and is correct.
From the egquation (8.2.2) we write
g’ (B~ 1) = (° eaw (823

where 1 is (s+l)ix(s+]l) identity matrix and O is a vector of (s41)

ZRIr0S.
)
The equation (8.32.3) along with the cmnditimnj%{gi = 1 can
he rewritlten as
P I U x1 1)y = (., 1)’ vuo (B.2.4)

where (B - I]L) on the left side of (8.2.4) is (B - 1) matrix
augmented by column vector 1l of (s+1) ones and 1 appearing on the

right side is just scaler 1. (

It may be noted that the sum of any s of the first (s+i)
restrictions given by (8.2.4) implies the remaining restriction
of the firgt (s+1) restrictions. Hence to solve for o« any one of
the first (s+1) restrictions given in (8.2.4) can be omitted.
This can be done by omitting any one of the columns of matrix
{B - I} on the left side and the corresponding zero on the right
side of (B.Z2.4). Arbit?arily omitting the first column labelled
"O" on the left side and the corresponding zero on the right side

of (8.2.4) as suggested by the authors we get the following

N
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egquation for determining the valus of the vector g
aB® = (0, 1) AT TR
where 0 is now a vector of s 2eros.
The elements of the matrix E* are derived using the process

described above. They are related to elements of B and I. The

s b eavr s 2 mma Beie h b L 4 = e -
gxact supreszions fo bmg (i = Q,f).* 383,434 =06, IJ,-‘,SQ are

b?,j = bi,j+1 for all i and for all j, J + i-l,%
X - _ ,
bigi""i = bll 1 for 1 :;:: o
b¥, = 1 C for all 4 e e (Ba26)
®

The esxpressions for bij given by the authors (1969 are
WIORG o
Lastly having obtained E*g one should obtain (B¥)"1, The

last row of (g¥)—1 gives o .

H

For the sample problem with n = 2, k = 40, L = &, » = 1,

R = 1000 and n = 0.376 of Fnappenberger and Brandage, we have

Pap = 0.2607%2 A, = 0.00270
Pui = 0.00887 qy = 008639
Pop = 0.01340 gp = 0.43189
Pox = 0.01076 gz = 0.89300
Puq = 0.00486 qg = 0.99606
Pag = 0.00117 qg = 0.99998
Pos = 0.0001% 0g = 1.00000

The B¥ matrix is found uwsing the corrected formulae (8.2.4)

and is as given below g



- Q0BBY - 01340 01076 . Q0484 00117 L00112
- . 78547 I2ELT . 25964 117354 - 02828 0284

00384 -~ 47123 = 16061 07258 01749 wOR176
B* = Q0794 01194 —-.20018 L7462 - QUARE Q0043
. 00886 LOLEES 01072 —.99134 0129 LOO0LE
QOBET 013540 01076 L0484 -~ FPEBO LOQOLR
.« 008E9 1540 01076 - 30486 0117 -.99988

Aa stated, one can verify that the matrix n¥ given above and given

by the authors (Knapsnberge and Grandage) are totally different.
Not only that p¥ given by them is not in accordance with the
formulas stated by theam.
We have calculated inverse of E¥ given above and the last
row of (B¥)"1 ig
Tt o= (93547, 01101, (02452, .01i88%, 00803, .0019%, .QQ019}

This gives the solution for o.

8.5 Some Modifications in the Montgomery’'s (1975) Expected Cost
Model for np—-Control Chart.

8.3.1 Montgomery, Heikes and Mance (1975) developed the economic
design of np-control chart using Knappenberger and Grandage’s
(19469) cost model Ffor X-chart., One of the drawbacks of
Knapenberger and Grandage’'s (196%) model is that the cost of
producing a nonconforming unit remains the same whelther the
unit is detected during sampling or it goes undetected to the
customear. This is not realistic. Surely an ’undetﬁct&d
nonconforming unit which goes to the customer is more costly than
the one which is detected during sampling. In this section we
modify Montgomery’'s (1978) expected cost msodel for np-control

chart in such a way that 1t assigns a higher oost to a
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nonconforming unit that goes undetected to the customer than to

the one which is detected during sampling.

8.3.2 The Modified Expected Cost Model.

Montgomery's (19789) expected cost model is well suplained in
the Section 4.2.37 of chapter [V. The total expected cost per
unit, E(C), derived under this model is as follows.

E(C) = E(Cy) + E(Cn) + E(Cz) sne (B3I
where
E(Cy) = the expected cost per unit of sampling and inspection
= (ag + amn)/k, eaa (B3.2)
E(Cn) = the expected cost per unit of finding the assignable

causes and repairing the process

=
a::i;'goul R A
= S
I waa d8.305)

E(Cs) = the expected cost per unit of producing nonconforming

units
5
= E‘a-, . :un(a :.'!;n‘}‘)
4 y=p"iPi "

Hence the expression for B under Montgomery’ s model is

B
R T8N &ﬁ-33“iqi

&
T o v e s st o o S0 ok S8 s e PR o
E(C) - ; : + ag Eoripg e (8.3.5)

For the modified expected cost model developad by us the
expressions for E(Cy) and E(CH) remain the same as those given by

Montgomery et. al. (19273) which are given by the expressions
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(8.3.2) and (B.3.7) respectively. The expression E(Cg) is
developed in such a way that a higher cost is assigned to a
nonconforming unit which goes undetected to the customer than to
the one which is detected during sampling. The modified

expression for E(Cx) is developed in the next Section B.3.3.

8.3.5 Computation of E(Cx)

The gypected cost of producing nonconforming units betwesen
two successive samples is computed under two possibilities.

(1) The process is in state p; at the time of taking a sample and
remaing in the same state at the time of taking'hhm next sample.
(2) The process is in state p; at the time of taking a sample and
shifts to another state Pj (pj » pi? before the next sample is
takern.

It is assumed that at most one shift can occur betwean two
successive sanples.

Under the situation (1) the process remains in the same
state p; during the production of k units between. two successive
gsamples. Hence the expected number of nonconforming wunits
produced is kpi. Among these k units only the flrst n units are
sampled and remaining (k-n) go undetected to the customer. Hence
the expected cost of producing nonconforming units is

Ag NP4 + a452(k~n)pi e n (8806
where

a = the cost of a nonconforming unit that is detected during
441

sampling and inspection,

e
WU
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ag, o = the cost of a nonconforming unit that goes undetected (o
the customer.
clearly ag 1 k4 ag,2-
Multiplying the expression (8.3.6) by the reguirern

probabilities and adding for 4 = Q,l, ..y @, the expected cost

of producing nonconforming units under the situation (1) le glven

by
&
E(Cs 1) aiiaaipii I a4, 1NPy " a453<k~n)pil e {BLELTD
where a; (1 = 0,1, ..., s) is the steady state probability that

the process is in state p; (i = 0,1, ... s) at the time of taking
a sample, and p;; is the probability that the process remains in
the same state p; until the next sample is taken. The expression
for «; (1 = 0,l;...,8) and the transition probability matrix
(pj;? are given by (4.2.15) and (4.2.10) respectively.

Under the situation (2) the process shifts from state p; to
state Pj Py »opg) during the production of k units between two
successive samples. Let A be the average fraction of time the
process remains in the state p; before shifting to Pie given that
the shift ococurs between two successive samples. The expression
for A is given by (4.2.17) and hence not reproduced here. Tha
total time spent between two successive samples is k/R houwrs.
Hence the fraction of time the process remains in the state p; is
Ak/R hours and in the state Pj is (l1-a)k/R hours. Hence the
number of units produced in the state p; is Ak and the number
units produced in the state R ig (1-aAYk. Therefore the expected
number of nonconforming units produced is akpy + (1~A)kpju Among

the ak unit produced in the state pj. only first n units are
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sampled and inspected. Hence the expected number of nonconforming
wnits detected during sampling is NpE;» The remaining
(Ak~n)pi+(1—A)kpj nonconforming wits are undetected due to
nonsampling. Hence the expected cost of producing nonconforming
units is
ag 1"Py + ag m Cak=-ndpy + (1*A>kpj3 wew (BEE)

Multiplying (8.3%.8) by the required probability and adding for
o= Opdy woey 8~1y J = i+l, i+2, .uwy &, the expected cost of

producing nonconforming units under the situation (2) is

»

@1 %
E(Cmy =) =ig0 jm§+1mipi5 Ea4§1npi * ag 2 {(ak-nlpg + (iwA)kmj}J

wea (B.3.9)
whera Pij is the probability that the process shifts from the
state p; to the state p; between two successive samples. The
expraession for Pij ig given by (4.2.10),

Hence the expected cost per unit E(Cy), of producing
nonconfaorming units is given by
E(Cx) = E(Qw ) + E(Qy ) sun (B2 10D
When A1 = A0 it can be verified that the expression for
E{Cx) given by (8.3.10) reduces to the expression for E(Cz) given
by (8.3%.4). This means that when 4,1 & 8g,2» E(Cx) under the
present modified model is the same as E(Gy) under the

Montgomery’'s original model. .

8.3.4 Numerical Example
The Hooke-Jeeves search technique is wused to find the

optimal values of n, m, k which minimize the expected cost per

Ledds



wnit of the product.

We consider an example presented in Montgomery et. al.

(1975) .

]

L&“t al $ 5:03 E\E = ﬁ'} Ouﬁg &13 = $ 1(:’(:)9 aq, = $ 1(:)9 \\ we 15

Ro= 1000, =

Q.597, p = (.01, .02, 04, .08; .1é6, .32; .64).

For this combination of cost coefficients and systems
parameters, the search technigue vyvielded the following optimal
control procedure. n=4, m=1l, k=82 with minimuwn E@) = & 0.631%,
This optimal procedure and the minimum EQ) are derived for
Montgomery's original cost model.

Under the modified cost quel it is assumed that ag.1 < agq,me
Let a) = % 5.0, an = $ 0.5, ay = % 100, ag,1 = $ 10,

We take three possible valuss of By me
) Bg,m = # 20 (2) ag,m = % 18 (D) ag,m = B 10
et 5 = 1, R = 1000, n = 0,597,
et p = (LOLl, .02, 04, .08, .16, 32, .64).

Under the possibility (1) the optimal control procedure
yviglded is n=12, m=2, k=36 with mindimum EQ) = $ 0.8080.,

Under the possibility (2) the optimal procedurs yislded is
m=ll, m=2, k=41 with minimum E(C) = & O,73547.

Under the possibility (3) the optimal procedure yielded is
=g, mel, k=82 with minimum EC) = & Q.651%.

The results of possibility () show that, when Bg,1 ™ 84 0
the optimal control procedure and the minimum E(C) derived under
the modified model are same as those derdved under the original
Montgomery s (1978) model . This is already gstabl ished

theoretically in the last para of the Section B.3.3.
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8.4 Sraphical Presentation used in Curtailed Sampling and
Inspection
8.4.1 Diagnostic charts

A control chart is the graphic display of the quality
characteristic measured from the sample versus the sample number
pr time. The sample points are plotited as time oriented segquence
on the chart. The pattern of sample points plotted on the chart
containg information of diagnostic valus to an  experienced
agperator or analyst. Also control charts provide information
about the values of the important process parameters and their
stability.

Williams, Looney and Feters (1985) introduced the use of
curtailed sampling to develop the economic model for np-control
chart, wheare gaﬁpling is stopped as soon as m nhonconforming units
are observed or n units are examined. There is no mention about
the graphical display of the information collected during the
sampling and inspection by Williams et.al. (198%) , while
introducing curtailed sampling policy. In view of the above
defficiency in  graphical presentation while uwusing ouwrtailed
gampling, we make an effort to exhibit the outcoms of the
inspection from time to time., One of the vital information in
the use of curtailed sampling is the number of units inspected to
make & decision. Hence we propose to plot this information as a
time oriented sequence on the chart. It is hoped that.thm pattern
of the sample points plotted on the proposed charts will give

somg sort of information of a diagnostic valueg +for the analyst.



The proposed charts are not the wusual control charts since they
do not contain the control limits as such. Hence the proposed
charts will be named as "diagnostic charts".

The construction of the proposed charts is explained in
detail for the curtailed sampling used by us while developing the
economic model for np-control chart with two upper control limits
in the Bection 7.7 of Chapter VII.

Recall, Ffor continuity, the sampling procedure and the
decisions associated with the procedure.

After the production of every k units, inspect the units one
by one till one of the following occurs.

(1) mo nonconforming units are observed.
(2) n-mg+l conforming units are observed.
(3 n units are inspected.

I4 (1) happens, the process is declared to be out of control
and a major action is taken. I+ (2) happens, the procvess 1s
declared to be in conbtrol and ne action is taken. I (3) happens,
the process is declared to be out of control and. a minor action
is taken to repalr the process.

We now explain the proposed diagnostic chart for the above
curtalled sampling procedure using the Figure 8.1. The ilmportant
feature is that the proposed diagnostic chart consists of three
charts such that the cha?t J represents the above mentioned
possibility (J) (J = 1,2,3), and thess charts are plotted one
below the other. The sample points are plotted as a tioe
prientead seqguence on the chart such that at =ach point of timae,

the sample point will $all esither on chart 1 or chart 2 or on
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chart &. Chart 1 represents the number of units inspected when
the moth nonconforming wnit is observed. Chart 2 represents the
number of units inspected when (n-my+1)th conforming unit is
phserved. Chart 3 represents the number of nonconforming units X
whare X lies in (myy mm-1). When the analyst finds that a sample
point is plotted on chart 1, he concludes that the maior
assignable cause has occurred and hence he suggests & major
action to repair the process. When a sample point is plotted on
chart &2, it indicates that the process 1s operating in control
and no action is required. When a sample point is plotted on
chart 3, it indicate that a minor assignable cause has ocourred
and a minor action is suggested to repalr the process.

The plotting on these charts for a long period of time will
help the analyst to know more about the state of the production
process. For dinstance, & large number of plots on chart 3
in the past indicates that most of the timeg the minor action was

required to restore the process.
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8.4.2 Graphic Devise for Execution

fnother problem arising with the use of curtailed inspection
ig that guite often the inspector euperiences difficulty in its
execution. Hence there is & need for some special device which
can reduce the complexity and makes the execution simple. One
asuch device is to use a grid (graph) in two dimensional space
whose ordinates denote nonconforming units observed and abscissa
denote the number of wunits inspected. A point with coordinates
(Y, X} represents the occurrence of X nonconforming units in the
inspection of ¥ units.

We give the graphical procedure for the execution of the
cuwrtailed sampling policy used by us to develeop the economic
model of the np-~contrel chart with two upper control limits.
Firstly, we plot the boundary points of the region in accordance
with the statement of the sampling policy given in the Section
B.4.1. These boundary points are clas$ifi@a into threse mutically
exclusive classes. The boundary points belonging to & class
corresponding to possibility (1) are denoted by [X]. The boundary
points belonging to a class corresponding to the possibility (2)
are denoted e The boundary points belonging # class
corresponding to possibility (3) are denoted by #. As the units
are inspected one by one, starting from the origin we plot a unit
horizontally to the right when a conforming unit ls observed, and
we plot a unit diagonally up when a nonconforming wnit is
pbhserved. This process of ingpection of units and of plotbting the

points on the graph continues till the path joining the points
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plotted reaches one of the boundary points. When the path reaches
the boundary point [X] , the major action is suggested to restore
the process. When the path reaches the boundary point o, no
action is taken. When the path reaches the boundary point X,
minor action is taken to restore the process.

+ We illustrate the above procedure for the sxecution of
curtailed inspection when n = 12, my = 3, ms = 6. The boundary
points are shown in the Figure 8.2. Consider the following
sequence of inspection.

ggddgddgdd
where g represents a conforming unit and d represents a
nmnconfm}ming unit. The path of this sequence is given in the
Figure 8.2. The path reaches +the boundary point Eﬂ whose

coordinates are (10,6). Hence we stop the inspection at 10th unit

with a decision to take a major action to repair the process.
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C LISTING OF CHAPTER VIII
L PROGRAM ON MINIMIZATION OF ATI
C FILE NAME IS5 ESTHMI1
READ(%,1) PNOT,PONE
i FORMAT(1X,2F10.4)
WRITE(%,1} PNOT,FONE
DO 10 I=4,100

N=1
WRITE(%,.2) N
2 FORMAT (11X, "iM=" , 13}
TUCL =N&ZPNOT+3. 0%SORT (N)¥PNOTH (1. 0—-PNOT )
Mi=IUCL+1

WRITE(%,3) M1
FORMAT(1X, ‘M1=",14)
NN=N
M=
NT=NMN-MM+1
PROB=FONE .
CALL BIM(PROB, MM, NT, PRi,PA1, PI{)
WRITE(%.5) FRi,PI1
FORMAT(1X, "PRi=" ,F10.6, 'PIl=",F10.6)}
RATIO=PR1/(PONEXPI1)
WRITE(%,7) RATIO
FORMAT(1X, "RATIO=",F12.6}
=N-RATIO
WRITE(%,9) D
9 FORMAT(1X, ‘D= ,F10.56)
IF(ARS(D).LT.0.5) GO TO 12
10 CONT INUE
12 NSTOP=1
STOP
END

2]

u

~l

£ FILE NAME IS HDF

C PROBRAM FOR E{(C) OF MONTBOMERYS MODEL WITH MODIFIED E(C3)
SUBROUTINE OBJ7 (AKE,NSTAGE,SUMN,Al1,A2,A%3,04,ALEMDA,RATE,
PIE,.NSTAT.PIN)

DIMENSION PIN(C10)},PZ{10},P(i0,10),0R(10),ZFP(10),BZ{10},ZR{10}
LE(10,10),B8T(10,10),C2(10),2ZC(10),0(16,10),D¢(10,10),
DST(10,10) ,ALPHA{ 10} ,BaMMA(10) ,A(10,10) ,BSTZ(10),T(10,10),ZEST
(10),8(10,10),U(10,10),V{10,10),BB(10,10) ,AKE(S) ,T7(10)

[y

[RO

WRITE(¥%,5)

5] FORMAT(4X, "COST COEFFICIENTS )
WRITE(¥, 1181 ,A2,A5.A4,AD0

i FORMAT(1X,4F10.4)

WRITE(X, Z)ALEMBDA,RATE .FPIENSTAT
FORMAT(1X,3F12.4,13)
WRITE(X,6Y(PIN(I) I=1_NETAT)
& FORMAT(1X,7FB.4)
SNOT = AKE(1)
SRNOT = AKE(Z)
REJNOT = AKE(Z)
WRITE(%,2)SMNOT,5RNOT REJNOT
2 FORMAT(1X, "SAMPLESIZE =" ,F10.2, " INT SAHM RANGE =’ ,Fi0.2, " REJ
I NUM=",Fi10.2)

1
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10

&00

igq

15

i1

Al

&2

POWER = ALEMDAXSRMOT/RATE
PRPOWER =—POWRER
PZZ=EXF{FFONER)
WRITE(%,7) PZZ
FORMAT(1X,FiG.4)

NSTATE = NSTAT-1
DEMD=1.—-{1.~-FPIE)RENBTATE
MSNOT = SNOT

DO 10 J=1,NSTATE

Mi = J+1

M2 = NBTATE-J

CALL BIN(PIE, ML, M2,0PR,CPL.LFPI)
WRITE(¥,8) CPR,CPL,PI,J

FORMAT(1X, "OPR=";F10.6, 'CPL=",Fi0.6, " PI=",Fi10.6,°d

PZ(J) = PI%(1.-PZZ)/DEND
DD 600 I = 1,NSTATE
ZP(I)=0.

DG 20 I=1,NSTATE

DO 20 J=1,NSTATE
IF(I-J}30,31,32
F{1.0) = PZ{J}/(1.-PZZ)
60 TO 20

SPZ=0.

DO 40 KK=1,I

SPZ = SPZ+PZ(KK)
P(1,J) = SPZ/(1.-PZZ)
60 TO 20

F(I,J)=0.

CONTINUE

Til,1)=PZZ

DO 12 I =2,NSTAT
K=I—1

T(1,1) = PZ(K)

DO 13 J=2,NSTAT

g=g -1

T, 1)1=ZP(K)

DO 14 I=2,NSTAT

K=1I-1
DO 14 J=2,NBTAT
Ki = J~1

T(I.J) = PK,K1)}

WRITE(%,15) .

FORMAT(1X, TRANSITION MATRIX®)
WRITE(X,113¢(T(I,3),J = 1,NSTAT},I=1,NSTAT)
FORMAT(1X,7F10.6)

81 = 8NMOT
82 = SRMNOT
853 = REJNDT

CoLl. PROBRIS1 ,B2,83,PIN,NSTAT.OR)
WRITE(X.J01Y{OR(1,1I = 1,NETAT)
FORMAT(1X,.7F10.&)
DO &0 I=2 . MNSTAT
DO 60 J=1,NMSTAT
IF{I-J1&1 ;462,63 ‘

S{I J)=OR{IIET(I, )+ (1-ORII}IET(I  J)
60 TO &G
S(I,J)~=OR(IJET(L, I3+ (1-BR(IIIXT(I, I}

La.2
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2?7

78

B0 TO &0
S¢I,J)=0R(II¥T(1,d)
CONT INUE
DD 326 J=1,NSTAT
S¢1,J3=T(1,J?
WRITE(%,302)
FORMAT(1X, ‘MATRIX S(I1,J}°)
WRITE(%,303) ((S(I,J),J=1,NSTAT),I=1,NSTAT)
FORMAT(1X,7F10.4)
DD 330 I=1,NSTAT
DO 330 J=1,NSTAT
IF(I-J)331,332,331
UCI,J)=5(I,J)
80 TO 330
U(T . J)=5(I,d)-1
COMT INUE
WRITE(%,311)
FORMAT(1X, ‘MATRIX W(I.J)°)
WRITE(%,312) ((U(I,J),J=1,NSTAT},I=1,NSTAT)
FORMAT(1X,7F10.6)
DO 321 I=1,NSTAT
DO 321 J=1,MSTATE
VLI, J3=U(I,J+1)
DO 322 I=1,NSTAT
VI, 7)=1
WRITE(%,323)
FORMAT(1X, ‘MATRIX V(I,J}°)
WRITE(%,324) ((V{(I,J),J=1,NSTAT),I=1,NSTAT}
FORMAT(1X,7F1G. &)
DO 325 I=1,NSTAT
DO =25 J=1,NSTAT
BT JI=V(I,.J)
N=NSTAT
CALL INVRS(A,BE,N)
WRITE{%,97)
FORMAT(1%, ' INVERSE MATRIX )
WRITE(%,98) ({(BB(I,J),J=1,NSTAT},I=1,NSTAT)
FORMAT(1X,7F10.4)

c BB{(I,J} I8 IMNVERSE OF A(I.Jd)

81

150

82

DO 81 J=1.NSTAT
ALFHA(I »=BB(NSTAT,J)
WRITE(%,150}

FORMAT(1X; "VECTOR ALPHA")
WRITE(x%,B2) {(ALPHA(J),J=1,NETAT}
FORMAT(1X,7F10.64)

C COMPUTATION OF GAMMA

ADALTA={1.—~(1.+POWER}ZPZZ) / (PODWER¥ (1 .-PZ7)}
WRITE(X,160)
FORFIAT(1X, "ADALTA )
WRITE{(%,82) ADALTA
GAMMAZ=ALPHA{ 1 }Y2PZZ+AL PHA(1 Y2ADALTAX(1-FZZ)
WRITE(%,170)
FORMAT (11X, GAMHMAZ )
WRITE(%.82) GAMMAZ
DO 20 I=2,.NSTAT
S=I-2

TERM3=
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162
110
104

FQ

T 120

161
155

163

TERM4=0
1i=I-1
I2=1+1
IF{Ii~1} 101,102,101
DO 100 J=1,13
{=J+1
TERMZ=TERMZ+ALPHA(K) ¥P(J,11)
IF(I1-A) 102,104,102
DO 110 KE=I,NSTATE
TERMA=TERMA+F {11 ,K)
GAMMA(I1)=ALPHA(IIXP(Ii,T1)+(1i.-ADALTA) XALPHACI Y ¥PZ(I1)+
{1.-ADALTA) ¥TERMS+ALPHA( 1) X TERMAXADALTA
WRITE(%,B2)GAMMA{IL)
CONTINUE
EC1=(A1+AZ¥SNOT) /SRNOT
TERMS=0
DO 120 I=1,NSTAT
TERMS=TERMS+OR ( 1) #ALPHA(I)
EC2=AZXTERMS/SRNOT
TERM&=0
DO 151 I=1,NSTAT
TERM&O=TERM&+ALPHA( 1) ¥T (I, 1) % (A4XSNOTAPINCI)+A5% ( SRNOT—-SNOT) %
PINCIY)
DO 155 1=1,NSTAT
T7¢1)=0
I2=1+1
DO 161 J=12,NSTAT
T7CI3=T7(I)+ALPHAC I ET(I,J) % (A4XSNOTEPIN( I ) +A5% (ADAL TA%XSRNOT
—SNOT)XFINGI)+ASK( 1-ADALTA ) XSRNOTEPINCI))
CONT INUE
TERMB=0
DO 165 I=1,NSTAT
TERM8=TERM8+T7 (1)
EC3=( TERM&+TERMB) /SRNOT
TC=EC1+ECZ+ECS
SUMN=TC
WRITE(%,140}7TC,EC1,EC2,EC3
FORMAT(1X, TOTAL COST=',E18.8, ECi=’,EiB8.8, EC2=',.E18.8,
‘ECZ=" ,E18.8)
RETURN
END
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