
Chapter VIII

The Miscellaneous Problems

8.1 The Semi-Economic Design of np—Control Chart

8.1.1 Early Work on Semi-Economic Design
The economic design of conventional Shewhart type control 

charts was investigated by several early researchers. Most of 
their work can be classified as semi-economic design, procedures 
in that either the proposed model did not consider all relevant 
costs or no optimisation techniques were applied.

Weiler (1952) obtained for an si-chart the optimum sample 

size that would minimize the total amount of inspection required 
to detect a specified shift. Weiler (1952) did not formally 
consider costs; the implication is that minimizing total 
inspection will minimize total cost. Another type of semi- 
economic design was studied by Cowden (1957) who considered all 
three major categories of costs but offered no optimization 
technique. Cowden's (1957) work is also on x-chart.

In this section we obtain, for np-control chart,, the optimal 
sample size that minimizes the total amount of inspection 
required to detect a specified shift in the process.
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8.1.2 The Most Economical Sample Siae for np-Control Chart
The production process starts in an in-control state .in 

which it produces a known acceptable proportion, pQ, of
nonconforming units. As time passes the process may deteriorate 
and start producing a nonacceptable proportion;, p-^, of
noncconforming units. The out-of-control state of the process is 
represented by p^.

This production process is monitored by an np-chart with the 
upper control limit np0+3Tnp“TT-p”T. The lower control limit is 

assumed to be zero. The inspection procedure is as follows. At 
fixed intervals of time the samples of size n are taken. Let d be 
the nonconforming units found in the sample. The various values 
of d are entered in the chart in cronological order, and as soon 
as one such value falls outside the control limits, the process 
is declared to be out of control. The production is stopped to 
allow investigation.

We want to find the optimal value of n which would minimise 
the average total inspection required to detect the shift.

8.1.3 The Average Amount of Inspection
When the shift occurs, the probability that it will be 

detected on any subsequent sample is

where

shift

q« « § <”> pf < 1—Pi > n'“d ...(8.1.1)
A d“m d 1 1
m ™ ripQ + 3Tn"p“?T-p^y.

We know that the number of samples required to detect the 
given that the shift has occured is a geometric random
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variable. Hence the expected number of samples required to detect 

the shift is 1/q^. This follows that on an average n/q^ units 

have to be examined to detect the shift. Therefore the average 

total inspection required to detect the shift is

A(n5 = n/qj ...(8.1.2)

8.1.4 To Minimise the Average Total Insepction
We find the value of n which would minimise

n
A(n 5 “ --------------

nTlUd«m
(^5 pf<l~p1)n"d .(8.1.3)

where m « np^S^np^TT-p") ...(8.1.4 5

The difference between the two successive terms A(n) and 

A (n+l5 can be written as

A(n+l)rA(n) =
n+l

n+l n -I-1 d*m'* d pfd-pj) n+l-d
n

n
i£iid«m

n 
1 d
c:> p^ti-Pi) n-d

...(8.1.55

where m' = (n+i)pa+3«F”“TC!CT'VS:’”TT""'C~ \(n+l5 pQ(1 P0) ...(8.1 .65

Since Pa represents the proportion of nonconforming units

produced when the process is in the in-contral state,, the value

of p0 is likely to be very small. Assuming that p0 is very sma 11

w© have m' m» We therefore have,,
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A (D'l'l) --A (n ) 04
n+i

rH-1 n+1dim ! d ’

n

<">
d

p?<i-Pl)"-d

Let B(mp n, p) -• S <n) pK < l-p)n"
x=m x

n x > i _„%n~xand b<x, n, p) < >p <i~p)

..<8.1.7)

Using the relation

B(m., n-i-i „ pj) « p^EKm-l, n p^) + (l-pj) B<m, n, p-j)

. . . < 8. 1.8)
i.n the expression <8.1,7) we derive the following results

A<n-t-1) - A<n) > 0 if n < B (m 5 n» P|)/Cpjb(m~l, n* Pi * ■*

= o if n « B<m,, n $ Pj) /Cpjb<m--1 j, n,, Pl);l

< 0 if n > B < m,, n „ p^)/C pj b(m~lj n, p:i ) 3

. . . < 8.1.9)
From <8.1.9) it follows that the minimum value of A(n> is 

attained when

n “ B<m» n9 p^)/Cpjb<m-1p n, Pj)3 .,.{8.1.10)

The above result helps in finding the optimal value of n by 

successive approximation method.

8.1.5 Poisson Approximation
Assuming that the value of n is large and the value of pj is 

relatively small we may write

*=>1
n
x~m

exp<~X)Xs‘/x <8,1.11)

where X ~ npj, m » np0+34“npQ
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Under Poisson approximation the expression -for A(n) is

nA<n> ----------------
S exp<-X)Xx/x! ...(8.1.12)
x=m

Differentiating A(n) with respect to n and equating to zero we 
have

n - F(m, X> / Cpj f <m-1„ X>3 ...(8,1.13)

®where F(m, X) “ S ©xp<~X>X'Vx! ...(8.1.14)x-m
and f(m-1,X> « exp(-X>Xm"1/<m-l>! ...<8.1.15)

The expressions for optimal n obtained by using the binomial 
law and the Poisson law as given by (8.1.10) and (8.1.13) are 
almost similar in the nature. The numerator on the right side in 
both the expressions is 1 minus the distribution function and the 
denominator is the product of p^ and the individual probability 
mass function.

Numerical Example
A computer program on Fortran is developed for the 

computation of the R.H.S of the equation (8.1.10) for n = 
1,2,3,... . This program uses a subroutine for the computation of 
cummulative and individual binomial probabi1ities. The values pQ 
and P| are assumed to be known. We choose that value of n as 
optimal for which equation (8.1.10) is satisfied. While 
evaluating B(m,n,pj)involved in (8.1.10) we have taken the value 
of m to be the integer part of np0+3TnpQTT-p5T« The listing of 

the program is given at the end of this chapter. The following
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Table 8.1 gives the optimal values of n in column (3) for various 
values of pQ and pj » The values of qj and the avarage amount of 
inspection derived at the optimal stage are given as columns <4) 
and (5) ,

Table 8.1

Po Pi Optimal Sample
Size(n)

Pi A(n)

(1) (2). (3) (4) (5)
0.01 0.06 30 0.8437 35.56

o a o 0.08 22 0.8403 26.18
0.01 0.10 18 0.8499 21.18
0.03 0,15 32 0.8782 36.44
0.03 0. 17 10 0.8448 11.84
0.05 0.20 51 0.9077 56.19

W© illustrate the use of the above Table 8.1 as given below.
Suppose, using the op-control chart with the usual control 

limits, it is decided to control the proportion of nonconforming 
units at a level p,-, « 0.01(1%) and to detect the shift in the 
proportion of nonconforming units at-a level pj ® 0.1(10%). Then 
referring to the table, one can see that one has to take a sample 
of 18 units. Thereby the probability of detecting the above 
stated shift is 0.8499 and the average amount of inspection is 
21.18.
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8.2 Some Corrections in Knappenberger and Brandage's (1969) Model 
for x-Chart

In this section some corrections are made in Knappenberger 
and Grandage's <1969) model. We correct some expressions and 
numerical results which are not consistent with the procedure 
desiribed by the authors<1969).

Knappenberger and Grandage's (1969) model is well explained 
in the Section 5.2 of chapter V and hence it is not described 
again. The total expected cost per unit of the product under this 
model is

E<C) » (aj+a2n)/k + a^a'q/k + a^r'f ,..<8.2.1)
The cost coefficients a^<i « 1,2,3,4) and the probability 

vectors q, a., r, f are as explained in the section 5,2of chapter 
V. The cost coefficients a^ <i “ 1,2,3,4) are assumed to be known 
and are independent of the design variables <n# k, L). The 
probability vector f is also independent of the design variables. 
The probability vectors q, c are functionally related to the 
design variables <n, k, L). We have observed some fallacies in 
the evaluation of vector & which are corrected in this section.

The evaluation of the vector a depends upon the transition 
probability matrix B. The element bjj <i,j » 0,1, ».., s) 
represents the probability of the process shifting from state p^ 
to the state pj during the production of k units between two 
successive samples. The expressions for bjj are given by 
<4.2,11), <4.2.12), <4.2.13) and <4.2.14), The expressions b-y
<i,j = 0,1, ..., s) depend upon the transition probability matrix 
<pjj) and the probability vector q. The expressions pjj <i,j
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0,1, .s> are given by (4.2.9) and (4.2.10). The probability

vector q is given by (5.3.1).

Once B matrix is determined;, the vector & is obtained by 

solving the equation

fl'B “ a' ...(8.2.2)
This procedure for obtaining a is described by the authors 

and is correct.

From the equation (8.2.2) we write

a' (B - I) - 0' ...(8.2.3)

where I is (s+l)x(s+l) identity matrix and Q is a vector of (s+1) 

zeros.
sThe equation (8.2.3) along with the condition S etj ~ 1 cana. s=0 x

be rewritten as

•

a'<B - I| 1) ■ <a, 1)' ...(8.2.4)
where (B - I j 1_> on the left side of (8.2.4) is (B - I) matrix 

augmented by column vector 1. of (s-f-1) ones and 1 appearing on the 

right side is just scaler 1.
!

It may be noted that the sum of any s of the first (s+1) 

restrictions given by (8.2.4) implies the remaining restriction 

of the first (s+1) restrictions. Hence to solve for « any one of 

the first (s+1) restrictions given in (8.2.4) can be omitted. 

This can be done by omitting any one of the columns of matrix 

(B - I) on the left side and the corresponding zero on the right 

side of (8.2.4). Arbitrarily omitting the first column labelled 

"0" on the left side and the corresponding zero on the right side 

of (8.2,4) as suggested by the authors we get the following



equation for determining the value of the vector a.
S'B* - (Q , 1)' .«.<8.2.5)

where 0 is now a vector of s zeros.
The elements of the matrix B are derived using the process

described above. They are related to elements of B and I. The
*exact expressions For b|j (i = 0^ f} . * ■ j S j = O, I __are

^i,i-1

is

^i,j+1
b • • — 1 11

for all i and for all j, j :]=• i-l.s 
for i =j= 0
for all i ..<8.2.6)

skThe expressions for b?.; given by the authors (1969) arexj
wrong.

Lastly having obtained B*, one should obtain <B*. The 
last row of (B*)"1, gives a'.

For the sample problem with n 53 2, k « 40, L = 3, Xs® 1,
R - 1000 and Tt « 0. 376 of Knappenbergt;
Poo = 0.96079 qQ = 0.00270
Pol =-- 0.00889 q;l ■ 0.05639
Po2 ■ 0.01340 q2 “ 0.43189
Pq3 = 0.01076 q3 ~ 0.89300
Po4 ~ 0.00486 q4 " 0.99606
Pq5 « 0.00117 q5 « 0.99998
Po6 = 0.00013 q6 * 1,00000

The B* matrix is found using the
and is as given below



00089 .01340 .01076 .00486 .00117 .00112 l
78547 T'1?”? 1 “7 .25964 .11734 .02828 .00284 1
00384 -.67123 .16061 .07258 .01749 .00176 1
00794 .01196 -.90018 .01762 .00425 ,00043 1
00886 .01335 .01072 -.99134 .00129 .00013 1
00889 .01340 .01076 .00486 -.99880 .00012 1
00889 .01340 .01076 .00486 .00117 -.99988 1

As stated, one can verify that the matrix B* given above and given

by the authors (Knapenberge and Srandage) are totally different.
*Not only that B given by them is not in accordance with the 

formulas stated by them.
We have calculated inverse of given above and the last 

row of <B*)“* is

a' * (.93547, .01101, .02452, .01885, .00803, .00193, .00019) 
This gives the solution for a.

8.3 Some Modifications in the Montgomery’s (1975) Expected Cost 
Model for np-Control Chart.
8.3.1 Montgomery, Heikes and Nance (1975) developed the economic 
design of op-control chart using Knappenberger and Brandage's 
(1969) cost model for x~chart» One of the drawbacks of 
Knapenberger and Brandage's (1969) model is that the cost of 
producing a nonconforming unit remains the same whether the 
unit is detected during sampling or it goes undetected to the 
customer. This is not realistic. Surely an undetected
nonconforming unit which goes to the customer is more costly than 
the one which is detected during sampling. In this section we
modify Montgomery's (1975) expected cost model for np~control 
chart in such a way that it assigns' a higher cost to a



nonconfarming unit that goes undetected to the customer than to 
the one which is detected during sampling.

Hence the expression for E(C> under Montgomery's model is

E(C>
a-I +annJ.

k "
£& ’I*' a£i J Cj A 

+ —+ a s
-.a r i p ^k 4i~0 x 1 (0.3.5)

For the modified expected cost model developed by us the 
expressions for E(C^) and E(C2> remain the same as those given by 
Montgomery et. al. (1975) which are given by the expressions

1R3

8.0.2 The Modified Expected Cost Model.
Montgomery's (1975) expected cost model is well explained in 

the Section 4.2.3 of chapter IV. The total expected cost per 
unit, E(C)9 derived under this model is as follows.

E(C) - E(C.,> + E(Cr>) + E(C-t) ...(0.3,1)
where
E(Cj) ® the expected cost per unit of sampling and inspection

aa (a j ■!“ ) /k j, o«. (8.0.2)
E(C2> =a the expected cost per unit of finding the assignable 

causes and repairing the process

sa-* , 2, «■; q 3 
°i=!0 x *

k " ...(8,3,3)

E(C-.-;) * the expected cost per unit of producing nonconforming
2D

s- 3 H*

•H
a■HL.o

snwi!-w
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(8.3,2) and (8.3.3) respectively. The expression £(83) is 
developed in such a way that a higher cost is assigned to a 
nonconforming unit which goes undetected to the customer than to 
the one which is detected during sampling. The modified 
expression for ECC^) is developed in the next Section 8,3.3.

8.3.3 Computation of EtCj)
The expected cost of producing nonconforming units between 

two successive samples is computed under two possibilities.
(1) The process is in state p^ at the time of taking a sample and 
remains in the same state at the time of taking the next sample.
(2) The process is in state Pj, at the time of taking a sample and 
shifts to another state pj (pj > p^) before the next sample is 
taken.

It is assumed that at most one shift can occur between two 
successive samples.

Under the situation (1) the process remains in the same 
state Pj during the production of k units between.two successive 
samples. Hence the expected number of nonconforming units 
produced is kp.$ . Among these k units only the first n units are 
sampled and remaining (k-n) go undetected to the customer. Hence 
the expected cost of producing nonconforming units is

a4 jnpj ^(k““n ) pj . . . (8. o u &)

where
a4j,l cost of a nonconforming unit that is detected during

sampling and inspection,
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a4?2 = cos^ °"f a nonconforming unit that goes undetected to
the customer.

clearly a^j < 2 *
Multiplying the expression (8.3.6) by the required

probabilities and adding for i « 0 j 1 ? ... >i S|i the expected cosl
of producing nonconforming units under the situation (1) is given 
by

E<Ct « )« i
_ *;h" .A“0«iPii c a4„lnPi + ®4,2<k"n)Pi3 (8 „ 3 „ 7 >

where <i = 0 p i,, .s) is the steady state probability that 
the process is in state p.^ (i « 0,,!,, ».„,,s) at the time of taking 
a samplej, and PjLi is the probability that the process remains in 
the same state p^ until the next' sample is taken. The expression 

for <i =» 0,1„,..,s) and the transition probability matrix <P;y> are given by (4.2.15) and (4,2.10) respectively.
Under the situation (2) the process shifts from state p^ to 

state pj <Pj > p.£) during the production of k units between two 
successive samples. Let A be the average fraction of time the 
process remains in the state p^ before shifting to Pj , given that 
the shift occurs between two successive samples. The expression 
for A is given by (4.2.17) and hence not reproduced here. The 
total time spent between two successive samples is k/R hours. 
Hence the fraction of time the process remains in the state p^ is 
Ak/R hours and in the state Pj is (l~A)k/R hours. Hence the 
number of units produced in the state p^ is Ak and the number 
units produced in the state p_j is (l-A)k. Therefore the expected 
number of nonconforming units produced is Akp^ + (l-A)kpj. Among 
the Ak unit produced in the state p^, only first n units are
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sampled and inspected. Hence the expected number of nonconforming
units detected during sampling is np^» The remaining 
(Ak-n)p^+(1-a) kpj nonconforming units are undetected due to 
nonsampling. Hence the expected cost of producing nonconforming 
units is

*4tlnPi + a4?2 C<Ak-n)+ <l~A)kpj3 ...(8.3.8)
Multiplying (8.3.8) by the required probability and adding for 
i .» 0,1 f . . . H s-ij, j « i+i, i+2P . .. p Sp the expected cost of 
producing nonconforming units under the situation (2) is

E ( C-: 5“ 1 S
s T V, *4 , Afta“0 j«i+laiPij Ca4plnPi + *4,2 «<Ak-n)Pi + <1-A)kpj >1

...(8.3.9)
where p^j is the probability that the process shifts from the 
state p^ to the state pj between two successive samples. The 
expression for p,y is given by (4.2.10).

Hence the expected cost per unit £(83), of producing 
nonconforming units is given by

E(C3) ■ E(C3>1) -1- E(C3>2> ...(8.3.10)
When a^j =» it can be verified that the expression for

E(C3) given by (8.3.10) reduces to the expression for E(C3) given
by (8.3.4). This means that when a^, j *r q #£. ; E ( Ct ) under the
present modified model is the same as E(Q3> under the 
Montgomery's original model. .

8.3.4 Numerical Example
The Hooke-Jeeves search technique is used to find the 

optimal values of n, m, k which minimize the expected cost per
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unit of the product
We consider an example presented in Montgomery et. al.

(1975) .
Let aj “ $ 5,0, a2 = $ 0.5, 33 * $ ,100, a^ ® $ 10, X “ 1?

R - 1000, it - 0.597, p = <.01, .02, .04, .08, .16, .32, .64).
For this combination of cost coefficients and systems 

parameters, the search technique yielded the following optimal 
control procedure. n=4, m=l, k=52 with minimum E(C) = $ 0.6313. 
This optimal procedure and the minimum E<C) are derived for 
Montgomery's original cost model.

Under the modified cost model it is assumed that 84 j < a^p.
Let a^ == $ 5.0, ap * $ 0.5, a^ » # 100, 34 j 82 $ IQ.

We take three possible values of a^ p.
(1) ^p " $ 20 <2) a/j,^ p 28 $ 15 (3) a^, p 85 *•{> 1U
Let X - 1, R 82 1000, Tt ■ 0.597.
Let p ■ (.01, .02, .04, .08, .16, .32, .64).

Under the possibility (1) the optimal control procedure 
yielded is n=12, 01=2, k»S6 with minimum E(C) 82 $ 0.8580.

Under the possibility (2) the optimal procedure yielded is 
n®!!, m8^, k=41 with minimum E<C) 85 $ 0.7567.

Under the possibility <3> the optimal procedure yielded is 
n“4, m=l, k8!!52 with minimum E(C> = $ 0.6313.

The results of possibility (3) show that, when j = a4,2!* 
the optimal control procedure and the minimum E(C> derived under 
the modified model are same as those derived under the original 
Montgomery's <1975) model. This is already established 
theoretically in the last para of the Section 8.3,3.
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8.4 Graphical Presentation used in Curtailed Sampling and 
Inspection
8.4.1 Diagnostic charts

A control chart is the graphic display of the quality 
characteristic measured from the sample versus the sample number 
or time. The sample points are plotted as time oriented sequence 
on the chart. The pattern of sample points plotted on the chart 
contains information of diagnostic value to an experienced 

operator or analyst. Also control charts provide information 
about the values of the important process parameters and their 
stabi1ity.

Williams, Looney and Peters (1985) introduced the use of 
curtailed sampling to develop the economic model for np-control 
chart, where sampling is stopped as soon as m nonconforming units 
are observed or n units are examined. There is no mention about 
the graphical display of the information collected during the 
sampling and inspection by Williams et.al. (1985), while 
introducing curtailed sampling policy. In view of the above 
defficiency in graphical presentation while using curtailed 
sampling, we make an effort to exhibit the outcome of the 
inspection from time to time. One of the vital information in 
the use of curtailed sampling is the number of units inspected to 
make a decision. Hence we propose to plot this information as a 
time oriented sequence on the chart. It is hoped that the pattern 
of the sample points plotted on the proposed charts will give 
some sort of information of a diagnostic value for the analyst.
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The proposed charts are not the usual control charts since they 
do not contain the control limits as such. Hence the proposed 
charts will be named as "diagnostic charts".

The construction of the proposed charts is enplained in 
detail for the curtailed sampling used by us while developing the 
economic model for np-~control chart with two upper control limits 

in the Section 7.7 of Chapter VII.
Recall, for continuity, the sampling procedure and the 

decisions associated with the procedure.
After the production of every k units, inspect the units one 

by one till one of the following occurs.
(1) m2 nonconforming units are observed.
(2) n-mj + i conforming units are observed,,
<3> n units are inspected.

If (1) happens, the process is declared to be out of control 
and a major action is taken. If (2) happens, the process is 
declared to be in control and no action is taken. If <3) happens, 
the process is declared to be out of control and- a minor action 
is taken to repair the process.

We now explain the proposed diagnostic chart for the above 
curtailed sampling procedure using the Figure 8.1. The important 
feature? is that the proposed diagnostic chart consists of three 
charts such that the chart j represents the above mentioned 
possibility (j) (j « 1,2,3), and these charts are plotted one 
below the other. The sample points are plotted as a time 
oriented sequence on the chart such that at each point of time, 
the sample point will fall either on chart 1 or chart 2 or on
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chart 3. Chart 1 represents the number of units inspected when 
the m2'th noncan-forming unit is observed. Chart 2 represents the 
number o-f units inspected when (n-m^ + Dth conforming unit is 
observed. Chart 3 represents the number of nonconforming units X 
where X lies in (mj, When the analyst finds that a sample 
point is plotted on chart 1, he concludes that the major 
assignable cause has occurred and hence he suggests a major 
action to repair the process. When a sample point is plotted on 
chart 2, it indicates that the process is operating in control 
and no action is required. When a sample point is plotted on 
chart 3„ it indicate that a minor assignable cause has occurred 
and a minor action is suggested to repair the process.

The plotting on these charts for a long period of time will 
help the analyst to know more about the state of the production 
process. For instance, a large number of plots on chart 3 
in the past indicates that most of the times the minor action was 
required to restore the process.
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8.4.2 Braphic Devise for Execution
Another problem arising with the use of curtailed inspection 

is that quite often the inspector experiences difficulty in its 
execution. Hence there is a need for some special device which 
can reduce the complexity and makes the execution simple. One 
such device is to use a grid (graph) in two dimensional space 
whose ordinates denote nonconforming units observed and abscissa 
denote the number of' units inspected. A point with coordinates 
(Y, X) represents the occurrence of X nonconforming units in the 
inspection of Y units.

We give the graphical procedure for the execution of the 
curtailed sampling policy used by us to develop the economic 
model of the np~control chart with two upper control limits. 
Firstly, we plot the boundary points of the region in accordance 
with the statement of the sampling policy given in the Section 
8.4.1. These boundary points are classified into three mutically 
exclusive classes. The boundary points belonging to a class 
corresponding to possibility (1) are denoted by © * The boundary 
points belonging to a class corresponding to the possibility (2) 
are denoted o. The boundary points belonging a class 
corresponding to possibility (3) are denoted by x. As the units 
are inspected one by one, starting from the origin we plot a unit 
horizontally to the right when a conforming unit is observed, and 
we plot a unit diagonally up when a nonconforming unit is 
observed. This process of inspection of units and of plotting the 
points on the graph continues till the path joining the points
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plotted reaches one of the boundary points. When the path reaches 

the boundary point SI , the major action is suggested to restore 

the process. When the path reaches the boundary point o, no

action is taken. When the path reaches the boundary point X,

minor action is taken to restore the process.

• We illustrate the above procedure for the execution of 

curtailed inspection when n = 12, m^ = 3, mj> * 6, The boundary 

points are shown in the Figure 8.2. Consider the following 

sequence of inspection, 

ggddgddgdd

where g represents a conforming unit and d represents a 

nonconforming unit. The path of this sequence is given in the 

Figure 8.2. The path reaches the boundary point fx[] whose 

coordinates are (10,6). Hence we stop the inspection at 10th unit

with a decision to take a major action to repair the process.
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C LISTING OF CHAPTER VIII 
C PROGRAM ON MINIMIZATION OF ATI 
C FILE NAME IS ESTN1

READ(t, 1) PNOT,PONE
1 FORMAT(IX,2F10.4)

WRITE(&,1) PNOT,PONE 
DO 10 1=4,100
N—I
WRITE(?,2) N

2 F0RMAT(1X,'N=',13) 
IUCL=NSPN0T+3.0*S0RT(NSPN0TS(1.O-PNOT)) 
M1=IUCL+1
WRITE(*,3) Ml

3 FORMAT(IX, 'Ml=',14)
NN=N
MM=M1
NT=NN-MM+1 
PROE=PONE
CALL BIN(PROB, MM, NT, PR1,PA1, PI1) WRITE(*,5) PRl,Pli

5 FORMAT(ix,'PR1=',F10,6,'PI1=',F10.6)
RAT10=PR1/(PONE *P11)
WRITE<*,7) RATIO 

7 FORMAT(IX,'RATIO=',F12.6)
D=N—RATIO 
WRITE< *,9) D

9 FORMAT(IX,* D=',F10.6)
IF(ABS(D).LT=0„5) GO TO 12 

10 CONTINUE
12 NSTOP=I

STOP 
END

FILE NAME IS MDF
PROGRAM FOR ECO OF MONTGOMERYS MODEL WITH MODIFIED E(C3)

SUBROUTINE 0BJ7 (AKE,NSTAGE,SUMN,A1,A2,A3,A4,ALEMDA,RATE,
1 PIE,NSTAT,PIN)

DIMENSION PIN(10),PZ(10),P(10,10),QR(10),ZP(10),BZ(10),ZB(10)
1 ,B(10,10),BST(10,10),CZ(10),ZC(10),C(10,10),D(10,10),
1 DST(10,10) ,ALPHA(10) ,GAMMA(10) ,A( 10,10) ,BSTZ(10) ,T(10,10) ,ZBST
i (10),S(10,10),U(10,10),V<10,10),BB(10,10),AKE(5),T7(10)

WRITE(*,5)
FORMAT(4X,'COST COEFFICIENTS')

WRITE(*,1)A1,A2,A3,A4,A5 
FORMAT(IX,4F10.4)
WRITE(*,3)ALEMBDA,RATE,PIE,NSTAT 
FORMAT(IX,3F12,4,13)
WRITE($,6)(PIN(I),I=1,NSTAT)
FORMAT(IX,7FS.4)

SNOT = AKE(1)
SRNOT = AKE(2)
REJNOT = AKE(3)
WRITE(*,2)SNOT,SRNOT,REJNOT
FORMAT(IX,'SAMPLESIZE =',F10.2,'INT SAM RANGE =',Fi0.2,'REJ 

1 NUM=',FI0,2)

C
C

5
1

2
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POWER = ALEMDAfSRNOT/RATE 
PPOWER =—POWER 
PZZ=EXP!PPOWER)
WRITE!t,7) PZZ

7 FORMAT!IX,F10.4)
NSTATE = NSTAT-1
DENO=1 „ -! 1-PIE > * INSTATE
MSNOT = SNOT
DO 10 J=l,NSTATE
Ml = J+l
M2 = NSTATE-J
CALL BIN!PIE„M1,M2,CPR,CPL„PI>
WRITEC*,8) CPR,CPL,PI,<38 FORMAT!ix,'CPR=',F10.6,*CPL=',F10„6,'PI=',F10„6,'J=',12)

10 PZ(J) = PI*!1.-PZZ)/DEN0
DO 600 I = 1,NSTATE 

600 ZP!I)=0„
DO 20 1=1,NSTATE 
DO 20 J=l,NSTATE 
IF(I—<3 >30,31, %>2

30 P(I„J> = PZ!J)/!1„-PZZ>
BO TO 20

31 SPZ=0»
DO 40 KK=1,I 

40 SPZ = SPZ+PZ(KK)
P(I,J> = SPZ/(1.-PZZ)
60 TO 20

32 P(I,J)=0.
20 CONTINUE

T(1,1)=PZZ 
DO 12 I =2,NSTAT 
K=I—I

12 T! I, I > = PZ(K)
DO 13 J=2,NSTAT 
K=J-1

13 T(J,1)=ZP(K)
DO 14 I=2,NSTAT 
K=I-1
DO 14 J=2,NSTAT K1 = J-l

14 T(I.J) = P! K, K1 >
WRITE!t,15)

15 FORMAT!IX,'TRANSITION MATRIX')
WRITE!11)({T(I,J),J = 1,NSTAT),1=1,NSTAT)

11 FORMAT!1X,7F10.6)
51 = SNOT
52 = SRNOT
53 = REJNOT
CALL PROBR(S1,S2,S3,PIN,NSTAT,QR)
WRITE!f,301)!QR!I),I = 1,NSTAT>

301 FORMAT!IX,7F10.6)
DO 60 I=2,NSTAT 
DO 60 J=1,NSTAT 
IF!I-J)6i,62,63

61 S(I,J)=QR!I)fT(l,3)+!1-QR!I))*T!I,J>
60 TO 60

62 S!I,J)=QR!I)*Ttl,I)+(1-QR!I)>fT!I,I)
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SO TO 60
63 S(I,J)=QR(I)§T(1,J)
60 CONTINUE

DO 326 J=l,NSTAT 
326 S(1,J)=T(1,J)

WRITE (§, 302)
302 FORMAT*IX,'MATRIX S(I,J)')

WRITE(§,303 5 ((S(I,J),J=1,NSTAT),1=1,NSTAT)
303 FORMAT (1X ,7F10.6)

DO 330 1=1,NSTAT
DO 330 J=l,NSTAT
IF( I—<3)331,332,331

331 U(I,J)=S(I,J)
SO TO 330

332 U( I,J)=S(I,J)—1
330 CONTINUE

WRITE (§, 311)
311 FORMAT(IX,'MATRIX U(I,J>')

WRITE(*,312)(<U<I,J), J=1,NSTAT),1=1,NSTAT)
312 FORMAT(IX,7F10.6)

DO 321 1=1,NSTAT 
DO 321 J=1,NSTATE

321 V(I,J)=U(I,J+1)
DO 322 1=1,NSTAT

322 V(I,7)=1 
WRITE(§,323)

323 FORMAT(IX,'MATRIX V(I,J)')
WRITE(§,324) ((V(I,J),J=1,NSTAT),1=1,NSTAT)

324 FORMAT(1X,7F10.6)
DO 325 1=1,NSTAT 
DO 325 J=1,NSTAT

325 A(I,J)=V(I,J)
N=NST AT
CALL INVRS(A,BB,N)
WRITE*§,97)

97 FORMAT(1X,'INVERSE MATRIX')
WRITE(§,98) ((BB(I,J),J=1,NSTAT),1=1,NSTAT)

98 FORMAT(IX,7F10.6)
C BB(I,J) IS INVERSE OF A(I„J)

DO 81 J=l,NSTAT
81 ALPHA(J)=BB(NSTAT,J)

WRITE(§,150)
150 FORMAT(IX,'VECTOR ALPHA')

WRITE(§,82) (ALPHA(J),J=1,NSTAT)
82 FORMAT(IX,7F10,6)

C COMPUTATION OF GAMMA
ADALTA=(1.-(1.+POWER)§PZZ)/(PDWER§(1.-PZZ)) 
WRITE(§,160)

160 FORMAT(IX,'ADALTA')
WRITE(§,82) ADALTA
GAHMAZ=ALPHA(1)§PZZ+ALPHA(1)§ADALTA§(1-PZZ) 
WRITE(§,T70)

170 FORMAT(IX,'6AMMAZ')
WRITE(§,82) GAMMAZ 
DO 90 I=2,NSTAT 
13=1-2 
TERM3=0
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TERM4=0
li=l-i
12=1+1
IF (11—1) 101 , 102,101

101 DO 100 J=1,13 
K=J+1

100 TERM3=TERM3+ALPHA(K)SP(J,I1)
IF(11—6) 102,104,102

102 DO 110 K=I,NSTATE
110 TERM4=TERM4+F(II,K)
104 GAMMA (ID =ALPHA (DSP (II,ID-Ml. -ADALTA) SALPHA ( 1) SPZ ( 11) +

1 (1.-ADALTA)*TERM3+ALPHA(I> STERM4SADALTA
WRITE ( * , 82 ) GAMMA (ID 

90 CONTINUE
EC1=(A1+A2SSN0T)/SRNOT 
TERM5=0
DO 120 1=1„MSTAT

120 TERM5=TERM5+GR(I)*ALPHA(I)
EC2=A3S TERMS/SRNOT 
TERM6=0
DO 151 1=1,NSTAT

151 TERM6=TERM6+ALPHA(I)ST(I,I)S(A4SSNQTSPIN(I)+A5S(SRNOT-SNOT)S
1 PIN(D)

DO 155 1=1,NSTAT
T7(I)=0 
12=1+1
DO 161 J=I2,NSTAT

161 T7(I)=T7(I)+ALPHA(I)ST(I,J)S(A4SSN0TSPIN(I)+A5*(ADALTASSRNOT
1 —SNOT)SPIN(I)+A5S(1—ADALTA)SSRNOTSPIN(J))

155 CONTINUE
TERM8=0
DO 165 1=1,NSTAT 

165 TERM8=TERMS+T7(I)
EC3=(TERM6+TERMB)/SRNOT 
TC=EC1+EC2+EC3 
SUMN=TC
NRITE(S,140)TC,EC1,EC2,EC3

140 FORMAT(IX,'TOTAL COST=*,E1S.8,'EC1=',E18.S,'EC2=',E18.S«
1 'EC3=',E18.8)

RETURN
END
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