
CHAPTER III
Economic Design of Control Charts for Variables with Known and 
Unknown Sigma

3.1 In this chapter the economic design of control charts for 
variables is developed for a process subject to a single 
assignable cause. The cost model used is an adaptation of the 
cost model developed for np-control chart in chapter II.

Duncan (1956, 1971) and Knappanberger and Grandage (1969)
developed the economic design of x-control charts under the 
assumption that the process standard deviation c is known. 
However, if cr is unknown, then the case is treated differently. 
In this situation one may use T2-control chart to monitor the 

production process.
In Section 3.2 the economic design of x-control charts is 

developed under the assumption that c is known. In section 3.3 
economic design of T^-control chart is developed under the 
assumption that cr is unknown. Of course, the normality of the 
variable under study is assumed through out.

3.2 Economic Design of x-Control Charts under cr Known 
3.2.1 The Production Process and the Sampling Scheme

The production process starts in an in-control state in 
which the process mean is p0. A single assignable cause produces 
a shift of the process mean from nQ to p0 + 6'cr. Thus there is 
only one out-af-control state in which the process mean is p0+Scr.



The assignable cause is assumed to occur according to a Poisson 
process with an intensity of X occurrences per operating hour. 
Hence the time until the process remains in the in-control state 
is an exponential random variable with mean 1/X operating hours. 
Once the process is in the out-of-control state it stays there 
until the shift in the process is detected by the control chart.
The process parameters p0, 8 and a are assumed to be known.

„ %This process is monitored by an x-control chart with central 
line p0 and the upper and lower control limits |.tD ± Lcr/Tn, After 
every production of k units, n units are sampled and inspected. 
The sample mean x is calculated. If the value of x falls within 
the control limits, the process is declared to be in control and 
the production continues. If the value of x falls outside the 
control limits, the process is declared to be out of control. The 
production at this stage may or may not be stopped and a search 
for the assignable cause is undertaken.

The design variables n, k, L are to be determined such that 
the expected cost per unit of the product during the production 
cycle is minimised.

3.2.2 The Probability of Type I Error and the Power of x-Control 
Chart

When the assignable cause occurs, the probability that it 
will be detected on any subsequent sample is
qj - P< x<pQ - Lcr/Tn j p«sp0+$tr ) + P< x>p0 + Lcr/Tn | p=p0+Scr )

« « (-L-S'-Tn) + 1 - i<L~«fn> ...(3.2.1)
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where <§(y> is the distribution -function o-f the standard normal 
variate Y,

yf “1/2i.e. §<y> = j <2it) expl~z*‘/2) ds.
—»

The quantity qj is the power of the control chart.
Next, the probability of a-false alarm is

q0 " P <x < Uq -* Lcr/Tn j p » p@) + P Cx > p$ + Lcr/Tn J p » pn) 
- H-L) -l- 1 - § <L)
» 2C1-*<L)3 ...<3.2.2)
The quantity q$ is the probability of type I error.

3.2.3 The Proportions of Nonconforming Units
A unit is considered to be nonconforming if its measurement 

falls outside the specification limits (ujfu<?) . Let pj<i^Q,l) be 
the proportion of nonconforming units when the process is in 
state pj_ < i=0,1) .
Then.

pjL « P<X < Uj | p “ pj_) -i- PCX > U2 j p “ p^>
Thus,

It

- 02~p0 Uj-Pq

L tr j - cr
r u2"l-'o •• ul“f‘o

Pl = 1 - 1 ---------£ + # — £L o L cr J
may be noted that both the proportions

. . a ■>&.)

. . . (3,2,3b) 

p0 and pj are known
constants since they are functions of known constants



3.2.4 The Expected Cost Model.
We compute the expected cost per unit of controlling the 

process during the production cycle. The cost model used is an 
adaptation of the cost model for op-control chart developed in 
chapter II.

Recall the definitions of the following terms well explained
there

< i) L j ? C2, C3 (iv) s ci^

(ii) N, N<0), BoJ 0 (v) aj^j, a^* 2
(iii) D, S, A (vi) a^ j, *4

Then using the derivations of that section the expression 
for the expected total cost per unit (ECPU) of controlling the 
process is

(a j +a2n) L 0/ (1 —0) + .1 /q ^ 1 -^a^; j c|q0/ (1 ™0) -(“a^ 2"*"® 4 f D—S)
iie/a-em/qjik

.(3.2.4)
For ready reference and continuity the expressions for D, S» A 
and 0 are reproduced here.

D « Ck©/(i-0)-i-A klp0 + Ck/qj-A klpj ...(3.2.5)
5 - npo©/(l-0) + np1/ql ...(3.2.6)

l-d+X k/R>6
A — —■----- --------

(1-0)X k/R

6 » exp(-X k/R)

It should be noted that the expression (2.3.21), obtained 
after substitutions, for ECPU for np-control chart and the 
expression (3.2.4) given above look alike but are different in
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the sense that the expressions required for qQ and are
different. In the evaluation of (3.2.4) one has to use (3.2,2)
and (3,2.1) for qQ and q^ respectively, whereas while evaluating 
(2,3.21) one has to use (2.3.10) and (2.3.4) for qQ and q^
respectively. Minimization of the objective function ECPU with 
appropriate substitution of q0 and qj gives the optimal values of 
the design variables of x-control chart or rip-control chart as 
the case be. The reason for mentioning this point elaborately is 
explained in the next few lines.

The practitioners of the control charts quite often switch 
over from the control charts for the proportion of nonconforming 
units to the control charts for variables since the general
feeling is that one requires a smaller number of units for
inspection for the control chart for variables. However, one
should not forget _ the point that the cost of inspection for
variables is comparatively higher than the cost of merely 
classifying a unit as conformirig-nonconforming unit. Hence it is 
thought to compare the performance of the two types of charts 
from the cost point of view. The similarity and the difference in 
the cost structure of these charts is useful to have a 
comparative study of these charts.

In the next section a numerical comparision is made between 
the performance of x-control chart and rip-control chart from the 
cost point of view.



3.2.5 Numerical Example
Let cr®»l? u1=~2»58, U2sa2.58!l 6-«1.3.

Thereby po=0.01 («“17.> and pj=0, i0(“10y.).
Thus the problem of controlling the process average at zero (i.e. 
p«*po»0) and detecting the shift of 1.3 on the process average 
(i.e. p®|ji1“p0+$cr*i .3) by E-chart is comparable with controlling

the process by op-chart for in-control state pQ at 1“/. and for 
out-of-control state pt at 107.. We consider the same set of cost 
coefficients and the set of systems parameters of the numerical 
example of np-control chat of Section 2.3.5 of Chapter II, except 
one change for the cost of sampling and inspection per unit. Four 
different values for a2 are considered in addition to a2“*l. The 
maximum cost of a2 considered for inspection by variables is 
three times the cost of inspection by attributes.
Thus taking
•l " * 1C) n c&2 ** *1.5, *2, *2.5, *3 one at a time),

*3,1 " • 100 n eHr *2 33 * 100, a4 j « * 10 f a4 & -| cr,2 “ 9 1%J»

X - 1, R « 1000.
the objective function ECPU given by (3.2.4) is minimized using 
the direct search technique explained in Section 2.3.4 of Chapter 
II. Since in this case only two design variables n and k are 
discrete the precaution for the proper step size and for the 
reduction factor is required only for two variables. The listing 
of the FORTRAN program developed for calculating the objective 
function ECPU using (3.2.2) and (3.2.1) for qQ and qj is given at 
the end of this chapter.
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The optimal values of the design variables n, k, L along
with the other findings are listed in the Table 3.1. The last row 
of the table gives the reproduction of the optimal values along 
with the other findings of the np-control chart from the 
numerical example of the Section 2.3,5 of Chapter II.

The following points are revealed from the Table 3.1.
(I) Comparision of raw(5> and row(6).
Though the cost of sampling and inspection per unit for x-control 
chart is 3 times that for np-control chart, it is seen that 
x-control chart leads to smaller ECRU as compared to that for 
np-control chart.
(II) Comparision of rows as listed (1) through (5).
As the cost of sampling and inspection per unit for x-control 
chart increases, the optimal value of n decreases. However the 
total expected cost per unit (ECRU), as one expects, increases,

3.3 Economic Design under Unknown cr
We shall assume that the process standard deviation a is 

unknown. Though unknown it is assumed to be attaining some 
constant value throughout the production cycle. All the other 
assumptions of the model and the system discussed in Section 3.2 
are continued to be true throughout the present section,

3.3.1 T^-Control Chart

It is proposed that the production process be monitored by 
TA-contro1 c ha rt-
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Here the statistic based on n observations (i«=l .n)
of the sample of size n is defined as 

T'A « n(x -- Pq)”" / s^...j 

o nwhere sn--i x)*/<n-i)

(3.3.1)

/ “if ".t ^ \\ O I ■«.' B jU /

arid n«.E x. /n i=l x ("•j* "JP %a O a *—* /

It may be noted that TA has F distribution with .1. and (n~l) d„f. 
A typical T^-control chart is given below.

Fa„1„(n-1) * upper (100a>% point of F distribution )
o o o

oo °

0 1 2 3 4 5 6
Sample Number

The sampling scheme and the control procedure are as 
follows. After the production of every k units, n units are
sampled and examined. For each sample, sample mean x, sample
variance ®n~.j and T-” are calculated. If 1-2 s F«,l,n~l then th®

process .Is declared to be in control and the production is
continued. If > Fa^ j >n-i the process is declared to be out of 
control and a search for the assignable cause is undertaken. Here 
^a,l,n-l the uPPer <100a)% point of F distribution such that 

p(F > Fa i n-i> » « ...(3.3.4)
The design variables n, k, i are to be determined

such that the expected total cost per unit of the product is 
minimum.
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One may use T-control chart in place of '('‘"■“■control chart to
monitor the production process. If T-control chart is used, one
has to use t and noncentral i^-distributions to calculate the
probability of type I error <q$> and the power of the test <qj). 
(The expressions for qQ and q^ are derived in the next section).
Whereas if Tx™control chart is used, one needs central and
noncentral F--distributions for t he calc u1a tion of q0 and q^. The
subroutines developed for central and noncentral F-integrals can 
be used further for multivariate T2-control chart also» Hence 

with a view to extending the present model for multivariate 
T‘‘--control chart, we prefer T^-control chart rather than T~ 

control chart in univariate case also.

3.3.2 The probability of Type — I Error and the Power of 
T2-Control Chart

We recall that I2-control chart is proposed to find whether 

the process is in the in-control state p0 or whether the process 
is in the out-of-control state p0+$cr due to assignable cause.

Hence when the assignable cause occurs, the probability that it 
will be detected by any subsequent sample is

q, - per2 > Fa.i.n-i | ...(3.3.5)
where T'~ has noncentral F distribution with 1 and <n-l) d.f. 
the noncentrality parameter nS , The probability qj is known 
the power of the T2-control chart. It may be noted that q^ 

Independent of <?.

and

as
is



The probability of a false alarm is
p,"| “PC T1* > F'cj, 1,0-1 I Wq3 ...(3.3.6)

where has the F-distribution with 1 and (n~l) d.f». The
probability is known as the probability of type-I error.

3.3.3 The Proportions of Nonconforming Units
The definitions of pQ and pj remain" the same as given i(fc 

Section 3.2.3 and are to be obtained by the expressions (3.2.3a) 
and <3.2.3b) given there. Immediately one can see that one has to 
face the problem of unknown c in evaluating these expressions. 
This problem can be solved in the following way. One may 
calculate the sample variance on the basis of a preliminary 
sample of some suitable siae taken when the process is in 
control. The square root of this sample variance will give a 
quick estimator of cr. Using this estimator in place of cr in the 
expressions <3.2.3a) and (3,2.3b) one gets the approximate values 
of pq and pj.

However, if one wants to maintain some stipulated value of 
Pq when the process is in the in-control state p(-,, then the value 
of pj can be obtained as follows. Making an appropriate break-up 
of p0 and referring to standard normal tables one can obtain the 
values for (uj-n0)/er and <up-p0)/or using <3.2.3a). Substituting 
these values in (3.2.3b) one can find p^ for known S. In many 
cases uj and ug are equally spaced from pD on either side. In 
these situations (uj-p0)/er and (U2~M0)/tf are numerically equal
but opposite in signs so that pa - 2$C (uj--p0)/cO, For instance, 
if stipulated value of p0 is 1 % then (U2~M0>/cr - 2.58 and
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<uj-H0)/cr - -2.58. It is easy to see that in the above method the 
knowledge of cr is not required.

3.3.4 The Expected Cost Model
Since we have assumed that all the assumptions of the model 

of the case of known cr prevail here also, the expression for the 
total expected cost per unit <ECF'U) is the same as- given by 
<3.2,4), While evaluating this expression., one has to use <3,3.6) 
and <3.3.5) for q0 and qj respectively. Substitution for pD and 
Pj is just discussed in Section 3.3.3.

3.3.5 Solution Method and Numerical Example 
(A) Program

A computer program on FORTRAN is developed to calculate the 
expected total cost per unit of the product for the given values 
of n, k„ ^ i n-1’ This program computes the probabilities qD and 
q^ using central and noncentral F-distributioris. A subroutine is 
developed for the calculation of central F-dlstributton using 
Trapezoid Rule. The noncentral F-~integrals are calculated from 
central F-integrals using the following results given in a book 
by Abramowitz and Stegun <1972) pp. 946 ™ 947.
These results are as follows.
(1) Distribution Function of central F

P < F j v j , V'2 > < '1 v2 ) . n u <•->,*«<./)
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vi v2 vlF
where l.A ( , — ) is incomplete beta integral with x •- -------2 2 . vp+vjF

(2) Distribution Function of noncentral F

«> exp<-X/2> <X/2)J
P < F | v j , v2, X > " 2 ... .... -----.....—- I x

j ®0 j !

ti . (3 8)
V1F

where x = --------  and X is noncentrality parameter-
V2+V1F

The proportions Pq and p^ are supplied externally.

This program is linked to Hooke-Jeeves search technique to 

find the optimal values of ri, k, Fa,l,n-1 which minimize ECPU. 

For the objective function understudy, two design variables n and 

k are discrete and the third design variable Fe( „ 1 „ n-1 '1®

continuous. However, by giving the suitable initial values for 

(n, k, Fa,l,n-1 * and hy choosing the proper step size and 

reduction factor, Hook-Jeeves' procedure works successfully and 

gives the optimal solution. The listing associated with all the 

programs is given at the end of this chapter.

(B) Numerical Example
Let b.1 ~ 10.0, a2 83 $ 1.0, a3?1 83 $ 100, a3 2 “ * 100,

a4,l “ $ l*-1* a4,2 !!!! ^ *

Let X 83 1, R 83 1000, u^ 83 -"2.58, u2 83 2.58 .

Let |.t0 “ 0, 5 “ 1 a 3 «

We take assessment of a to be 1 to calculate p0 and p^.

For these values of the cost coefficients and systems
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parameters the search technique yielded the -following optimal 
procedure*
n = 11, k = 253,, F ■ 5.3 with minimum ECRU « * 0.4560 .
For these optimal design variables we give the values o-f some 
intermediate terms required in the calculation of ECRU.
N<0> = 4, N = 5, q0 - 0.0522 , aiX - 0.9653 
D ■ 24.10, S = 1.52
E(Cj) E(C?>---— as $ 0.0830, —-:—
Nk Nk

E (C3)
* 0.0934. .a * 0.2796

Nk
Comparing the ECRU derived in this example with the 

corresponding example given by row (1) of Table 3.1 (when o- .is 
known), one can see that the lack of knowledge of cr leads to cost 
penalty of (0.4560 - 0.4448 ®> $ 0.0112 per unit of the product.



C LISTING DF CHAPTER III
SUBROUTINE XBC(RK,NSTAGE,SUM, A1,A2,A3,A3P,A4,A4P,ALEMDA,

1 RATE,CPN,FNOT,FONE)
C FILE NAME IS VCC 
C PROGRAM FOR ECPU OF XBAR-CHART 

DIMENSION RK(IO)
WRITE!*,2) A1,A2,A3,A3P,A4,A4P

2 FORMAT(IX,'Al=',F10.4,'A2=',F10.4,'A3=',F10.4'A3P=*,F10.4,
1 'A4=',F10.4,'A4F=',F10.4)

WRITE(*,4) ALEMDA,RATE,CPN
4 FORMAT(IX, 'ALEHDA=',F10.4,'RATE=',F10.4,'CPN=',F10.4)

N=RK! 1)
K=RK(2)
CL=RK!3)
WRITE!#,6) N,K,CL

6 FORMAT(1X,'N=',I5,'K=',I5,'CL=',F10.4)
WRITE(X,8) FNOT,FONE

8 FORMAT ! 1X , 'FNOT='„FI0»6,'FONE=',F10.6)
PQWER=ALEMDA#K/RATE
PPQWER=—POWER 
THEETA=EXP ! PPOWER)
WRITE!*,9) THEETA

9 FORMAT!IX,'THEETA=',F10.6)
X=CL
CALL NDTR! X, P , D )
QN0T=2*(1.0-P>
WRITE!#,10) QNOT 

10 FORMAT!IX,'GNOT=',F10.6>
AN=N
X=CL—SORT!AN > *CPN 
CALL NDTR!X,P,D)
Q0NE=1-P
WRITE!*,40) GONE 

40 FORMAT!IX,JQONE=',F10.6)
TNOS=THEET A/!1-THEETA) +1/GONE 
N0S=TN0S+0.5 
WRITE!*,50)N0S 

50 FORMAT!IX,'N0S=',15)
EC1=!A1+A2*N)*NOS 
BN0T=GN0T*THEETA/I1-THEETA)
EC2=A3*BNQT+A3P
TAW=!1-!1+POWER)#THEETA)/!1-THEETA)
WRITE!*,55) TAW 55 FORMAT!ix,'TAW=*,F10.4)
H=K/RATE
D=!RATE#FNOT/ALEMDA)+!H/GONE—TAW)#RATE#FQNE 
S=THEETA*N#FNOT/!1-THEETA)+N#FONE/QONE 
WRITE!#,60) D,S

60 FORMAT!IX,'D=',F12.4,'5=',F12.4)
EC3=A4#S+A4P#!D-S)
EC=EC1+EC2+EC3 
ECPU=EC/!NOS*K)
WRITE!*,65)EC1,EC2,EC3,EC,ECPU

65 FORMAT!IX,'EC1=',F12.4.'EC2='.F12.4,'EC3=',F12,4,*EC=',F12.4, 
1 'ECPU=',F12.4)

SUM=ECPU
RETURN
END
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C FILE NAME IS MAN3 
C CALCUATION OF NORMAL INTESRAL 

SUBROUTINE NDTR(X?P,D)
AX=ABS(X)
T=1.0/(1.0+.2316419*AX)
D=0.39B9423*EXP(-X*X/2.O)
P=i.O-Drr*<(((1.330274ST-1.821256)*T+1.781478)*T~0.3565638>*T 1 4-0.3193815)
IF(X) 1.2,2

1 p=i.o-p
2 RETURN 

END

SUBROUTIME XBC(RK,NSTABE,SUM,A1gA2?A3,A3P,A4„A4P,ALEMDA5 
1 RATE,CPN,FNOT,FQNE)

C FILE NAME IS XBAR
C COST MODEL FOR TSQR CHART FOR UNKNOWN VARIANCE 

DIMENSION P(IOO),0(100),R(100),RK(10)
WRITE(*,2) A1,A2,A3,ASP,A4,A4P

2 FORMAT(IX s'Al = ’,F1G.4,'A2=',F10.4,'A3=',F10.4'A3P=*,F10.4„ 
1 'A4=',F10.4,'A4P=',F10.4)

WRITE(St, 4) ALEMDA,RATE?CPN
4 FORMAT(1X, 'ALEMDA=',F10.4,'RATE=',F10.4,'CPN=',F10.4)

N=RK(1)
K=RK(2)
F=RK(3)
WRITE(*,6) N,K,F

6 FORMAT(IX,'N=',15,'K=',I5„'F«*,F10.4>
WRITE(#,8) FNOT,FONE

8 FORMAT(IX,'FNOT=',F10.6,'FONE=',F10.6)
CPN1=NSCFN
POWER=ALEMDA* K/RATE 
PPOWER=—POWER 
THEETA=EXP(PPOWER)
WRITE($,9) THEETA9 FORMAT(iX,'THEETA=',F10.6)
Y1=0
Y2=F/((N—1)+F)
A=0.5
B=(N-l)/2
H=0.01
CALL QR(Y1,Y2,ASB,H,BI)
QN0T=1-BI 
WRITE(S910) QNOT 

10 FORMAT(IX,* QNOT='. F10.6 )
DO 15 J=1,90 
Y1=0
Y2=F/((N-i!+F)
A=0.54-J
B=(N-l)/2
H=0.01
CALL GR(Yl,Y2,AgB5H,BI)
P(J)=BI
IF(P(J).LT.0.00001)G0 TO 21 

15 CONTINUE
21 IST0P=3—1
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WRITE(#,323 ( P( J 3,3=1,ISTOP)
P0W=CPNi/2.0
PPQW—POW
R(13 =EXP( PPOW 3 *POW*P(13
IST=ISTOP-l
DO 30 J=i,1ST

30 R(J+1)=P0W#P(J+13#R(J)/(P(J)*(J+1)3
WRITE(#,323 (R(J 3,3=1,ISTOP)

32 FORMAT(IX,7F10.6)
RNOT=EXP(PPOW 3 #(1-QWOT3
TEM=RNOT
DO 35 J=l,ISTOP
TEM=TEM+R(J)

35 CONTINUE
Q0NE=1-TEM 
WRITE(#,40) DONE 

40 FORMAT(IX,* QONE=', F10.6 3
TNOS=THEET A/(i-THEETA>+1/QONE 
N0S=TN0S+0.5 
WRITE(«,50)N0S 

50 FORMAT(IX,'NOS=',153
EC1=(AI+A2*N 3 #N0S 
BNOT=QNOT tTHEETA/(i-THEETA)
EC2=A3*BN0T+A3P
TAW=(1-(1+POWER 3 STHEETA3/(1-THEETA 3 
WRITE(#,55) TAW 55 FORMAT( i X,'TAW=',F10.4)
H=K/RATE
D=(RATE#FNOT/ALEMDA3 + (H/QONE—TAW3 #RATE#FONE 
S=THEETA#N#FN0T/(i-THEETA3+N#FONE/QONE 
WRITE(#,603 D,S

60 FORMAT(IX,'D=',F12,4,'S=',F12.43
EC3=A4#S+A4P#(D—S3 
EC=EC1+EC2+EC3 
ECPU=EC/(NOS#K)
WRITE(# 5653EC1,EC2,EC3,EC,ECPU

65 FORMAT(IX,'EC1='^12.4,'EC2=',F12„4,'EC3=',F12.4,'EC=',F12.4,
1 'ECPU=',F12.4 3

SUM=ECPU 
RETURN 
END

SUBROUTINE QR(Y1,Y2,A,B,H,BI3 
C FILE NAME IS XBAR1 

Yl=Yi 
Y2=Y2 
A=A 
B=B 
H=H
CALL BITA(Y1,Y2,A,B,H,PR0B2)
BIN=PR0B2
YI=YI
Y2=l,0
A=A
_ta

H=H
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CALL BITA<Y1,Y2,A,B,H,PR0B2)
BID=PR0B2
BI=BIN/BID
WRITE(*,12) BI

12 FORMAT(IX,' BI = '„FI0.6)
RETURN
END

SUBROUTINE BITA< Y1,Y2,A,B,H5PR0B2>
C COMPUTATION OF INCOMPLETE BETA INTEGRAL BY TRAPEZOID RULE 
C FILE NAME IS TRALS 

N0Y1=(Y2-Y1)/H 
N0Y=N0Y1+1
IF ((NDY1SH) .EQ. (Y2-Y1)) GO TO 80 
GO TO 85

80 WRITE(§,20)
20 FORMAT(IX,'NOY1 AND NOY ARE REALLY INTEGER AND NOT BY COM

1 TECH BOTH PROB AND PR0B1 SAME')
GO TO 90

85 WRITE(§,22)
22 FORMAT(IX,'NOY AND N0Y1 ARE NOT REALLY INTEGER AND ARE MADE

1 INTEGER PROB AND PR0B1 NOT EXPECTED SAME')
90 WRITE(§,24) NOY
24 FORMAT(1X,'NOY='18)

S1=0
DO 100 M=1,NOY 
RM=M
YSUB=Y1+(RM-1.0)*H 
IF(YSUB.EQ.O,)S0 TO 200 
GO TO 210 

200 F=0.
GO TO 212

210 F=<YSUB**(A~1.0))§((1-YSUB)§§(B-1.0))
212 IF(M.EQ.l) GO TO 120

IF((1 .LT. M) -AND. (M .LT. NOY)> GO TO 125 
IF CM .EQ. NOY) GO TO 130 

120 F=F/2.
S1=S1+F 
GO TO 1O0 

125 S1=S1+F
GO TO lOO 

130 F=F/2.
S1=S1+F
FY2=(Y2§§(A-1.0))§((1-Y2)*§(B~1.0>)
T=(F+FY2)S((Y2-Y1)-(RM-l.)§H)
S2=S1+T

100 CONTINUE
WRITE(§,26)FY2,T

26 FORMAT(IX.'FY2=',F18.10,'T='„F18.1G)
PR0B1=S1SH 
PR0B2=PR0B1+T 
WRITE(§,28) PR0B1,PR0B2

28 FORMAT(IX,'PR0B1=',F18.10,'PR0B2=',F18.10)
RETURN
END
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