

LIST OF FIGURES AND TABLES

List of Figures		
Sr. No.	Legend	Description
1	Figure 1.1	Worldwide epidemiological survey on diabetes as per the IDF -2015.
		Structure of Pancreas and Islet of Langerhans: The figure depicts the gross
2	Figure 1.2	anatomy and organization of the pancreas along with architecture of the islet
		of Langerhans.
2	Figure 1.3	Developmental pathway for the formation of acini and islets from embryo in
5		mouse (Joglekar et al., 2007).
		Temporal expression of candidate transcription factors involved in the
4	Figure 1.4	differentiation of pancreatic cells viz beta cells, delta cells, PP cells, alpha
		cells, ductal cells and so on from endoderm (Samson and Chan, 2006).
		Origin of Pancreatic progenitors: Endogenous stem cell sources in different
5	Figure 1.5	anatomical locations in the pancreas that have the characteristics to
		replenish beta cells.
		Various stem cell sources to generate islet clusters. Embryo, Adipose tissue,
		Bone marrow, Dental pulp, umbilical cord, adult differentiated cell, and so
6	Figure 1.6	on had been reported to have the potential to differentiate into islet like cell
		clusters. Thus, MSCs serve as effective candidate for stem cell therapy for
		diabetes treatment.
7	Figure 1.7	TGF-β Smad pathway (Wrighton et al., 2009).
	Figure 1.8	Structure of PARP-1: PARP-1 is a nuclear protein of 1014 amioacids having
8		three distinct domains namely DNA binding domain, Auto-modication
		domain and Core catalytic domain (Kraus and Hottiger, 2013).
		Activation of PARP-1 and its regulation: Genotoxic stress activates PARP-1
0	Figure 1.0	and Biosynthesis of using NAD+ as substrate. The enzymatic actions of
9	Figure 1.9	PARP, PARG, (ADP-ribosyl) protein hydrolase, and (ADP-ribosyl) protein
		lyase are also indicated (Krishnakumar and Kraus, 2010b).
		Transcriptional regulation by PARP-1: PARP-1 regulates transcription by
10	Figure 1.10	(a) chromatin modulation; (b) Enhancer binding factor, act as classical DNA
10		binding modulator; (c) act as coactivator or corepressor and function as
		transcriptional coregulator and (d) can act as insulator (Kraus, 2008).
11	Figure 1.11	Role of PARP in Diabetes
12	Figure 1.12	Okamoto's model for the role of PARP in Reg gene transcriptional control
13	Figure 3.1	Experimental Design for Chapter 3.

14	Figure 3.2	Isolation of Pancreatic resident endocrine progenitors
15	Figure 3.3	Characterisation of Pancreatic resident endocrine progenitors using
		Immunocytochemistry
16	Figure 3.4	Relative Insulin Expression
17	Figure 3.5	Characterisation of Pancreatic resident endocrine progenitors using Flow
		Cytometry
18	Figure 3.6	Characterisation of PREPs into mesenchymal stem cells by trilineage
		differentiation
19	Figure 3.7	Islet Differentiation from PREPs in DMEM Ham's F-12 (1:1, 8 mM
17		Glucose)
20	Figure 3.8	Islet Differentiation from PREPs in DMEM KO
21	Figure 3.0	Islet yield and percentage efficiency: A comparison between total numbers
21	I Iguie 5.9	of islet clusters formed between 100-300 μ M diameter across the groups
22	Figure 3.10	Functional Characterization of mature Islets differentiated from PREPs:
	1 iguie 5.10	Immunocytochemistry of mature islets
23	Figure 3.11	Functional Characterization of Islets: C-peptide release assay
24	Figure 3.12	Temporal gene and protein profiling in Islet Differentiation from PREPs
25	Figure 3.13	Protein profiling in Islet differentiation from PREPs
		Transcription Factors in Islet differentiation: Schematic representation of
26	Figure 4.1	essential transcription factors governing beta cell fate during islet
		differentiation. Adapted from (Levetan, 2010) Levetan C., 2010.
27	Figure 4.2	Varied functions of PARP-1: Schematic representation of various functions
27	rigure 4.2	of PARP-1 protein. Krishnakumar and Kraus, 2010.
		Experimental Hypothesis: PARP-1 expression is essential in islet
28	Figure 4.3	differentiation and could be playing a regulatory role with respect to the
20		expression of key transcription factors during islet differentiation from
		stem/progenitors.
29	Figure 4.4	Experimental Design for Chapter 4.
30	Figure 4.5	Co-transfection Efficiency and clone purification of PREPs
31	Figure 4.6	Screening of PARP-1 KD Clones
32	Figure 4.7	Comparative Morphology, growth kinetics and doubling time
33	Figure 4.8	Comparative Immunophenotyping of PREPs vs PARP-1 KD PREPs
34	Figure 4.9	Comparative Trilineage Differentiation of Normal PREPs & PARP-1 KD
		PREPs into Adipocytes, Osteoblasts and Chondroblasts respectively
35	Figure 4.10	ABT888 dose standardization
36	Figure 4.11	Comparative Islet Differentiation: Temporal microscopic Islet

		differentiation profile through 4 days of differentiation in PREPs, PARP-1
		KD PREPs and PREPs treated with ABT-888 (PARP-1 specific inhibitor)
		respectively
37 Figure		Functional Assessment of PREPs, PARP-1 KD PREPs and ABT888 treated
	Figure 4.12	PREPs by Immunocytochemistry
38	Figure 4.13	Functional Assessment of PREPs, PARP-1 KD PREPs and ABT888 treated
		PREPs: Comparative c-peptide release in response to glucose challenge
20	Figure 4.14	Temporal protein profiling between Normal PREPs and PARP-1 KD PREPs
39		during islet differentiation
40	Figure 4.15	Confirmation of PARP-1 KD phenotype in islet differentiation by using
40		siRNA against PARP-1
41	Figure 4.16	Recovery of PARP-1 in the PARP-1 KD PREPs
10	T ' 4 17	Functional characterization of islets post PARP-1 recovery: By
42	Figure 4.1 /	Immunocytochemistry And comparative c-peptide release
10	F 4.10	Confirming Role of PARP-1 in islet differentiation from PANC-1 cells: By
43	Figure 4.18	islet differentiation, Comparative protein profiling and gene array
		Effect of SIS3 on islet differentiation: By islet differentiation, Comparative
44	Figure 4.19	protein profiling, gene array and c-peptide release assay with control and
	-	SIS3 treated groups
		Localization of pSMAD3 and Smad4 during islet differentiation from
15	E' 4 20	PREPs: By Immunocytochemistry of undifferentiated and differentiated
45	Figure 4.20	PREPs and Fractionation study during islet differentiation from PREPs to
		confirm localization of pSMAD3 and SMAD4 in the nuclear fraction
46	Figure 4.21	PARP-1 Co-IP: PARP-1:Smads interaction by Western Blotting
		CHIP:PARP-1 in islet differentiation from PREPs: The figure demonstrates
47	Figure 4.22	interaction of PARP-1 with the promoter regions of the key transcription
		factors during islet differentiation
		Experimental design for in vivo assessment of Normal and PARP-1 KD
48	Figure 5.1	PREPs in islet neogenesis PREPs transplantation study in STZ diabetic
		BALB/c mice.
		Experimental design for Swertisin treatment for extended time period:
49	Figure 5.2	Schematic representation of the work flow for the in vivo Swertisin
		treatment in STZ diabetic BALB/c mice.
		Validation of STZ BALB/c mice model: by Comparative fasting blood
50	Figure 5.3	glucose levels and H & E staining of pancreatic sections demonstrating
		morphology of Islet of Langerhans in control and STZ treated diabetic

		pancreas.
51		PREP homing in Pancreas: A comparative % composition of GFP positive
	Figure 5.4	cells within the pancreas of the respective groups caused due to homing of
		GFP+ve PREPs post transplantation in STZ diabetic BALB/c mice
52	Figure 5.5	PREP homing in Liver: A comparative % composition of GFP positive cells
		within the liver of the respective groups caused due to homing of GFP+ve
		PREPs post transplantation in STZ diabetic BALB/c mice.
	E'erre 5.6	PREPs homing in Lung, Kidney & Spleen: The presence of GFP positive
52		cells within the lung, kidney and spleen of the respective groups caused due
55	Figure 5.0	to trapping of GFP+ve PREPs post transplantation in STZ diabetic BALB/c
		mice.
54	Figure 5.7	Fasting blood glucose to evaluate the diabetic condition.
		Analysing differentiation and functional assessment of Transplanted PREPs
		in pancreas: (A.i to A.v) The flow cytometric graphs demonstrate
55	Eigung 5 9	distribution of cells as dual positive GFP and Insulin positive (Q2), dual
55	Figure 5.8	negative (Q4), only GFP positive (Q1) and only Insulin positive (Q3) cells.
		(B) The graph demonstrates statistical significance of the dual positive
		population in respective groups.
		Analysing differentiation of Transplanted PREPs: (A.i to A.v) The flow
		cytometric graphs demonstrate distribution of cells as dual positive GFP +
56	Figure 5.9	CD44 positive (Q2), dual negative (Q4), only GFP positive (Q1) and only
		CD44 positive (Q3) cells. (B) The graph demonstrates statistical
		significance of the dual positive population in respective groups.
	Figure 5.10	Functional Assessment of Transplanted PREPs in pancreas: The figure
57		demonstrates co-localization (yellow) of GFP (green) with C-peptide (red)
		within the pancreas of PREPs transplanted and PREPs + Swertisin groups.
		In vivo molecular Characterization of islet neogenesis post PREPs
50	Eigung 5 11	transplantation in STZ diabetic mice: The figure demonstrates protein
38	Figure 5.11	expression of signaling molecules and key transcription factors involved in
		islet neogenesis.
	Figure 5.12	Functional Assessment of Transplanted PREPs in pancreas: The figure
59		demonstrates co-localization (yellow) of GFP (green) with Nkx6.1 (red)
		within the pancreas of PREPs transplanted and PREPs + Swertisin groups.
		DAPI (blue) stained the nucleus.

60	Figure 5.13	Effect of Swertisin on STZ Diabetic BALB/c mice: (A.i & A.ii) Graph
		represents fasting blood glucose level at regular time intervals for control,
		diabetic and Swertisin treated STZ diabetic BALB/c mice. The graphs are
		plotted with mean values ± SEM. *** p≤0.001 Control vs Diabetic. ##
		p≤0.01 Diabetic vs Swertisin Treated. (N=6). (B) Here, graph represents
		comparative fasting serum insulin level after Swertisin treatment to STZ
		induced diabetic Balb/c mice.
		Pancreatic Protein expression in Swertisin treated STZ diabetic mice: By a
		Comparative protein profile for the key transcription factors and markers
61	Figure 5.14	Comparative protein profile for the key transcription factors and markers essential for endocrine pancreatic regeneration using immunoblotting and
61	Figure 5.14	Comparative protein profile for the key transcription factors and markers essential for endocrine pancreatic regeneration using immunoblotting and Comparative Immunohistochemistry of Diabetic mice pancreas treated with

List of Tables		
Sr No	Legend	Description
1	Table 1	Summary of Various Stem cells in Islet Differentiation
2	Table 3.1	List of Primers for qRT-PCR
3	Table 4.1	List of Primers for ChIP
4	Table 4.2	List of Antibodies.