Table of Figures

Chapter No.	Title	Page No.
Fig 1.1	Sugar and sweeteners as percentage of total caloric intake	3
Fig 1.2	Differential central and peripheral response to glucose and fructose	4
Fig 1.3	Fructose metabolism in the liver.	5
Fig 1.4	Metabolic effects of excess fructose consumption	6
Fig 1.5	Lipogenic potential of fructose	7
Fig 1.6	Potential mechanism by which fructose lead to hepatic insulin sensitivity	8
Fig 1.7	Hepatic fructose metabolism and generation of oxidative stress	9
Fig 1.8	Role of fructose derived de-novo lipogenesis on cardiovascular health	11
Fig 1.9	Effect of mercury on cell and balance between ROS production and antioxidant defense mechanism	13
Fig 1.10	Prevalence of iron deficiency worldwide	15
Fig 1.11	Differential functions of small and large intestine in relation to microbial density	17
Fig 1.12	Functions of normal microbiota	18
Fig 1.13	Minimum criteria to be considered for use by human beings	19
Fig 1.14	Potential beneficial effects of probiotic supplementation against metabolic disorders	20
Fig 1.15	Different mechanisms by which ingested bacteria can impact the resident microbiota	23
Fig 1.16	Probable roles of VHb in enhancing performance of heterologous bacterial hosts	24
Fig 1.17	Effects of bioengineered probiotics	26
Fig 1.18	Possible affects due to pro-, pre- or synbiotic supplementation	34
Fig 1.19	Biologic effects and mechanisms of action of prebiotics, probiotics, and synbiotics	37
Fig 1.20	Metabolic engineering approach for antioxidant production.	38
Chapter 2		
Fig 2.1	Agarose gel analysis of PCR amplicons of the recombinant plasmids	50
Fig 2.2	Effect of genetically engineered probiotic <i>E. coli</i> Nissle 1917 on liver enzyme tests	52
Fig 2.3	Effect of genetically engineered probiotic <i>E. coli</i> Nissle 1917 on serum lipid profile	53
Fig 2.4	Effect of genetically engineered probiotic <i>E. coli</i> Nissle 1917 on antioxidant status of liver	54
Fig 2.5	Haematoxylin and Eosin staining of rat liver tissue	56
Fig 2.6	Proposed mechanism of fructose conversion to mannitol by probiotic <i>Ec</i> N (<i>pqq-glf-mtl</i> K)	57
Fig 2.7	Proposed mechanism of fructose conversion to 5-KF by	57

	probiotic <i>Ec</i> N (<i>pqq-fdh</i>)	
Fig 2.8	Proposed mechanism of probiotic <i>Ec</i> N(<i>pqq-glf-mtl</i> K)	59
	producing PQQ and mannitol dehydrogenase in gut on	
	fructose induced metabolic effects	
Chapter 3		10
Fig.3.1	Effect of Genetically Engineered Probiotic <i>E. coli</i> Nissle	69
F' 20	1917 on Body weight	70
Fig.3.2	Serum Iron levels before and after the repletion period	70
Fig.3.3	Effect of Genetically Engineered Probiotic <i>E. coli</i> Nissle 1917 on Fasting Blood Glucose levels	71
Fig.3.4	Effect of Genetically Engineered Probiotic <i>E. coli</i> Nissle	72
1 lg.J.4	1917 on Serum lipid profile	12
Fig.3.5	Effect of Genetically Engineered Probiotic <i>E. coli</i> Nissle	73
1 19:010	1917 on Antioxidant status in liver	10
Fig.3.6	Effect of Genetically Engineered Probiotic E. coli Nissle	74
0	1917 on Antioxidant status of blood	
Fig.3.7	Effect of Genetically Engineered Probiotic E. coli Nissle	75
-	1917 on Liver Function markers	
Fig 3.8	Effect of iron depleted diet and repleted diet along with	76
	probiotic treatment on expression of iron transporter genes	
Fig.3.8	Haematoxylin and Eosin staining of rat liver tissue	76
Chapter 4		
Fig.4.1	Effect of genetically engineered probiotic <i>E. coli</i> Nissle	89
	1917 in on antioxidant parameter in Liver on Hg exposure	0.0
Fig 4.2	Effect of genetically engineered probiotic <i>E. coli</i> Nissle	89
	1917 on antioxidant parmeter in Kidney on Hg exposure	00
Fig 4.3	Effect of genetically engineered probiotic <i>E. coli</i> Nissle 1917 on hepatic injury marker on Hg exposure	90
Fig 4.4	Effect of genetically engineered probiotic <i>E. coli</i> Nissle	91
1 1g	1917 on Kidney damage marker on Hg exposure	71
Fig 4.5	Effect of genetically engineered probiotic <i>E. coli</i> Nissle	92
	1917 on levels of Mercury (Hg) in faeces of rats	
Fig 4.6	Histological sections of Liver stained with HE	93
Fig 4.7	Histological sections of Kidney stained with HE	93
Chapter 5		
Fig 5.1	Effect of genetically engineered probiotic E. coli Nissle	106
	1917 on antioxidant parameter in Liver on Hg exposure	
Fig 5.2	Effect of genetically engineered probiotic <i>E. coli</i> Nissle	106
	1917 on antioxidant parameter in kidney on Hg exposure	
Fig 5.3	Effect of genetically engineered probiotic <i>E. coli</i> Nissle	107
	1917 on kidney damage marker on Hg exposure	100
Fig 5.4	Effect of genetically engineered probiotic <i>E. coli</i> Nissle	108
Fig 5 5	1917 on Liver injury marker on Hg exposure	100
Fig 5.5	Effect of genetically engineered probiotic <i>E. coli</i> Nissle 1917 on levels of Mercury (Hg) in faeces of rats	109
Fig 5.5	Histological sections of Liver stained with HE	109
Fig 5.6	Histological sections of Kidney stained with HE	110
11g 5.0	ristological sections of Kluney stanicu with The	110