INDEX

Sr. No		Contents	Page	
		Contents		
1		Abstract	I	
2		Acknowledgement	IV	
3		Contents	VI	
4		List of Figures	XIV	
5		List of Tables	XXIV	
6		Publications	XXVI	
7		Bio-Data	XXVIII	
Sr.		CONTENTS	Page	
No.				
CHAPTER 1 INTRODUCTION 1- 4				
1.1		PREAMBLE	1	
12		RESEARCH AIM	2	
1.3		BASIC PROBLEM	3	
1.4		BASIC CONSIDERATION	3	
1.5		OBJECTIVES	4	
СНА	PTER 2	LITERATURE REVIEW	5-68	
2.1		INTRODUCTION	5	
2.2		MARKET FOR TEXTILE COMPOSITES	5	
2.3		TEXTILE FLEXIBLE COMPOSITE	11	
	2.3.1	Manufacturing of Thermoplastic Composite	11	
2.4		TEXTILE PREFORMS	13	
	2.4.1	Classification of Performs	14	
		a) Moyen Preforms		

		b) Knitted and Braided Preforms	
		c) Nonwoven Preforms	
		d) Three-dimensional Preforms	
		e) Preforms from Commingled yarn	
	2.4.2	Characteristics of Textile Performs	17
2.5		DIFFERENT HYBRID YARN STRUCTRUES	18
	2.5.1	New Hybrid Yarns for Continuous Fibre Reinforced	20
		Thermoplastic	
2.6		COMMINGLING PROCESS	22
	2.6.1	Basic Principle of Commingling Process	22
	2.6.2	Basic Airflow Analysis	23
	2.6.3	Commingled Yarn Structures	25
2.7		FACTORS AFFECTING COMMINGLING	26
		PROCESS	
	2.7 1	Effect of Raw Material Parameters	27
	2.7.2	Process Variables	28
		a) Air pressure	
		b)Overfeed	
		c) Take up speed	
		d) Yarn tension	
	2.7.3	Design of Nozzle	30
		a) Effect of Nozzle Design	
		b) Influence of jet design on blend homogeneity	
2.8		DEVELOPMENT IN AIR TEXTUREING/	35
		COMMINGLING MACHINES	
	2.8.1	Air Texturing Machine	36
	2.8.2	Commingling Machine	38
	2.8.3	Development on Nozzle Technology	39
		a) Air-texturing nozzles	
		b) Commingling/interlacing nozzles	
	2.8.4	Covering Machine	41
2.9		QUALITY EVALUATION OF COMMINGLED YARN	43

	2 9.1	Nip Frequency and Nip Regularity	44
		a) Visual counting	
		d) Needle insertion	
		c) Thickness measurement	
		d) Optical scanning	
		e)RICa Interlace counter	
	2.9.2	Nip Stability	46
	2.9.3	Blend Homogeneity	47
		a) SEM Analysis	
		b) Image analysis	
2.10		APPLICATIONS OF HYBRID YARN	50
	2.10.1	Conductive Textiles	54
	2.10.2	Methods of Imparting Electrical Properties at Fibre	
		Stage	
		a) Draw blending of Metal and Textile Silvers	
		b) Treatment with Metallic Salts	
		c) Galvanic Coating	
		d) Coating fibres with conductive particles	
		Suspended in a resin	
		e) Vacuum Spraying	
	2.10.3	Methods of Imparting Electrical Properties At Yarn	56
		Stage	
		a) Ring spinninğ	
		b) Open and spinning	
		c) Friction spinning	
		d) Wrapping spinning (Cover spinning)	
		e) Production of yarn from Bi-component fibres	
		f) Speciality yarns	
	2.10.4	Imparting Electrical Properties at Fabric Stage	61
2.11		ELECTRICAL PROPERTEIS OF CONDUCTIVE	61
		MATERIAL	
	2.11.1	Dielectric Strength and its measurement	62

	2.11.2	Surface Resistivity and Its Measurement	63
	2.11.3	Volume Resistivity and Its Measurement	65
2.12		MANUFACTURE OF THERMOPLASTIC	65
		COMPOSITES	
	2.12.1	Sheet Forming of Thermoplastic Composites	65
	2.12.2	Tape-Laying of Thermoplastic Composites	66
	2.12.3	Liquid Moulding	67
CHA	PTER 3	HOLLOW SPINDLE WRAPPING PROCESS	70-90
3.1		INTRODUCTION	70
3.2		OBJECTIVE	70
3.3		EXPERIMENTAL PROCEDURE	71
	3.3.1	Principle of Hollow Spindle Wrapping Technique	71
	3.3.2	Fabrication of Hollow Spindle Wrapping Machine	72
	3.3.3	Wrap Level of Yarn (Twist level) of Hybrid Yarn	74
	3.3.4	Preparation of Hybrid Yarns	77
	3.3.5	Measurement of Hybrid Yarns Properties	79
		a) Linear Density	
		b) Yarn Tenacity	
3.4		RESULTS AND DISCUSSION	80
	3.4.1	Effect of Core Yarn Properties on Hybrid Yarn	80
		Properties	
	3.4.2	Effect of Wrapped Yarn Properties on Hybrid Yarn	84
		Properties	
	3.4.3	Effect of Different Core Yarn Material on Hybrid	86
		Yarn Properties	
	3.4.4	Effect of Twist Level on Hybrid Yarn Properties	88
	3.4.5	Analysis of Hybrid Yarn Structure by Scanning	89
		Electron Micrograph	
3.5		CONCLUSIONS	90

CHA	APTER 4	CONDUCTIVE HYBRID YARN	91-116
4.1		INTRODUCTION	91
4.2		OBJECTIVE	91
4.3		EXPERIMENTAL PROCEDURE	92
	4.3.1	Preparation of Conductive Hybrid Yarn	92
	4.3.2	Preparation of Hybrid Yarn Conductive Fabric	95
	4.3.3	Preparation of Laminate	96
	4.3.4	Testing Conductive Yarn, Performs and Laminates	98
		Properties	
		a) Yarn Testing	
		b) Preforms Fabric	
		c) Laminate (Composite sheet)	
	4.3.5	Scanning Electron Micrograph	103
4.4		RESULTS AND DISCUSSION	104
	4.4.1	Conductive hybrid yarn properties	104
		a) Linear Density	
		b) Strength and extension properties of conductive	
		hybrid yarn	
		c) Proportion of mass of parent yarn	
	4.4.2	Conductive hybrid yarn fabric properties	110
		a) Fabric Thickness	
		b) Courses/inch and Wales /inch	
	4.4.3	Laminate	110
		a) Tensile strength and Flexural rigidity (N/mm²)	
		b) Dielectric Strength (KV/mm)	
		c) Resistivity (Ohm)	
4.5		SEM OF CONDUCTIVE HYBRID YARNS AND	114
		LAMINATES	
4.6		CONCLUSIONS	115

CHA	CHAPTER 5 COMMINGLING PROCESS 1		
5.1		INTRODUCTION	117
5.2		MATERIALS AND METHODOLOGY	118
	5.2.1	Raw Material	118
	5.2.2	Fabrication of Equipment	119
		a) Guide	
		b) Nozzle	
		c) Winding Device	
	5.2.3	Yarn Passage Through Machine	123
	5.2.4	Sample Preparation	123
	5.2.5	Testing of Commingled Yarn	127
		a) Tensile strength measurement	
		b) Commingling characteristic	
		c) SEM (Scanning Electron Micrograph)	
5.3		RESULTS AND DISCUSSION	129
	5.3.1	Effect of Processing Parameters on Tensile	129
		Properties	
		a) Tenacity	
		b) Modulus	
	5.3.2	Effect of Processing Parameters on Mingling	134
		Characteristics of Hybrid Yarn	
		a) Nip frequency	
		b) Nip stability	
		c) Nip regularity	
	5.3.3	Effect of Different Yarn Passage and Processing •	140
		Parameter on Blending Homogeneity of Hybrid Yarn	
5.4		CONCLUSIONS	142
55		EARRICATION OF COMMINGLING MACHINE	1/13

CHA	APTER 6	COMMINGLING PARAMETERS	159-178
6.1		INTRODUCATION	159
6.2		EXPERIMENTAL	159
	6 2.1	Raw Material	159
	6.2.2	Preparation of Yarn Sample	160
	6.2.3	Nozzle Specifications	162
	6.2.4	Test Method of Coming Hybrid Yarn	163
6.3		RESULTS AND DISCUSSION	163
	6.3.1	EFFECT of nozzle type on properties of	163
		commingled yarn	
		a) Linear density	
		b) Tensile properties of hybrid yarn	
		c) Commingling characteristics of hybrid yarn	
	6.3.2	Effect of Different Types Of Nozzles on	173
		Homogeneity of Hybrid Yarn	
	6.3 3	Effect of Proportion of Glass: Polypropylene on	173
		Characteristics of Commingled Hybrid Yarn	
	6.3.4	Effect of Glass: Polypropylene Contest on	177
		Homogeneity of Hybrid Yarn	
6.4		CONCULSIONS	178
CHA	APTER 7	RESPONSE SURFACE ANALYSIS	179-206
7.1		INTRODUCTION	179
7.2		RESPONSE SURFACE METHODOLOGY	180
	7.2.1	Box- Behnken Design	182
	7.2.2	Response Surface Application	182
7.3		MATERIALS AND METHODOLOGY	183
	7.3.1	Preparation of Yarn Sample	183
	7.3.2	Box-Behnken Design	183
	7.3.3	Measurement of Yarn Characteristics	184

7.4		RESULTS AND DISCUSSION	184
	7.4.1	Effect Of Processing Parameters on Liner Density	187
		of Hybrid Yarn	
	7.4.2	Effect of Processing Parameters on Hybrid Yarn	189
		Tenacity	
	7.4.3	Effect of Processing Parameters on Extension of	191
		Hybrid Yarn	
	7.4.4	Effect of Processing Parameters on Hybrid Yarn Nip	193
		Frequency	
	7.4.5	Effect of Processing Parameters on Hybrid Yarn Nip	195
		Stability	
	7.4.6	Effect of Processing Parameters on Hybrid Yarn Nip	197
		regularity	
7.5		STRUCTURE COMMINGLED HYBRID YARN	199
	7.5.1	Cross section of Hybrid Yarn produced at Different	199
		Processing Condition	
	7.5.2	SEM of Hybrid Yarn Manufactured by Different	202
		Methods	
7.6		CONCLUSION	205
CHA	PTER 8	FURTHER SCOPE OF RESEARCH	206
8.1		SUGGESTIONS FOR FURTHER RESEARCH	206
		WORK	
REFE	ERENCI	FS	207-214
			20, 214
APPENDIX			215-226
GLOSSARY			227-233

v