LIST OF FIGURES

¥

Fig.		Title	Page
No.			
2.1		World consumption of technical for textiles composites	6
2.2		Proportion of various textile reinforcement materials for composite (Year 2004-2005)	7
2.3		Organizations involved in the activities of reinforcement for (Year 2004-2005)	7
2.4		Break up of activities on reinforcement (Year 2004-2005)	8
2.5		Organisation involved in activities of matrix materials (Year 2004-2005)	8
2.6		Break up of activities on matrix materials	9
2.7		Distribution of end use applications of composites (Year 2005)	9
2.8		Conventional process and New process of composite manufacture	11
2.9		Role of performs in composite processing	13
2.10		Various structures of preform structures	15
2.11		Different structure of hybrid yarns showing fibre orientation	19
2.12		SEM of distribution of reinforce and matrix material in final composite in different type of hybrid yarn structure	21
2.13		Schematic diagram showing commingling process	22
2.14		Various nip structures	25
2.15		Various design of mingling nozzle 🖕	31
2.16		Air texturing units	37-38
	a)	DS 90 MFB	
	b)	DS 90 E	
	c)	DT2-T SSM Staehe	

	d)	RM3T Digicon SSM Staehle	
2.17		Commingling Machine	38
	a)	Stahle DP3 C	
	b)	Fadis Air Covering Units	
2.18		Heberlein: Air texturing jet	39
2.19		Interlacing jets	40
	a)	Heberlein:slidjet	
	b)	Fibreguide	
	c)	TEMCO jet	
	d)	Interlace jet for Technical yarn	
2.20		Hollow spindles machine for the cover spinning process:	42
		MSE 150	
2.21		Spindle assembly showing individual drives and	42
		intergrated bearing	
2.22		Model Structure of commingled yarn	43
2.23		Interlacing counter RICa	45
2.24		The Scanning Electron Microscope	48
2.25		The SEM of various hybrid yarns	49
2.26		SEM of Glass/Polypropylene hybrid composite	49
2.27		Various models representing filament distribution in	50
		composite yarn	
2.28		Various applications of thermoplastic composite	52
2.29		Applications of thermoplastic composites	53
	a)	Aircraft structure	
	b)	Wind turbine blade	
	c)	Wind mill	
	d)	Door-post	
	e)	Overhead panel	
	f)	Preforms	
2.30		Ring spinning	57
2.31		Open and spinning	57
2.32		Various frictional spinning syatem (Cover spinning)	58

	a)	Dref-II	
	b)	Dref-III	
2.33		Different twist direcation of wrap yarns	59
2.34		Side-by –Side and Sheath-Core yarn	59
2.35		Variation in cross section of bicomponent yarns	60
2.36	a)	ASTM D257 Test Cell	64
	b)	Surface Resistivity Measurement using Mechmmeter	64
2.37		Press-Forming of thermoplastic composite sheets	66
2.38		Type-laying of thermoplastic composites	68
2.39		Liquid Moulding of a Thermoset Resin	68
2.40		Liquid Moulding of Thermoplastic Composite	68
3.1		Principle of hollow spindle wrapping process	72
3.2		Hollow spindle wrapping machine	73
	a)	Feed of parent yarns and winding of hybrid yarns	
	b)	Hollow spindle assemble	
3.3		Train of gears with wrap change gear	73
3.4		Schematic diagram showing detail of drive to spindle and	74
		winding unit	
3.5		Raw material and sample prepared	78
3.6		Lloyd Tensile Tester	81
3.7	a)	Effect of linear density of core yarn on linear density of	82
		hybrid yarn	
	b)	Effect of twist level on linear density of hybrid yarn	82
	c)	Effect of core linear density on breaking load of hybrid	83
		yarn	
	d)	Effect of core yarn linear density on tenacity of hybrid	83
		yarn	
	e)	Effect of core yarn linear density on extension of hybrid	83
		yarn	
3.8	a)	Effect of wrap yarn linear density on linear density of	84
		hybrid yarn	
	b)	Effect of wrap yarn linear density on breaking load of	85

ų

hybrid yarn

	c)	Effect of wrap yarn linear density on tenacity of hybrid	85
		yarn	
	d)	Effect of wrap yarn linear density on extension of hybrid yarn	85
3.9	a)	Effect of core yarn material on breaking load of hybrid varn	86
	b)	Effect of core yarn materials on tenacity of hybrid yarn	87
	c)	Effect of core yarn materials on extension of hybrid yarn	87
3.10		Effect of twist level on hybrid yarn properties	88
3.11	a)	SEM of Glass/Polyester hybrid yarn	89
	b)	SEM of Glass-Polypropylene/Polypropylene hybrid yarn	
4.1		Glass and Copper yarn packages used for hybrid yarn	93
		preparation	
4.2		Material flow through the hollow spindle machine	94
4.3		Schematic model of hybrid yarn structures	95
4.4		Flat bed knitting machine	96
4.5		Hot press machine set up	97
4.6		Hot press machine outline	97
4.7		Thickness gauge	98
4.8		Knitted fabric structure	99
4.9		Universal testing machine	100
4.10		Sample mounting for flexural test	100
4.11		Principle of measurement dielectric strength	101
4.12		Set up for measuring dielectric strength	102
4.13		High resistance meter (Model: 4329 A)	103
4.14		Scanning electron micrograph	104
4.15		Linear density of conductive hybrid yarns	106
4.16	(a)	Breaking load of parent and conductive hybrid yarns	106
	(b)	Breaking extensions of parent and conductive hybrid yarns	107
	(c)	Tenacity of parent and conductive hybrid yarns	107

	(d)	Contribution of parent yarn in breaking load of conductive	108
		hybrid yarn at 10mm elongation	
4.17		Percentage contribution of component yarn in conductive	109
		hybrid yarn	
4.18		Tensile strength and Flexural rigidity of hybrid yarn	111
		laminates	
4.19		Dielectric strength of laminates	112
4.20		Resistivity of laminates (x10 ¹²)	113
4.21	(a)	Hybrid conductive yarn (GC ₂ P ₂) P ₁	114
	(b)	SEM of hybrid yarn laminate	115
5.1	(a)	Schematic Diagram of Commingling Machine Set Up	119
	(b)	Nozzle Attachment and Control unit for Commingling Set	120
		up	
5.2		Design specifications of guide brackets	121
	(a)	Angle bracket	
	(b)	Sliding bracket	
5.3		Various design aspects of mingling jet	122
	(a)	Pre-opening jet	
	(b)	Mingling jet	
5.4		Schematic diagram showing yarn of passage with glass	124
		and one polypropylene yarn passing through pre-	
		opening (P1)	
5.5		Schematic diagram showing yarn of passage with only	125
		glass yarn passing through pre-opening jet (P ₂)	
5.6		Schematic diagram showing yarn passage with glass	126
		yarn and two polypropylene yarns passing through only	
		mingling jet (P ₃)	
5.7	(a)	Effect of air pressure and take-up speed on tenacity of	130
		hybrid yarn(Passage 1)	
	(b)	Effect of air pressure and take-up speed on tenacity of	131
		hybrid yarn(Passage 2)	
	(c)	Effect of yarn passage on tenacity of hybrid yarn	131

5.8	(a)	Effect of air pressure and take-up speed on modulus of	132
		hybrid yarn(Passage 1)	
	(b)	Effect of air pressure and take-up speed on modulus of	133
		hybrid yarn(Passage 2)	
	(c)	Effect of yarn path on modulus of hybrid yarn	133
5.9	(a)	Effect of air pressure and take-up speed on nip	135
		frequency of hybrid yarn(Passage 1)	
	(b)	Effect of air pressure and take-up speed on nip	136
		frequency of hybrid yarn (Passage 2)	
	(C)	Effect of yarn path on nip frequency of hybrid yarn	136
5.10	(a)	Effect of air pressure and take-up speed on nip stability	137
		of hybrid yarn (Passage 1)	
	(b)	Effect of air pressure and take-up speed on nip stability	137
		of hybrid yarn (Passage 2)	
	(c)	Effect of yarn path on nip stability of hybrid yarn	138
5.11	(a)	Effect of pressure and take-up speed on nip length of	138
		hybrid yarn (Passage 1)	
	(b)	Effect of pressure and take-up speed on nip length of	139
		hybrid yarn (Passage 2)	
	(c)	Effect of yarn path on nip length of hybrid yarn	139
5.12	(a)	SEM of hybrid yarn: Passage 1(100 m/min, 6 bar)	140
	(b)	SEM of hybrid yarn: Passage 3(50 m/min, 6 bar)	140
	(c)	SEM of hybrid yarn: Passage 2(50 m/min, 6 bar)	141
	(d)	SEM of hybrid yarn: Passage 1(50 m/min, 6 bar)	141
	(e)	SEM of hybrid yarn: Passage 2(50 m/min, 6 bar)	141
5.13	(a)	Schematic diagram of commingling machine	146
	(b)	Details of driving unit	147
	(c)	Commingling machine with hollow spindle unit	148
5.14	(a)	Frame work	149
	(b)	Assembling	150
	(c)	Inverter drive	151
	(1)		450

(d) Final finishing 152

	(e)	Attachments	153
6.1	- /	Passage of yarn through commingling	160
6.2		Ceramic jet with circular cross section from Himson	162
6.3		Metallic iet with semi circular cross section from	162
		Fiberguide	
6.4	(a)	Effect of air pressure on hybrid yarn linear density at 0%	164
		overfeed	
	(b)	Effect of air pressure on hybrid yarn linear density at 1%	165
		overfeed	
	(c)	Effect of air pressure on hybrid yarn linear density at 2%	165
		overfeed	
6.5	(a)	Effect of air pressure on hybrid yarn tenacity at 0%	166
		overfeed	
	(b)	Effect of air pressure on hybrid yarn tenacity at 1%	166
		overfeed	
	(c)	Effect of air pressure on hybrid yarn tenacity at 2%	167
		overfeed	
6.6	(a)	Effect of air pressure on hybrid yarn extension at 0%	167
		overfeed	
	(b)	Effect of air pressure on hybrid yarn extension at 1%	167
		overfeed	
	(c)	Effect of air pressure on hybrid yarn extension at 2%	168
		overfeed	
6.7	(a)	Effect of air pressure on nip frequency of hybrid yarn at	168
		0% overfeed	
	(b)	Effect of air pressure on nip frequency of hybrid yarn at	169
		1% overfeed	
	(c)	Effect of air pressure on nip frequency of hybrid yarn at	169
		2% overfeed	
6.8	(a)	Effect of air pressure on nip stability of hybrid yarn at 0%	170
		overfeed	

- (b) Effect of air pressure on nip stability of hybrid yarn at 1% 170 overfeed
- (c) Effect of air pressure on nip stability of hybrid yarn at 2% 171 overfeed
- 6.9 (a) Effect of air pressure on nip regularity of hybrid yarn at 1720% overfeed
 - (b) Effect of air pressure on nip regularity of hybrid yarn at 172
 1% overfeed
 - (c) Effect of air pressure on nip regularity of hybrid yarn at 172
 2% overfeed
- 6.10 SEM of Glass/Polypropylene hybrid yarn at two different 173 nozzle
- 6.11 (a) Various commingled hybrid yarn linear density with 174 different Glass:Polypropylene content
 - (b) Various commingled hybrid yarn tenacity at different 175 Glass:Polypropylene content
 - (c) Various commingled hybrid yarn extension at different 175
 Glass:Polypropylene content
 - (d) Various commingled hybrid yarn modulus at different 176
 Glass:Polypropylene content
 - (e) Various commingled hybrid yarn characteristics at 176 different Glass:Polypropylene content
- 6.12 SEM of hybrid yarn at different Glass:Polypropylene 177 content
- 7.1 (a) Contour plots of hybrid yarn linear density at different 187 processing parameters
 - (b) Surface plots of hybrid yarn linear density at different 188 processing parameters
 - (c) Residual plots for linear density as response 188
- 7.2 (a) Contour plots of hybrid yarn tenacity at different 189 processing parameter
 - (b) Surface plots of hybrid yarn tenacity at different 190

processing parameter

	(-)		100
	(C)	Residual plots for tenacity as response	190
7.3	(a)	Contour plots of hybrid yarn extension at different	191
		processing parameter	
	(b)	Surface plots of hybrid yarn extension at different	192
		processing parameter	
	(c)	Residual plots for extension as response	192
74	(a)	Contour plots of hybrid yarn nip frequency at different	193
		processing parameter	
	(b)	Surface plots of hybrid yarn nip frequency at different	194
		processing parameter	
	(c)	Residual plots for t nip frequency as response	194
7.5	(a)	Contour plots of hybrid yarn nip stability at different	195
		processing parameter	
	(b)	Surface plots of hybrid yarn nip stability at different	196
		processing parameter	
	(c)	Residual plots for t nip stability as response	196
7.6	(a)	Contour plots of hybrid yarn nip regularity at different	197
		processing parameter	
	(b)	Surface plots of hybrid yarn nip regularity at different	198
		processing parameter	
	(c)	Residual plots for t nip regularity as response	198
7.7		Various commingled hybrid yarn cross section of sample	199-
		(S ₁ -S ₁₅)	201
	(a)	S ₁ (5 bar, 0%, 75 m/min)	
	(b)	S ₂ (7 bar, 0%, 75 m/min)	
	(c)	S₃ (5 bar, 2%, 75 m/min)	
	(d)	S₄ (7 bar, 2%, 75 m/min)	
	(e)	S₅ (5 bar, 1%, 50 m/min)	
	(f)	S ₆ (7 bar, 1%, 50 m/min)	
	(g)	S ₇ (5 bar, 1%, 100 m/min)	
	(h)	S ₈ (5 bar, 1%, 100 m/min)	
		XXII	
		4 34 34A	

- (i) S_9 (6 bar, 0%, 50 m/min)
- (j) S₁₀ (6 bar, 2%, 50 m/min)
- (k) S₁₁ (6 bar, 0%, 100 m/min)
- (I) S₁₂ (6 bar, 2%, 100 m/min)
- (m) S₁₃ (6 bar, 1%, 75 m/min)
- (n) S₁₄ (6 bar, 1%, 75 m/min)
- (o) S₁₅ (6 bar, 1%, 75 m/min)
- 7.8 Friction Spun hybrid yarn 203 7.9 Hollow spindle wrapped hybrid yarn 204 7.10 Commingled hybrid yarn 204 7.11 Hybrid wrapping yarn with Commingled core 204 7.12 Knitted preforms made from hybrid wrapping yarn with 205 (a) commingled core
 - (b) Laminates made from hybrid wrapping yarn with 205 commingled core

U