Contents

Chapt	er-1 Introduction	
1.0	Introduction of polymer	2
	1.0.1 Classification of Polymer	2
	(i)Thermoplastics	3
	(ii)Thermosets	3
1.1	Composites	4
	1.1.1 Classification of Composites	5
	(i) Matrix based composites	5
	(ii)Structural components based composites	6
1.2	Advantages of Composites	7
1.3	Filler for polymer composites	7
1.4	Impact of polymer composites on present day technology	8
1.5	Application of polymer/polymer composites	9
	(i) Electromagnetic interference (EMI) shielding	9
	(ii) Heating elements	11
	(iii)Conductive adhesives	11
1.6	Ion irradiation	12
	1.6.1 Mechanism of ion polymer interaction	12
	1.6.2 Energy loss process of ion in solids	13
	1.6.2.1 Electronic energy loss (Se)	14
	1.6.2.2 Nuclear energy loss (S_n)	15
	1.6.2.3 Ion range	16
	1.6.2.4 Staggling	16
1.7	Polymer metal based composites and literature survey	17
	1.7.1 Review on carbon black composites	19
	1.7.2 Review on aluminum metal composites	22
	1.7.3 Review on copper metal composites	24
1.8	Ion beam modification of polymer and polymer composites	25
	1.8.1 Review on ion beam modification of PMMA, PVC and po	lymer
	composites	26
1.9	Objective and scope of the research work	29

Refere	References		31
Chap	ter-2	Experimental Details	
2.0	Introd	luction	40
2.1	Mater	rials used	40
	2.1.1	Poly(methyl methacylate) (PMMA)	40
	2.1.2	Poly (vinyl chloride) (PVC)	41
	2.1.3	Polypropylene (PP)	43
	2.1.4	High density polyethylene (HDPE)	43
	2.1.5	Fillers	44
	(i) Gr	aphites and carbon-based materials	44
		(i.1) Carbon blck (CB)	44
	(ii) M	letal particles	45
		(ii.1) Aluminum(Al) powder	45
		(ii.2) Copper(Cu) powder	46
2.2	Targe	et preparation	46
	2.2.1	Preparation of PMMA composites	46
	2.2.2	Preparation of PVC composites	47
	2.2.3	PP/TiO ₂ composites	48
	2.2.4	PP/GF composites	48
	2.2.5	HDPE/CB composites	48
	2.2.6	Thickness measurement of the composite films	48
2.3	Irrad	iation Facility at IUAC, New Delhi	49
	2.3.1	Theory	50
	2.3.2	Calculation of range and energy loss by SRIM code	53
	2.3.3	Irradiation and fluence estimations	55
2.4	Char	acterization Techniques	58
	2.4.1	Dielectric spectroscopy	58
		(i) Theory	59
		(ii) Dielectric constant in an alternating field	61
		(iii) Measurements methods	64
	2.4.2	Conductivity of the composites	65
		(i) Theory	66
	2.4.3	X ray diffraction	69
		(i) Principles of x-ray diffraction	70

	· (II) Drugg Law	
	(iii) Instrumentation	72
	(iv) Determination of crystallite size and crystllinity	73
	2.4.4 Atomic force Microscopy (AFM)	73
	2.4.5 Scanning electron microscopy (SEM)	77
	2.4.6 Differential scanning calorimetry (DSC)	80
	(i) Theory	80
	(ii) Glass transition temperature	81
	2.4.7 UV-Visible spectroscopy	82
	(i) Beer-Lambert's law	83
	(ii) Theory of electronic transitions	83
	(iii) Charge-transfer absorption	86
·	(iv) Instrumentation	86
	(v) Determinations of band gap	87
Refer	ences	89
Chap	ter-3 Effect of silver ion beam irradiation on conductive additive	ve filled
in PM	IMA matrix	
3.0	Introduction	93
3.0 3.1	Introduction Carbon black filled PMMA composites: Results and discussion	93 94
3.0 3.1	Introduction Carbon black filled PMMA composites: Results and discussion <i>3.1.1 Electrical properties</i>	93 94 94
3.0 3.1	Introduction Carbon black filled PMMA composites: Results and discussion 3.1.1 Electrical properties 3.1.2 X-ray diffraction analysis	93 94 94 105
3.0 3.1	Introduction Carbon black filled PMMA composites: Results and discussion 3.1.1 Electrical properties 3.1.2 X-ray diffraction analysis 3.1.3 Differential scanning calorimetry (DSC) analysis	93 94 94 105 107
3.0 3.1	Introduction Carbon black filled PMMA composites: Results and discussion 3.1.1 Electrical properties 3.1.2 X-ray diffraction analysis 3.1.3 Differential scanning calorimetry (DSC) analysis 3.1.4 Surface morphology	93 94 94 105 107
3.0 3.1	Introduction Carbon black filled PMMA composites: Results and discussion 3.1.1 Electrical properties 3.1.2 X-ray diffraction analysis 3.1.3 Differential scanning calorimetry (DSC) analysis 3.1.4 Surface morphology (i) Atomic force microscopy (AFM)	93 94 94 105 107 108
3.0 3.1	IntroductionCarbon black filled PMMA composites: Results and discussion3.1.1 Electrical properties3.1.2 X-ray diffraction analysis3.1.3 Differential scanning calorimetry (DSC) analysis3.1.4 Surface morphology(i) Atomic force microscopy (AFM)(ii) Scanning electron microscopy(SEM)	93 94 94 105 107 108 108
3.0 3.1	IntroductionCarbon black filled PMMA composites: Results and discussion3.1.1 Electrical properties3.1.2 X-ray diffraction analysis3.1.3 Differential scanning calorimetry (DSC) analysis3.1.4 Surface morphology(i) Atomic force microscopy (AFM)(ii) Scanning electron microscopy(SEM)3.1.5 Conclusions	93 94 94 105 107 108 108 118
3.03.13.2	IntroductionCarbon black filled PMMA composites: Results and discussion3.1.1 Electrical properties3.1.2 X-ray diffraction analysis3.1.3 Differential scanning calorimetry (DSC) analysis3.1.4 Surface morphology(i) Atomic force microscopy (AFM)(ii) Scanning electron microscopy(SEM)3.1.5 ConclusionsAluminum filled PMMA composites: Results and discussion	93 94 94 105 107 108 108 118 110 111
3.03.13.2	IntroductionCarbon black filled PMMA composites: Results and discussion3.1.1 Electrical properties3.1.2 X-ray diffraction analysis3.1.3 Differential scanning calorimetry (DSC) analysis3.1.4 Surface morphology(i) Atomic force microscopy (AFM)(ii) Scanning electron microscopy(SEM)3.1.5 ConclusionsAluminum filled PMMA composites: Results and discussion3.2.1 Electrical properties	93 94 94 105 107 108 108 118 110 111
3.03.13.2	 Introduction Carbon black filled PMMA composites: Results and discussion 3.1.1 Electrical properties 3.1.2 X-ray diffraction analysis 3.1.3 Differential scanning calorimetry (DSC) analysis 3.1.4 Surface morphology (i) Atomic force microscopy (AFM) (ii) Scanning electron microscopy(SEM) 3.1.5 Conclusions Aluminum filled PMMA composites: Results and discussion 3.2.1 Electrical properties 3.2.2 X-ray diffraction analysis 	93 94 94 105 107 108 108 118 110 111 111 112
3.03.13.2	 Introduction Carbon black filled PMMA composites: Results and discussion 3.1.1 Electrical properties 3.1.2 X-ray diffraction analysis 3.1.3 Differential scanning calorimetry (DSC) analysis 3.1.4 Surface morphology (i) Atomic force microscopy (AFM) (ii) Scanning electron microscopy(SEM) 3.1.5 Conclusions Aluminum filled PMMA composites: Results and discussion 3.2.1 Electrical properties 3.2.2 X-ray diffraction analysis 3.2.3 Differential scanning calorimetry (DSC) analysis 	93 94 94 105 107 108 108 118 110 111 111 112 120 123
3.03.13.2	 Introduction Carbon black filled PMMA composites: Results and discussion 3.1.1 Electrical properties 3.1.2 X-ray diffraction analysis 3.1.3 Differential scanning calorimetry (DSC) analysis 3.1.4 Surface morphology (i) Atomic force microscopy (AFM) (ii) Scanning electron microscopy(SEM) 3.1.5 Conclusions Aluminum filled PMMA composites: Results and discussion 3.2.1 Electrical properties 3.2.2 X-ray diffraction analysis 3.2.3 Differential scanning calorimetry (DSC) analysis 3.2.4 Surface morphology 	93 94 94 105 107 108 108 108 118 110 111 111 112 120 123
3.03.13.2	 Introduction Carbon black filled PMMA composites: Results and discussion 3.1.1 Electrical properties 3.1.2 X-ray diffraction analysis 3.1.3 Differential scanning calorimetry (DSC) analysis 3.1.4 Surface morphology (i) Atomic force microscopy (AFM) (ii) Scanning electron microscopy(SEM) 3.1.5 Conclusions Aluminum filled PMMA composites: Results and discussion 3.2.1 Electrical properties 3.2.2 X-ray diffraction analysis 3.2.3 Differential scanning calorimetry (DSC) analysis 3.2.4 Surface morphology (i) Atomic force microscopy (AFM) 	93 94 94 105 107 108 108 118 110 111 111 112 120 122 124
3.03.13.2	 Introduction Carbon black filled PMMA composites: Results and discussion 3.1.1 Electrical properties 3.1.2 X-ray diffraction analysis 3.1.3 Differential scanning calorimetry (DSC) analysis 3.1.4 Surface morphology (i) Atomic force microscopy (AFM) (ii) Scanning electron microscopy(SEM) 3.1.5 Conclusions Aluminum filled PMMA composites: Results and discussion 3.2.1 Electrical properties 3.2.2 X-ray diffraction analysis 3.2.3 Differential scanning calorimetry (DSC) analysis 3.2.4 Surface morphology (i) Atomic force microscopy (AFM) (ii) Scanning calorimetry (DSC) analysis 	93 94 94 105 105 105 105 105 115 115 115 115 126 124 124 124

3.3	Copper filled PMMA composites: Results and discussion	128
	3.3.1 Electrical properties	128
	3.3.2 X-ray diffraction analysis	138
	3.3.3 Differential scanning calorimetry (DSC) analysis	142
	3.3.4 Surface morphology	143
	(i) Atomic force microscopy (AFM)	. 143
	(ii) Scanning electron microscopy (SEM)	144
	3.3.5 Conclusions	147
3.4	Summary	148
Refer	ences	154
Chap	ter-4 Effect of silver ion beam irradiation on conductive addit	ive filled
in PV	'C matrix	
4.0	Introduction	159
4.1	Carbon black filled PVC composites: Results and discussion	160
	4.1.1 Electrical properties	160
	4.1.2 Differential scanning calorimetry (DSC) analysis	170
	4.1.3 Surface morphology	171
	(i) Atomic force microscopy (AFM)	171
	(ii) Scanning electron microscopy(SEM)	173
	4.1.4 Conclusions	174
4.2	Aluminum filled PVC composites: Results and discussion	175
	4.2.1 Electrical properties	175
	4.2.2 X-ray diffraction analysis	185
	4.2.3 Differential scanning calorimetry (DSC) analysis	188
	4.2.4 Surface morphology	189
	(i) Atomic force microscopy (AFM)	189
	(ii) Scanning electron microscopy (SEM)	189
	4.2.5 Conclusions	193
4.3	Copper filled PVC composites: Results and discussion	193
	4.3.1 Electrical properties	193
	4.3.2 Differential scanning calorimetry (DSC) analysis	202
	4.3.3 Surface morphology	203
	(i) Atomic force microscopy (AFM)	203
	(ii) Scanning electron microscopy (SEM)	204

	4.3.4	Conclusions	207
4.4	Summ	ary	208
Refer	ences		213
Char	oter-5	Effect of silver ion beam irradiation on some commercially	
avail:	able cor	nposites	
5.0	Introd	uction	217
5.1	Effect	of ion irradiation using silver ions on PP/TiO ₂ composites	21
	5.1.1	Introduction	21
	5.1.2	Results and discussion	21
		5.1.2.1 UV-Vis spectroscopy	218
		5.1.2.2 X-ray diffraction analysis	22
		5.1.2.3 Ac electrical frequency response	224
		5.1.2.4 Surface morphology of the composites	22
		5.1.2.5 Conclusions	22
5.2	Effect of ion irradiation using silver ions on PP/GF composites		
	5.2.1 Introduction		
	5.2.2	Results and discussion	23
		5.2.2.1 UV-Vis spectroscopy	23
		5.2.2.2 X-ray diffraction analysis	23
		5.2.2.3 Ac electrical frequency response	23
		5.2.2.4 Surface morphology of the composites	23
		5.2.2.5 Conclusions	23
5.3	Effect of ion irradiation using silver ions on HDPE/CB composites		
	5.3.1 Introduction		
	5.3.2	Results and discussion	23
		5.3.2.1 UV-Vis spectroscopy	23
		5.3.2.2 X-ray diffraction analysis	24
		5.3.2.3 Ac electrical frequency response	24
		5.3.2.4 Surface morphology of the composites	24
		5.3.2.4 Conclusions	24
5.4	Sumn	nary	24
Refer	rences		24
Chaj	oter-6	Summary and Conclusions	25

Future Plan

.

Fig. 2.15 $\sigma \to \sigma^*$ Transitions, $n \to \sigma^*$ Transitions, $n \to \pi^*$ and $\pi \to \pi^*$ Transitions

Fig.2.16 Schematic of a dual beam UV-Vis spectrophotometer 86

Chapter-3

Fig.3.1Conductivity vs. frequency for PMMA/ CB composites (a) Pristine and (b)Irradiated at a fluence 1x10¹¹ions/cm² (c) Irradiated at a fluence 1x10¹²ions/cm² (d)Conductivity vs. filler concentration at 10MHz.96Fig. 3.2 Variation of conductivity of PMMA/CB composites with frequency ofapplied electric field, concentrations and temperature.97Fig. 3.3 Plot of natural log of conductivity (lnσ) versus inverse temperature, 1000/T[K] for PMMA/CB composites.98

Fig.3.4 Dielectric constant vs. frequency for PMMA/CB composites (a) Pristine and (b) Irradiated at a fluence 1x10¹¹ions/cm² (c) Irradiated at a fluence 1x10¹²ions/cm² 100

Fig. 3.5 Variation of dielectric constant of PMMA/CB composites with frequency ofapplied electric field, concentration and temperature.101Fig.3.6 Variation of dielectric constant vs temperature at different concentrations of101PMMA/CB composites at two different frequencies.101

Fig.3.7 Dielectric loss vs. frequency for PMMA/CB composites (a) Pristine and (b) Irradiated at a fluence 1×10^{11} ions/cm² (c) Irradiated at a fluence 1×10^{12} ions/cm². 103 Figure 3.8 Variation of dielectric loss of PMMA/CB composites with frequency of applied electric field, concentration and temperature. 104

Fig. 3.9.Variation of dielectric loss vs temperature with different concentrations of PMMA/CB composites at two different frequencies. 104

84

	Fig. 3.10 (a) XRD spectra of pristine and irradiated samples for PMMA+10% CB
	composite 106
	Fig. 3.10 (b) XRD spectra of pristine and irradiated samples for PMMA+20% CB
į	composite 106
	Fig. 3.10 (c) XRD spectra of pristine and irradiated samples for PMMA+40% CB
	composite 106
	Fig.3.11 DSC thermograms of (a) pure PMMA pristine (b) PMMA+40% CB pristine
	(c) PMMA+40%CB (irradiated) 108
	Fig. 3.12 AFM images of PMMA+10% CB (a) pristine (b) at 1×10^{12} ions/cm ² and
	PMMA+40% CB (c) pristine (d) at 1×10^{12} ions/cm ² 109
	Fig. 3.13 SEM images of PMMA+10% CB composite (a) pristine (b)irradiated at 1 \times
	10^{12} ions/cm ² and PMMA+40% CB composite (c) pristine (d) irradiated at 1×10^{12}
	ions/cm ² 110
	Fig.3.14 Conductivity vs. frequency for PMMA/Al composites (a) Pristine and (b)
	Irradiated at a fluence of 1×10^{11} ions/cm ² (c) Irradiated at a fluence of 1×10^{12} ions/cm ²
	(d) Conductivity vs. filler concentration at 10MHz. 112
	Fig.3.15 Variation of conductivity of PMMA/Al composites with frequency of
	applied electric field, concentrations and temperature 114
	Fig.3.16 Plot of natural log of conductivity (ln σ) versus inverse temperature, 1000/T
	[K] for PMMA/Al composites 114
	Fig.3.17 Dielectric constant vs. frequency for PMMA/Al composites (a) Pristine and
	(b) Irradiated at a fluence of $1 \times 10^{11} \text{ ions/cm}^2$ (c) Irradiated at a fluence of
	1x10 ¹² ions/cm ² 115
	Fig.3.18 Variation of dielectric constant of PMMA/Al composites with frequency of

.

applied electric field, concentration and temperature 116

Fig. 3.19 Variation of dielectric constant vs temperature with different concentrationsof PMMA/Al composites at two different frequencies117Fig.3.20 Dielectric loss vs. frequency for PMMA/Al composites (a) Pristine and (b)Irradiated at a fluence of 1×10^{11} ions/cm2 (c) Irradiated at a fluence of 1×10^{12} ions/cm²119

Fig.3.21Variation of dielectric loss of PMMA/Al composites with frequency of
applied electric field, concentration and temperature120Fig.3.22Variation of dielectric loss vs temperature at different concentration of
PMMA/Al composites at two different frequencies120Fig.3.23XRDSpectra of (a)PMMA+10%Al (pristine) and PMMA+10%Al
(irradiated) at two different fluences of 1×10^{11} ions/cm² and 1×10^{12} ions/cm² (b)PMMA+40%Al (pristine) and PMMA+40%Al (irradiated) at two different fluences of
 1×10^{11} ions/cm² and 1×10^{12} ions/cm²121

Fig. 3.24 DSC thermograms of (a) pure PMMA pristine, (b) PMMA+40% Al (pristine) and (c) PMMA+40% Al (irradiated at a fluence of $1 \times 10^{11} \text{ions/cm}^2$) (d) PMMA+40% Al (irradiated at a fluence of $1 \times 10^{12} \text{ions/cm}^2$) 124

Fig. 3.25. AFM images of PMMA+10%Al (a) pristine (b) at 1×10^{12} ions/cm² and PMMA+40% Al (c) pristine (d) at 1×10^{12} ions/cm² 126

Fig. 3.26. SEM images of PMMA+10% Al (a) pristine (b) at 1×10^{12} ions/cm² and PMMA+40% Al (c) pristine (d) at 1×10^{12} ions/cm² 127

Fig. 3.27 Conductivity vs. frequency for PMMA/Cu composites (a) Pristine and (b) Irradiated at a fluence of 1×10^{11} ions/cm² (c) Irradiated at a fluence of 1×10^{12} ions/cm² (d) Conductivity vs. filler concentration at 1MHz 130

Fig.3.28Variation of conductivity of PMMA/Cu composites with frequency of applied electric field, concentrations and temperature 131

Fig.3.29 Plot of natural log of conductivity (lno) versus inverse temperature, 1000/T [K] for PMMA/Cu composites 132 Fig.3.30 Dielectric constant vs. frequency for PMMA/Cu composites (a) Pristine and (b) Irradiated at a fluence of 1×10^{11} ions/cm² (c) Irradiated at a fluence of $1 \times 10^{12} \text{ ions/cm}^2$ 133 Fig.3.31Variation of dielectric constant of PMMA/Cu composites with frequency of applied electric field, concentration and temperature 134 Fig.3.32 Variation of dielectric constant vs temperature at different concentrations of PMMA/Cu composites at two different frequencies 135 Fig.3.33 Dielectric loss vs. frequency for PMMA/Cu composites (a) Pristine and (b) Irradiated at a fluence of 1×10^{11} ions/cm² (c) Irradiated at a fluence of 1×10^{12} ions/cm² 136 Fig. 3.34 Variation of dielectric loss of PMMA/Cu composites with frequency of applied electric field, concentration and temperature 137 Fig. 3.35 Variation of dielectric loss vs temperature at different concentrations of PMMA/Cu composites at two different frequencies 138 Fig.3.36 XRD spectra of (a) Pure PMMA (b) PMMA+10% Cu of pristine and irradiated samples. (c) PMMA+40% Cu of pristine and irradiated samples 140 Fig.3.37 DSC thermograms for pure PMMA (pristine) and pristine and irradiated PMMA+40% Cu composites at two different fluences 143 Fig. 3.38 AFM images of (a) PMMA+10% Cu (pristine) (b) PMMA+10% Cu (fluence 1x10¹²ions/cm²). (c) PMMA+40% Cu (pristine) (d) PMMA+40% Cu (fluence 1×10^{12} ions/cm²) 145

Fig. 3.39 SEM images of (a) PMMA+10% Cu (pristine) (b) PMMA+10% Cu (fluence $1x10^{12}$ ions/cm²). (c) PMMA+40% Cu (pristine) (d) PMMA+40% Cu (fluence $1x10^{12}$ ions/cm²) 146

Fig. 3.40 Comparison of conductivity of pristine and irradiated composites at two different fluences (i.e 1×10^{11} ions/cm² and 1×10^{12} ions/cm²) keeping frequency constant (i.e 10MHz) 149

Fig..3.41 Comparison of conductivity of pristine samples for all composites at two different temperatures (40° C and 80° C) keeping frequency constant (i.e. 10MHz)

Fig. 3.42 Comparison of dielectric constant of pristine and irradiated composites at two different fluences(i.e 1×10^{11} ions/cm² and 1×10^{12} ions/cm²) keeping frequency constant (i.e. 10MHz) 150

Fig. 3.43 Comparison of dielectric loss of pristine and irradiated composites at two different fluences (i.e 1×10^{11} ions/cm² and 1×10^{12} ions/cm²) keeping frequency constant (i.e. 10MHz) 151

Fig.3.44 Comparison of conductivity of pristine samples for all composites at two different temperatures (i.e. 40^oC and 80^oC) keeping frequency constant (i.e. 10MHz) 151

Fig.3.45 Comparison of dielectric loss of pristine samples for all composites at two different temperatures (i.e 40° C and 80° C) keeping frequency constant (i.e. 10MHz)

152

150

Chapter-4

Fig.4.1 Conductivity vs. frequency for PVC/CB composites (a) Pristine and (b) Irradiated at a fluence of 1×10^{11} ions/cm² (c) Irradiated at a fluence of 1×10^{12} ions/cm² (d) Conductivity vs. filler concentration of CB at 1MHz 162

Fig. 4.2 Variation of conductivity of PVC/CB composites with frequency of applie	d
electric field, concentration and temperature 16	2
Fig. 4.3 Plot of natural log of conductivity ($\ln \sigma$) versus inverse temperature, 1000/	Т
[K] for PVC/CB composites 16	3
Fig.4.4 Dielectric constant vs. frequency for PVC/CB composites (a) Pristine and (b))
Irradiated at a fluence of 1×10^{11} ions/cm ² (c) Irradiated at a fluence of 1×10^{12} ions/cm ²	2
16	5
Fig.4.5 Variation of dielectric constant of PVC/CB composites with frequency of	of
applied electric field, concentration and temperature 16	6
Fig.4.6 Variation of dielectric constant versus temperature at different concentration	n
of PVC/CB composites at two different frequencies 16	6
Fig.4.7 Dielectric loss vs. frequency for PVC/CB composites (a) Pristine and (b))
Irradiated at a fluence of 1×10^{11} ions/cm ² (c) Irradiated at a fluence of 1×10^{12} ions/cm	n^2
16	8
Fig. 4.8. Variation of dielectric loss of PVC/CB composites with frequency of applie	ed
electric field, concentration and temperature 16	9.
Fig. 4.9. Variation of dielectric loss versus temperature at different concentration of	of
PVC/CB composites at two different frequencies 16	9
Fig. 4.10. DSC thermograms of (a) pure PVC pristine, (b) PVC + 40% CB(pristine	e)
and (c) PVC + 40% CB (irradiated at a fluence of 1×10^{12} ions/cm ²) 17	1
Fig.4.11. AFM images of (a) PVC+10% CB (pristine) (b) PVC+10% CB (irradiated	~
$1x10^{12}ions/cm^2$) (c) PVC+20% CB (pristine) (d) PVC+20% CB (irradiated	~
$1 \times 10^{12} \text{ions/cm}^2$)	
(e) PVC+40% CB (pristine) (f) PVC+40% CB (irradiated~ $1x10^{12}$ ions/cm ²) 17	'3

.

Fig. 4.12. SEM micrographs of (a) PVC+10% CB (pristine) (b) PVC+10% CB	
(irradiated~ 1×10^{12} ions/cm ²) (c) PVC+40% CB (pristine) (d) PVC+40% CB	
(irradiated~ 1×10^{12} ions/cm ²)	174
Fig.4.13. Conductivity vs. frequency for PVC/Al composites (a) Pristine and	d (b)
Irradiated at a fluence of 1×10^{11} ions/cm ² (c) Irradiated at a fluence of 1×10^{12} ions	s/cm ²
(d) Conductivity vs. filler concentration at 1MHz	177
Fig.4.14 Variation of conductivity of PVC/Al composites with frequency of ap	plied
electric field, concentration and temperature	178
Fig. 4.15 Plot of natural log of conductivity ($\ln\sigma$) versus inverse temperature, 10)00/T
[K] for PVC/Al composites	178
Fig.4.16 Dielectric constant vs. frequency for PVC/Al composites (a) Pristine ar	ud (b)
Irradiated at a fluence of 1×10^{11} ions/cm ² (c) Irradiated at a fluence of 1×10^{12} ion	s/cm ²
	180
Fig. 4.17 Variation of dielectric constant of PVC/Al composites with frequen	cy of
applied electric filed, concentration and temperature	181
Fig.4.18 Variation of dielectric constant vs temperature at different concentration	ons of
PVC/Al composites at two different frequencies	182
Fig.4.19 Dielectric constant vs. frequency for PVC/Al composites (a)Pristine ar	nd (b)
Irradiated at a fluence of 1×10^{11} ions/cm ² (c) Irradiated at a fluence of 1×10^{12} ion	s/cm ²
	183
Fig. 4.20 Variation of dielectric loss of PVC/Al composites with frequency of ap	plied
electric field, concentration and temperature	184
Fig.4.21 Variation of dielectric loss versus temperature at different concentration	ons of
PVC/Al composites at two different frequencies	185

-

.

Fig. 4.22 XRD Spectra of (a) PVC+10%Al (pristine) and PVC+10%Al (irradiated at two different fluences 1×10^{11} ions/cm² and 1×10^{12} ions/cm²) (b)PVC+40%Al (pristine) and PVC+40%Al (irradiated at two different fluences 1×10^{11} ions/cm² and 1×10^{12} ions/cm²) 186

Fig.4.23 DSC patterns for pure PVC (pristine) and pristine and irradiatedPVC+40%Al composites at two different fluences189Fig. 4.24 AFM images of (a) PVC+10% Al (pristine) (b) PVC+10% Al (at a fluence

of 1×10^{12} ions/cm²). (c) PVC+40% Al (pristine) (d) PVC+40% Al (at a fluence of 1×10^{12} ions/cm²) 191

Fig. 4.25 SEM images of (a) PVC+10% Al (pristine) (b) PVC+10% Al (at a fluence of $1x10^{12}$ ions/cm²). (c) PVC+40% Al (pristine) (d) PVC+40% Al (at a fluence of $1x10^{12}$ ions/cm²) 192

Fig.4.26. Conductivity vs. frequency for PVC/Cu composites (a) Pristine and (b) Irradiated at a fluence of 1×10^{11} ions/cm² (c) Irradiated at a fluence of 1×10^{12} ions/cm²

195

Fig.4.27 Variation of conductivity of PVC/Cu composites with frequency of applied electric field, concentration and temperature 196

(d) Conductivity vs. filler concentration at 1MHz

Fig. 4.28 Plot of natural log of conductivity (lnσ) versus inverse temperature, 1000/T[K] for PVC/Cu composites196

Fig.4.29. Dielectric constant vs. frequency for PVC/Cu composites (a) Pristine and (b) Irradiated at a fluence of 1×10^{11} ions/cm² (c) Irradiated at a fluence of 1×10^{12} ions/cm² 198

Fig.4.30 Variation of dielectric constant of PVC/Cu composites with frequency of applied electric field, concentration and temperature 199

Fig. 4.31 Variation of dielectric constant versus temperature at different concentrations of PVC/Cu composites at two different frequencies 199 Fig.4.32. Dielectric loss vs. frequency for PVC/Cu composites (a) Pristine and (b) $1 \times 10^{11} \text{ ions/cm}^2$ (c) Irradiated at a fluence of fluence of Irradiated at a 1×10^{12} ions/cm² 201 Fig.4.33 Variation of dielectric loss of PVC/Cu composites with frequency of applied 202 electric field, concentration and temperature Fig. 4.34 Variation of dielectric loss versus temperature at different concentrations of PVC/Cu composites at two different frequencies 202 Fig.4.35 DSC patterns for pure PVC (pristine) and pristine and irradiated PVC+40%Cu composites at two different fluences 203 Fig. 4.36 AFM images of (a) PVC+10%Cu (pristine) (b) PVC+10% Cu (fluence 1×10^{12} ions/cm²). (c) PVC+40%Cu (pristine) (d) PVC+40% Cu (fluence $1 \times 10^{12} \text{ions/cm}^2$) 205 Fig. 4.37 SEM images of (a) PVC+10% Cu (pristine) (b) PVC+10% Cu (fluence 1x10¹²ions/cm²). (c) PVC+40% Cu (pristine) (d) PVC+40% Cu (fluence $1 \times 10^{12} \text{ ions/cm}^2$) 206 Fig.4.38 Comparison of conductivity of pristine and irradiated composites at two different fluences (i.e 1×10^{11} ions/cm² and 1×10^{12} ions/cm²) keeping frequency constant (i.e. 10MHz) 208 Fig.4.39 Comparison of conductivity of pristine samples for all composites at two different temperatures (40° C and 80° C) keeping frequency constant (i.e. 10MHz) 209 Fig.4.40 Comparison of dielectric constant of pristine and irradiated composites at

constant (i.e10MHz)

two different fluences (i.e. 1×10^{11} ions/cm² and 1×10^{12} ions/cm²) keeping frequency

210

Fig.4.41 Comparison of dielectric loss of pristine and irradiated composites at two different fluences (i.e. 1×10^{11} ions/cm² and 1×10^{12} ions/cm²) keeping frequency constant (i.e10MHz) 210

Fig.4.42 Comparison of dielectric constant of pristine samples for all composites at two different temperatures (40° C and 80° C) keeping frequency constant (i.e10MHz)

211

Fig.4.43 Comparisons of dielectric loss of pristine samples for all composites at two different temperatures (40° C and 80° C) keeping frequency constant (i.e10MHz) 211

Chapter-5

Fig. 5.1. (a) UV-Visible absorption spectra of pristine and irradiated PP+TiO2polymer composites. (b) Plot of direct band gap (eV) for pristine and irradiatedPP+TiO2 polymer composites. (c) Plot of indirect band gap (eV) for pristine andirradiated PP+TiO2 polymer compositesFig. 5.2 XRD patterns of pristine and irradiated PP+TiO2 polymer composites at afluence of $5x10^{12}$ ions/cm²Fig. 5. 3 AC conductivity versus frequency for pristine and irradiated PP+TiO2composites at different fluences224Fig. 5.4. Plot of dielectric constant versus frequency for pristine and irradiatedPP+TiO2 composites at different fluences225

 Fig. 5.5. Plot of dielectric loss versus frequency for pristine and irradiated PP+TiO2

 composites at different fluences
 226

Fig. 5.6 Cole-Cole plot for pristine and irradiated PP+TiO₂ composites at different fluences 227

Fig.5.7. AFM image of PP+TiO₂ Composites (a) pristine PP+TiO₂ (b) PP+TiO₂ irradiated at the fluence of $5x10^{12}$ ions/cm² 228 Fig. 5.8. (a) UV-Visible absorption spectra of pristine and irradiated PP+GF polymer composites. (b) Plot of direct band gap (eV) for pristine and irradiated PP+GF polymer composites. (c) Plot of indirect band gap (eV) for pristine and irradiated PP+GF polymer 231 Fig. 5.9 XRD patterns of pristine and irradiated PP+GF composites at a fluence of 5×10^{12} ions/cm² 233 Fig. 5.10 AC conductivity versus frequency for pristine and irradiated PP+GF composites at different fluences 234 Fig. 5.11 Plot of dielectric constant versus frequency for pristine and irradiated PP+GF composites at different fluences 235 Fig. 5.12 Plot of dielectric loss versus frequency for pristine and irradiated PP+GF composites at different fluences 236 Fig. 5.13 Cole-Cole plot for pristine and irradiated PP+GF composites at different fluences 237 Fig.5.14 AFM images of (a) pristine PP+GF composite (b) irradiated (at the fluence of 5x10¹² ions/cm²) PP+GF composite 238 Fig. 5.15 (a) UV-Visible absorption spectra of pristine and irradiated HDPE/CB composites. (b) Plots for direct band gap (eV) in pristine and irradiated HDPE/CB composites 241 Fig.5.16 XRD patterns of pristine and irradiated HDPE/CB polymer composites at a fluence of 5×10^{12} ions/cm² 242 Fig.5.17 AC conductivity versus frequency for pristine and irradiated HDPE/CB composites at different fluences 243 Fig. 5.18 Plot of dielectric constant versus frequency for pristine and irradiated HDPP/CB composites at different fluences 244

 Fig. 5.19 Plot of dielectric loss versus frequency for pristine and irradiated HDPE/CB

 composites at different fluences
 245

Fig. 5.20 AFM images of (a) pristine HDPE/CB composite (b) irradiated(at the fluence of $5x10^{12}$ ions/cm²) HDPE/CB composite 246

Chapter-6

Fig.6.1. Variation in conductivity with respect to different conductive composites and also with different ion fluence at a fixed frequency (10MHz) for 40wt% of fillers

255

Fig.6.2. Variation in dielectric constant with respect to different conductivecomposites at different ion fluences and at a fixed frequency (10MHz) for 40% wt. offillers256

Fig.6.3. Variation in dielectric loss with respect to different conductive composites at different ion fluences and at a fixed frequency (10MHz) for 40% wt. of fillers 258