Chapter 8
Effects of Alloxan-Diabetes and Subsequent Treatment with Insulin
on Kinetic Properties of Na*, K'-ATPase and Glucose-6-Phosphatase

from Rat Liver Microsomes
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Introduction

Diabetic state significantly alters the membrane enzymes Na', K'-ATPase and glucose-6-

phosphatase (G6Pase) in different tissues/organelles (1—7).7 Na', K*-ATPase activity is

decreased in many tissues of streptozotocin-induced diaﬁetic animals (1-3, 8). The
&

enzyme G6Pase is a key enzyngluconeogenasis (7). Expression of G6Pase is known to

increase in diabetes (4).

The microsomal membrane enzymes are known fo haye requirement of specific
phospholipids (9, 10). As pointed out earlier (Chapter 2-7 of the Thesis), alloxan-diabetes
differentially altered mitochondrial membrane strucmre-ﬁxn(;tion relationship. Hence, it is
of interest to find out if the microsomal membrane co@osﬁion and properties of
membrane-bound enzymes were also affected by alloxan-diabetes. Thus, effects of
alloxan-diabetes and subsequent treatment with insulin on Elive:r microsomes have been
evaluated. To achieve this goal, the kinetic properties of Na', K'-ATPase and G6Pase

from rat liver microsomes were examined. The lipid/phospholipid profiles were also

examined. The results are summarized below.

Materials and Methods

Chemicals

Details of chemicals required, procedure of induction of diabetes, insulin treatment,
isolation of microsomes, extraction of lipid/phospholipids, estimation of cholesterol,

determination of phospholipid profile and membrane fluidity are as described in Chapter

2 of the Thesis.
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ATPase assay

ATPase activity was measured in the assay medium (total volume 0.1 ml) containing 100
mM Tris-HCI buffer pH 7.4, 20 mM KCl, 240 mM NaCl and 8 mM MgCl,. After pre-
incubating the microsomal protein (30-50 ug) in the assay mjedium at 37 °C for 1 min, the
reaction was initiated by the addition of ATP at a final conc}entration of 5 mM (11). The
reaction was terminated after 10 min by addition of 0.1 ml :of 5% (w/v) sodium dodecyl

sulfate (SDS) solution and the amount of librated inorganic phosphorus was estimated by

the method of Katewa and Katyare (11).

G6Pase assay

G6Pase activity was measured in the assay medium (total volume 0.1 ml) containing 100
mM Na-acetate, pH 6.5 containing 2 mM EDTA. After pée—incubating the microsomal
protein (30-50 pg) in the assay medium at 37 °C for 1 mm, the reaction was initiated by
the addition of G6P at a final concentration of 5 mM (1 1).:The reaction was terminated
after 10 min by addition of 0.1 ml of 5% (w/v) sodium do;decyl sulfate (SDS) solution
and the amount of librated inorganic phosphorus was estimated by the method of Katewa

and Katyare (11).

For the substrate kinetics studies concentration of ATP was varied in the range from 0.1
mM to 5 mM while concentration of G6P was varied in the range from 0.1 mM to 20

mM.
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Temperature kinetics studies were carried out as detailed (Chapter 2 of the Thesis) using

fixed ATP and G6P concentrations (5 mM).

The substrate and temperature kinetics data were analyzed as detailed (Chapter 2 of the

Thesis).

Results
The results on body and liver weight, diabetes parameters etc are detailed in Chapter 2 of

the Thesis.

Effects on ATPase

In the preliminary studies ATPase activity was determined at room temperature (25 °C)
and at the physiological temperature (37 °C). The data are given in Table 1. As can be
noted at early stage of diabetes ATPélse activity increased by 41 and 24 % at two
temperatures whereas at late stag@ the effect was differential. The activity increased by 37
% at 25 °C whereas it registered decrease of 28 % at 37 °C. Insulin treatment in one week
diabetic animals partially restored the activity at 25 °C<v/hereas the activity at 37 °C was
unchanged. The opposite effect was noted in one month diabetic animals following
insulin treatment. The activity at 25 °C was unchanged while the activity at 37 °C
completely restored. Compared to the control, the activity ratios were low under all the
experimental conditions. (Table 1), which is suggestive of differential temperature

response.
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In view of the differential changes in one week and one month groups further
experiments were carried out to examine the kinetic behavior of ATPase as a response to
change in the substrate i.c. ATP concentration. The datg on substrate kinetics was
analyzed as detailed (Chapter 2 of the Thesis). The typical substrate saturation and
corresponding Eadie-Hofstee plots and Hill plots for ATPase are shown in Fig. 1 and 2
Panels A-C and D-F respectively. As can be noted, in all experimental conditions the
enzyme activity resolved in two kinetically distinguishablé components (Fig. 1 and 2

Panels D-F).

Data on Km and Vmax are given in Table 2. Thus, in the control group the Km value of
the two components were 0.14 and 0.47 mM respectively with corresponding values of
Vmax of 7.6 and 12.4 units. The diabetic state resulted in general progressive increase in
Km values for both the components. The Vmax of component I decreased by 47 % at late
stage of diabetes. For component Il the picture was different. The Vmax increased at
early stage and showed a marginal decrease at late stage. Insulin treatment in one week
diabetic group was ineffective in restoring the Km values to normality whereas in one
month diabetic animals, insulin treatment completely restored the Km for component I
whereas partial restoration was noted in Km valuie for component II. Vmax for
component II increased in one week diabetic group and insulin treatment had no
restorative effect. In one month diabetic group Vmax for both components decreased;

insulin treatment more or less restored to normality (Table 2).
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Figure 2

15 18 - B 18 [+
10 10 | 10 - - ®
> > >
5 5- 5
0 v T o T v 3 1] T T 1
[+ 2 4 [4] 2 4 ] 1] 2 4 -]
(&3] [s] s}
15 - 15 - E 15 - F
y
10 - 10 4 10 -
> E >
5 51 5
o . ‘ o AN . ) o N— (
0 10 20 [} 5 10 15 [ 10 20 30
vifs} vi[s] vifs)
1.6 12 - H 16+ i
0.6 -
= = n=1.88 = J
z ,z, 1.8 3 o8 n=1.85
£ E o g
2 2 2
=3 = 2 o-
g 2 06 8
n=0.734
! n,=0.623
-1.2 v T v v 08 T Y T 3
-1.5 A 0.6 [+] 05 4.5 <1 s 0 08
log {1 log [S}]

268




Figure 1. Typical substrate saturation curve (Panels A, B, C), comresponding Eadie-
Hofstee (Panels D, E, F) and Hill (Panels G, H, I) plots for Na’, K'-ATPase from liver
microsomes for one week group. In substrate saturation curve the enzyme activity v on
abscissa is plotted versus [S] on ordinate v is the enzyme activity at the given ATP
concentration [S]. A, B and C represent to the control, diabetic and insulin-treated
diabetic groups. In Eadie-HofStee plot the enzyme activity v on abscissa is plotted versus
v/[S] on ordinate. D, E and F represent fo the control, diabetic and insulin-treated diabetic
groups. In Hill plot log (v/Vmax-v) on abscissa is plotted versus log [S] on ordinate. The
Hill coefficients n; and n; depict number of ATP molecules bound for the given
concentration range of ATP. G, H and I represent to the:control, diabetic and insulin-
treated diabetic groups. The plots are typical of 6-8 independent experiments in each

group.

Figure 2. Typical substrate saturation curve (Panels A, kB, C), corresponding Eadie-
Hofstee (Panels D, E, F) and Hill (Panels G, H, I) plots for Na*, K*-ATPase from liver
microsomes for one week group. In substrate saturation curve the enzyme activity v on
abscissa is plotted versus [S] on ordinate v is the enzyme activity at the given ATP
concentration [S]. A, B and C represent to the control, diabetic and insulin-treated
diabetic groups. In Eadie-Hofstee plot the enzyme activity v on abscissa is plotted versus
v/[S] on ordinate. D, E and F represent to the control, diabetic and insulin-treated diabetic
groups. In Hill plot log (v/Vmax-v) on abscissa is plotted versus log [S] on ordinate. The
Hill coefficients n; and n, depict number of ATP molecules bound for the given
concentration range of ATP. G, H and I represent to the control, diabetic and insulin-
treated diabetic groups. The plots are typical of 6-8 independent experiments in each
group,
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Analysis of the data by Hill plots indicated that up to 0.6 mM ATP concentration one
ATP molecule was bound to the enzyme while beyond this concentration of substrate two
molecules of ATP were bound under all experimental conditions (data not given) Typical

Hill plots are shown in Fig. 1 and 2 Panels G-I.

In the next set of experiment the temperature dependence of the enzyme activity was
examined. The temperature kinetics data were analyzed as detailed in Chapter 2 of the
Thesis. The typical activity versus temperature plots and corresponding Arrhenius plots
for early and late effects are given in the Fig. 3 and 4 Panels A-C and D-F. As can be
seen, in one week as well as one month groups the activity w;ersus temperature plots in the
experimental groups differed considerably from the corresponding controls (Fig. 3 and
4). The optimum temperature in the control group was 45 °C. In one week diabetic group
the optimum temperature shifted to 49 °C; insulin treatment reversed the effect (Fig. 3
Panels A-C). Interestingly, in one month group the optimuni temperature was unchanged
in the experimental groups (Fig. 4, Panels A-C). This was also reflected in terms of
corresponding Arrhenius plots (Fig. 3 and 4, Panels D-F). In the control group Arrhenius
plots followed typical biphasic pattern i.e. the energies of activation in high temperature
ranges (Ey) was lower than that of in Imy temperature ranges (Ep). In one week diabetic
group the Arrhenius pattern was unchanged (Fig. 3 Panel E). However, following insulin
treatment, the pattern reversed i.e. energies of activation in high temperature ranges (Eg)
was higher than that of in low temperature ranges (Er). (Fig. 3 Panel F). The data on
energies of activation and phase transition temperature are given in Table 3. In control

group the values of Ey and E;, were about 80 and 125 KJ/mole with phase transition at
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Figure 3
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Figure 4
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Figure 3. Typical plots depicting dependence of enzyme activity on the temperature and
corresponding Arrhenius plots for Na*, K'-ATPase from liver microsomes for one week
groups. In temperature curves, enzyme activity v on abscissa is plotted verses
temperature (°C) on ordinate. A, B and C represent to thel control, diabetic and insulin-
treated diabetic groups. In Arrhenius plots log of v on ordinate is plotted against 1000/T
on abscissa where v and T represent respectively, the aﬂiﬁy at corresponding absolute
temperature T (temperature in ° Celcius + 273.2). D, E and F represent to the control,
diabetic and insulin treated diabetic groups. The plots ar‘e typical of 6-8 independent

experiments in each group.

Figure 4. Typical plots depicting dependence of enzyme a?tivity on the temperature and
corresponding Arrhenius plots for Na*, K*~ATPase from liver microsomes for one month
groups. In temperature curves, enzyme activity v on; abscissa is plotted verses
temperature (°C) on ordinate. A, B and C represent to the control, diabetic and insulin-
treated diabetic groups. In Arrhenius plots log of v on ordinate is plotted against 1000/T
on abscissa where v and T represent respectively, the act1v1ty at corresponding absolute
temperature T (temperature in ° Celcius + 273.2). D, E aﬁd F represent to the control,
diabetic and insulin treated diabetic groups. The plots are typical of 6-8 independent

experiments in each group.
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around 18 °C. Both early and late diabetic states signiﬁcan;ﬂy decreased the values of E;,
and Ey. Insulin treatment in one week animals restored on}y Ex to normality whereas in
one month diabetic animals insulin treatment had partial testorative effects on both EL
and Ey values (Table 3). Phase transition temperature (Ty) in general, did not change in

any experimental condition.

Effects on G6Pase

Data on effects of alloxan-diabetes and subsequent insuiin} treatment on G6Pase activity
are given in Table 4. Thus, in one week diabetic group, measurements of G6Pase activity
at 25 °C increased by 28 % while in one month diabetic group, phenomenal increase (3.8
fold) was noted in the activity. Almost similar picture was noted when the activity
measurements was carried out at 37 °C. In early stage of diabetes activity increased by 43
% and at late stage 3 fold increased was noted. Insulin treatment was not effective at
early stage but had partial restorative effects at late stage of diabetes. In early diabetic
state, the activity ratio was unchanged while decreased at latte stage. Insulin in one month

diabetic group restored the activity ratio to normality (Tabley4).

In the next set of experiment the kinetic behavior of G6Pase in response to change in
substrate concen&gﬁon i.e. G6P concentration. Typical substrate saturation curve and
corresponding Eadie-Hofstee plots and Hill plots for G6Pas§ are shown in Fig. 5 and 6.
The Eadie-Hofstee plots revealed that the enzyme activity resolved in two kinetically

distinguishable components in all the groups (Fig. 5 and 6, Panels D- F).
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Figure 5
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Figure 6
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;
Figure 5. Typical substrate saturation curve (Panels A,EB, (), corresponding Eadie-
Hofstee (Panels D, E, F) and Hill (Panels G, H, I) plots for G6Pase from liver
microsomes for one week group. In substrate saturation curve the enzyme activity v on
abscissa is plotted versus [S] on ordinate v is the enzyme activity at the given ATP
concentration [S]. A, B and C represent to the contmlf, diabetic and insulin-treated
diabetic groups. In Eadie-Hofstee plot the enzyme activity v on abscissa is plotted versus
v/[S] on ordinate. D, E and F represent to the control, diabettic and insulin-treated diabetic
groups. In Hill plot log (v/Vmax-v) on abscissa is plotted versus log [S] on ordinate. The
Hill coefficients n; and m, depict number of ATP mo:lecules bound for the given
concentration range of ATP. G, H and I represent to the control, diabetic and insulin-
treated diabetic groups. The plots are typical of 6-8 indépendent experiments in each

group.

Figure 6. Typical substrate saturatioﬁ curve (Panels A, 'B, C), corresponding Eadie-
Hofstee (Panels D, E, F) and Hill (Panels G, H, I) plots for G6Pase from liver
microsomes for one week group. In substrate saturation curve the enzyme activity v on
abscissa is plotted versus [S] on ordinate v is the enzyme activity at the given ATP
concentration [S]. A, B and C represent to the control, diabetic and insulin-treated
diabetic groups. In Eadie-Hofstee plot the enzyme activity v on abscissa is plotted versus
v/[S] on ordinate. D, E and F represent to the control, diabetic and insulin-treated diabetic
groups. In Hill plot log (v/Vmax-v) on abscissa is plotted versus log [S] on ordinate. The
Hill coefficients n; and n, depict number of ATP molecules bound for the given
concentration range of ATP. G, H and I represent to the control, diabetic and insulin-
treated diabetic groups. The plots are typical of 6-8 indei)endent experiments in each
group.
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Data on Km and Vmax values of the two components as affected by insulin status are
given in Table 5. Thus, in the control group the Km value of the two components were
2.22 and 8 mM respectively with corresponding values of Vmax of 9.5 and 20 units. In
one week diabetic animals the Km value for component I decrease to less than half of the
control value without any change Eemg seen for component II. Late stage of diabetes
resulted in substantial 4.6-5.2 fold reduction in Km value of the two components. Insulin
treatment was ineffective at early stage; at late stage insulin treatment partially restored
the Km value for component I with complete restoration of Km of component II. In early
stage of diabetes Vmax of component I decreased (32 % decrease) whereas the opposite
effect was seen for Vmax of component II (52 % increase). At late stage Vmax of both
the components show phenomenal increased (2.3 and 1.93 fold increase). Insulin

treatment only checked the Vmax value component I in one month diabetic animals.

Analysis of the data by Hill plots indicated that up to 4.7 mM G6P concentration one
G6P molecule was bound to the enzyme while beyond this concentration of substrate two
molecules of G6P were bound under all experimental conditions (data not given) Typical

Hill plots are shown in Fig. 5 and 6 Panels G-I.
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Figure 7
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Figure 8
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Figure 7. Typical plots depicting dependence of enzyme activity on the temperature and
corresponding Arrhenius plots for G6Pase from liver microsomes for one week groups.
In temperature curves, enzyme activity v on abscissa is plotted verses temperature (°C) on
ordinate. A, B and C represent to the control, diabetic and insulin-treated diabetic groups.
In Arrhenius plots log of v on ordinate is plotted against 1000/T on abscissa where v and
T represent respectively, the activity at corresponding absolute temperature T
(temperature in © Celcius + 273.2). D, E and F represent to the control, diabetic and
insulin treated diabetic groups. The plots are typical of 6-8 independent experiments in
each group.

Figure 8. Typical plots depicting dependence of enzyme activity on the temperature and
corresponding Arrhenius plots for G6Pase from liver microsomes for one month groups.
In temperature curves, enzyme activity v on abscissa is plotted verses temperature (°C) on
ordinate. A, B and C represent to the control, diabetic and insulin-treated diabetic groups.
In Arrhenius plots log of v on ordinate is plotted against 1000/T on abscissa where v and
T represent respectively, the activity at corresponding absolute temperature T
(temperature in © Celcius + 273.2). D, E and F represent to the control, diabetic and
insulin treated diabetic groups. The plots are typical of 6-8 independent experiments in
each group.
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shifted to 41 °C. Insulin treatment at late stage restored the optimum temperature to
normality. The differences were reflected in terms of corresponding Arrhenius plots (Fig.
7 and 8 Panels D-F). In control animals typical biphasic pattern was noted for Arrhenius
plots. In one week diabetic group the pattern reversed i.e. Ey is higher than E;; insulin
treatment was ineffective (Fig. 7, Panel D-F). In one month experimental groups, the
Arrhenius pattern resembled the control group (Fig. 8, Panel D-F). The data on energies
of activation and phase transition temperature are given in Table 6. In the control group
the values of Ey and E;, was 40 and 75 KJ/mole respectively. In early diabetic state the
En was significantly high and about double of the control while the Ep decreased
significantly and became almost half. At late stage, there was small but reproducible
increase was noted in Ey and E;. Effect persisted even after insulin treatment. Insulin

status had marginal effect on the phase transition temperature (Table 6).

In view of the observed changes in the substrate and temperature kinetics properties of
ATPase and G6Pase, the effects of insulin status on lipid/phospholipid profiles of the
microsomal membrane were examined. The results are given in Tables 7-9. In one week
diabetic group the content of Total phospholipids (TPL) and cholesterol (CHL) increased
by about 24 and 36 % respectively. Insulin treatment restored only the TPL content. In
the one month diabetic group TPL did not change whereas 2.5 fold increase was noted for
CHL content. Insﬁlin treatment caused 28 % decreased in TPL and CHL was partially
restored. These changes were reflected in the molar ratio of TPL/CHL which decreased in
late diabetic state and also following insulin treatment in both the diabetic states (Table

7).
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Analysis of phospholipid profile (Table 8) revealed that early diabetic state resulted in
increase in Lysophospholipid (Lyso), phosphatidylcholine (PC) and phosphatidylinositol
(PI) components whereas sphinghomyelin (SPM), phosphatidylserine (PS) and
phosphatidicacid (PA) components decreased. Insulin treatment restored the PI and
caused further decreased in SPM and PA. Under these conditions the Lyso decreased
substantially. In one month diabetic group, Lyso, PC, PI and PS increased whereas SPM
and PE decreased. Insulin treatment lowered the Lyso and PC while PE and PA
increased. The computed contents of the individual phospholipid classes were generally

consistent with the compositional changes (Table 9).

Changes in the levels of cholesterol and altered phospholipid composition and contents
could alter the fluidity of the membrane. This was ascertained by measuring the fluidity
of the membranes. It can be noted from the data in Table 10 that the microsomal
membrane fluidity decreased significantly in both the diabetic groups. Insulin treatment

was effective only at early stage and membranes were more fluidized.

Discussion

It is clear from the data presented that insulin status affected the two enzyme systems
differently, the important difference being that the Km for ATPase increased in diabetes

whereas that for G6Pase decreased significantly.

The increase in Km for ATPase is suggestive of increased demand for ATP for the

pormal function of the microsomal enzyme. However, earlier studies from our laboratory
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showed that in streptozotocin-diabetes, the overall oxidative capacity of the liver

mitochondria decreased significantly at the late stage of the disease (12).

It may be anticipated that component I of ATPase and G6Pase could be important in
physiological context because of the low Km values which are compatible with the
intracellular concentration of ATP and G6P. Such an assumption is also supported by the
fact that up to the concentration of 0.6 mM, 1 ATP molecule is bound to the enzyme (Fig.
1 and 2 Panels G-I) and up to 4.5 mM, 1 G6P molecule is bound to the enzyme (Fig. 5

and 6 Panels G-I).

If one considers the ratio of Vmax/Km as an apparent index of enzyme efficiency; it can
be noted that in diabetes the apparent efficiency index of ATPase decreased progressively
for the component I. At the early stage insulin treatment treatment failed in correcting the
apparent index whereas at the late stage insulin checked the apparent index. For
component II, similar picture can be noted in one week experimental group. However, at
late stage even after insulin treatment the apparent efficiency index remained low (data

not shown but can be calculated easily from values of Vmax and Km in Table 2).

Interestingly, as can be noted at the late stage the ATPase activity decreased significantly

(Table 1).

Studies on temperature kinetics showed that the diabetic state resulted in significant

decrease in the energies of activation in both high and low temperature ranges. This may
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probably reflect a compensatory mechanism for efficient functioning of the enzyme in

spite of the increase in Km.

Regulation of Na’, K'-ATPase is a complex process controlled by several factors which
include the subunit composition, stoichiometry of the subunits and interaction of the
enzyme with membrane proteins (13-15). As is well documented, the enzyme comprises
a, B and y subunits (13-15). o is the catalytic subunit while B functions as the regulatory
subunit (13-15). Four isoforms of a (a 1-4) and 3 isoforms of B (B 1-3) subunits have
been reported (13). The al-isoform in association with Bl- subunit is found in nearly
every tissue (13). Interestingly, it has been reported that the microsomal enzymes from
various tissues contain B3 subunit and that the stoichiometry of o and p3 subunits is
tissue-specific (16). Thus the liver microsomal enzyme represents pure al 3 form (16).
Tissue-specific expression of o and B subunits by thyroid hormones is well documented
(17-19). However, at this stage it is not clear if insulin also regulates expression of the «

and B subunits and if so whether in tissue-specific manner,

The second factor which regulates the Na', K'-ATPase activity is the acidic
phospholipids (9, 10). Data of the present study on phospholipid composition show that
the diabetic state had reciprocal effect on SPM and PC components. The acidic
phospholipid PI and PS were also affected reciprocally at early diabetic state whereas at
the late stage both the phospholipid classes increased. Insulin treatment had also
differential effects on the phospholipid classes. Attempts to seek correlation between

different kinetic parameters and lipid/phospholipid classes by regression analysis
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revealed that, paradoxically, thé acidic phospholipid PS and PI did not seem to have any
role in regulating either the activity or the substrate kinetics properties of the enzyme.
This is in contrast with the known requirement of acidic phospholipids for the activity of
the plasma membrane Na', K'-ATPase (9, 10). Regression analysis also revealed PC and
CHL to be the positive regulators of Km of both the components and SPM seemed to be
the negative regulator. It may hence be suggested that phospholipid requirement of the
plasma membrane and microsomal enzyme may be quite different. Interestingly, SPM

positively correlated with the energies of activation (Table 11).

Increase in G6Pase activity in diabetes is well documented (4). Results of our studies are
consistent with the reported observations (4). Besides, the results point out for the first
time that the G6Pase activity resolved in two kinetically distinguishable components.
Decrease in Km value of G6Pase in diabetes is a matter of concern since it suggests that
the enzyme can function efficiently even at lower concentréﬁon of glucose-6-phosphate
(G6P) (Table 5). Energy constraint in diabetes referred to above (4) could lower the rate
of phosphorylation of glucose to G6P and thereby a net decrease in intracellular G6P
concentration. On the other hand G6Pase can efficiently hydrolyze G6P due to low Km.
this will only result in futile cycle hindering the process of glycolysis. If one analyzes the
data in terms of apparent efficiency, at early stage of diabetes apparent efficiency of
component I of G6Pase became almost double which increased dramatically more than
10 fold at the late stage. Insulin treatment resulted in partial restoration but the apparent
efficiency indexes were significantly higher than those seen in the control groups. Almost

similar effect was noted for component II (data not shown but can be calculated easily
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from values of Vmax and Km Table 2). It is well documented that insulin treatment
suppresses the activity of G6Pase by decreasing the amount of messenger ribonucleic
acid (m RNA) of the catalytic subunit (5, 6). Despite this, as is evident from the data

presented, there was only partial control.

The enzyme Go6Pase is deeply embedded in the microsomal membrane (20, 21).
However, it is not kunown whether the enzyme has requirement for specific
lipid/phospholipid for its activity. The regression analysis of kinetic parameters with
phospholipid classes across the groups revealed that the CHL seem to be the negative
regulator of Km and positive regulator of Vmax. The role CHL seemed to be the opposite
of that in case of ATPase. PI and PS seem to be the positive regulator of energies of
activation in low temperature ranges (Table 11). As far as we are aware regulation of

kinetic parameters of G6Pase by specific lipids has not been reported earlier.
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Summary
Effects on ATPase

At the early stage of diabetes the microsomal Na*, K'-ATPase activity increased whereas
an opposite effect was noted at late stage. Insulin treatment restored the activity only in

one month diabetic group.

Substrate kinetics studies revealed that the enzyme activity resolved in two kinetically

distinguishable components.

Diabetic state in general increased the values for Km; insulin treatment was effective
only at the late stage of diabetes. In one week diabetic animals the Vmax of component IT
increased. By contrast in one month diabetic group Vmax of both the components

decreased; insulin treatment once again was effective only at the late stage.

The Hill plot analysis of substrate kinetics data revealed that up to 0.95 mM ATP
concentration one ATP molecule was bound while beyond this concentration two ATP

molecules were bound to the enzyme under all the experimental conditions.

The temperature kinetics data revealed that the Ey and Ey, values decreased significantly
in diabetic animals; insulin treatment restored the Ey and partially corrected the Ey, value

only at late stage. No change was noted in T; under any experimental conditions.
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Effects on ATPase

The G6Pase activity increased significantly with time in diabetic state; insulin treatment

had marginal restorative effect only at late stage.

From the substrate kinetics studies it can be noted that the G6Pase activity displayed a

two kinetic component systems under all the experimental conditions.

The Km of component I decreased significantly in one week diabetic animals; in one
month group Km of both the components decreased. Insulin treatment was ineffective at
early stage whereas it restored the Km of component II while partially correcting the Km

of component I at the late stage.

Hill plots analysis of the substrate kinetics data revealed that up to 2 mM glacose-6-
phosphate (G6P) concentration one G6P molecule was bound while beyond this
concentration two G6P molecules were bound to the enzyme under all the experimental

conditions.

The Arrhenus pattern was reversed in one week diabetic as well as insulin treated diabetic
animals. Ey increased in diabetic groups; insulin treatment was ineffective. E;, decreased
at early stage of diabetes whereas increased at the late stage; insulin treatment again was

ineffective. No change was observed in T, under all the experimental conditions.
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In one week diabetic animals the TPL and CHL contents increased by 23 and 36 %
respectively; insulin treatment restored only TPL content. In one month diabetic group
the CHL content increased almost by 2.5 fold which was partially brought back by

insulin treatment.

The diabetic states resulted in increased Lyso, PC and PI whereas SPM decreased.
Phosphatidicacid (PA) and PS decreased only at early sfage and PE at late stage of

diabetes. Insulin treatment was effective only in restoring the PI and PS at early stage.
Diabetic states decreased the membrane fluidity; insulin treatment increased the fluidity

beyond control in one week diabetic group whereas in one month diabetic group there

was further decrease.
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