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Diabetes mellitus is the disorder of glucose metabolism characterized by hyperglycemia 

and disturbances in carbohydrate, fat and protein metabolism that are associated with 

absolute or relative deficiencies in insulin secretion and/or in insulin action (1). 

Therefore, although diabetes is an endocrine disease in origin its major manifestations axe 

those of a metabolic disease. The word “diabetes” denotes the excessive urination in the 

disease. Areteaus, a Cappadocian physician of the 2nd century A. D. said “The epithet 

diabetes has been assigned to the disorder, being something like passing of water by a 

siphon”. He perceptively characterized diabetes as “being a melting-down of the flesh 

and limbs into urine” (2). The word “mellitus” derives from Latin, meaning “sweetened 

with honey” and refers to the presence of sugar in urine of patients having the disease.

Amongst metabolic diseases, diabetes is considered to be one of the most prevalent 

throughout the world. The following Tables 1 and 2 show the population distribution and 

age distribution of diabetes mellitus in USA. As can be noted, about 6 % of the total 

population is diabetic in USA and percentage incidence of diabetes increases with age.

Table 1. Population distribution (%) of diabetes mellitus in the USA.

% Distribution Category

15.7 million 
(5.9 % of population) Diabetic

10.3 million Diagnosed

5.4 million Undiagnosed
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Table 2. Age distribution (%) of diabetes mellitus in the USA.

Age group 
(in years) % Distribution of diabetes

Under 20 0.16%

20 and above 8.2 %

65 and above 18.4%

Prevalence of diabetes: The global scenario

Stress on health education and life style changes may have in the years to come some 

favorable effect on the developed countries, for the projected raise in prevalence is 

relatively less - 27% from 6 to 7.6% in these countries compared to the developing World 

- 48% from 3.3 to 4.9% (Table 3). The World Health Organization (WHO) estimated that 

there were 135 million diabetic individuals in the year 1995 and it has projected’that this 

number would increase to 300 million by the year 2025 (Table 3). It also declared that 

diabetes lad reached epidemic proportions and that most of the increase will be 

contributed by developing countries, particularly India (3).

Prevalence of diabetes: The Indian scenario

Today India leads the world with its largest number of diabetic subjects in any given 

country. It has been estimated that in year 1995, 19.4 million individuals were found to 

be affected by diabetes and this number is expected to increase to 57.2 million by the 

year 2005 (one-sixth of the world total) (Table 3) (3).
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Table 3. Top Ten Countries for Estimated Number of Adults with Diabetes in 

Millions

Country 1995 Country 2025

1 India 19.4 India 57.2

2 China 16.0 China 37.6

3 USA 13.9 USA 21.9
4 Russian Federation 8.9 Pakistan 14.5
5 Japan 6.3 Indonesia 12.4
6 Brazil 4.9 Russian Federation 12.2
7 Indonesia 4.5 Mexico 11.7
8 Pakistan 4.3 Brazil 11.6
9 Mexico 3.8 Egypt
10 Ukraine 3.6 Japan 8.5

All other 
country

49.7 103.6

Total 135.3 300.0

The crude prevalence rate of diabetes in India in urban areas is about 9% and the 

prevalence in rural areas has also increased to around 3 % of the total population. The 

2003 WHO report has shown that there is a marked increase in the number of people 

affected with diabetes and this trend is scheduled to grow in geometric proportions in the 

next couple of decades. (Table 4) (3).
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Table 4. Prevalence of diabetes in India.

Year Author Place Prevalence (%)
Urban Rural

1977 Ahuja New Delhi 2.1
1988 Ramachandran et al. Kudremukh 5.0
1992 Ramachandran et al. Chennai 8.2 2.4
1997 Ramachandran et al. Chennai 11.6
2000 Kutty et al. Thiruvananthapuram 12.4
2001 Misraetal New Delhi 11.2
2001 Ramachandran et al. Six urban cities (DESI study) 12.1

In the USA the (%) incidence of diabetes mellitus in all races is higher in females than in 

males (Table 5) (4).

Table 5. Distribution for causes of Type I diabetes mellitus (%) in the USA

Race/Gender Female Male

Alaskan, American Indian 0.2 0.1

Asian, Pacific Islander 0.4 0.3

Black 19.6 12.0

Hispanic 2.1 1.6

White 30.2 28.1

Other or unknown 2.8 2.6
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Classification

The major classification of diabetes mellitus into clinical classis and statistical risk 

classes is shown in Table 6 and the characteristics of each subclass briefly described 

bellow.

Clinical classes

People of clinical classes show abnormality of glucose tolerance. Patients of clinical 

classes are further classified in three subclasses.

(i) Diabetes mellitus, (ii) Impaired glucose tolerance (IGT) and (iii) Gestational diabetes 

mellitus (GDM).

(i) Diabetes mellitus

Diabetes mellitus further divided in following classes.

Type 1 diabetes, which is insulin-dependant diabetes mellitus (IDDM) results from 

cellular-mediated autoimmune destruction of pancreatic islet beta-cells causing the loss 

of insulin production (5). It ranks as the most common chronic childhood disease in 

developed nations (6), but occurs at all ages (7) and the clinical presentation can vary 

with age (8,9).

Type 1 diabetes in an adult may masquerade as type 2 diabetes at presentation with a 

slow deterioration in metabolic control, and subsequent progression to insulin 

dependency. This form is called latent autoimmune diabetes mellitus in adults (LADA) 

(10). LADA falls within type 1 autoimmune diabetes, but in a slowly progressive form, in 

the new WHO classification (10).

27



The predominant cause of hyperglycemia in type 1 diabetes is the autoimmune 

destruction of the beta cells, which leads to absolute dependence on insulin treatment and 

a high rate of complications typically occurring at relatively young ages. Type 1 diabetes, 

therefore, places a particularly heavy burden on the individual, the family and the health 

services.

Type 2 diabetes mellitus, also known as non-insulin-dependant diabetes mellitus 

(NIDDM) is characterized by insulin resistance and relative insulin deficiency, either of 

which may be present at the time that diabetes becomes clinically manifest (11, 12). The 

specific reasons for the development of these abnormalities are not yet known.

Usually type 2 diabetes diagnosed after the age of 40 years although, the age of onset is 

often a decade earlier in populations with high diabetes prevalence (13). People with type 

2 diabetes may not show any symptoms for many years and the diagnosis is often made 

from associated complications or incidentally through an abnormal blood or urine 

glucose test.

Type 2 diabetes is often, but not always, associated with obesity, which itself can cause 

insulin resistance and lead to elevated blood sugar levels. It is strongly familial, but major 

susceptibility genes have not yet been identified. In contrast to type 1 diabetes, persons 

with type 2 diabetes are not dependent on exogenous insulin and are not ketosis-prone, 

but may require insulin for control of hyperglycemia if this is not achieved with diet 

alone or with oral hypoglycemic agents.
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Type 2 diabetes constitutes about 85 to 95% of all diabetes in developed countries, and 

accounts for an even higher percentage in developing countries. It is now a common and 

serious global health problem, which, for most countries, has evolved in association with 

rapid cultural and social changes, ageing populations, increasing urbanization, dietary 

changes, reduced physical activity and other unhealthy lifestyles and behavioral patterns 

(15)

Fig 1 below highlights the large range of prevalence of type 2 diabetes even within the 

same or similar ethnic groups, when living under different conditions. Clearly, many of 

the differences between these rates reflect underlying behavioral, environmental and 

social risk factors, such as diet, level of obesity and physical activity.

Figure 1.

Differences in the prevalence of type 2 diabetes among selected ethnic groups. 2003
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Malnutrition related diabetes mellitus: Forms of diabetes due to malnutrition.

Other types involve Pancreatic disease: Any process that diffusely injures the pancreas 

can cause diabetes. Acquired processes include pancreatitis, trauma, infection, 

pancreatectomy, and pancreatic carcinoma. Cystic fibrosis and hemochromatosis will 

also damage (5-cells and impair insulin secretion (16, 17). Diabetes of hormonal
i

etiology: Several hormones (e.g., growth hormone, cortisol, glucagon, epinephrine) 

antagonize insulin action. Excess amounts of these hormones (e.g., acromegaly, 

Cushing’s syndrome, glucagonoma, pheochromoeytoma, respectively) can cause 

diabetes. This generally occurs in individuals with preexisting defects in insulin 

secretion, and hyperglycemia typically resolves when the hormone excess is resolved (16, 

17). Drug induced or chemical induced conditions: Many drugs can impair insulin 

secretion. These drugs may not cause diabetes by themselves, but they may precipitate 

diabetes in individuals with insulin resistance (16, 17). Abnormalities of insulin or its 

receptors: There are unusual causes of diabetes that result from genetically determined 

abnormalities of insulin action. The metabolic abnormalities associated with mutations of 

the insulin receptor may range from hyperinsulinemia and modest hyperglycemia to 

severe diabetes. (16, 17). Certain syndromes: Leprechaunism and the Rabson- 

Mendenhall syndrome are two pediatric syndromes that have mutations in the insulin 

receptor gene with subsequent alterations in insulin receptor function and extreme insulin 

resistance (16,17) and Miscellaneous.
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(ii) Impaired glucose tolerance:

The Expert Committee (3, 18) recognized an intermediate group of subjects whose 

glucose levels, although not meeting criteria for diabetes, are nevertheless too high to be 

considered normal. This group is defined as having fasting plasma glucose (FPG) levels 

>100 mg/dl (5.6 mmol/1) but <126 mg/dl (7.0 mmol/1) or 2-h values in the oral glucose 

tolerance test (OGTT) of>140 mg/dl (7.8 mmol/1) but < 200 mg/dl (11.1 mmol/1). Thus, 

the categories of FPG values are as follows:

• FPG <100 mg/dl (5.6 mmol/1) = normal fasting glucose;

• FPG 100-125 mg/dl (5.6-6.9 mmol/1) = IFG (impaired fasting glucose);

• FPG >126 mg/dl (7.0 mmol/1) = provisional diagnosis of diabetes

Patients with IFG and/or IGT are now referred to as having “pre-diabetes” indicating the 

relatively high risk for development of diabetes in these patients. In the absence of 

pregnancy, IFG and IGT are not clinical entities in their own right but rather risk factors 

for future diabetes as well as cardiovascular disease.

(iii) Gestational diabetes

The most widely accepted definition of gestational diabetes mellitus (GDM) is 

"carbohydrate intolerance of varying degrees of severity with onset or first recognition 

during pregnancy" (19, 20). This definition applies regardless of whether insulin is used 

for treatment or the condition persists after pregnancy. It does not exclude the possibility 

that unrecognized glucose intolerance may have occurred before the pregnancy.
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It is widely believed that differences in reported prevalence of GDM parallel the 

differences that have been found in the frequency of type 2 diabetes among different 

populations. Nonetheless GDM is increasing in prevalence in concert with the worldwide 

rise in type 2 diabetes.

Statistical risk classes

These are further sub-classified in to two

(i) Previous abnormality of glucose tolerance includes people who had abnormality of 

glucose tolerance in the past.

(ii) Potential abnormality of glucose tolerance: Diabetic relatives and obese subjects 

are at increased risk for development of diabetes mellitus, and therefore are classed as 

potential abnormality of glucose tolerance (POT-AGT) (21).

Possible causes for type 1 diabetes:

These include (i) Some type of destructive immune response i.e. having antibodies 

against our own beta cells, (ii) Viral infection and (iii) Environmental factors.

Possible causes for type 2 diabetes:

These include (i) Associated with obesity and (ii) Insulin is usually produced but cell may 

not respond to hormone due to the presence of defective insulin receptor (22).
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The characteristic symptoms in diabetes are:

• Hyperglycemia

• Glucosuria

• Polyphagia

• Polydipsia

• Polyuria

Diabetics also have a high risk of developing long term diabetes complications (23), 

including:

(I) Microvascular 

diseases

• Nephropathy

• Angiopathy

(Macro- and Micro-angiopathy)

• Retinopathy

• Neuropathy

(II) Macrovascular 

diseases

• Cardiovascular

• Peripheral Vascular Disease

• Ceribrovascular

The developments of diabetic complications do not depend entirely on duration of 

diabetes and control. Predisposing and aggregative factors, either constitutional or 

environmental, seem to play a role (24,25).
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Details of diabetic complications are briefly described below:

Diabetic Nephropathy

There are four general theories or processes that have been advanced in recent years to 

explain the pathology of diabetic nephropathy. These are as follows:

(a) Glomerular homodynamic changes with elevations of flows and pressures occur 

early in the course of diabetes and these have been suggested to be directly 

responsible for the development of glomercular sclerosis and proteinuria. But the 

role of these local factors is being debated (26).

(b) Structure-function alterations resulting from non-enzymatic glyeation of 

basement membrane macromolecules and other proteins (27-30).

(c) Increased flux through insulin - independent pathways for glucose utilization, 

particularly the polyol pathway (27,28).

(d) Disturbed regulation of the synthesis or metabolism of specific basement 

membrane components, in particular collagen and proteoglycans (31).

Formation of excess amount of advanced glyeation end products (AGEs) and increased 

flux through polyol pathway and their consequences as mechanisms are two major 

pathways contributing to the development of diabetes nephropathy.

Diabetic Retinopathy

The diabetic retina shows abnormalities of blood flow although the precise role of these 

abnormalities remains in doubt. Similarly a variety of abnormalities in rheology and 

coagulation can be demonstrated in patients with diabetic retinopathy. Blood viscosity

35



was significantly higher in diabetics than in controls. No significant differences in 

viscosity of the whole blood were found when various types of retinopathy were 

compared according to the severity of retinal damage. Plasma viscosity was significantly 

higher than controls only in diabetic patients with retinopathy. Serum viscosity was 

significantly increased compared with controls only in diabetic patients affected by 

proliferative retinopathy (32). Platelet activity is increased at the site of vessel injury 

(33).

Diabetic Cataract:

Because of their avascular nature and extremely low regenerative potential, mammalian 

lenses are very susceptible to damage associated with metabolic disorder such as 

diabetes. Increase in the concentration of polyols, lens fiber swelling, loss of intracellular 

metabolites, decrease in glutathione concentration, and increase in protein glycation are 

the general features of the lenses in diabetes (34-36). A frequent pathological end point of 

this multifactorial degenerative process is the production of cataracts (37).

Diabetic Neuropathy:

Neuropathy is one of the most debilitating complications of both type 1 and type 2 

diabetes. Multiple factors are playing a major role in the pathogenesis of diabetic 

neuropathy, which include reduced energy utilization (38), increased sorbitol 

concentration and decreased nerve free myo-inositol concentrations (38, 39), increased 

intra-axonal sodium level (40), and a reduced rate of incorporation of lipid and amino 

acids in myelin (41). Other than these, alterations in the endoneural metabolism,
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defective neuropathic factor, reduce nerve blood supply and immune mechanisms. These 

are because of excessive stress, the polyol pathway, excess formation of advanced 

glycation end products (AGEs), protein kinase C and impaired essential fatty acid 

metabolism. In diabetic neuropathy there is variable involvement of large myelinated 

fibers and small, thinly myelinated fibers. (42). In diabetes there is a deficiency of nerve 

growth factor (NGF), as well as the neuropathies substance P (SP) and calcitonin gene- 

related peptide (CGRP) which contribute to the clinical symptoms resulting from small 

fibers dysfunction (42). For large fiber NT3 appears to be important and IGFs for 

autonomic neuropathy (42). Diabetes mellitus is associated with cognitive deficits and an 

increased risk of dementia, particularly in the elderly. These defects are paralleled by 

neurophysiological and structural changes in the brain (43).

In animal models of diabetes, impairments of special learning occur in association with 

distinct changes in hippocampal synaptic plasticity have been reported (43). At the 

molecular level these impairments might involve changes in glutamate receptor subtypes, 

in second messenger systems and in protein kinases (43, 44). Axonal transport rates are 

also reduced in experimental diabetic neuropathy (45). While the link between these 

abnormalities and development of diabetic neuropathy is still not clear, all are energy- 

dependent processes that might be impaired if the nerve microenvironment were hypoxic 

(46). In diabetic animals, hyperglycemia and resultant increased sorbitol pathway activity 

in peripheral nerve is associated with decreased oxygen uptake in this tissue (47). Such 

impairment of tissue oxygen delivery could conceivably contribute to the development of 

neurological dysfunction (48).
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Cardiovascular Disease and Diabetes

Cardiovascular disease (CVD) is a major cause of mortality in individuals with diabetes. 

Many factors including hypertension contribute to the high prevalence of CVD in 

diabetic population (49). The risk factors for CVD in diabetic patients include 

atherosclerosis, dyslipidemia, microalbuminuria, endothelial dysfimction, platelet 

hyperaggregability, coagulation abnormalities and diabetic cardiomyopathy (49).

Patients with diabetes mellitus have a grater than 3-folds increased risk of coronary 

ischemic events and congestive heart failure. Diabetes is associated with profound 

changes in cardiac metabolism, characterized by diminished glucose utilization, 

diminished rates of lactate oxidation and increased use of fatty acids (50). Fatty acid 

oxidation is an important source of energy in heart. In diabetes fatty acid oxidation 

dramatically increases in heart and can account for almost 100 % of the heart’s energy 

production (51). Diabetes is associated with an increased or poorly regulated rate of 

amino acid catabolism in the heart. The incidence of coronary artery disease correlates 

more closely with duration of diabetes than with the severity of diabetes.

a
k

Accelerated large vessel disease (macro-angeopathy) in diabetes may be due in part to 

abnormalities in plasma lipids, and perhaps also to changes in the composition and 

metabolism of the arterial wall. In macro-angeopathy, early histological studies have 

revealed an accumulation of hyaline substances along with deposition of cholesterol 

crystals, calcium and increased amounts of glycoprotein (52). Such a deposition, which 

may result in hardened arteries and a narrowed arterial lumen, superimposed with
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atherosclerosis could easily account for the angina and myocardial infarction associated 

with diabetes (53).

Not only is the frequency of acute myocardial infarction increased in diabetic patients 

(54), but also the treatment of the infarct is more complicated than in the non-diabetics. 

Insulin-dependant diabetes mellitus appears to increase the likelihood of the development 

of congestive heart failure (CHF) from all causes.

Insulin

The complex interlinking of different facets of metabolism requiring rapid adaptive 

changes in environment, particularly the changes from the fasted to the fed state, 

necessitates a prompt and clear signal. This signal is provided by insulin (55). Insulin is 

released from beta cells of islets of Langerhans present in the pancreas. It originates as 

pre-pro-insulin. In endoplasmic reticulum 23 amino acids get separated and form pro

insulin. Pro-insulin goes to Golgi and c-peptide gets separated from A and B chains. 

Mature insulin is a polypeptide of 39 amino acids arranged as A and B chains joined by 

one into- and two inter-peptide disulfide bridges. The double chain structure results from 

its origin as pro-insulin, when a peptide length joins the end of the A to the B chain. The 

connecting peptide chain, c-peptide secreted in equimolar amounts with insulin, appears 

to be inert and in contrast to insulin is excreted virtually unchanged in urine (55). 

However, c-peptide has now been shown to have insulin-like action and corrects many of 

the maladies associated with diabetes (56-59); c-peptide dose not have blood sugar level
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Figure 2 MATURATION OF INSULIN
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lowering effect (56-59). Fig. 2 schematically represents the steps in the synthesis of 

mature insulin from its precursor, pre-pro-insulin.

The physiologic effects of insulin in mammalian system include stimulation of hexose, 

ion and amino acid uptake (60), modification of the activities of rate-limiting enzymes 

such as glycogen synthase, hormone sensitive lipases and pyruvate dehydrogenase by net 

dephosphorylation (61). Insulin regulates the gene expression for a small number of 

regulatory enzymes (62), redistribution of membrane proteins such as the glucose 

transporters and the insulin-like growth feetor II (IGF-II) and transferrin receptors (63), 

and promotion of cell growth (64). Many of these effects are tissue- or cell-specific and 

involve only a discrete subset of proteins. The chronology varies. Transduction of the 

gene encoding phosphoenolpyruvate carboxikinase is inhibited within seconds of 

addition of insulin, whereas growth promotion requires hours of exposure (Table 7).

Many of the rapid actions of insulin, such as stimulation of hexose transport alteration 

and alteration of the enzyme activities do not depend on synthesis of new proteins or 

nucleic acids. Even this incomplete summary of the action of insulin, however invokes 

seryl and threonyl phosphorylation and dephosphorylation of cytosolic and mitochondrial 

proteins, membrane translocations with the likelihood of cytoskeletal proteins 

involvement, and nuclear action (65).
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Table 7. Chronology of insulin action

Seconds

Binding to receptor

Activation of receptor protein tyrosine kinase 

Receptor autophosphorylation

Seconds to minutes

Changes in gene transcription 

Stimulation of hexose and ion transport 

Ligand-mediated receptor internalization 

Alterations in intracellular enzyme activities 

Seryl and threonyl phosphorylation of the receptor

Hours

Synthesis of protein, lipid and nucleic acids 

Maximal down-regulation of the receptor 

Cell growth
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Molecular mechanism of insulin action

The first essential and common step in insulin action iS/interaction with the insulin 

receptors. Insulin delivers its signal through binding to its high-affinity cell surface 

receptors. This protein is a tetrameric complex consisting of two a and two (5 subunits 

(65,66). All the subunits link with each other by inter- ami intra-peptide disulfide bridges 

(65). a subunit is present on the outer surface of the cell, while the p subunit is a trans

membrane subunit (65). The intracellular domains of p subunit contain intrinsic protein 

tyrosine kinase activity and are involved in the initiation of insulin-dependant 

transmembrane signaling events. The early signal transduction events involve the 

autophosphorylation of its receptor on tyrosine residues and of the insulin receptor 

substrates 1, 2 and 3 (IRS - 1, -2 and -3), leading to the generation of docking site on 

both insulin receptor and the IRS proteins for SH2 and SH3 domain - containing 

proteins. These proteins which include both enzymes and adapters initiate a multitude of 

downstream signals that regulate the phosphorylation state of a wide verity of proteins 

and some phospholipids (66).

42



A possible route through which insulin could stimulate inositol phosphoglycan (IPG) 

type-A generation in normal insulin responsive cell is depicted in Fig. 3 (66).

Points within the proposed route at which a blockade would result in the formation of 

insulin resistant cells are indicated.

1. Insulin receptor protein tyrosine kinase (point-mutated, kinase domain-deleted, serine- 

threonine hyper-phosphorylation).

2. IRS protein (expression levels, phosphorylation state)

3. Phospholipase C (PLC) or D (PLD) (expression level coupling)

4. GPI in the plasma membrane (quantity, localization)

5. IPG type-A transporter receptor, IPG type-A signal ‘transducing protein5 (expression 

level, functionality).

The black symbols represent IPG derived from GPI-PLD-mediated GPI hydrolysis. The 

red symbols represent IPG derived from GPI-PLC-mediated GPI hydrolysis.
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Figure 3 Schematically depicts the mechanism of insulin action
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The Fig. 4 is a schematic representation of the structure and hydrolysis of a GPI 

phospholipid by phospholipase D (PLD) and C (PLC) generating IPG type A and PA, 

and IPG-1,2-(cyclie phosphate) type A and DAG.

Ins, myo-Inositol; GlcN, Glucosamine; PA, Phosphatidic acid; DAG, Diacyl glycerol

(66).



IPG type A itself can mimic a large number of metabolic action of insulin which are listed in Table 8 (66).

Table 8. Insulin mimetic effects of IPG type A (A), IPG type P (P), and their analogues from different 
sources

Whole Cells Cell Extracts

Biological Activity Effect
Enzymatic Activity or 

Phosphorylation Effect

Lipolysts (A, A*. A") Inhibition cAMP phosphodiesterase (A) Stimulation
Ltpogenesis (A, A*, A') Stimulation Pyruvate dehydrogenase (A) Stimulation
GPAT (A*, A*) Stimulation PDH phosphatase (P) Stimulation
Phospholipid methyltransferasc (A) Inhibition Glucose-6-phosphatasc (A) Inhibition
Steroidogenesis (A. P*) Stimulation Fructose-1.6-btphosphatase (A) Inhibition
Glucose transport (A, A*, A’) Stimulation Adenylate cyclase (A) Inhibition
GLUT4 translocation (A*, A‘) Stimulation cAMP-kmase (A) Inhibition
Acetyl-CoA carboxylase (A) Stimulation Casein kinase li (A) Biphasic
Glycogen phosphorylase a (A) Inhibition Glycerol-3P acyltransferase (P) Stimulation
Pyruvate kmase (A) Stimulation ATP citrate lyase (A) Stimulation
Glucose oxidation (A) Stimulation Galactohpid sulfotransferase (A) Inhibition
Glucose production (A) Inhibition Protein phosphatase 2C (P) Stimulation
Lactate accumulation (A) Stimulation
Glycogen synthesis (A, P, A*, A*) Stimulation
Glycogen synthase kinase-3 (A*. A’) Inhibition
Tyrosine aminotransferase (A) No effect
Protein phosphorylation (A, A*, A*) Stimulation

inhibition
cAMP levels (A) Inhibition
Pr 3-kinase (A'. A') Stimulation
Myelin basic protein kinase (A'j Stimulation
Mitogen activated kinase (A‘) Stimulation
Protein kinase B phosphorylation (A*) Stimulation
Fructose-2,6-P2 levels (A) Stimulation
Ion channels (A) Modulation
Ca?+-Mg2fr ATPase (A) Stimulation
Ca2+ entry (A) Inhibition
Amino and transport (A) Stimulation
Protein synthesis (A, A") Stimulation
Specific mRNA levels (A) Stimulation

Inhibition
DNA and RNA synthesis (A) Stimulation
Cell proliferation (A, P) Stimulation
Insulin secretion (A) Inhibition
Cell differential ion (neurogenesis) (P) Stimulation

Adapted and updated from Jones and Varela-Nieto (17) A’, A phosphomositolgiycan-pepude (PIG-P) (57.58,61); A', various 
themically synthesized PIG-P analogues (38,39), GPAT glycerol-3-phosphate acyltransferase P*. an analog of IPG type P (INS-2) 
consisting of a-pintto! and galaciosamine (36) PDH pyruvate dehydrogenase
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Forgoing review highlights that insulin-status significantly alters various tissues/organs in 

the body. Hyperglycemia and other altered metabolic processes in diabetes result in 

nephropathy, cardiomyopathy, retinopathy, cataract, neuropathy etc. Diabetic state also 

alters membrane structure-function relationship in the cell. In the present studies effects 

of alloxan-diabetes and subsequent insulin treatment have been examined at the 

subcellular levels i.e. mitochondria and mierosomes. Hence a brief account of 

mitochondria, mitochondrial electron transport chain, mitochondrial membrane enzymes 

namely, F0F1 ATPase and cytochrome oxidase, and on mierosomes and microsomal 

enzymes Na+, K+-ATPase and glucose-6-phosphatase (G6Pase) is given below. A brief 

account of free radicals and reactive oxygen species (ROS) is also appended.

Mitochondria

The mitochondrion lies at the heart of cell life and cell death. A mitochondrion is 

typically long and slender, but it can appear bean-shaped or oval-shaped under the 

electron microscope. Ranging in size from 0.5 micrometer to 1 micrometer in length, a 

mitochondrion has a double membrane that forms a sac within a sac. The smooth outer 

membrane holds numerous transport proteins, which shuttle materials in and out of the 

mitochondrion. The region between the outer and inner membranes, which is filled with 

liquid, is known as the outer compartment. The inner membrane has numerous folds 

called cristae. Cristae are the sites of ATP synthesis, and their folded structure greatly 

increases the surface area where ATP synthesis occurs. Transport proteins, molecules 

called electron transport chains, and enzymes that synthesize ATP are among the 

molecules embedded in the cristae. The cristae enclose a liquid-filled region known as the
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inner compartment, or matrix, which contains a large number of enzymes that are used in 

the process of aerobic respiration. That we must breathe oxygen to stay alive is simply 

the consequence of the demand of our mitochondria for oxygen. About 98% of inhaled 

oxygen is consumed by mitochondria, and without mitochondria, we would have no need 

of the oxygen transfer machinery of the lungs, red cells, hemoglobin, or even the 

circulatory system that delivers oxygen to the tissues (67). Similarly, the organization of 

food intake, digestion, and processing is designed primarily to supply substrates destined 

for mitochondrial oxidation. Impaired mitochondrial function will lead to disease, 

ranging from subtle alterations in cell function to cell death and from minor to major 

disability, or to death (67). Quite apart from the provision of ATP, mitochondria play 

important roles in aspects of normal physiology (67). These include the transduction 

pathway that underlies the secretion of insulin in response to glucose by P cells and 

(possibly but controversially) in the sensing of oxygen tension necessary for oxygen 

sensing in the carotid body and the pulmonary vasculature (67). Mitochondria also house 

key enzyme systems quite distinct from those required for intermediary metabolism—the 

rate-limiting enzymes in steroid biosynthesis, the synthesis of haem, and even the 

carbonic anhydrase required for acid secretion in the stomach (67). By accumulating 

calcium when cytosolic calcium levels are high, mitochondria play subtle roles in 

coordinating the complexities of intracellular calcium signaling pathways. At least in 

some cell types in which their contribution may be extremely important in the finer 

aspects of cell regulation (67). The physiological "uncoupling" of mitochondria plays a 

central role as a heat-generating mechanism in non-shivering thermogenesis in young 

mammals (67). It has also been suggested that the production of free radical species by
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mitochondria may play a key role as a signaling mechanism, for example, in the 

regulation of ion-channel activities and also in initiating cyto-protective mechanisms in 

stressed cells (67). Mitochondrial damage in pancreatic p-cells causes diabetes. 

Mitochondrial dysfunction in the heart may give rise to cardiomyopathy (68) Indeed, the 

production of free radicals by mitochondria has been considered by many to play a 

central role in the degradation of cellular function that appears to underlie the process of 

aging, whereas some of the genes identified in the control of longevity appear to target 

mitochondria or at least to alter antioxidant defenses of the cell (69, 70). Accumulations
>

of mitochondrial defects have been implicated as a mechanism of aging and age-related

Fig. 5 Structure of mitochondrion
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Mitochondrial DNA (mt l)N A)

The human mitochondrion contains 5-10 identical, circular molecules of DNA (71). Each 

consists of 16,569 base pairs which carries the information for 37 genes. These genes 

encode 2 different molecules of ribosomal RNA (rRNA), 22 different molecules of 

transfer RNA (tRNA) (at least one for each amino acid) and 13 polypeptides. The rRNA 

and tRNA molecules are used in the machinery which synthesizes the 13 polypeptides. 

These polypeptides are subunits of the protein complexes in the inner mitochondrial 

membrane, including subunits of NADH dehydrogenase, cytochrome c oxidase and ATP 

synthase (72). However, each of these protein complexes requires subunits that are 

encoded by nuclear genes, synthesized in the cytosol, and imported from the cytosol into 

the mitochondrion (72).

A number of human diseases are caused by mutations in genes in our mitochondria. The 

defects are mostly in cytochrome b, 12S r RNA, ATP synthase, subunits of NADH 

dehydrogenase or several tRNA genes. Although many different organs may be affected, 

disorder of the brain and muscles are most common (73)

Diabetes and mitochondria

It is becoming increasingly evident that diabetes can affect the mitochondrial functions in 

various tissues (74-76). Mutations in the glucokinase gene are responsible for one form of 

maturity-onset diabetes of the young (MODY2) (77), and the other type, mitochondrial 

diabetes mellitus (MDM), is associated with mutations of the mitochondrial DNA 

(mtDNA) affecting subunits of respiratory chain complexes (78).
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Mechanisms that affect insulin secretion in response to blood glucose^ increase.

According to a generally accepted scheme, insulin secretion in response to postprandial
\

glucose elevation depends on a sequence of metabolic events: 1) the uptake of glucose--- 

through the GLUT2 transporter, 2) phosphorylation of glucose by glucokinase, 3) 

production of NADH and pyruvate by glycolysis, and 4) stimulation of mitochondrial 

oxidative phosphorylation (OXPHOS). GLUT2 is the major, if not the only, glucose 

transporter in the off-cells (Cl4). The K.sub.m of GLUT2 (17 mmol/1) is significantly 

higher than that of the ubiquitous GLUT1 or the fat and muscle tissue-specific glucose 

transporter GLUT4. GLUT2 is not rate-limiting, glucokinase (hexokinase IV), which has 

a high K.sub.m for glucose (>5 mmol/1) (79, 80). In isolated mouse islets, high glucose 

stimulates the oxidation rate, and inhibition of OXPHOS inhibits insulin secretion (81, 

82). Blocking of a K+.sup. channel by ATP is assumed to be responsible. The closure of 

the K+.sup. channel results in cell membrane depolarization followed by subsequent 

influx of Ca2+.sup. and stimulation of insulin exocytosis (83). The influence of cytosolic 

and mitochondrial calcium fluctuations on insulin secretion (84) has been confirmed in 

elegant studies by Rutter et al. (85). Using an aequorin-transfected INS-1 cell line 

challenged by ATP or depolarized by high K+.sup, the authors demonstrated that the 

transient cytoplasmic Ca2+.sup. increase is accompanied by elevation of mitochondrial 

Ca2+.sup. concentration, more than one order of magnitude above the cytoplasmic 

Ca2+.sup. levels. This should be sufficient to activate Ca2+.sup.-sensitive intra- 

mitochondrial dehydrogenases and this increase in driving force of the respiratory chain 

should further promote ATP synthesis (85).
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The mitochondrial tRNA.supXeu(UUR) gene is an etiologic hot spot for mtDNA 

mutations, as at least 10 disease-related mutations have been described so far in this gene 

(86). Four of them have been associated withdiabetes and various other symptoms (87). 

In 1992, two independent publications appeared demonstrating an A/G exchange at np 

3243 in the tRNAsup.Leu(UUR) gene in large Dutch and British families with diabetes 

and deafness. These first reports were confirmed by several other groups (87-89). The 

tRNAsup.Leu(UUR) mutation at np 3243 is found in -0.5-1.5% of unselected diabetic 

patients, independently of whether they are classified as haying type I or type II diabetes 

In diabetic patients with familial history, the percentage increases up to 10%. The 

prevalence seems not to be very different between various countries and races (87-89) 

Diabetes is rarely also found in association with the so-called Myoclonic epilepsey and 

ragged red fiber disease (MERRF) mutation at np 8344 in the tRNAsup Lys gene (90, 

91). Recently, a T14709C transition in the tRNAsup.Ghi gene was demonstrated 

independently by two groups in a syndrome with myopathy and diabetes (92, 93).

mtDNA length mutations and diabetes.

Mutations in mitochondrial DNA have been implicated in etiology of diabetes (89, 94) 

Distinct length abnormalities of the mtDNA were first described in 1988 in patients 

suffering from mitochondrial myopathies (muscle weakness, chronic progressive external 

ophthalmaplegia (CPEO) or the complete Keams-Sayre syndrome (KSS) (95-100). 

Endocrine dysfunction, for example hypogonadism, hypothyroidism, 

hypoparathyroidism, and diabetes, was found in a high degree in KSS and CPEO (100- 

103). While partial deletions were the first mtDNA defects described in KSS, Poulton et
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al. 1 year later reported partial direct tandem duplications (104). Further studies 

reinforced a characteristic association between partial duplication and diabetes (105-107). 

In 1992, Ballinger et al. described a large pedigree with a maternally inherited syndrome 

of diabetes and deafness carrying a 10.4-kb mtDNA, a mixture of interrelated and 

rearranged mtDNA, a mixture of interrelated and rearranged mtDNA molecules, namely 

duplications and deletion dimers, but few deletion monomers (108, 109). The proportion 

of each rearranged mtDNA molecule varies between different tissues, and there is 

growing evidence that the balance of mtDNA molecules, namely duplications and 

deletion dimers, but few deletion monomers (109). The proportion of each rearranged 

mtDNA molecule varies between different tissues, and there is growing evidence that the 

balance of mtDNA re-arrangements may be central to the pathogenesis of this form of 

mitochondrial diabetes mellitus (MDM) (105, 107).

FoFi ATPase

The FoFi ATPase (Complex V) which functions as ATP synthase in situ is an important 

enzyme system responsible for the conservation of energy released during substrate 

oxidation, in the form of ATP in mitochondria (110,111). The FoFi ATPase contains the 

Fi knob projecting into the matrix, which is connected by a stalk to the Fo base embedded 

in the inner membrane (Fig. 6) (110,111). It is generally considered that the mammalian 

mitochondrial ATP synthase complex is composed of 16 unlike subunits (111). These 

subunits are (X3P3Y18181 and probably factor B in the catalytic FI domain; OSCP, a, b, c, d, 

e, f, g, F6 and A6L in Fo and stator; and the ATPase inhibitor protein, IF1, which binds 

reversibly to FI to inhibit ATP hydrolysis (110-112). Fo base contains highly variable 

number of a, b and c (aibaCio-n) subunit types depending on species and a proton
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conducting pathway (111,112). Operating together, FoFj provides (Ap)-consuming ATP 

synthesis or (Ap)-generating ATP hydrolysis depending on the physiological (in vivo) or 

experimental (in vitro) conditions (110, 112, 113). FoFj ATPase is universally present as 

essential component of electron transport chain and energy transduction systems (114, 

115).

Figure 6. Structure of mitochondrial FoFi ATPase (complex V).

Cytochrome Oxidase

The enzyme cytochrome oxidase is the terminal sink of electrons in the electron transport 

chain of all aerobic organisms (115). In the higher organisms the cytochrome oxidase 

complex (complex IV) comprises of 13 polypeptides, two hemes (heme a and heme a3), 

two copper atoms (Cu A and Cu B), one Zn and one Mg atoms. Additionally, presence of
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one more Cu is also reported (116, 117). The structure and position of cytochrome 

oxidase in mitochondrial membrane is shown in Fig. 7. Of the thirteen polypeptides three 

high molecular weight peptides namely viz. COX I, COX II and COX III are 

mitochondrial gene products and represent the minimum catalytic subunits. The 

remaining polypeptides are nuclear gene products and are regulatory polypeptides 

(72).The enzyme exists as dimer deeply embedded in the inner membrane (72). The 

embedded enzyme is surrounded by core lipids: mainly phosphatidylcholine (PC), 

phosphatidylethanolamine (PE) and diphosphatidylglycerol (DPG) (118). The enzyme 

has an absolute requirement for DPG for its activity (119, 120). Since cytochrome 

oxidase is the terminal electron sink, the rate of respiration in mitochondria depends on 

cytochrome oxidase content.

Figure 7. Structure and location of cytochrome oxides in mitochondrial membrane
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Microsomes

The microsomes are the artefacts of preparation derived from endoplasmic reticulum 

(ER). The ER is a very amazing part of the cell It is responsible for a wide range of tasks 

that includes the biosynthesis of lipids for constructing new membranes, proteins (via 

ribosomes) and complex carbohydrates. The ER membrane typically makes up more than 

half of the total membrane in the cell and is located between the nucleus and the cytosol 

and specifically the golgi apparatus. This means that there! are 2 membranes between the 

nucleus and the Golgi Apparatus, the outside ER membrane and the nuclear membrane 

(This is because the ER is continuous with the outer nuclear membrane). However, there 

are 2 membranes between the golgi and the ER and there is a LARGE amount of transfer 

between the two organelles, which suggests there is probably transport occurring through 

transport vesicles which is shown schematically in Fig. 8 The ER is made up of two 

phospholipid bilayer membranes. The enclosed 'sac' is called the ER lumen, the internal 

space of the ER. The ER is thought to be a single continuous membrane (121).

There are two types of ER:

Rough ER: Is associated with ribosomes (the dots on its boundaries) and the membranes 

tend to be in 'sheets' or flatten sacs called cistemae.

Smooth ER: Which lacks ribosomes, and is also more of a mesh of smaller 

interconnecting tubes.
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Figure 8. Endoplasmic reticulum

Na+, K+- ATPase

The sodium-potassium ATPase (Na+ K+ -ATPase or Na+ K+-pump) is the ubiquitous 

plasma membrane enzyme present in the all eukaryotic cells, which actively extrudes Na+ 

from cells in exchange for K+ at a ratio of 3:2 (122, 123). The schematic diagram of 

Na+, K+-ATPase is shown in Fig. 9. It is an oligomer containing two a subunits of about 

110 kDa each and two P subunits of about 55 kDa each. Besides, a small hydrophobic 

protein called the y-subunit is associated with Na+, K+-ATPase and modulates its activity 

(124). Na+, K+ -ATPase have different isoforms depending on tissue type and different 

function. Four isoform of a-subunit (ai ci2 04 and 04) and three isoform of P-subunit (Pi P2 

and P3) that are encoded by different genes are found in vertebrates (124-127). Na+, K+ - 

ATPase is known to be deficient in many tissues in diabetic condition (122, 128). Na+, K+
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-ATPase activity is decreased in red blood cell membranes of type 1 diabetic individual 

whereas it is normal in the type 2 diabetics (122). Na+, K+-pump content is down 

regulated during diabetic condition which gets up regulated by the insulin treatment 

(129). Diabetic condition resulted in more than 50 % impairment of Na+ pump, Ca2+- 

transport mechanisms and the insulin-dependant glucose transporter GLUT 4 (130). 

However, not much is known about microsomal Na+, K+ -ATPase except that in the heart 

of diabetic rats, microsomal Na+, K+ -ATPase decreased significantly (131).

Figure 9. Schematic diagram of the Na+, K+ -ATPase
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Glucose-6-phosphatase (G6Pase)

The classical role of Glucose-6-phosphatease (G6Pase) in liver and kidney is production 

of glucose for release in to blood (132, 133). In liver, G6Pase catalyses the terminal step 

of glycogenolysis and gluconeogenesis (133). Fig. 10 shows the structure of human 

G6Pase and Fig. 11 shows the structure-function relationship of the G6Pase system 

according to the substrate translocase-catalytic unit hypothesis (134). The cross section of 

endoplasmic reticulum (ER) (Fig. 11) shows Tj (G6P transporter), Tia, TiP and T3 the 

substrate/product transporters and/or auxiliary proteins with the indicated specificity. 

Catalytic unit is G6Pase embedded within the ER membrane with nine-transmembrane- 

spanning helical regions. Circles on the inner loops of the catalytic unit indicate amino 

acid residues comprising the phosphates signature motif (134). The activity of G6Pase is 

regulated by various hormones, mainly at transcriptional level (132). Insulin suppresses 

the activity of G6Pase by decreasing the amount of messenger ribonucleic acid
i

(m RNA) of the catalytic subunit (132, 135). Glucagon, via cAMP, and glucocorticoids 

increase the activity of this enzyme (136, 137). The activity and gene expression of 

G6Pase was increased in db/db mice despite hyperinsulinemia compared to control 

db/+m mice (138). G6Pase catalyzed rate-limiting step ofglyconeogenesis, and hepatic 

G6Pase activity is increased in diabetes (132). Abnormally high G6Pase activity in liver 

was noted in poorly controlled or untreated diabetes mellitus (133).
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Figure 10. Structure of human G6Pase
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Figure 11. Structure-function relationship of the G6Pase system
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Diabetes and membrane structure-function alterations

Hormonal influence on cell membrane is been known (139, 140). One hypothesis 

postulate that changes in membrane lipid structure and micro-viscosity may play the role 

of a hormonal information transducer (139, 140). Several major functions of the plasma 

membrane such as enzyme activities and ligand-receptors interaction depend on 

membrane fluidity, a concept related to movement of lipids and proteins in the plane of 

the membrane (141, 142). The mitochondrial and microsomal membrane enzymes are 

known to have requirement for specific phospholipid classes (118, 131, 143-145) and 

phospholipid classes and sterols are capable of regulating membrane protein activity 

(146). Deficiency in phosphatidylserine (PS) is associated with a loss of Na+, K+- ATPase 

activity in several types of cataract (147).

A large number of polypeptide hormones can provoke rapid changes in phospholipid 

metabolism in their target tissues (148-151). Insulin acutely increases phospholipids in 

the phosphatidateinositol cycle in rat adipose tissue both In Vivo and In Vitro (150, 152). 

Thyroid hormones regulate the mitochondrial level of cardiolipin by regulating the 

activity of cardiolipin synthase (153). Shifts in membrane phospholipid content may be 

important in regulating the activity of a variety of cellular enzymes (154, 155). Effect of 

diabetes on liver and kidney plasma membrane phospholipids and phospholipid classes 

are different (155). Diabetic state resulted in increased cholesterol and total phospholipid 

contents in reticulocytes whereas in RBC the contents of cholesterol and total 

phospholipids decreased (156, 157). Fatty acid desaturases decreased in diabetes in liver 

microsomes (158). Majority of the phospholipid classes except SPM and DPG are
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synthesized in the microsomes and transferred to other membrane system (159-161). The 

latter two are synthesized respectively in the plasma membranes and mitochondria (159- 

161). Hyperglycemia in diabetes alters the phospholipid transfer protein (PLTP) secretion 

which in turn affects the lipoprotein metabolism (162, 163). Diabetes resulted in 

decreased nerve conduction velocity, Na+, K+ -ATPase activity and an abnormal 

phospholipid fatty acid composition (144). Changes in membrane phospholipid and fatty 

acids as well as decreased activities of membrane-bound enzyme were noted in diabetic 

rat heart microsomes (131). In diabetes the relative abundance of 

phosphatidylethanolamine (PE) increased in erythrocyte and polymorphonuclear 

leukocyte membrane, whereas those of sphingomyelin and phosphatidylcholine (PC) 

were decreased in platelets and polymorphonuclear leukocyte membrane (164). The 

percentage of PS was reduced in erythrocyte but increased in platelets (164). Membrane
I

fluidity of platelets and polymorphonuclear leukocyte membrane alters in both type 1 and
I

type 2 diabetes (165). The results thus emphasize the fact that effects of insulin on 

lipid/phospholipid metabolism are diverse and tissue/system specific.

Free Radicals

It is now being increasingly recognized that the free radicals plays an important role in
i

various human diseases (166-171).

A free radical is a chemical species (any atom, group of atoms or molecules) with one 

impaired electron occupying an outer orbital.

Free radicals broadly have the following properties:

62



1. High reactivity, 2. Short life span, 3. Autocatalytic and diverse chemical reactivity and 

4. Low chemical specificity.

The pivotal compound in the initiation and propagation of free radical reactions is 

molecular oxygen. The resulting intermediates formed during reduction of molecular 

oxygen to water are superoxide among radical (02*), hydrogen peroxide (H2O2) and the 

hydroxyl radical (*0H). Approximately 1-2 % leakage of these intermediates occurs. 

Thus, the most important free radical in biological systems is radical derivatives of 

oxygen (172).

One of the potential sites for the reactive oxygen species (ROS) is mitochondrial electron

transport chain (ETC). The schematic presentation and , the potential sites for ROS
[

generation in ETC are shown in Fig. 12.
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Fig. 12 Electrone transport chain
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The major oxygen derived free radicals are:

• Singlet oxygen

• Superoxide anion

• Hydrogen peroxide

• Hydroxyl radical

• Peroxyl radical

• Peroxides and lipoperoxides

• Nitric oxide

• Hypochlorous acid

• Other radicals: S-centered; e.g. Thiyl (RS_)
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The products derived from the oxygen by successive one electron reduction are 

schematically given Fig. 5.

Figure 5. Products derived from the successive one electron reduction of dioxygen.
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The sites of reactive oxygen species (ROS) generation are listed in the Table 8.

Table 8. Sites of ROS Generation in a Cell

Autoxidation of small molecules ----------► Thiol
Hydroquinone
Catecholamines
Flavins

Soluble Oxidase Enzyme —---------► Xanthene oxidase

Mitochondrial electron transport —---------► Electron transport chain

Endoplasmic reticulum and Mixed function oxidase
Nuclear membrane transport NADPH oxidase

Peroxisome

Plasma membrane —

----------►

---------

D-amino acid oxidase
Urate oxidase 
a-hydroxyacid oxidase
Fatty acyl CoA oxidase

Lipooxygenase
Cyclooxygenase
NADPH oxidase (phagocytes)
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The main biological targets of free radical attack are lipids, sulphydryl - containing 

proteins, carbohydrates and DNA. And the products (biomarkers) of this attack are as 

given in Table 9.

Table 9 Biomarkers of oxidative stress

ROS and RNS ► Superoxide radical, hydrogen peroxide, nitric oxide,
hypocMorus acid, peroxides, peroxymtrite, singlet oxygen 
raetal-oxo complex, semiquinone radical, heme proteins,

Products of ----------- ► MDA, 4-HNE, hydroperoxides, conjugated
Lipid Peroxidation dines, F2-isoprostance dicarboxylic acid

Products of ----------- ► modified base, 8-oxo-2’-deoxyguanosine,
DNA oxidation strand breaks

Primary products ofp o-tyrosine, o,o’-dityrosine, 3-chlorotyrosine, 
protem oxidation 3- nitrotyrosine, dihydroxyphynylalanine,

protem disulfides, methionine sulfoxide, 
hydroperoxide of isolucine, lucine and valine 
protein carbonyls-adipic semialdehyde,
2-oxohistidine

Primary products ofp AGEs ALEs ! EAGLEs
protein oxidation Pentosidine MDA-Lys, CML, CMA, CEL

Crosslines MDA-LDL Argpyrimidine
Vesperlysines HNE-(Lys, His, Cys) GOLD, MOLD 

Pyrroles

Antioxidant defense system and total antioxidant status
!

Levels of enzymes and antioxidants

AGEs- advanced glycation end products; ALEs- advanced lipoxidation products; 

MDA- malondialdehyde; HNE- 4-hydroxynonenal; CML- carboxymethyl-lysine 

CMA- n-carboxymethylarginine; CEL- carboxyethyl-lysine

1
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Lipids

Peroxidation in polyunsaturated fatty acids (PUFA) in organelles, plasma membranes, 

causing cross linking and affecting membrane permeability (173)

Carbohydrates

Polysaccharide depolymerization.

DNA

Hydroxyl radical causes base modification, nicking, cross linking, scission of DNA
t
i

strand. (174)
i

Biological Antioxidant Defense System
I

Chemically antioxidant is a compound or a substance that inhibits oxidation. Another 

definition proposed by Krinsky is “compound that protects biological systems against 

potentially harmful effects of processes or reactions that can cause excessive oxidation” 

(175). Antioxidants defend cell against free radical attack by preventing radical 

formation, intercepting radical from further activity of participating in repair of damage 

caused by free radical. j

Antioxidants can be classified in to two broad categories depending on their mode of 

action:

1) Preventive inhibitor: Retard the initiation phase of free radical attack.
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2) Free radical chain breaking antioxidants: Interrupt the autooxidation chain by 

reacting with free radicals to produce stable product j(l 76).

t

Free Radical Scavengers
i

These include: j

Enzymatic

Superoxide dismutase (SOD)

Glutathione peroxidase (GPox)

Catalase

Non- enzymatic

1) Lipid soluble: a -Tochopherol,bilirubin, P- carotene

2) Water soluble: Ascorbic acid, flavinoids, glutathione (GSH)

3) Antioxidant minerals: Cu, Zn, and Mn (SOD), Fe (Catalase) and Se (GPox) 

Hormonal

Melatonin

i

Enzymatic Free Radical Scavengers i

This group includes the enzymes, which detoxify free radical and its product 

(i) Superoxide dismutase (SOD): EC-1.5.1.1.

SOD specifically catalyzes the dismutation of superoxide anion radical to hydrogen
I

peroxide and oxygen (177).

OV + OV + 2IL------- ► H202 + 02 !
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The SOD family consists of four metallo forms containing two copper and zinc, one
. I

manganese and one iron (VT 34). In eukaryotes, three forms of SOD are known to exist: 

Cu-Zn SOD (32 kD) in cytosol. Extracellular SOD (EC-SOD) (135 kD) may function as 

a scavenger of superoxide produced extracellularly such as from the production of 

neutrophils or leakage from erythrocytes. Mn SOD (88 kD) is present in mitochondrial 

matrix.

(ii) Glutathione peroxidase (GPox):

It catalyzes the oxidation of GSH to oxidized glutathione (GSSG) at the expense of 

hydrogen peroxide (178). !
I

2GSH + H202 --------- ► GSSG + 2H20

2GSH + ROOH -------- ► GSSG + ROH + 2H20

GPox exists in two forms: Selenium dependent and selenium independent (a) Selenium
I

dependent GPox (84 kD): EC-1.11.1.9. It has high affinity towards both hydrogen 

peroxide and organic hydroperoxides. It is found in both cytosol and mitochondria and 

(b) Selenium independent of GPox (50 kDa): EC-22.5.1.18.1

They are the glutathione-s- transferases (GST) and have low activity towards organic 

hydrogen peroxides and none for hydrogen peroxide. They have multiple functions, but 

are mainly involved in the biotransformation of xenobiotics and detoxification of 

carcinogens. Their intracellular distribution is in the cytosol and mitochondria
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Phospholipid hydroperoxide glutathione peroxidase (PLGPox- 20 kD): EC-1.11.1.12. It 

is the second selenoenzyme discovered in mammals. It is regarded as a cytosolic enzyme 

that is active on membrane to which it is bound to some extent.

(in) Catalase (24 kD): EC-1.11.1.6. ;

It is the oldest known enzyme and catalyzes the reaction:

2H202 -------- ► 2H20 + 02

Most aerobic cells contain this enzyme. In animals it is present in all major body organs, 

being especially concentrated in liver and erythrocytes. At sub-cellular level it is found in 

peroxisome (80%) and cytosol (20%). It exists as a tetramer, each monomer containing a 

heme at the active site. The hydrogen peroxide formed by SOD is decomposed to water 

and oxygen by catalase and thus it protects the cell from the deleterious effects of 

hydroxyl radical. Catalase also catalyzes the oxidation of H* donors e.g. methanol, 

ethanol (peroxidic activity)
t

Non-Enzymatic Free Radical Scavengers 

(i) Glutathione (GSH)

Gamma glutamyl cysteinyl glycine or GSH is the most important thiol present in the cell 

in mM range. It acts as a substrate for several transferases, proxidases and other enzymes 

that prevent or mitigate the deleterious effects of free radicals by catalyzing oxidation as 

shown:

2GSH --------- ► GSSG
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Because changes in GSH status may ultimately reflect the mechanism of toxicity of a 

compound and to some degree the health status of the biological component under study 

e.g. cell, blood, tissue, quantitation of GSH status is of interest (178).

i
Thus, although reactive oxygen species are produced in normal cellular process and have 

the capacity to cause damage, but are held in check by antioxidant defense systems (172).

Reducing Equivalent Forming System

Glucose 6 phosphate dehydrogenase (G6PDH) (21 KD): EC-1.1.1.49

It is the first enzyme of the hexose monophosphate shunt initializing NADP+ to form
i

reducing equivalent NADPH.

NADP+

Glucose-6-phosphate

NADPH + H*

♦>

G6PDH
6-Phosphogluconate

Thus the activity of the enzyme can help to maintain the reducing environment of the 

cell. !

Lipid Peroxidation (LPO)

Polyunsaturated fatty acids (PUFA) are particularly vulnerable to free radical attack. The 

oxidative damage is termed LIPID PEROXIDATION. It has been broadly defined as “the 

oxidative deteriorations of polyunsaturated lipids” (179).

Oxidative Stress
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Biological system provides favorable condition for uncontrolled oxidative reactions 

because of the existence of unsaturated fats in cell membrane and the abundance of 

oxidative reactions in normal metabolism.

Thus, the cell is in equilibrium, balancing between pro-oxidants (oxidizing species) and 

antioxidants. Oxidative stress occurs when there is a disturbance in this balance in favor
i

of the pro-oxidants.

Oxidative stress implies that:
l

1) There is a natural balance between free radicals and antioxidant defense in the 

normal cells.

2) Damage or cell death results when balance is tipped in favor of free radicals.

(a) Antioxidants are depleted.

(b) Formation of radical is increased beyond the ability of the defense to cope 

with them.

3) Free radicals cause non-specific or random cell damage. (180).

ROS and Diabetes

Reactive oxygen species (ROS) have been implicated in diabetes; mitochondria are the 

major cellular sites of oxygen consumption. However, a small but significant amount of 

oxygen consumption also occur extra-mitochonmdrially, i.e. in peorxisomes, microsomes 

and cytosol. Mitochondrial as well as extrar-mitochondrial oxygen consumption has 

implications for ROS generatioa The ROS generation in a cell is a spontaneous process.
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During respiration under normal physiological conditions there is 2-3 % of electron - 

slippage which leads to ROS production. Approximately, one cell consumes 1015 oxygen

molecules per day. Hence, about 2-3 x 10u free radicals are formed per cell per day. It
]

has also been reported that in diabetic condition, hyperglycemia leads to excess 

production of ROS (28,29,181,182). Superoxide is generated by the process of glucose 

autoxidation that is associated with the formation of glycated proteins in the plasma of 

diabetic patients (29). Over production of ROS and reactive nitrogen species (RNS), 

lowered antioxidant defense and alterations of enzymatic pathways in humans with 

poorly controlled diabetes mellitus can contribute to endothelial, vascular and 

neurovascular dysfunction (181). Clinical and experimental investigations have suggested 

that in patients with diabetes, increase sympathetic activity, concomitant diabetic 

autonomic neuropathy, the activated cardiac renin-angiotensin system, myocardial 

ischemia/fonctional hypoxia and elevated level of glucose will result in oxidative stress 

(28), which in turn leads to abnormal gene expression, altered signal transduction and the 

activation of pathways leading to programmed myocardial cell death which play a critical 

role in development of diabetic cardiomyopathy (20). ;

High glucose flux through aldose reductase inhibits the production of antioxidant gene 

expression (183). High glucose induced mitochondrial ROS production, which suppress 

first-phase of glucose-induced insulin secretion (GIIS) at least in part, through the 

suppression of glyceraldehydes 3 phosphate dehydrogenase (GAPDH) activity (27, 171). 

Hyperglycemia leads to excess production of ROS, lipid peroxidation (LPO) and protein 

glycation that may impair cellular calcium homeostasis and results in calcium
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sequestration and dysfimction in diabetic tissues (182). Increased oxidative stress is 

believed to play an important role in the etiology and pathogeneses of chronic 

complications like atherosclerosis, myocardial infarction, hypertension, nephropathy etc 

(28, 181, 184).
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