Chapter 2

Insulin-Status-Dependant Modulation of FoF; ATPase Activity

in Rat Liver Mitochondria
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Introduction

b

Diabetes mellitus is the condition characterized by defective% ghucose metabolism (1-4).
However, it is also recognized that insulin also regulat%:s practically all anabolic
processes. These include transport of monosaccharide and aémino acids, lipid synthesis,
protein synthesis, turnover of RNA and phosphorylatfxon of several metabolic
intermediates (2). Thus, it has been reported that the plz&:sma phospholipids profile
changes in Type 1 and Type 2 diabetic patients and in rat mo%dei of diabetes (5-8). It has
also been reported that in human diabetics the plasma ph(éspholipid transport protein
(PLTP) decreased significantly (6,7,9). Changes in phosipholipid composition and
cholesterol content of reticulocytes and erythrocytes in human diabetics have been
reported (10-12). These changes are believed to be resp(imsible for acceleration of
maturation process and/or decreased life span of RBCs (12). Likewise, it has been shown
that in experimental diabetes the phospholipid and fatty éacid composition changes
significantly in the liver microsomal membrane as well as 1;1 the rat heart microsomes
(13,14). Specifically, the activity of 18:3 and 22:6 desatuirase decreases resulting in
decrease in unsaturation index (13,15). The changes in li;E)id metabolism have been
correlated with nerve Na*, K" ATPase activity (15) as well Nat K" ATPase activity in
human placenta and sarcolemmal membrane from rat heart (él3,16). A few studies have
> been also carried out to examine the effects of diabeteis induced disturbances in

mitochondrial function (17-19) and lipid metabolism (20,21).

The FoF; ATPase (factor V) of mitochondria is localized in the inner membrane and has

requirement for specific phospholipids for its activity (22). The enzyme in situ utilizes
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transmembrane proton gradient and membrane potential A\p", generated during substrate
oxidation to synthesize ATP. The enzyme is reversible protén translocating ATPase and
can generate transmembrane proton gradient and Ay by hyd1i~olyzing ATP (24-26). Thus,
the enzyme is crucial for energy transduction functions in mijtochondria (23-26). Because
of its location in the inner membrane and specific requirement for phospholipids, the

!

enzyme becomes an ideal candidate to evaluate the modulatory effects of diabetes-

induced changes in mitochondrial lipid/phospholipid compos%tion.

In the light of the above, the effects of alloxan-induced diabietes at early and late stages
on the kinetic properties of rat liver mitochondrial FoF,; ATPase and lipid/phospholipid
profile were examined. Effects of insulin treatment were ais?o evaluated. These findings

are summarized in the present Chapter.

Materials and methods

Chemicals

Bovine serum albumin (BSA) fraction V, 1, 6 diphenyl - 1, 3, S-hexatriene (DPH) and
Sodium salt of ethylenediaminetetraacetic acid (EDTA) were: from Sigma Chemical Co.,
St. Louis, MO, U. S. A. Sodium salt of adenosine 5°- triphosé:hate (ATP) was from SRL,
Mumbai. Silica gel G was from E. Meark, Germany. NPH mslulm (40 U/ml) was obtained
from Lilli, France S.A.S. All other chemicals were of analytéical—reagent grade and were

purchased locally.
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Animals ‘

Adult male albino rats of Charles-Foster strain (weighing beiéween 200-250 g) were used.
The animals were fasted overnight and the diabetic state wa% induced by injecting 12 mg
alloxan/ 100 g bogy weight subcutaneously (s. c.) (26-2%). Alloxan solutions were

prepared freshly in saline. The control rats received an equivzlllent volume of the vehicle.

Experiments were carried out at the end of one week or ;one month of induction of
diabetic state to ascertain the early onset and long-term eﬁ‘ectfs (17-19). Animals falling in
the one week diabetic group received insulin from the fifth day of induction of diabetes

for three days and the rats in one month diabetic group received insulin starting from the

1

forth week of induction of diabetes for seven days at a dose of 0.8 units of NPH insulin /
!

100 g body weight twice daily (around 7:00 AM and 6:00 PM) by s. c. route (27, 28).

}

!

|

Confirmation of diabetic state

1

The diabetic state was confirmed by the following testes: [
1

Polyuria: Metabolic cages were used to determined urine vo;lume. It is a special stainless
1

steel arrangement which enables easy collection of urine and ﬁe volume can be measured

!

by a measuring cylinder.
i

Urine glucose estimation by Benedict’s test f

10 ml benedict’s quantitative solution and 3-4 g anhydroils Nay;CO; was added and

boiled. During boiling, diluted urine is slowly run from the burette. The end point of the

109



i
i
i

titration is complete disappearance of blur color and fonination of flocculent white

precipitate (12, 26) and Serum glucose estimation by Anthron%: Method (28).
Isolation of mitochondria !
The animals were killed by decapitation and the tissues were cf;uickly removed and placed
in beakers containing chilled (0-4 °C) isolation medium. The%isolaﬁon medium for liver,
kidneys and brain mitochondria and cytosolic fractions contai%ed 0.25 M sucrose, 10 mM
Tris-HCl buffer, pH 7.4, 1 mM EDTA and 250 pg BSA/ml; The isolation medium for
heart mitochondria and cytosolic fraction contained 0.3 M sucirose, 5 mM MOPS, pH 7.4,
1 mM EDTA, 250 ug BSA/ml. The tissues were mmcedE if necessary and washed
!
repeatedly with the isolation medium to remove adherixilg blood and 10% (w/v)
homogenates were prepared using a Potter Elvehjem type gliass — Teflon homogenizer.
The nuclei and cell debris were sedimented by centrifugatiml] at 650 x g for 10 min and
discarded. The supernatant was subjected to a further centriﬁllgation at 7,500 x g for 10
min. The resulting mitochondrial pellet was washed by suspetExding gently in the isolation

medium and by resedimenting at 7,500 x g for 10 min. Finally the mitochondria were

suspended in the isolation medium (29). :

ATPase assay
ATPase activity was measured in the assay medium (total volume 0.1 ml) containing 50
mM Tris-HCI buffer pH 7.4, 75 mM KCl, 0.4 mM EDTA, 6 mM MgCl; and 100 pM 2, 4
~ dinitrophenol (DNP). After pre-incubating the mitochondrial protein (30-50 pg) in the

assay medium at 37 °C for 1 min, the reaction was initiated by the addition of ATP at a
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final concentration of § mM (17, 30). The reaction was términated after 10 min by
|
addition of 0.1 ml of 5% (w/v) sodium dodecyl sulfate (SDS) solution and the amount of

librated inorganic phosphorus was estimated by the method ofé Katewa and Katyare (31).

{
i

For the substrate kinetics studies concentration of ATP was \%aried in the range from 0.1
1

mM to 5 mM. |

For temperature kinetics studies, experiments were carried out with fixed ATP

}

concentration (5 mM) and the temperature was varied from 5 %to 53 °C with an increment
of 4 °C at each step. 3

Reaction velocity v, is expressed as pmole of Pi liberated / hr é mg protein.

The data for substrate kinetics were analyzed using Sigma; Plot version 6.1 by three
methods ie. the Lineweaver-Burk, Eadie-Hofstee and Eisex‘:xthal and Cornish-Bowden
plots for the determination of Km and Vmax (32). The values%of Km and Vmax obtained

by three methods were in close agreement and were averaged. |

!
i

The Kcat or turnover number which represents the numb:er of substrate molecules
!

transformed S was derived from corresponding Vmax values Eby using the formula

t
¢

Kcat= Vmax (moles) x N
3600 x 5.60 x 10°
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where N is Avogadro’s Number and 5.60 x 10’ is molecul:ar weight of FoF; ATPase
(24,25,33). Values of Kcat/Km were obtained as ratio of chat/Km [M] (34). Since the
Vmax represents pmoles of ATP hydrolyzed / mg protein / ﬁr, the Kcat/Km values thus

1

calculated refer to unit mitochondrial protein. '

The data on temperature kinetics were analyzed for de'éermination of energies of
activation in the high and low temperature ranges (Ey and EL respectively) and phase
transition temperature (Ty) according to the method described ;previously (33).

Lipid Analysis :
|
Extraction of lipids f
Aliquots of mitochondrial suspension containing 4-8 mg protéin were extracted with 4 ml
of freshly prepared chloroform: methanol mixture (2:1 v/v) gs described earlier (35,36).
The tubes were vortexed vigorously, allowed to stand at éroom temperature and the
organic phase was carefully removed with the help of a ébroad gauge syringe. The
samples were re-extracted with 3 ml of chloroform: methancél mixture as above and the
resulting organic phases were pooled. The pooled chlorofoém: methanol extracts were
treated with 0.1 volume of 0.017% MgCl,, vortexed vigorousliy, allowed to stand at room
temperature and organic phase was carefully removed with ct%n‘e being taken to avoid the
proteolipid layer appearing between the organic and aqueox%s phases. The solvent was

completely evaporated under the stream of nitrogen, after whi%:h the lipids were dissolved

in known volume of chloroform: methanol mixture. Suitable ‘aliquots were taken for the
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estimation of cholesterol (37) and phospholipid phosphorous in the sample (38) and thin

layer chromatography (TLC).

‘
i
t
1
§
i
:

Separation of phospholipids by thin layer chmmatograpmir (TLC)

Separation of phospholipid classes was carried out by ;one dimetional thin layer

chromatography (36,39) using silica gel G (6 g/13 ml disfé:illed water per plate) was
prepared by gentle mixing and spared on glass plates with ;the help of applicator with
thickness of layer maintained to 0.25 mm. the layer was allové:ed to dry by leaving plates
overnight at room temperature. Prior to use the plates were ac%ivated in an oven at 100 °C

for 20-25 min. l
|
:
Aliquots of the reconstituted samples containing 8-10 pg of phospholipid phosphorus

were spoited on TLC plate in a way such that the diameteri of the spot was minimum
t

which ensure batter resolution. The conditions for preparation of TLC plates, chamber

saturation etc were according to Stahl (40). The solvent used% for the chamber saturation
was chloroform: methanol: acetic acid: water (25:15:4:2 v/v). ?Before run, the plates were ‘
reactivate for 2 min at 110 °C. After the run was completed th‘ie plates were taken out and
kept at room temperature for 3-4 hrs to remove the solvents.

After brief exposure of iodine vapor spots of individual phos:pholipid were marked and
iodine was allowéd to sublime off. After this the spots \a%ere carefully scraped and
transferred to marked test tubes. To each tube 10 N of H,SO, 5we:re added and the sample

were heated on sand bath for 8-10 hrs. The tubes were allowed to cool after which 0.1 ml
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of 70 % perchloric acid (PCA) was added. The tubes were thén heated on sand bath for 3-

4 hrs till the solution in tubes were clear and smell of chl(:)rine was undetectable. The
1

analysis of phosphorus content was according to the procedurie of Bartlett (38).
i

|

The content of individual phospholipid classes were calculatéd by multiplying the values

of TPL with % composition of individual phospholipid classe‘:s (36).

|
Determination of membrane fluidity ;
Membrane fluidity determination was carried out at 25 °C ;pectrophotoﬂourimenicaﬂy
using DPH probe. Stock DPH solution (2 mM) was prepéred in tetrahydrofuran and
stored at 0-4 °C in an amber colored bottle. For meEasurement of fluorescence
polarization, samples were taken in 3 ml of buffered sucros;e solution (0.25 M sucrose
containing 10 mM Tris-HCl, pH 7.4) at a final protein concen%tration of 0.2 mg/ml, and an
aliquot of stock DPH solution was added so that the molargratio of probe to lipid was
between 1:200 to 1:300 (41,42). The mixture was vortexed ﬁgoromly and left in dark for
30 min to permit equilibration of probe into membranes. Fh%lorescence polarization was
measured in a Shimadzu RF 5000 spectrophotofluorimeter thh a polarizer attachment.
Excitation and emission wavelength were 360 nm and 430 I:lm, bandwidths were 5 nm
and 10 nm respectively. Data were accumulated for 5 sec f(i)r each polarization setting:
vertical (parallel) and horizontal (perpendicular) (43). The Wnt has program for

calculation of fluorescence polarization (p) from which vaiue ofr, 1, and S can be

calculated. The details of the methods have been described préviously (43).

114



The regression analysis was carried out across the groups using Jandel Sigmastat

Statistical Software, version 2.0.
The activity ratio was calculated by: Activity at 37 °C / Activity at 25 °C

Estimation of protein was by the procedure of Lowry et al. (44) using bovine serum

i

albumin as the standard. ]

Statistical evaluation of data was by Students’ t-test.

Results

I
Alloxan diabetes resulted in 14 and 34 % reduction in the body weight respectively at the
end of one week and one month. Insulin treatment had marginal restorative effect in one
week group while in the one month diabetic animal insulin treatment almost completely

restored the body weight (Table 1).

The liver weight of the alloxan-diabetic rats decreased, by 20 % and 39 % respectively at
the end of one week and one month. Treatment with insulin brought about significant
increase in the liver weight not only compared to the diabetic groups (115 and 135 %
increase respectively), but also beyond the corresponding values for control groups (73
and 44 % increase respectively) (Table 1). As a results of which, relative liver weight
remained more or less same in both diabetic condition whereés increased significantly in

insulin treated one week and month diabetic animals (Table 1).
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The levels of glicose in the serum increased by 3.6 and 4;.6 fold in the two diabetic
groups. Insulin treatments had partial restorative effect and in the insulin treated diabetic
rats the serum glucose levels were always higher compared to those in the corresponding
control groups (Table 2). Polyuria in the diabetic state was reflected in terms of 22 and 25
fold increase in the urine volume respectively in the two diabetic groups. Insulin
treatments restored the urine volume to normality (2.0-2.5 ml/24 h). The urinary sugar
excretion amounted to about 1.0-1.25 g / 24 h in the twl'o diabetic groups; insulin
treatment completely abolished the urinary sugar excretion (Table 2). These results are

consistent with our previously reported observations (17-19). :

In preliminary studies, the effect of alloxan-diabetes and subséquent insulin treatment on
ATPase activity under different conditions was examined (Table 3). As can be noted,
addition of Mg?* stimulated the ATPase activity and addition 6f DNP showing maximum
stimulation. Activity was intermediate in presence of both Mg** and DNP. Alloxan-
diabetes stimulate the basal (-Mg®* and — DNP) activity and the effect was more
pronounce in early state whereas opposite effect was noted for Mg®* and DNP stimulated
activity and the decreased were more at the later state of diabetes. Insulin treatment was

ineffective in restoring the ATPase activity to normality (Table 3).

Measurements of ATPase activity were carried out at 25 and 37 °C and the data are given
in the Table 4. As can be noted, the enzyme activities incréased with the temperature

(Table 4). The enzyme activity was not affected in one week diabetic group and insulin
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treatment had no effect. By contrast, in one month diabetic ainmals the activity decreased
by 58 % and insulin treatment resulted in hyper-stimulation (64.6 % increase). The

activity ratios remain more or less same under all the experimental conditions (Table 4).

In view of the differential changes in one week and one month groups further
experiments were carried out to examine the kinetic behavior)of the enzyme as a response
to change in the substrate ie. ATP concentration. Analysis in terms of Lineweaver-Burk,
Eadie-Hofstee and Eisenthal and Cornish-Bowden plots (32) revealed that under all
experimental conditions, the enzyme resolved in three kinetically distinguishable
components. The kinetic components represent the potential and the response of the
enzyme to increasing concentrations of the substrate. The typical substrate saturation
curve (Fig. 1 and 2, Panels A, B, C) and corresponding Eadié—Hofstee plots (Fig. 1 and 2,
Panels D, E, F) are shown. Data on Km and Vmax values :of the three components as
affected by insulin status are included in Table 5. Thus, in one week diabetic group, both
Km and Vmax of component 1 increased while Km of component II decreased. Insulin
treatment restored the Km of component I and decreased thé Vmax of component 1. For
component II both Km and Vmax decreased. Long term diabetic state had a general
Vmax lowering effects and the Km of component I and IIF decreased. Treatment with
nsulin restored Vmax values in general near normality while Km of component I

increased by 2 fold and that of component Il was restored.

In view of the observed changes in the Km and Vmax values under the different
experimental conditions, the relative efficiency of the ATPase in terms of Kcat / Km



Table 5. Effect of alloxan-diabetes and insulin treatment on substrate kinetics properties of FoF; ATPase in rat liver mitochondria

Component I Component I Component III
Group Treatment
Km Vmax Km Vmax Km Vmax
One week  Control 0.17 +:0.01 4.24+0.12 1.13+0.05 11.97+0.33 2.78 +0.09 21.68 + 0.50
T U Diabetic | 021 £001° 0 537+£027 095005  11.11£028  3.00%0.17 21.59+0.53
Diabetic + 0.16 £ 0.01 5.08+0.14¢ 0,69 + 0.04%¢ 9,93 + 0.23% 1.98£0.09%  16.62 = 0.58%
Insulin
One month  Control 0.18 +0.01 4.08 +0.11 1.13 = 0.05 11.97 +0.33 3.36 £ 0.20 22.40 £ 0.64
Diabetic 0.12+0.01° 2.03 +0.08¢ 0.82 +0.04° 4,57 +0.19¢ 3.02+0.12 8.93 £ 0.29°
Diabetic + 0.40 £ 0.02%% 5.66+0.17% 1.18 £ 0.07° 10.51 £ 0.47 3.03£0.16 18.01 £ 0.58%
Insulin

The experimental details are given in the text. The Km (mM) and Vmax (pmole of Pi liberated / hr / mg protein) values were calculated as

described in the text.

The results are given as mean + SEM of 6-8 independent experiments in each group. As indicated in the text, the kinetic components represent the
potential and the response of the enzyme to increasing concentrations of the substrate.

a, p<0.05; b, p< 0.01; ¢, p< 0.002 and d, p<0.001 compared to the corresponding control.

v, p< 0.05 and §, p<0.001 compared to the corresponding diabetic.



Figure 1. Typical substrate saturation curve (Panels A, B, C), corresponding Eadie-
Hofstee (panels D, E, F) and Hill (panels G, H, I) plots for FoF; ATPase from liver
mitochondria for one week group. In substrate saturation curve the enzyme activity v on
abscissa is plotted versus [S] on ordinate v is the enzyﬁe activity at the given ATP
concentration [S]. A, B and C represent to the control, diabetic and insulin-treated
diabetic groups. In Eadie-Hofstee plot the enzyme activity v on abscissa is plotted versus
v/[S] on ordinate. D, E and F represent to the control, diabetic and insulin-treated diabetic
groups. In Hill plot log (v/Vmax-v) on abscissa is plotted versus log [S] on ordinate. The
Hill coefficients n; and n, depict number of ATP molecules bound for the given
concentration range of ATP. G, H and I represent to the control, diabetic and insulin-

treated diabetic groups. The plots are typical of 6-8 independent experiments in each

group.
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values was computed (34). As described in the text, Kcat represent the number of
substrate molecule transformed per molecule of the enzyme per second (34). However,
since it is not possible to know the number of enzyme molecules/mg of mitochondrial
protein, we normalized the *?Kcat / Km values as detailed in the ‘Materials and

Methods’ section and designated these values as “*Kcat / Km.

The data for **"Kcat / Km are given in Table 3. As is evident, one week diabetic state did
not affect the efficiency of any of the kinetic components of the enzyme. Treatment with
insulin reduced the efficiency of component III. One month diabetic state increased the
efficiency of components I and II; insulin treatment, in general, reduced the efficiency of
all the three kinetic components; the effect being most pronounced on component I

(Table 6)

Analysis of substrate kinetics data by Hill plots indicated that up to 1.0 mM ATP
concentration one ATP molecule was bound while beyond this concentration of substrate
two molecules of ATP were bound under all experimental conditions. Since the patterns
were similar for all experimental groups only a typical Hill plots are shown in Fig. 1 and

2 Panels G, Hand I.

In the next set of experiments, the effect of alloxan diabetes and insulin treatment on the

temperature-dependant-change in the enzyme activity was examined. The data were then
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Figure 3. Typical plots depicting dependence of enzyme activity on the temperature and
corresponding Arrhenius plots for one week groups. In temperature curves, enzyme
activity v on abscissa is plotted verses temperature (°C) on ordinate. A, B and C represent
to the control, diabetic and insulin-treated diabetic groups. In Arrhenius plots log of v on
ordinate is plotted against 1000/T on abscissa where v and T represent respectively, the
activity at corresponding absolute temperature T (temperature in ° Celeius +273.2). D, E
and F represent to the control, diabetic and insulin treated diabetic groups. The plots are

typical of 6-8 independent experiments in each group.
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analyzed in terms of Arrhenius plots to find out energies of activation (Ey and Er) and
phase transition temperature (T;). The typical activity versus temperature curves and
corresponding Arrhenius plots are shown in Fig. 3 and 4 respectively for one week and
one month groups. As can be poted in both the groups the pattern of activity versus
temperature and the corresponding Arrhenius plots for diabetic and insulin treated
diabetic animals differed considerably from the control. The differences were reflected in
terms of the energies of activation in high and low temperature ranges (Ey and E.
respectively) and phase transition temperature (T¢). These data are summarized in Table
7. Thus, in one week diabetic animals the value of E; decreased. Insulin treatment
lowered the value of E; (Table 7). In one month diabetic group the pattern was repeated
and the decrease in E, was more accentuated. The generalized feature in both the groups
was increased in T, in diabetes which could not be corrected by insulin treatment in one

month group (Table 7).

Since the insulin-status significantly altered the kinetic properties of ATPase, the effects
of insulin-status on lipid/phospholipid profiles of the mitochondria were examined. These
results are given in Tables 8-10. In one week diabetic group the content of total
phospholipid (TPL) and cholesterol (CHL) did not change significantly and insulin
treatment had no effect. By contrast, in one month diabetic group the TPL content
decreased (32 % decreased) and CHL content increased by 51%. This was reflected in
terms of decreased molar ratio of the two entities. Insulin treatment restored CHL content

but had marginal effect on TPL content (Table 8).

129



Table 7. Effect of alloxan-diabetes and insulin treatment on Arrhenius kinetics properties of
FoFATPase in rat liver mitochondria

Energy of activation Phase transition temperature
(KJ/mole) K T, (°C)

Group Treatment Ey EL Ty

Oneweek  Control 57.54+246 137.2+5.14 18.83+0.67
Diabetic 51.48:+3.33 102.0 £5.93° 21.26 +0.22°
Diabetic +  44.73+2.04° 108.8+5.31° 20.10+0,78
Insulin

One month  Control 57.20+1.58 140.8 +4.99 17.71 £0.47
Diabetic 52.80+2.15 83.49+521° 22.03 + 1.35*
Diabetic +  45.31:£3.10°  70.62 % 4.70° 2372+ 168"
Insulin

The experimental details are given in the text. The results are given as mean + SEM of
6-8 independent experiments in each group.

a, p< 0.02; b, p< 0.01 and ¢, p<0.001 compared to the corresponding control.
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Table 8. Effects of alloxan diabetes on total phosphelipids (TPL), cholesterol (CHL),
content of rat liver mitochondria

Groups Treatment TPL CHL TPL/CHL
(ng/mg protein) (ng/mg protein) (mole:mole)

One week  Control 176.21 + 3,05 53.88+ 1.73 1.66 = 0.06
Diabetic 17942 + 5.07 56.27 +2.13 1.60 +0.05
Diabetic + 183.08 + 7.40 52.23+0.84 1.75 £ 0.07
Insulin

One month  Control 172.83 +2.47 52.81 £ 1.41 1.65 +0.04
Diabetic 118.14+7.58° 79.83 + 1.88° 0.74 £ 0.05°
Diabetic + 138.19 + 5.27%Y 47.55 + 1.04> 1.46 % 0.07%
Insulin

The experimental details are given in the text. The results are given as mean + SEM of
6-8 independent experiments in each group.

a, p<0.05; b, p< 0.01 and ¢, p<0.001 compared to the corresponding control.
¥, p< 0.05 and §, p<0.001 compared to the corresponding diabetic.
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Analysis of phospholipid profile (Table 9) reveled that diabetic state had a generalized
effect of increasing lysophospholipids (Lyso), sphingomylein (SPM),
phosphatidylinositol (PI) and phosphatidylserine (PS) and a tendency to decrease
phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Insulin treatment could
correct the Lyso component and partially correct the PC and PE composition (Table 9).
The computed contents of the individual phospholipid classes were generally consistent

with the above data (Table 10).

Changes in the levels of cholesterol and altered phospholipid composition and contents
could alter the fluidity of the membrane. This was ascertained by measuring the fluidity
of the membranes. It is apparent form the data in Table 11 that the alloxan-diabetes
resulted in decreased membrane fluidity. Insulin treatment in one week diabetic animals
completely restored the membrane fluidity whereas in one month diabetic animals insulin

had only marginal restorative effect (Table 11).

Discussion

As can be noted form the results, ATPase activity did not change in the early stage of
alloxan diabetes as well as subsequent treatment with insulin whereas at the late stage the
enzyme activity decreased to a great extent and insulin treatment caused hyper-
stimulation (Table 3). These data supports our earlier findings on the oxidative

phosphorylation in the liver mitochondria which was not affected by early diabetic stage
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but at later stage the energy coupling efficiency decreased to a significant extent and

insulin treatment more or less normalized the oxidative phosphorylation (17).

The important observations of the present studies were altered substrate and temperature
kinetic properties. The observation that the diabetic state resulted in lowering of Km of
component IT in both the groups suggests this to an adaptive mechanism. However, this
adaptive mechanism seems to have opposite effect on the Km of component 1. A similar
situation of opposite effects was obtained even with respect to insulin treatment. Thus, in
one week diabetic group insulin treatment resulted in generalized decrease in Km
whereas in one month diabetic group insulin treatment significantly elevated the Km
values of component I and II. Interestingly, long term diabetes seemed to improve the
catalytic efficiency of the enzyme (Table 6); insulin treatment of these animals drastically
curtailed the efficiency (Table 6). Decreased in the values of E; in diabetic state is
another interesting feature and may represent a modulatory response to improve catalytic

efficiency (Table 7).

The above mentioned changes suggested that the changes in lipid/phospholipid profile of
mitochondria may be responsible for these modulatory changes. Indeed significant
changes occurred in the mitochondrial TPL and CHL contents, membrane fluidity and
phospholipid composition and content. Since FoF; ATPase has known requirement of
phospholipids, especially DPG (22) it was of interest to find out if the observed changes
in kinetic properties across the groups could be correlated with lipid classes or their molar

ratios. This possibility was evaluated by carrying out regression analysis across the



groups and the data are summarized in Table 12. As can be noted PE and total basic
phospholipids (BPL) but not lecithin or SPM are positive modulator of Vmax, and
Vmax; by contrast the acidic phospholipids (APL) PI, PS and DPG are negative
modulators (Table 8). The molar ratio of TPL:CHL correlate positively with Vmax
values of all the three kinetic components. Vmax values of component II and III
correlated positively with molar ratio of TPL:PI, TPL:PS and TPL:PI+PS. A negative
correlation of PC/PE, PI/BPL, PS/BPL and DPG/BPL with Vmax, and Vmax; was
another interesting feature. E; correlated positively w1th PE, TPL/P1, TPL/PS and
TPL/PS+PI whereas negative correlations were obtained wrth SPM, PI, PS and SPM/PC,
PI/BPL, PS/BPL (Table 12). Based on these observationé it may be suggested that
besides changes in the phospholipid composition their charge distribution across the
membrane and especially in the lipid micro domains in whic:h FoF, ATPase is embedded

and changes in membrane fluidity may be a significant modulatory role.

It has been recognized that the 18:3 and 22:6 desaturase activity decreases in diabetes
(13,15), thus, lowering the unsaturation index. The observed increased in T, which we

note here (Table 7) is consistent with these observations.

Mutations in mitochondrial DNA leading to dysfunction of enzyme complexes such as
PDH complex FoF; ATPase etc. have been proposed as underlying causes of diabetes
(45-47). 1t is not clear at this stage whether a similar situation would prevail following
exposure to alloxan. It may be suggested that changes in membrane lipid/phospholipid

domains may play a regulatory role.
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Our results also show that the abberations introduced by alloxan diabetes could not be
fully corrected by treatment with insulin. This is consistent with well acknowledged fact
that the insulin does not correct all the maladies of diabetes (1,48,49). One therefore
wonders if complete restoration to normalized could be achieved by combined treatment

with insulin and c-peptide (48,49). This interesting possibility is worth exploring further.
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Summary

Under all experimental conditions the enzyme displayed three kinetically distinguishable
components. In one week diabetic animals the enzyme activity was unchanged, however,
Km and Vmax of component I increased and Km of m@onent II decreased. Insulin

treatment resulted in lowering of Km and Vmax of component II and II1.

One month diabetic state resulted in decreased enzyme activity while insulin treatment
caused hyper-stimulation. Km of component I and II decreased together with decreased
Vmax of all the components. Insulin treatment restored the Km and Vmax values. In late
stage of diabetes the catalytic efficiency of components I and II increased; insulin
treatment had drastic adverse effect. Binding pattern of ATP was unchanged under all

experimental conditions.
Diabetic state resulted in progressive decrease in energy of activation in high temperature
range (E,). Insulin treatment lowered the energy of activation in low temperature range

(E,) without correcting the E, values.

The phase transition temperatures increased in diabetic state and were not corrected by

insulin treatment.

Long term diabetes lowered the total phospholipid (TPL) content and elevated the

cholesterol (CHL) content; insulin treatment had partial restorative effect. The membrane
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fluidity decreased in general in diabetic condition and was not corrected by insulin

treatment at late stage.

Regression analysis studies suggest that specific phospholipid classes and/or their ratios

may play a role in modulation of the enzyme activity.
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