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Chapter 3

Insulin-status-dependant modulation of FoF; ATPase activity
in rat kidney mitochondria
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Introduction

Diabetic nephropathy is a major cause of diabetes-related morbidity and mortality (1, 2).
Diabetic nephropathy affects about 15-25 % of all type 1 diabetic patients and 20-40 % of
all patients with type 2 diabetes (3, 4). Oxidative and carbonyl stress, and advanced
glycation end products (AdEs) are involved in the pathogenesis of diabetic nephropathy
(3, 5-9). AGE§ can \form glycoxidation products in peptide and protein structures and
heterogeneous groups of proteins and lipids which ﬁnélly modulate or influence
biological reactivity (5-7). There is increased accumulation of reactive carbonyl
compounds (RCOs) and AGE:s in diabetes which leads to renal failure. RCOs and AGEs
are implicated in uraemic toxicity (5) and also cause down regulation of nephrin which
leads to increased proteinuria (10). Diabetic nephropathy results in damaged proximal
tubules cells, thickening of glomerular basement membrane (GBM) and podocyte
apoptosis which leads to altered filtration process (8-11). The filtration process is an
energy dependant process and the energy in the form of ATP derived mainly from the

mitochondria.

Earlier we have reported that the rates of oxidation of NAD-linked and other substrates
were differentially affected in the kidney mitochondria from streptozotocin-diabetes (12).
Thus the rate of oxidation of B-hydroxybutyrate was impaired whereas that of pyruvate +
malate was significantly elevated. Likewise, the rate of succinate oxidation also
increased. Interestingly, insulin treatment did not ameliorate the changes (12). In chapter
2it has been stated that the FoF; ATPase (factor V) of mitochondria is localized in the

inner membrane and has requirement for specific phospholipids for its activity (13).
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In the light of the above, we examined the effects of alloxan-induced diabetes at early and
late stages on the kinetic properties of rat kidney mitochondrial FoF; ATPase and
lipid/phospholipid profile. Effects of insulin treatment were also evaluated. These

findings are summarized in this chapter.

Materials and methods
Details of chemicals required, procedure of induction of diabetes, insulin treatment,

-

isolation of mitochondria, ATPase assay procedure, extraction of mitochondrial
<«

lipids/phospholipids, estimation of cholesterol, determination of phospholipid profile,

membrane fluidity and data analysis are as described in Chapter 2 of the Thesis.

Results

The kidney weight of the alloxan diabetic rats increased, by 12 % and 30 % respectively
at the end of one week and one month. Treatment with insulin had partial corrective
effect only in one month diabetic group (Table 1). The relative kidney weight increased
significantly in diabetic condition and the effect was more pronounced in the one month
diabetic animals; insulin treatment had partial restorative effects (Table 1). These results

are consistent with our previously reported observations (12, 14).

Results of diabetic parameters are similar as detailed in Chapter 2 of the Thesis.

A

In preliminary studies, the effects of alloxan-diabetes and subsequent treatment with

insulin on ATPase activity under different conditions were examined. Results of which
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are given in Table 2. As can be noted, in control addition of Mg?* and DNP stimulated
the enzyme activity to almost same extent and the maximum activity was noted in
presence of both Mg?* and DNP (Table 2). Alloxan-diabetes stimulate the basal (-Mg*
and — DNP) activity whereas DNP and combination of Mg?* and DNP stimulated activity
were decreased. Insulin treatment had marginal restorative effects only in early stage
whereas at late stage it resulted in hyper-stimulation in the enzyme activity in all the

cases (Table 2).

In the next sets of experiments, ATPase activity was measured at 25 and 37 °C. The
results are given in Table 3. As can be noted, in one week diabetic group the enzyme
activity decreased by 33 and 25 % respectively, at the two temperatures. A similar change
was also observed in the one month diabetic animals (23 and 21 % decrease). Insulin
treatment resulted in hyper-stimulation of the activity in both the diabetic groups with the
magnitude of increase being higher in one month group. The activity ratios were remain
higher under all the experimental except in one month diabetic group compared to the

control (Table 3).

Since the diabetic state and insulin treatment significantly influenced the enzyme activity,
and activity ratio, in the next sets of experiments, the kinetic behavior of the enzyme as a
response to change in the substrate i.e. ATP concentration and change in temperature

were examined.
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The data on substrate kinetics were analyzed as detailed in previous chapter 2. The
typical substrate saturation curves and corresponding Eadie-Hofstee plots and Hill plots
are shown in Fig. 1 and 2. As can be seen, in the control animals the enzyme activity
resolved in three kinetically distinguishable components. In the diabetic group only first
two components were present. Treatment with insulin resulted in restoriné component II1.
However, component II was abolished following insulin treatment (e.g. see Fig. 1 and 2

Panels D, E and F and Table 4).

Data on Km and Vmax values of the three components as affected by insulin status are
given in Table 4. Thus, in one week diabetic group the Km of component I increased by
1.75 fold in early diébetic state whereas in the chronic diabetic state the Km was
somewhat lowered. Insulin treatment partially restored the Km value in one week
diabetic animals whereas in one month diabetic animals the Km increased beyond the
control values (Table 4). Diabetic state in general resulted in increased Vmax of
component I with the increase being more pronounced in the one week diabetic group;
insulin treatment resulted in substantial increase in the Vmax values in both the diabetic

groups (Table 4).

-

The Km of component II increased only in one month diabetic animals while the Vmax
value increased in both the diabetic groups (34 and 44 % increase) (Table 4). Component
HI was not discernible in the diabetic conditions. Insulin treatment resulted in lowering

the Km in the early stage while at late stage the Km increased. Insulin treatment resulted
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Figure 2
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Figure 1. Typical substrate saturation curve (Panels A, B, C), corresponding Eadie-
Hofstee (Panels D, E, F) and Hill (Panels G, H, I) plots for FoF,; ATPase from liver
mitochondria for one week group. In substrate saturation curve the enzyme activity v on
abscissa is plotted versus [S] on ordinate v is the enzyme activity at the given ATP
concentration [S]. A, B and C represent to the control, diabetic and insulin-treated
diabetic groups. In Eadie-Hofitee plot the enzyme activity v on abscissa is plotted versus
v/[S] on ordinate. D, E and F represent to the control, diabetic and insulin-treated diabetic
groups. In Hill plot log (v/Vmax-v) on abscissa is plotted versus log [S] on ordinate. The
Hill coefficients n; and n, depict number of ATP molecules bound for the given
concentration range of ATP. G, H and I represent to the control, diabetic and insulin-

treated diabetic groups The plots are typical of 6-8 independent expgriments in each
group.

Figure 2. Typical substrate saturation curve (Panels A, B, C), comesponding Eadie-
Hofstee (Panels D, E, F) and Hill (Panels G, H, I) plots for FoF; ATPase from liver
mitochondria for one week group. In substrate saturation curve the enzyme activity v on
abscissa is plotted versus [S] on ordinate v is the enzyme activity at the given ATP
concentration [S]. A, B and C represent to the control, diabetic and insulin-treated
diabetic groups. In Eadie-Hofstee plot the enzyme activity v on abscissa is plotted versus
v/[S] on ordinate. D, E and F represent to the control, diabetic and insulin-treated diabetic
groups. In Hill plot log (v/Vmax-v) on abscissa is plotted versus log [S] on ordinate. The
Hill coefficients n; and n; depict number of ATP molecules bound for the given
concentration range of ATP. G, H and I represent to the control, diabetic and insulin-
treated diabetic groups The plots are typical of 6-8 independent experiments in each
group.
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in marginal (32%) increase in the Vmax of component III in one week diabetic animals
whereas maximum stimulatory effect (2.5 fold increase) was seen in one month diabetic

animals (Table 4).

In view of the observed changes in the Km and Vmax values under the different
experimental conditions, it was of interest to find out if the relative efficiency of the
enzyme was influenced by the insulin status. Thus we computed the relative efficiency of
the FoF; ATPase in terms of Kcat / Km values (15). As described in the previous chapter
2 we normalized the Kcat / Km values and designated these values as *PPKcat / Km. The

data for *PPKcat / Km are given in Table 5.

\

As is evident, diabetic state increased the efficiency of component I and the increase was
more pronounced in the one month group; insulin treatment ;normah‘zed the **PKcat / Km
values (Table 5). Efficiency of component II also increased significantly in the diabetic
animals. Interestingly; insulin treatment improved catalytic efficacy of component III
(Table 5).

The observed changes prompt to analyze if the substrate bin(iing properties of the enzyme
were altered under different experimental conditions. The analysis of the substrate
kinetics data by Hill plots indicated that up to 0.9 mM ATP concentration one ATP

molecule was bognd while beyond this concentration two molecules of ATP were bound
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under all experimental conditions. Since the patterns were similar for all experimental

groups a typical Hill plots are shown in Fig. 1 and 2 Panels G, H and L.

Since the insulin-status significantly altered the substrate kinetic properties of ATPase,
the effect of alloxan diabetes and insulin treatment on the tgmperature—dependant—change
in the enzyme activity were examined. The data were analyzed in terms of Arrhenius
plots to find out energies of activation in high and low temperature ranges (Ey and Ep,
respectively) and phase trapsition temperature (T¢). The typical activity versus
temperature curves and corresponding Arrhenius plots are shown in Fig. 3 and 4
respectively for one week and one month groups. As can be noted, in one week as well as
one month groups the patterns of activity versus temperature and the corresponding
Arrhenius plots for diabetic and insulin treated diabetic animals differed considerably
from the control (Fig. 3 and 4 ).

From activity versus temperature curves it is evident tf]at in the control groups the
optimum temperature was around 49 °C. Diabetic state had no effect on optimum
temperature in one week group but resulted in shift in the optimum temperature beyond
53 °C in one month group (Fig. 3 and 4). A reversed picturé was observed after insulin
treatment i.e. the optimum temperature increased to 53 °C in-one week group while in the

one month group it was normalized to control value (Fig. 3 and 4)

The Arrhenius plot in general followed a biphasic pattern (Fig. 3 and 4) depicting that the

values of E;, were higher than those of Ey;. However, one month diabetic group treated
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Figure 3
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Figure 4
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Figure 3. Typical plots depicting dependence of enzyme activity on the temperature and
corresponding Arrhenius plots for one week groups. In temperature curves, enzyme
activity v on abscissa is plotted verses temperature (°C) on ordinate. A, B and C represent
to the control, diabetic and insulin-treated diabetic groups. In Arrhenius plots log of v on
ordinate is plotted against 1000/T on abscissa where v and T represent respectively, the
activity at corresponding absolute temperature T (temperature in ° Celcius + 273.2). D, E
and F represent to the control, diabetic and insulin treated diabetic groups. The plots are

typical of 6-8 independent experiments in each group.

Figure 4. Typical plots depicting dependence of enzyme activity on the temperature and
corresponding Arrhenius plots for one month groups. In temperature curves, enzyme
activity v on abscissa is plotted verses temperature (°C) on ordinate. A, B and C represent
to the control, diabetic and insulin-treated diabetic groups. In Arrhenius plots log of v on
ordinate is plotted against 1000/T on abscissa where v and T represent respectively, the
activity at corresponding absolute temperature T (temperature in ° Celcius + 273.2). D, E
and F represent to the control, diabetic and insulin treated diabetic groups. The plots are
typical of 6-8 independent experiments in each group.
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with insulin proved to be an exception where the pattern was reversed (Fig. 4) i.e. value
of By was high and that of E; was substantially reduced. These differences are

summarized in Table 6.

Thus, in one week diabetic animals the value of E;, increased by 2 fold. Insulin treatment
partially corrected this defect and marginally lowered Ey. In one month diabetic group Ey
decreased whereas E;, increased significantly. Insulin treatment had effects opposite to
those noted in one week group. Thus E;, increased beyond control whereas and Ey was

reduced by a factor of three (Table 6).

The generalized feature in both the groups was decrease in T; in diabetes which could not

be corrected by insulin treatment (Table 6).

The observed changes in the substrate and temperature kinetics prompt us to examine the
effect of insulin status on lipid/phospholipids profiles of the mitochondria. The results of
which are given in Tables 7-9. In one week diabetic animals the TPL content did not
change while the CHL content increased by 16%. Insulin treatment had no effect on TPL
content but restored the CHL content. In one month diabetic group the TPL content
decreased by 52 % and CHL content increased by 63 %. Insulin treatment partially
restored the TPL and CHL contents. The TPL/CHL (mole : mole) ratios decreased in the
diabetic groups and insulin treatment was effective in normalizing it only in early stage.
The membrane fluidity decreased in diabetic animals and inisulin treatment fluidized the

membrane in one week diabetic animals (Table 7).
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The data on phospholipid composition (Table 8) reveled that diabetic state had a
generalized effect of increasing lysophospholipids (Lyso), sphingomyelin (SPM),
phosphatidylcholine (PC), phosphatidylinositol (PI) and phosphatidylserine (PS) and a
tendency to decrease phosphatidylethanolamine (PE) and diphosphatidylglycerol (DPG)
components. Insulin treatment partially corrected the Lyso and PS composition in both
the diabetic groups. Insulin treatment could not correct the PI and PE components in one
week group and elevated the latter component in the one month group (Table 8). The
computed contents of the individual phospholipid classes were generally consistent with

the above data (Table 9).

Change in the altered CHL and phospholipid composition<a11d contents could alter the
membrane fluidity and the data for the fluidity parameter are given in Table 10. From the
data it is revealed that the diabetic state decreased the membrane fluidity. Treatment with
insulin in early diabetic state increased the membrane fluidity whereas at late stage partial

restoration was seen (Table 10).

Discussion

The basic observation of the present studies is that diabetic state decreased the enzyme
activity and insulin treatment resulted in hyper-stimulation (Table 3). Also, the
experimental conditions altered the substrate and temperature kinetics properties of the
enzyme in a differential manner. Thus in diabetic state component III was not discernible

whereas upon insulin treatment component II was found to be missing (Fig. 1 and 2 Table
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Panels D, E ar;d F and Table 4). Early diabetic state caused increase in the Km of
component I; an opposite effect i.e. decrease was noted at the late state. Insulin treatment
elevated the Km of component I in both the diabetic groups (Table 4). The Km of
component II increased in late state. The effects of insulin treatment on Km of
component Il were of opposite nature; decrease in one week and increase in one month
groups. The Vmax of all the components were high under all experimental groups and
insulin ?reatment accentuated the effect. The data on “PPKcat/Km would suggest that the
observed increase in the diabetic groups may be related to the increased catalytic efficacy
of the enzyme. This may possibly represent a cémpensafory mechanism. Progressive
increase in the “PPKcat/Km with progression of the diabetic state (Table 5) would also
support this assumption. By contrast, the observed increase in the activity in the insulin
treated diabetic animals may be attributable to increased enzyme units rather than to
increased catalytic efficacy (Tables 3-5). It has been suggested that increased AGEs
formed in diabetes react with peptide and protein and can modulates or influence their
biological reactivity (5-7). However, this possibility seems to be unlikely in the present
situation. Firstly, in the diabetic groups where the blood sugar levels are significantly
high, (e.g. see Results Section) the activity actually decreased (Table 3). By contrast,
when the blood sugar levels were almost normalized following insulin treatment, there
was hyper-stimulation of the activity in a progressive manner (Table 3). It may hence be
suggested that insulin action may be at the level of gene regulation. Since the subunits of

the FoF; ATPase are coded by the nuclear as well as mitochondrial DNA (16), it would
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be of interest to find out how insulin activates the subunit synthesis by the nuclear and

mitochondrial DNAs

The increased energies ;)f activation in the low temperature range (Ep) in the diabetic
animals are consistent with the lowered activity of the enzyme (Table 3). It is possible
that to overcome this barrier, the catalytic efficacy of the enzyme increased in the
diabetic state (Table 5). However, the underlying mechanism for the improved catalytic
efficacy remains unclear at this stage. Insulin treatment had‘ diverse effects on Ey; in one
week group there was partial correction while in the one month group insulin treatment
overcorrected the E; value while reversing the pattern of Arrhenius plot (Table 6, Fig. 3
and 4 Panels D, E and F). The latter could to be another compensatory mechanism. With
respect to the phase transition temperature T,, the generalized feature was decrease in T,

in diabetic groups and insulin treatment accentuated the effect further in the one month

group.

It bas been reported that in diabetes the desaturases activities decrease thereby decreasing
the unsaturation index (17, 18). One would therefore anticipate that the phase transition
temperature should have increased. In related studies we have observed that indeed this is
the case for the ATPase activity in liver mitochondria (Chapter 2). The present
observations on the kidney enzyme thellefore seem to be paradoxical. However, it is
possible that glycation of the membrane proteins and/or changes in lipid/phospholipid
components may play a role in modulating the T, Data on effect of insulin status on

lipid/phospholipid composition (Table 8) and regration analysis suggest that
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phospotidylserine may have a strong negative correlation with the phase transition

temperature, T;

The overall results point out that the diabetic state and subsequent insulin treatments
substantially modulate the kinetic properties of kidney mitochondrial ATPase in a
differential manner. The results also point out that the kinetics properties are not restored
to the control status. These results are consistent with the well acknowledged fact that
insulin treatment corrects the blood sugar levels but cannot correct all the maladies of
diabetes (19-21). It has been reported that pathies associated with diabetes are corrected
by treatment with C-peptide (20, 21). One therefore wonders if combined treatment with
insulin and C-peptide would restore the kinetics properties of kidney mitochondrial FoF;
ATPase. Role of C-peptide in modulating the Na*, K" ATPase activity from proximal and

tubular segment of the rat nephron has been demonstrated (22).

In previous chapter 2 we noted that in rat liver mitochondria from control, diabetic as
well as insulin treated diabetic animals three kinetically distinguishable components were
evident. These observations differ considerably from those of the present studies on
kidoey mitochondria. The results thus suggest that the insulin action is also tissue-

specific.
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Summary

Diabetic state resulted in significant decrease in the activity while insulin treatment
caused hyper-stimulation. In control animals the enzyme activity resolved in three kinetic
components. In diabetic condition only component I and II were present. With insulin
treatment component 111 was restored but component II was abolished. Diabetic state and
insulin treatment had varied effects on Km values of the three components whereas the

Vmax values were generally on the higher side.

Evaluation of the “PPKcat / Km values revealed that diabetic state resulted in increased

catalytic efficiency; insulin treatment brought back these values to normality.

Temperature kinetics studies indicated that the phase transition temperature decreased
significantly in the diabetic and insulin treated diabetic animals. The energy of activation
in low temperature range increased in the diabetic animals. Insulin treatment corrected
the Arrhenus pattern at early stage of diabetes; at late stage the pattern was reversed. The
results are suggestive of subtle insulin-status-dependent alterations in membrane

structure-function relationships.

Early stage of diabetes marginally increased CHL content which was restored by insulin
treatment. Long term diabetes lowered the TPL and the CHL content elevated. Insulin

treatment partially restored the TPL and CHL content.
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Diabetic state decreased the proportion of PE and diphosphatidylglycerol (DPG)
components while increased in the Lyso, SPM, PC, PI and PS components in the

mitochondria. Insulin treatment had partial restorative effect.

The membrane fluidity decreased in general in diabetic condition and was not corrected
by insulin treatment at late stage. However, at early stage, insulin treatment fluidized both

the membranes.
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