List of Tables

Chapter – II	
Table 2.1 Thickness of the polymers	47
Table 2.2 Projected ranges for Polymer composites	53
Table 2.3 Irradiation details of the samples	55
Chapter – III	
Table 3.1 Crystallite size of pristine and irradiated samples	84
Table 3.2 Values of glass transition for pristine and irradiated composites	87
Table 3.3 Band gap (B.G) and no. of carbon atoms (N) of pristine and irradiated	
samples	90
Table 3.4 Crystallite size of pristine and irradiated samples	104
Table 3.5 Values of glass transition for pristine and irradiated composites	105
Table 3.6 Band gap by direct allowed transitions, number of carbon atoms in pure	PS,
composites and irradiated films	111
Chapter – IV	
Table 4.1 Crystallite size of pristine and irradiated samples	135
Table 4.2 Values of glass transition for pristine and irradiated composites	136
Table 4.3 Band gap (B.G) and no. of carbon atoms (N) of pristine and irradiated	
samples	140
Table 4.4 Crystallite size of pristine and irradiated samples	152
Table 4.5 Values of glass transition for pristine and irradiated composites	155
Table 4.6 Band gap by direct allowed transitions, number of carbon atoms in pure	PS,
composites and irradiated films	160
Chapter – V	
Table 5.1 Crystallite size of pristine and irradiated samples	184
Table 5.2 Values of glass transition for pristine and irradiated composites	185
Table 5.3 Band gap (B.G) and no. of carbon atoms (N) of pristine and irradiated	
samples	190
Table 5.4 Crystallite size of pristine and irradiated samples	207
Table 5.5 Values of glass transition for pristine and irradiated composites	208
Table 5.6 Band gap by direct allowed transitions, number of carbon atoms in pure	PS,
composites and irradiated films	213

Chapter - VI

Table 6.1(a): Crystallite size of composites for PMMA+ Ag/Cu/Ni systems	238	
Table 6.1(b): Crystallite size of composites for PS+ Ag/Cu/Ni systems	238	
Table 6.2(a): Glass transition temperature of composites for PMMA+ Ag/O	∑u/Ni	
systems	239	
Table 6.2(b): Glass transition temperature of composites for PS+ Ag/Cu/Ni systems		
	240	
Table 6.3(a): Band gap energy of composites for PMMA+ Ag/Cu/Ni systems	241	
Table 6.3(b): Band gap energy of composites for PS+ Ag/Cu/Ni systems	241	
Table 6.4: Magnetic properties of composites for PMMA+Ni and PS+Ni systems	243	