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GHaPJER - III

MODIFIED GES APPROXIMATION

3*1 Introduction s

.Due to the recent advances - both theoretical and 
experimental - in the study of electron - scattering by 
atoms* the search for computationally feasible as well as 
accurate theoretical methods has been enhanced. The 
Glauber Eikonal Series (GES) method proposed by Yates (1974) 
as an alternative method for the evaluation of the Glauber 
amplitude* has become very popular because.of its simplicity. 
The GES method is very significant in the light of the fact 
that the lack of application of the Glauber Eikonal approxi
mation to systems more complicated than helium can be 
attributed to the rapidly increasing conputational complexity 
involved in evaluating the Glauber amplitude expression.
Besides its simplicity* the GES method has an inherent 
advantage that the expressions can be obtained in the closed 
form. The GES approach involves expanding the amplitude in 
reciprocal powers of k..* the momentum of the incident electron* 

for fixed momentum transfer q » / 5/ # and attempting termwise, 
analysis. Such an expansion can be expected to be a reasonable 
approximate to the Glauber scattering amplitude when k^ is 
large. This method has been applied to investigate the
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scattering of electrons by hydrogen and helium (Yates 
1974# Singh and Tripathi 198 0) and it has been shown 

explicitly that the first three terms of the GES are 
sufficient to give a very good representation of the Glauber 
cross sections for all values of qi As such the GES 
expressions can be used in analyzing the higher order 
correction within the framework of eikonal Born Series (ebs) 
and the modified Glauber method of Byron and Joachain (1973# 
74# 74t)# thus avoiding the numerical evaluation adopted by 

them.

In spite of the advantages of the GES method as 
cited above# it has all the disadvantages of the conventional 
Glauber method - appreciable underestimation of the cross- 
sections over the entire angular range except at very small 
angles where the Glauber amplitude logarithmically diverges® 

Hence a systematic study has been undertaken to arrive at a 
modified GES (M3ES) method which retains the advantages and 

improves upon the GES method and removes the aforesaid short
comings, This MGES method is applied to various scattering 
phenomena and excellent results are obtained. The improvement 
over the basic GES method is of special significance.

Formulation x

One way of obtaining improvements over the Glauber 
approximation has been proposed by Wallace (1973). For the 

case of potential scattering Wallace wrote down systematic
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corrections to the Eikonal phase. Detailed studies of the 
relationships between the terms of the Born, eikonal and 
Wallace series have been .carried out by Byron et al (1975,79). 
In the light of these developments, Byron et al (198l) recently 
proposed a generalisation of the potential scattering Wallace 
amplitude to the multiparticle-case, in the same spirit as 
that of Glauber's original .extension of the potential 
scattering eikonal amplitude. This generalisation was • also 
obtained subsequently by Franco and Iwinski (1982) and by 
Unnikrishnan and Prasad (1982). However, it should be noted 
that the resulting many-body Wallace amplitude does not elimi
nate all the difficulties inherent in the Glauber amplitude.
In particular, the Wallace extension of the Glauber approxi
mation is still a zero-excitation energy approximation and 
therefore does not account for the long-range polarisation 
effects at small angles and represents inadequately absorption 
effects in the same region. These difficulties can be elimi
nated by removing the term of the many-body Wallace amplitude 
which is of second order in the projectile-target interaction 
and replacing it by an appropriate second Born term. The 
amplitude thus obtained has all the strengths of the EBS 
method at small and intermediate angles where perturbation 
theory is rapidly convergent. It also contains the two 
leading terms (in powers of lc ^) of each order of perturba

tion theory summed to all orders so that at large angles the
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main feature of the scattering amplitude-which is similar 
to what is found in pure coulomb scattering-is dealt with 
satisfactorily*

In the light of the above discussions and keeping 
in mind the simplicity of the GES method, a parallel termwise 
analysis of the Wallace Corrected Glauber series (Byron et al 
1982) was performed in the present study, the troublesome 
imaginary part was replaced by a very similar Bom term 
(Yates 1979) and the effects of exchange were included 
through the Ochkur (1964) approximation* The resulting 

scattering amplitude was called the modified Glauber eikonal 
series (MGES) amplitude*

The many body Wallace amplitude is given by (Byron 
et al 1982)

fw
k. i p;.b
itl1 e “ < u>/ [i

(b#x)

k.r
x^(b, x)

+---- 3— >]r^Yi > d2b (3.1)
Xi

A \where r = b + z n, n being perpendicular to q, is the 
incident electron co-ordinate, X represents the target 
electron co-ordinates ” rz* z kein9 the atomic
number, xQ is the usual Glauber phase, x^ is the Wallace 
phase correction and ijL and are the wavefunctions of the 
target at initial and final states.
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Por consistency of 0 ( -x ) in the DCS# f can be 2 w
expressed in the form of a series. i«e.

k.3 n-1f = ^ i -w n_i 2 7T n l
, 2 1 &*“1 / do e Mf/*? /

T t ^
27rk.1

0 icj.b u)
/ O e “ < w Xx/ y± > (3.2)

The first part of the above equation gives the first three 
terms of the GES (Yates 1974) whereas the second part is 
the additional real part in the second term of the series 
corresponding to Wallace correction. Hence (3.2) can be 
written as

w

(1) (2) (3)
+ i f -f

GES GES GES
+ fw. (3.3)

where fw_ = . 0—r— i d^b e
2xk,

W?: (3.4)

As discussed previously# the trouble some imaginary pojJb
of the series (3®3) is now replaced by an appropriate Born

(2) -1 term. In the present study# f is replaced by the G(k. )(2) ges x
terms in f in the HHGB approximation (Yates 1979) with 

HEA
the following justifications.

1 (2)1* the 0 ( r— ) terms in f
r HEA

C'i.e. i flm and fRe^)
originate from the same part of the Green's function(2)which corresponds to f

GES



2 the procedure of the linearisation of the Green's 
function etc. adopted in the GES and HHOB methods 
are very similar. (In fact, if the average excitation 

energy parameter 3 is made zero in the HHGB, the GES 
results will be obtained)®

1 (2)3. It can be shown that the 0 ( —- ) term in f
k.^ HEA

x(i.e. f Re-) indirectly corresponds to the fw0 in the 

present analysis.

(2)
Due to the replacement of f by the above mentioned

GES
Born terms, the 3 factor in i flm removes the divergence(2)
problem in f . • Since the 1 frozen target' model is 

GES
derived from a many-body Green's function in which closure

has been applied and the average excitation energies in
both the initial and final channels have been set equal to
zero, the long-range dynamic polarization effects will be
missing from the many-body Wallace amplitude (f )• In

w
particular, Byron et al (1982) have shown that the real part
of the second term in f (i.e. Re f J given by (3.4) is just

w w^
the k. part of Re f„„„ (where SB2 denotes the simplified 
second Born term obtained in the closure approximation) with 

an average excitation energy value of zero, and thus lacks 
the all-important contribution of order k^ ^ which is charac

teristic of dipole polarisation effects. With the introduction 
of fRe^ into the expression(3.3), it will take care of this
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polarisation effect which is not accounted for in the GES. 
It may be noted that the Bom terms i flm and fRe^ can also 

be obtained in the closed form®

Hence incorporating the Bom terms# ,(3.3) becomes 

(1) (3)
f = f „ + i flm + £Re, - f , + fw. (3.5)
w GES j. GES 2

^ftien the exchange effects are also included# the scattering 

amplitude becomes

fw
(1)

f + i flm + fRe 
GES

(3)

GES
+ fw2 ± (3.6)

The above expression gives the M3ES scattering anplitude. 

Making use of the scattering amplitudes for different 

scattering phenomena# the corresponding DCS can be easily 

evaluated.

Evaluation of the scattering amplitude •

The GES terms in the scattering amplitude (3.6) are
evaluated following the prescription of Yates (1974). The
Born terms are evaluated following Yates (1979) (section

2.1l)« The exchange term f .in (3.6) is calculated
exch

using the Ochkur approximation (1964). In the evaluation 

of fw^ given by (3.4)# the static part of the potential only 

is taken because the neglect of the contribution of the 

second order effects like polarisation treated in the second 

order of "thecapproxmirhation -may notamake-irauch of a difference 

because those effects have already been incorporated through



4i | ' |X (b#z,x) = - / v (b,z #x) dz ,and + — *0
I 1X_ (b#z*x) = - / V (b#z, x) dz

z
It should be stressed that because of the complexity of 
x^ Cb#x)# the many-body Wallace amplitude (3«l) is vastly 
more difficult to evaluate 'than the many-body Glauber 
amplitude. Still# the attraction of (3.1) is that it is 
also unitary and contains phase correction. In view of 
the tremendous difficulty associated with the evaluation 
of (3.4) for higher atoms using (3.8)# there is ample 
justification for the replacement of x^ Cb#x) by x-^(b) given 
by (3»7)®

Thus# for static potentials# (3.4) becomes 
1 „ Xc[.b 00fw0 =------r~ do e ~ / V1 (r) dz
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2fik±
1 ig.b ®°
—x -f d^b e / dz / dP

z ——
"*lP z/ dP e z V, (p,p )

-»o Z X Z

-iP.b
e

where represents the Fourier transform of V^. Here the 
following properties of delta functions are made use of I.

so -iP z >/e z dz = 2^*(p)
—oO z

2 i(<2*£).b .2 S ( \/ d r> e = (2?0 ^ p;

/ dP S(q-P) VXCP) = Vx Cq). The analysis of the 

above term using these simplifications gives
4 2

fv?2 = “ —~ (q) (3.9)
ki

Now all the terms in (3®6) can be easily evaluated. The 
feasibility and simplicity of the present M3ES approach are 
demonstrated in the later sections of this chapter through 
applications to various scattering phenomena.

3.2 Elastic scattering of electrons from the ground 
state of hydrogen atom.

The elastic scattering of electrons from the ground 
state of hydrogen atom (abbreviated as ESGH process) can be 
termed as the simplest problem in atomic collision theory. 
Obviously# quite a lot of work has been reported on the 
above process. It will be of great interest to illustrate 
the above discussed M3ES approach through the application 
to the ESGH process , and to explore the position of the



present results in the midst of a large amount of data 
arrived at through a variety of estimations.
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The interaction potential for the ESGH process is 
given by

, 1
VH " -

/£-£/

The groundstate wave function of hydrogen is
1 -r

VlS = “= e

For the ESGH process# = f
The static potential for H (is) is

1 “2rV =<y/V/Y>a-(l + - ) e

(3.10)

(3.11)

(3.12)

The various terms in (3.6) are now evaluated using (3.10), 
(3.11) and (3.12). It will be convenient to express the 

product of the wave functions as
* 1 -2r , d ~Arl
f Y “ — ® ‘ - dX > S~^~ h=2 (3‘13)

Now introducing the dimensionless vector z = and
following the procedure of Yates (1974)#

(l) 1 ig®r 1 -2r
f . . = --- / e (l+ — ) e dv
GES 2 'A r .

°o ft iqr Cos© 1 -2r „= I I e (l + —) e r dr Sin© d©
00 r
(q2+*2+2JO
(q2+X2)2=2-



882 + z‘
X(1 + z2)

(1) 2 + z
i • © • £ GES XU + z2)2 (•

(2) j/2
Now, f , = -r- / ■dP

GES Vg-p/
< ff / B(P) BCq-p)/^^

Here iP.r, i/q-P /*r, iq.r,B(P) BCq-p) = 1-e “ _1 -e 1 + e 1

, 2 2 d q + 2X< f£ / BlP> / Ti> = <- 4 v(q.^2)

T-D/2JA2P2+X2 /q-pZ*+h‘

(2) -4Z2 d 
f = ---- — s dPGES dX

2/\2 oq /X 2L “-- o J + -rP2/q~p/2 L q2+ X2

/q-p/2 P2 + X2

Here partial fractions of the form
dP dP

- / P“Vq—p/2 (P2+* X2) /q-p/^ " P^+X2 2

are made use of,

Substitution of z = q/K gives 
2 2 P ^

/q-p/ =* X /z - - / and •— has to be replaced byx/ ax
z2 d 

q dz

.14)
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(2)
GES

4 Z2 z2 d dP -z
K k^ q dz 2 -t r>2^ 2 / P /z +1 Pa /z-j^ /

4- 2

/(h2/z - - / 2(P2+^2)) J

Substitution of = P, results in

(2) 4Z2 z2 d dP-- / -11
GES ^ k± q dz k (z*+l) vP21/z-P1/2

+

2 2 4 Z^ z^
Tvk.i

where I
q <
2k “ J 

Since Z2 = 1^ 

(2) 1

q
dP

1+z

/z-Pj/^U+Pj.-)

2 Si + 2I22^

5,1

s r - / £,=0, £ =1 ■/z~P/2 (P2+£ ) 1 2

d
GES 87Vk. z' x

( —) z*[-
dz 1 + z

2 J2l +2I22^

The evaluation of the integrals are shown in!appendix® 
These resu'lts seem initially discouraging in that the 
integrals I ^ are absolutely divergent. However/ for the 
particular combinations appearing in the above equation, a 
tedious, but straight-forward calculation shows that all 
infinities cancel exactly. It may be noted that similar 
cancellations occur in the analysis'of the Massey-Mohr 
approximation to the second Born term as demonstrated by 
Moiseiwitsch and Williams (1959).
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Thus the substitution of integrals leads to

(2) 1 d z4 1 +s2
£ = --------o ( T— ) ---------o Ivi ( --------- ) (3.15)

GES 2kiz° QZ X + z 1 z

(2)
(Eventhough f , does not figure in the MGES scattering 

GES
amplitude (3.6), this term also is evaluated in all the

scattering processes studied here in order to compare with

the imaginary part of the Born term.)
(—z2)

/ „ % 2Ak. ' dP, dP 1(3) -1 -2
£ _ .................— ........ ... f ... / ...... ■ ...— ..—.... —

GES 6x3k±3 Px2 P22 /q-(p1+P2)/2

< yf / B(PX) B (P2) B [q - (px+P2) ] / Y±>

{Proceeding in the same way as in 

(2)
f >

GES

< yf / B(P1) B(P2)B(q-p1-P2)/yi >

' d / 1 1 1 1
4 dX Px2+ A* P22+A2 /q-P1-P2/2+A2

1 1 1 Is
+ /q-P1/2+A2 + /q-p/W + /Pj+P/2 + ^2 qW *

Making use of substitutions like q- p1 = p,, it can bed3?l dP2 1
shown that the integral 1 S —- ----------------- X will

V P2 Z^-Pl-V
have the same form for the three values of X namely,



-1 -1-1 '

————- * —---- - * --------- ------ « Similar grouping can
P1 +X P2 + K /q-Px-P/ + *

be done with the positive terms also of the above expression. 
Now the substitutions

P1 p-

(3)
GES 24 k±2z3 dz

( - ) z4 [’

dP,-1

1+z"
dP_

where I3k / z-p^/2 p22/Pi“P2/2 7 k
h . i > &2 = i + s22- e3 = 1 + h2-

Si + 3I32

0/

3133 ]

The I_, integrals also are divergent like T integrals.JiC 2.K
But the beauty of these calculations is the exact
cancellation of divergencies. The substitution of 2 into3k
the above expression gives

(3) 1 d z
' « -2-3- (-) ----GES 8k±z 2 dz 1+ z

4 [in ( 1 21+z
z

where a(z) = 2 (in z)z + — +2 ----r- , z •$ 1
6n n5l nz

00 (-l/z\
rs - £ -----S---7 t Z > 1 .

n=?l 1V

2a(z ) j 
..(3.16)

Now the Born terms are evaluated following Yates (1979).

The evaluation of these terms differ from that of the 
GES terms mainly due to the inclusion of average excitation 
energy. For ESGH process/



(2)U ' . Cq-p-^X * P+3 *)

2., x2.q +2 h.

7? (P2+32) (/q-p/2+/32)
d

dX

*X2(q2+X2) / q-P/2+j3 2+X2 d2 2,2 JP +j5 +A.

The above expression reveals the correlation with the(2)
corresponding expression in f , but tor tne average

-GES
excitation energy parameter 0. Hence flm can be written -
making use of partial fractions - as 

-4 d dP i 2 .,21 q +2X
flm = *k dX (/q“P/2+j32) Xz fc 'q*+ X[(■

rj2 n2P + 0

P2+02+A2 ■

which may be written as
4 d 1 
Kk± dX Xflm = 2 [2I1(32A2) 2 ,2 ^‘eho)]

q +X
(3.17)

The average excitation energy parameter 0 = 0.465/k^ (Byron 
and Joachain 1977).

A very similar procedure can be adopted for the
(2)evaluation of the real Born terra fRe, . In this case/ U _.1 f i

is similar to the one given above but for the replacement of 
0 by P . Thus f Re, becomes

47\~ d
f Re1 k± * dX ? oo/ dP / dP“ </q“P/+P 2) (P -3)

Z Z
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q q2+2 X2
1 [ ( ----------------s L 2 >2w2 • <3 +X

•2)
P2 + P 2 P2+P 2+X2

z z

which may be written as

f Rel = "2 C — ) [ 21 (|32,X2) q
2 .-t, 2 ~2

I (02,O)] (3.18)
^~ki - <=k • . q“+x

2 2 ^ 2The integrals (/3 ) and ,% ) are given in the

2 2 2appendix. (/3 ,0) is obtained by putting X=0 in (g ,X )

Now* fwp in (3.6) is evaluated using (3.12)* (3.7) and (3.9).
2 - 1 24 4(48 -ai2.)] (3.19)

This gives fW,2 ki2 ^ (16+q2) T (16+q2)2 ^ (16+q?)^

The application of Oehkur approximation in the evaluation 

of the exchange term gives

'eXcn ki

2 iq.r *
— / e - - ijl (r) y{r)

32
3 z (\2 2 \ 2k. \X +q )

.. (3.20)

Substitution of the terms from (3.14) to (3.20) gives the 

MGES scattering amplitude (3*6) for EGSH process. Now the 

DCS is given by
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curve drawn with __ Sin© against ©. The total cross
a-n.

sections (tcs) are calculated from

4 7\
®t = k7~ fIm (3.22)

Results ana discussion i*.

The DCS for the ESGH process are calculated using (3.21) 

for incident energies from 100 eV to 800 eV. The TEC and TCS 
are also calculated using (1.9) and (3.22). The DCS at 100 
and 400 eV are displayed in fig.3.1 and fig.3.2 alongwith 
other theoretical and experimental data for comparison. The 
individual terms of the fcOES amplitude (3.6) are exhibited in 

tables 3.1a and 3.1b at the incident energies 200 eV and 
400 eV. In table 3.2* the DCS at the sample energies are 
given. The TEC values in the present study along with the 
data of other workers is reported in table 3.3. Similarly# 
table 3.4 displays the TCS values.

A glance at fig.3.1 and 3.2 reveals that all the DCS 
curves lie close to one another in the small angle region 
and they depart from each other as © increases. The real 

test of a particular approximation is in its satisfactory 
description of the scattering process in the entire angular 
range. Fig.3.1 shows that the present M3ES results agree 
very nicely with the experimental data and perhaps they are 
nearest to the experiments. They improve upon the basic 
GES results considerably. The present results closely agree
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with the OM results (Byron and Joachain 1981). The 
disagreement of these results with the HHOB results (Yates 
1979) is not at all discouraging because the HHOB results 
are proved to be very much overestimating in the large angle 
region (Rao and Desai 1981/ 1983). The present results 
agree very nicely-for all © - with the sophisticated DWSBA 
calculations of Kingston and Walters (1980) (not shown here) ;; 
and also almost coincide with the recent USES results 
(Byron et al 1982) in the small angle region.

The present M3ES method (3.6) may in general be 
considered as a termwise analysis of the UEBS method in the 
same spirit of the GES analysis. Hence, if the inequality 
» 1 is satisfied such that the MGES (3.6) can be antici

pated to be rapidly convergent, the present termwise analysis 
should give a very good representation of the UEBS cross 
section for all values of q. Prom Fig.3.1, it can be seen 
that the MGES results differ from the UEBS results in the 
large angle region. This difference is mainly due to the 
difference in the treatment of exchange in the two methods®
In UEBS, Byron et al have used a new non-perturbative approxi
mation for the exchange scattering amplitude which leads to 
lower differential cross sections at large angles, whereas in 
the present MGES, Ochkur approximation is used for exchange 
calculations* However, excluding exchange effects, the MGES
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and UEBS methods give very nearly the same results. The 
agreement of the two sets of results becomes better at 
large energies because the present amplitude series (3.6) 
becomes more rapidly convergent then. It may be noted in, 
fig.3.2 that at 400 eV, the M3ES 'and UEBS results are very 
close to each other# even with the different treatments for 
exchange. Thus the MDBS (3.6) proves to be a satisfactory 
representation of the UEBS for all values of q# even when 
the inequality k^ » 1 is only marginally satisfied.

\

However, it may be noted that the UEBS evaluation 
is tremendously difficult even in the case of hydrogen (Byron 
et al 1982) • It is bound to be more and more complicated 
for other atoms like He# Li etc. But the present M3ES 
analysis# which represents the UEBS series satisfactorily# 
may be easily evaluated even in the case of higher atoms# 
as shown in the subsequent sections of this chapter. This 
is precisely the most important advantage of the present 
method®

The present method# xvhich is a high-energy-approxima
tion method# should be naturally expected to give better 
results at higher incident energies. This fact is explicitly 
clear from fig.3.2® It is encouraging to note the improvement 
over the basic GES (Yates 1974) results here also even though 
the improvement is less than in fig.3.1®
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Table 3.1a shows the individual terms of (3*6) for 

the ESGH process at 200 eV. The similarity between the
(2) (2)

imaginary terms f and flm is striking, f comes from
GES GES

a zero-excitation energy approximation whereas the excitation
energy parameter is present in flm. Their similarity is(2)
another point in favour of the replacement of f by the

GES
HEA Born terms in the present study. In Table 3.2 the 
present DCS values at certain sample energies are exhibited.

Table 3.3 throws light upon the similarity of the TEC 
values calculated in the MGES and UEBS methods. It is 
obvious that the agreement improves as the energy increases. 
This supports the argument that the MGES satisfactorily 
represents the UEBS as found in the DCS comparisons. The 
table also shows that the present results agree nicely with 
all other theoretical calculations whereds all of them differ 
from the experimental values. In the light of the excellent 
agreement between the theoretical predictions# it is difficult 
to see what effects could be invoked on the theoretical side 
to explain the differences between theory and experiment.

The table (3.4) of total cross sections also shows 

sucn a behaviour as is qualitatively similar to the one shown 
by table 3.3. .Remembering equation (3.22)# it can be easily 

understood that the present values of TCS should be the same 
as those obtained in the HHOB method of Yates (1979) because 

both the methods have identical imaginary terms. Naturally# 
the present results compare better with the other set's of data 

for higher energies.



98

Through' the above discussions# the feasibility# simplicity 
and significance of the M3ES approach are brought to light*
The satisfactory representation of the sophisticated UEBS 
amplitude# the ease of calculations in comparison with the 
UEBS evaluation and the highly encouraging results obtained 
in -che ESGH process provide enough motivation to extend the 

present MGES approach to other scattering phenomena.

3.3. Elastic scattering of electrons from the excited (2S)

state of Hydrogen atom ;j

In spite of its numerous applications in astrophysics# 
plasma physics and various gaseous phenomena - besides the 
intrinsic theoretical interest associated with it -# very 
less work has been reported on the study of electron scattering 
from excited metastable states of atoms# when compared with 
the bulk of estimations of similar process from the ground 
state. The same is true even in the case of hydrogen atom. 
Electron-scattering from 2S state of hydrogen - abbreviated 
as ESEH - is a fundamental process for which it is reasonable 
to assume that experimental data will become available in the 
near future. A recent revival of theoretical interest on 
this scattering problem has resulted in the extension of many 
a theoretical method to study the above problem. Even then# 
the available data can be considered as scarce. Added to this# 

the motivating factors cited at the end of section 3*2 are 
enough for an exploration of the ESEH process from the 

dimensions of the MGESi approach.



The interaction potential for the ESEH is the same
as for ESGH (3.10^. The H (2s) wavefunction is known as

1 -r,
f 2S t/27\

(2-r^) e 1/>2 (3.2§)

The static potential is evaluated as < ff/ V / Yi>

l 1 . 3 , r ^ r2 \ ”r( r + 4 + 4 + 8 )e (3.24)

because = = ^2S

(3.10), (3.23) and (3.24) may be used for the evaluation of 

the individual terms of (3.6). For similarity with the ESGH
*process, the product y y may be represented as 

,3 -y.r, -2

f V = Cl (-
■dJ _"ylrl d“ -y_r

dm3
•) + C2 C ) &--+c (-

dy.

d

dy.

■y3ri
(3.25)

where yi = y2 = y^ = 1,

°1 =
1 -1

--- , C = --- , C.
327\ z 8* 8 *

(1)f , is essentially the same as first Born term (Yates 
GES

1979), the evaluation of which is straight forward. This

gives

(1) , ~3
f . = 16*
GES

C_(q2+2X2)

l^iq2+^)2

, 2 „ r 2-d q + 2i0-d- + c.+ c ( —-) —o------- - .22 d£ Xo / 2 _ ,2^2 Xd*

U5^iu r '

'2 12 Cq‘Vj)'
2 a 2q + 2

i2(q2+A2)2
(3.26)



Now proceeding in the same way as in ESGH process# the 
second and third GES terras may be obtained.

(2)The expression for f 2x1 the ESEH process can be
GES

easily obtained by considering the similarity of the wave- 
function product (3.25) with the corresponding expression
(3.13) in the ESGH process. Corresponding to the three

•#terms in the ^ ^ (3.25)# three expressions will constitute

the f Hence
GES

(2) (2) (2) (2)
f , = f + f . + f
GES 1 2 3

Garrespending to the term dy
d -y3ri
—) —

(2)
f = C 7? (

TTlc.q
-) H t2<*3>

where D is the differentiation w.r.t. z as transformed 
dfrom dy.

[a
dy.

z, df (y ) = — —----  f (z„) J and
3: a dz„ . 3 ■

t2W3)
1 + Z.

47T In with z.1+z3 z " ~3 y3
3 3

Similarly# for the other terms in (3.25)#

(2$
f • - - C2*c T—T

, Ak, q2
(2)

4: IX) D f^Czg) and

= C, % (

r
-4 s ^111,. / v, 4 ) D f (z )

1 Akiq - 2. 1.



11 111where D and D denote differentiations of the second _
d2 d

and third orders w.r.t. z as transformed from —— and —r
, dy dyUsing the expressions

d f (y)
dy

d d“
[2 — f (z) + z —— f(z)j and 

dz dz'

l2
'2

,2
_d
dy

(y) c3q

d d6 — fCz) + 6z —« f(z) + z
dz dz*

(2)in the above expressions, f becomes
GES

16 % ( C d -_’2
~ [6 —

f (z)
dz'

(2)
GES

df ^ (z, ) + 6z,-- ~ £„ (z., ) + z, 3 C 4 L , 21 1, 2k±q y dz^ , dz^ 2 1 dz.

+
2 r d 

[2 ~

2
c df (z )] + ----

2 2,- y^ dz3

■--  f2iz2) +Z2---2
dz2 ^ ^ . 44 dz2

f2 U3}

where q

(3.27) 

2
Z1 ' Z2 = y.

and £ (z) =
A

1+z
1+z

In

f
(3)
GES

A similar argument follows in the evaluation of
which may also be split as

(3) (3) (3) (3)
f = f + f + f
GES 1 2.3

By analogy with similar expression in ESGH process,
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(3) /f = C % l

V 2 5
(3)

f ' ' = c. x C

-4
2 4ki q

j D11 f3(a2) and

* v 111 , \—> D *3lzlJ
ki q

, i li mwhere D , D and D have the same meaning as in the
previous cade/ and f (z) is as defined below. After3 . (3)
performing the differentiations/ f becomes

GES
u d2

[ 6
1 ~"1

(3) 4 A
GES k 2q3

C d cT—r [ 6 --- f_(z ) + 6z.--* f (z )yf day 3 x. 1dz2 3 x

9 d “T —

+zf —- f3^zl'>3 + —“ [ 2--- f^Czo) +zJ1 . 3 dz
2
3

d
dz.

d*
3 2 2.2dz„2

C d
f Cz )J + —---- f,(z )3 2 2 dz„ 3 3Y3 3

(3.28)

4
where *3 z

1 -f z

where a(z) is same as in (3.16)

1 + z2 2 7^2
4 [ In---- - J + — -2A(z)

In the expressions (3-27) and (3.28)# by putting
x (2) (3) ' (2)

G = __ and y = 2/ f , and f , get reduced to the f3 ^ 3 3 3 GES
(3)

and f . for the ESGH process (3.15) and (3.16). This 
GES

provides an indirect check to the present calculations.

The evaluation of flm and fRe^ are now done following 
Yates (1979). The average excitation energy parameter for



/

!■;]

the ESSH process is taken as 0.0556/k^. Using (3-10) and 

(3.23) flm and fRe^ may easily be obtained.

As in the case of the GES terms# the evaluations of

the Bom terms are also made easier by making use of the

correlation between the. ^ in the ESGH arid ESSH processes.

As a result# flm will be constituted by the sum of flm1,

flm and flm - the contributions arising from the three

parts of Y Y (3*25). -In comparison with the ESGH process#

3flm may directly be written as

flm' C A-~ [flm for ESGH process (3.17)]

with A. * y and j3 = 0.0556/k. • Similarly flm2 and flm1

3 x a
may be obtained by replacing C^y^ and

d' dy.
by C , y,

and and C # y and ——r respective!^. Thus the
dy^ ■1 dy£

imaginary Bom term in (3.6) may be written as

,2
flm = C (----------) f„(jS # q , yJ + C

3 dy_ 2
3 ^

d

2 2 2 \ . „ „ i „2 2 2 'i3J * C2 ~2 f2‘P '9 'V
dy.

+C;L(--------y) £?(02tq2fyp (3.29)
dy^

4 1OOO ^ r / O O ,
where f (/3 ,q,y) = +-----------rr r r'~r n -

2 k. yz
r x

[21. (jS2,y2)
"I72 xi 
q +y

I, (/32#0)]

The type of shortcut mentioned in connection with the 

evaluation of flm is equally successfully applicable to the 

evaluation of the real Born term £Re^. ■ Thus it follows that

fRe-^ = fRe1 + f Re2 + f Re3



With f Re3 = C^x [ fRe^ f°r ESGI^ process (3.18)] with the
3 m isane 51 and 8 as in flm . Similarly# the expressions for -f Kt,

2 3fRe2 are obtained by substituting C # y # —„ and C # y #
X 22 , 3 1 1

d3 in the place of C # y # 13 
“ 3 , 3 3 ~dy1 dy,
for the ESEH process becomes

dy.
Hence# the final form of fRe1

•d df Re, = c, (----) f3(e2# q2# y2) + C2---j f 3 i$2, g2, y2)
dy. dy,

+ ci(
dy'

) f (,82# q2# y2) (3.30)

where

, / n2 2 2,f-^P # q , y J = [2l0(82,y2) -
*k. ,.2 / 2 2x y q +y

I2 (8 ,0)]

Now f „ is obtained using (3.24)# (3.7) and (3.9)® The , w2
evaluation of this term is quite straight forward and gives 

1
fW2 2k

[1- 7 d 1
i d* 2

d2 1 ,3 _ ,4d 3 d
+-dk2 2 dk3 8 dX4

16 dV
d Id

4* 16 d?l6 A2+q2
i 1 (3.31)
-1 o o

where K = 2

Using Ochkur approximation# similar to the ESGH process
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8

'exch “ j, 2 '1 . 3 0 ,dy, 2 2J1 q +y(
+ C2

■ay* q2+ Y2

d
+ C 3 , 2 2 dy3 q +y3

(3.32)

Again, the similarity between the wave function products is 
made use of here. Now the MGES scattering amplitude (3*6) 
for the ESEH process can be obtained using equation (3.26) to 
(3.32). Here also# the DCS is given by (3«2l).

Results and discussion •

The differential scattering cross sections in the frame
work of the MGES approach for the ESEH process are calculated 
for incident energies ranging from 100 eV to 800 eV. In each 
case# the DCS in the GES method were separately evaluated 
using (3*26) to (3.28) in order to compare with the corresponding 
Glauber cross-sections. Such comparison had not been made 
previously eventhough Yates (1974) had mentioned that the 
determination of the validity of the GES analysis for collision 
processes other than ESGH requires further study. Moreover# 
a comparison of the present MGES results with the UEBS results 
(as in the case of ESGH process) for the ESEH process is not 
possible because the UEBS results for the same are 'not available 
so far.

The present results at 200 eV and 400 eV are displayed 
in fig.3.3 and 3.4 alongwith the data of other theoretical 
methods. It should be remembered that absolute experimental



measurements on the ESEH process have not been reported so far® 
In tables 3.5a and 3.5fo the constituent terms of the amplitude 
series are listed separately. The present DCS results for 
certain sample energies of incidence are given in table 3.6.

In fig.3.3# along with the present MGES results for the 
ESEH process (curve a) the corresponding M3ES results for the 
ESGH process (curve b)..'at the same energy are given for the 
sake of comparison between the two. It is seen that beyond 50° 
they almost coincide® This is actually what is expected since 
the nuclear part of the interaction progressively dominates the 
scattering as Q increases. -Similar type of coincidence was 
previously mentioned in the EBS and two-potential approaches to 
the ESEH process (Uoachain et al 1977, Pundir et al 1982). The 
same may be expected to be true in the case of UEBS approxi
mation also. Such a situation allows a rough estimate of the 
UEBS cross section for the ESEH process in the large angle 
region (say above 50 U eveta though the exact calculations have 
not been performed. It may be anticipated that the large 
angle cross sections will be nearly the same for ESGH and ESEH 
processes. The UEBS results for ESGH process - for large © - 
may be compared with the present M3ES results. The nice 
agreement between the twb further strengthens the argument 
that the M3ES satisfactorily reproduces the UEBS results.

A study of fig.3.3 and 3.4 reveals that theMSES results 
compare with other data in a way similar to the one found in 
section 3.2. At small angles, all of them show close agreement



1*7
and they depart in the large angle region. The HHOB results 
(Rao and Desai 1983) depart the most from the M3ES values - 
sometimes even an order of magnitude. The present results 
lie between the OM (Joachain and Winters 1980) and two-poten
tial results (Pundir et al 1982) . Since all the cited results 
agree with each other in the small angle region where perturba
tion theory is rapidly convergent, the real test of the 
accuracy of a particular method is .in the large angle DCS.
In the absence of experimental data to support the theoretical 
predictions, it is rather difficult to comment on the accuracies

!

of the various approaches* In the light of the results obtained 
in the ESGH process and the comparison between the ESGH and 
ESEH processes, it is only reasonable to expect nice agreement 
of the present MGES results with experimental data when it 
becomes available.

As in the case of ESGH study, here also the imaginary(2)terms f and flm show striking similarity (table 3.5).
GES

The present method is expected to give better results for 
higher incident energies.

Table 3.7 shows a comparison between the DCS values 
obtained in the present study in the GES approximation and 
their Glauber counterparts (section 4.4). It may be noted 
that such a comparison has not been reported earlier. It is 
clear from the table that the GES and Glauber results are 
approximately the same and the proximity of the results 
increases with incident energy. Thus,it can be concluded that



1*8
the first three terms of the Glauber eikonal series are 
sufficient to represent the Glauber amplitude in the case of 
ESEH process.

Table 3.8 lists the total cross sections obtained in 
the present study using the optical theorem. It should be 
noticed that these TCS values are proportionate to those 
obtained in the case of ESGH process (table 3.4). Similar 
behaviour is discussed in detail by Pundi-r et al (1982).

Prom the above discussions# the general conclusion 
'drawn is that the M3ES is a successful method in describing . 
the ESGH and ESEH processes. Stimulated by the encouraging 
results# we now take up the study of electron scattering 
from helium target using this method.

3.4 Elastic scattering of Electrons from the ground
state of Helium atom i

Recently Singh and Tripathi (198 0,) studied the electron
scattering from helium atom within the framework of the GES 
method. They concluded that the inclusion of only the first 
three terms in GES gives a good representation of the Glauber 
differential cross-section for elastic scattering from the 
ground state of helium (abbreviated as EHe process). However# 
the DCS were too low in comparison with experimental data at 
all angles (except very near the forward direction where they 
diverge). Hence# it was desirable to study the EHe process 
using the MGES method which has given improvement over the 
GES results in the case of electron scattering from hydrogen.
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The interaction potential for tne EHe process is 

given by

(3.33)

The ground-state wavefunction of He is chosen as the Hartree- 
fock wave function of Byron and Joachain (1966).

y (rrr' ) S 02 *1S

with ^is(rJ 1
JVk

where A = 2.60505
B = 2.08144

Yi = 1.41 -

Y2 - 2.61.

(3.34)

-Y r -Y r|~ A e "t B e

The static potential of He, was chosen following Cox
and Bonham (1967). Thus,

V :-2 l YT-
-X .r e J

st j*L J r

Here = 2.4908 7^= 1.0030
%2 = 3.8608 -0.6146
A. 3 = 6.1256 -0.1840
\ = 2.8522 7j» 0.6116

*5

and S 77

= 5.1284

£ 1.

0.1841

(3.35)
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where the values of D^., k and k^ are listed in table (3.9). 
(2) (3)

f and f for the EHe process using the same wave
GES GES

function (3*34) were earlier reported by Singh and Tripathi 
(1980). They had given the numerical results at 200 and 400 eV 
also. In the present study, the same procedure was followed.
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The lengthy expressions for these GES terms are not given here 

because they will be unnecessary reproduction of earlier 

results.

In the evaluation of the Bom terms# Yates' (1979) 

procedure was followed. For the case of helium target,

V
(P+P X;r r ) z 12

2a2(P2+P 2) 
z

[ i P.r-1 + e
1 ~*~2-2]

The 0 parameter was chosen as 0 = £.2/ k^CByron and Joachain 

1977). For the Helium target#

' (2) _ A , -
U = < f /V (p+pzX'T1'r2) v Cq-P-P2^ ;r1#r2)/ f >

11 1 ,9 "klKri“3c2Kr2
=---------------------------  // 2 Dk e
64(P2+P 2) C/q-p/2+P 2) ' ^=1 

z z
icj.b icj.b iP.^ i iP.r i/s-g/'t-,

[ e “*L + e "2 -2e “ “X -2e ~2e

i/3-p/.r2 i^*£1Vg~P/«r2) i(P.r2+/q-P/»£1^
~2e + b . 4* © 4*4: J

Mow taking each term and integrating,
(2) 1 9 <■ du. » —7 S DT, M--- - ) [
fi

k „3 A 2K 1

:7t

] + (-

klK3 A2 1 + cdkIK

dkIK 2K
2

k„T-r3 (q2+knt,2) kow.3 B
IK" "2K 1

4

&CM
■8 ) [ -----

k 3 k1K (q2+k2K2 ) klK3 B2

-Ac—■
-d

“) ( ----
1 ■

) [-----  f -
1-----] + - 16

^ V2 AiBa klK3 k2K3'

(P2+P 2) (/q-P/^+P A) 
z z

,2.-0 2*
(3.37)
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where = /q“P/2 + P2 + k^2, + k.^2,

&2 = /<3-p/2 + Pz + k2K2' B2 - p2+P^ + k2K2'

The following method of partial fractions was used in the 
calculations*

(P2+P 2+X\2) (P2 + P2) 
z z

1 1 - -  [- 1
(P2+P2) (P^+P^+X*)

Z z
,2 _2 *2,

(2)
since flm =----- / dP U , the above simplification

k. f ihas to be used repetitively.

Thus flm becomes 
1 9

flm =
AkjjKrpl

* 1 t 4kIK 4k
+ 2K.

k2K3 (q2+k1K2)2 k1K.3 (q2+k0^2)2
IK' "2K

klK3 k2K3
16 . 4 d 1------ ] X^jG ,0) + ---- (----) —

k2K3 ^IK- klK2

9 9 n 4 d 1[2 lA^,0)-2 I (B%k1K2 )] + -----  (---- )----
■ klK3 k2K2

[2l1(B2/o)-2l1(B2,k2K2)]+ C- d ■,_—). ( —sL )elk, T,1 dk ,, IK. 2K

klK2 k2K2
[2I1(j32#0) -2l]L(B2,k2K2) + 2l4(/32,k1K2>k2K2)
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Performing some of the differentiations and simplifying the 

above expression, the imaginary part of (3..6) was thus derived 

as

fl
m

1 9
--------  £

7Tk± K=?1
DK

j- 4klK

k2K3(q2+k1K2) 2
4k2K

klK3 ^ +k2K2^ .

8 d

klK3 k2K3
] I. C/3 , c)-----------( -----------  )

X V Ok2K3 . ak k, T,2
Ilt/3 'k1K2)

IK ’ IK

A
( ---------  ) ------- T (p2,k_„2 ) + 2C--------- )

V O XklK3 dk2K k2K2 dkIK

Ctr---- )•dk 2K ' klK2 k2K2
I4 (P #k1K2,k2K2) (3.38)

*Here 1^ (p2, y2) and l^(p2#,0) are similar to those given in

(3.17),. I. (p2, k,,,2 , k_„2 ) is given in the appendix.
4 Xix Z&.

Proceeding in a fashion similar to the above one, f Re^ is 

obtained as

-47s2 oo dP 9 1
f Rei o jP/d.p^ p"TJ- ^ \ 777^2^2777“~

ki z k=l K 4 a* (P +P^) C/q-p /+P*)

4K.Ik 4K 2k

■2k3Cq2+Klk2)
+

16 4
-I +

Klk3 ‘<1 +K2k2) Klk3 K2k3 K2k3
'2k Ik 2k'

4
[- + -] +

^ifc Bi Ar Kik3 ^2k - B'
+ -Aj + (

d
-) C

d

A, *lk *2k
)
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1 1 L----+-----]

B1A2 A1B2 ‘

1 9 4K

ft k_. k=l
\

lk 4K 2k 16
K2k3 +Klk2^ Klk3(q2+K2k2)2 Klk3K2k3

d
ijp2, o) + ------(---- )

K , 3 dK_, K.. 2 2k lk lk
[ 2I2(r,O)-2l2(02,Klk2)]

+ (_JL_) ----- [2Io(32,0)-2 I0(j32,K0V2}J + (_ )(' d

K,, 3 dK , K 2lk 2k 2k
2”"”2k ^Ik ^k

K 2 K 2 lk 2k
[2l2(02,O)-2 I2(j32#Klk2) -2I2(32,K2k2)

+ 2 I5CS2,Klk2,K2k2)] j

The simplieation of some of the terms as in the case ,of flm 
results in

-1 9£ R , = --s--2 D.el" 2
It;

4K.Ik 4K2k

ft^k, k=l k CLK2k3 (q2+Klk2)2 ^3 (q2+K2k2):

8
Klk3 K2k3

, 4 d 1 „] I (r,o) -  ---- (---- ) ----- I „(8,K 2)
- 2 . K 3 dK K 2 ^ XK2k lk lk

4 d
----- (---—) 1 io(82#k_ 2) + 2 (——5C—-—)
K 3 <3Kn, K 2lk 2k 2k

”2 ' 2k

Kl)c2 K2k2
1 5lg <K!k2' K2*2) ...(3.39)
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2 2 2Here I2 (j3 , y ) and I2(0 are similar to those given in

2(3*18). The integral I (j3 , K 2, K 2) is given in the
D XK 2K

appendix* Now £ £ is calculated using (3*9) and (3.35).

k. 2 i==li

52
j=l

w
[ (^+A_.) ^+q^]

(3.40)

The Ochkur approximation for the evaluation of f 
gives

exch in (3.6)

fexch dv^ dv^
iq.^

e V a . « (3 *41)

which can be easily evaluated using standard integration 
techniques. Now the substitution of the various terms in (3.6) 

gives the MGES scattering amplitude for EHe process from 
which the DCS can be calculated. Here also the TCS and TEC 
may be calculated similar to the ESGH process.

Results and discussion *

The differential cross sections for the EHe process 
are calculated as above at intermediate energies. The results 
at 200 and 400 eV are represented graphically (fig. 3.5 and 
fig. 3.6 respectively), and compared with the data of other 

workers.

A perusal of fig.3.5 reveals that the present results
improve over the basic GES results quite significantly and they 
show very nice agreement with the experimental data. As in the’
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case of ESGH and ESEH process, here also# the HHOB results 

overestimate the present results in the large angle region.

But the two sets of results exhibit close agreement in the 

small angle region (upto 60°)«. in the case of EHe process# 

there is no UEBS result available in order to compare with 

the present JHDES results. The complexity involved in the 

evaluation of the UEBS scattering amplitude is obvious from 

the experience"With the EHe process. The beauty of the MGES 

method is the comparative ease of evaluation of the scattering 

amplitude# all the terms of which are obtainable in the closed 

form. Hence#' there is no need for the complex numerical 

methods similar to those used in the UEBS method. However# 

there is enough reason to believe that the present M3ES 

results will satisfactorily represent the UEBS results for 

the EHe process when they become available.

The present results should naturally give better 

results for larger incident energies. The comparison of 

figures 3.5 and 3.6 prove this. It may also be noted that 

the deviation among the various results obtained through 

different approximations narrows down as the incident energy 

increases.

In table 340# the present DCS results at certain sample 

energies are given. Table 3.11 shows the TCS values. Here 

also# the TCS values should be the same as in the HHOB approxb 

mation. Tables 3.12a and 3.12b show the individual terms of
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the amplitude series (3.6) at 200 eV ana 400 eV. The

(2) -similarity between £___ and f Im is repeated in the EHe
{jZjO

process also. From a tabulation of the above form (table 
3.12)/ an idea about the convergence of the series can be 
obtained. It should be remembered that the wavefunction 
used for helium (3.34) is approximate/ thereby introducing 
an additional source of error into the calculations. However, 
the agreement of the present DCS with the experimental 
observations is definitely a matter of encouragement.

3.5 Elastic scattering of electrons from the ground
state of Lithium atom s

Motivated by the successful application of the M3ES 
method to the elastic scattering of electrons from the ground 
states of hydrogen and helium, an attempt was made to study 
the similar process from the ground state of Lithium atom.
The study of alkali atoms has special significance in certain 
specific areas like magneto-hydrodynamics. A knowledge of 
the scattering cross-sections is an important design parameter. 
However, it is difficult to believe that methods which apply 
well in the study of atoms with a closed shell can be equally 
successfully applied to the case of alkali atoms. The reasons 
for this are elaborated in the later chapter on alkali scattering 
However, the most important point to be kept in mind is that 
the absorption effect (removal of electrons from the elastic 
to the inelastic channel) plays a leading role in the alkali 
scattering. A comparative study of the optical potential model 
and EBS type of approach has revealed that the absorption part
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Vabs of the optical potential treated in the first Born along 

with the contribution arising from the treatment of the 

static part V twice in the second order of perturbation
QX.

will give the imaginary part of the EBS amplitude. This 

takes proper care of the absorption effects. Since the present 

MGES method is# in one sense# an EBS type of approach# there 

is enough reason to believe that the MGES amplitude will 

account for the absorptive part quite satisfactorily. Hence# 

there is no much scope for hesitation to extend the MGES 

method to the elastic scattering of electrons from the 

Lithium atom (ELi process). Moreover# Lithium being the 

lower extreme of the array of alkali atoms# the discrepancies 

arising in the study of these atoms will be the least in the 

case of Lithium. In spite of the main features of alkali 

atoms - the loosely bound S - electron# the large polariza-’ 

bility and the quasi-degeneracy of the ground and first 

excited states -# the Lithium atom may# by and large# be 

considered similar to the hydrogen atom when it is modelled 

in the core - approximation of Walters (1973) - the nucleus 

and the inner shell forming the core and the 2S - electron 

behaving as the valence electron.

As mentioned previously# the computational complexity 

involved in the evaluation of scattering amplitudes goes 

' on increasing with the atomic number of the target atom. Hence# 

the decrease in the available data. In order to reduce the 

computational difficulties# the lithium atom is modelled in
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the core-approximation. Earlier, Walters (1973, 1980} has 

used this approximation to study the alkali scattering. It 

is anticipated that this approximation results in an error 

which is insignificant in the light of the diminished labour 

and the' computer time saved. According to the core approxi

mation, the total interaction between the incident electron 

and target atom can be written as

V = V.. + (3.44)
H G

where is the hydrogen - like term (3.10) and V is the
n. L.

potential due to the core of the atom, given by

=2 2 /dv. 0* (r } [--- + -------— ] 0, (r ) (3.45)
G 1=1 X X X r /r _ r / XX

for an alkali atom with (2n+l) extra-nuclear electrons. Here 

0^(r^) are the spatial wavefunctions of the core electrons* 
For lithium atom, n = 1 and

up (2.7)
1/2

] exp (-2.7^)*

Hence, from (3.45),

Vc(r) = -2 [ ” + 2.7] exp (-5.4r).

So that V -1
r

-5.4r+ 2 ( 1 + 2.7) e
/ £3/ r

(3.46)

Similarly, the valence electron wave function is written as 
(following Coulson 196l)
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y as V = C *28 + ^13 such that

/ *
Y 2S Y2S (rxJ ah = 1/

/ Y*2S (r) 0 (r )IS 1 dr =
1

0, and

/ 'll * is lrxJ dr = -1 1.

•
• • Y 2S ‘V = A r^ e

—X, r„1 1 —X T~0 2 1+ B e

where A = 0.11252, B s■ -0.42204
= 0.65 V :

2 = 2.7

(3.47)

The remark of Walters (1973) should be remembered at this 
juncture that the calculations involving the wavefunction 
(3.47) give much the same results as those obtained using 
the more sophisticated one - electron wavefunction of Szasz 
and Me Ginn (1967). The same will be proved explicitly in a 
later chapter of this thesis. The static potential for 
lithium atom is taken similar to that of HeUuMfollowing Gox 
and Bonham (1967). Thus

V (r) * -3 2 'J
st . j=?l

, -X.6 -f e___jr (3.48)

where
\ = 0.8737 A 2 = 7.9222 *3 - 2.2685

%4 = 3.8024 S = 1.3839 H2.7056

n = 1.3215 if « -0.2273 1.3369

y* = 1.1407 = -1.6110 -0.9567

2
J

so that
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Equations (3.46), (3.47) and (3*48) are now used in the 

evaluation of (3.6) for Eld. process. The calculation is 

made simple by considering the analogy between the wave- 

functions of Li and H (2S) (Equations (3*47) and (3*23))# 

and their interaction potentials (equations (3.46) and (3*10))* 

In the case of Li also# it will be convenient to express the 

product of the wavefunctions | | in a form similar to that 

of SSEK process (3.25). In both the cases# only the 

coefficients and exponential parameters of the terms will

differ . For ELi process#

Y —1 1.3 y2 . 3.35 Y3 = 5.4

O 11 0.01266 C2 « 0.09498 ' C3 = 0.17812

It has been pointed out by Mathur (1972) that the

difference between the scattering parameters obtained using 

one or three electron wavefunction of Li atom is not very 

appreciable at intermediate and high energies. He has 

arrived at this conclusion by using the Glauber approximation. 

Since the present M3ES method is another way of representation

of the Glauber amplitude with certain modifications# the use
/

of one electron wavefunction in the present study is justified. 

Moreover# it was '''also pointed out that the inclusion of the 

core potential in the double scattering terms will not affect 

the cross sections appreciably. Later on, the same assumption
i

was followed in the study of ELi process in the fixed scatterer 

approximation - FSA - (Guha and Ghosh 1979) and in the HHOB
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approximation (Rao and Desai 1983). Hence, in the present 

study also, the effect of core is taken into account only in 

the first term of the series (3.6) and is neglected in the 

higher order terms* As a result,

CO
f ean ':be-,-wf itten as ( *_ )

GES “
(1)

f = f + f (3.49)
GES an.

where f is thecontribution arising from the treatment of
3.

the hydrogen - like term VT7 of the interaction potential (3.44)
n.

and f^ is the term originating from V • Considering the

analogy between (3.23) and '(3.47), it can be easily understood

that the expression for f will have essentially the same form
(1) a

as f in the ESEI4 process (equation 3.26), Only difference
GES

will be in the values of C*s and Y* s. These values are 

defined earlier. The evaluation of £, arising from the core 

part of the interaction is quire straight forward giving

f, = 4
.o q2 + k2+ (q2 + Ji2)2 (3.50)

where k = 5.4
(l)

Thus f = f + f. can be easily obtained. In the
GE§ (2) (3)

evaluation of f and f , because of the neglect of

the core effect (V ) of the interaction potential (3.44) and
c

the analogy between the wavefunctions (3-23) and 3.47), the
, (2)

resulting expressions will have the same form as the f and
(3) - GES

f in ESEH process (equations 3.27 and 3.28) with new
GES

values for and Y^.
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To find out the average excitation energy parameter /3 

for the ELi process used in the evaluation of the Born terms 

f Im and f Re^ of (3.6), the prescription of Byron and 

Joachain (1977) is followed. Accordingly

2<'f/Z2/fi
w = $ k,^ = —-------------------------- (3.5l)

t
where 15 is the excitation energy, £ is the dipole polariza

bility of the target atom, Tjf is the ground state wavefunction 

and |3 is the average excitation energy parameter.

pUsing the wavefunction (3.47) < TjF / Z / TjT > = 6.055 a.u.

Using the experimentally determined'value of £ for Li 

( £ = 167 a.u.) (Stemheimer 1969), oB (given by 3.5l) works 

out to be 0.0723. Using the Hartreefock wavefunctions of 

Clementi (1965), Vanderpoorten (1976) has, in his optical 

model approach to the BLi process, worked out the value of 

< Y / 22 / Y ^ as 6.211 a.u. resulting in 13 = 0.0745 using 

the same value of £. The agreement between the two values 

is another point in favour of the choice of the wavefunction 

(3.47).

As in the case of the GES terms in (3.6), -the Bom 

terms f Im ana f Re^ also become similar to their counterparts 

in the ESEH process (3.29 and 3.30). Of course, the values 

of CR, and |3 should be changed accordingly.
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The evaluation of f w2 becomes simpler in the light 

of the comparison between the static potentials for helium 
and lithium (equations 3.35 and 3*48). Hence

18
f w„

6S 6S s *
k i=i j=i [(i^JVl

(3.52)

The 'f s and k* s are defined under (3.48).

The exchange term f ^ also becomes similar to the 
corresponding term (3.32) in ESEH process# but for the constants. 

Now that the scattering amplitude is ready# DCS may be easily 

evaluated for the Eli process.

Results and discussion s

The differential cross sections for the ELi process
/

within the frame work of the MGES method are exhibited in 
fig 3.7 and 3.8 (at 100 and 200 eV) in order to enable the ' 

comparison between the present results and the data reported by 

other workers. It is quite unfortunate that the experimental 

data is not available for comparison at these energies. 

Experiments have been performed on the Eli process# but the 

results are reported for incident energies 20 eV and 60 eV 

which are too low for the present approximation. It should 

be remembered that the convergence of the GES amplitude 

series is poor at energies less than 100 eV. Hence there is 

no other choice but to wait till experimental data becomes 

available at higher energies in order to have a comparison 

with the present results.
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An observation of the figures reveals that at small 

angles# all the cited results agree nicely with each other 
and they start departing from each other with the increase 
in the scattering angle. As in the previous sections# here 
also the HHOB results give the highest values. It is also 
observed that the present results almost coincide with -the 
EBS and corrected static results at small angles (upto 40°).

In the large angle region# the present results are in between 
the two sets of data. In the absence of experimental values# 
it is difficult to ascertain the validity of the different 
theoretical results. However# from experience of the 
results arrived at in foregoing few sections, it is reasonable 
to predict that the present MGES results may show nice agreement 
with their experimental counterparts when the latter become 
available.

It should be noted that the applicability of the GES 
method to the ELi process has not been tested so far. Hence# 
in the present study# the GES DCS were also calculated 
(table 3.15) to have a comparison with the conventional Glauber 
results. A comparison of the present GES results with the 
corresponding Glauber results reported earlier* points out that 
as in the case of hydrogen and helium atoms# the ELi process 
can also be successfully applied to the GES method and that the 
first three terms of the series are sufficient to have a satis
factory representation of the Glauber amplitude. A comparison 
of the present GES and M3ES results (table 3.14 &c 3.15) shows 
that the MGES values are much higher than the corresponding GES
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values* This is an encouraging situation since the GBS/

Glauber results are well-known for their appreciable under

estimation at large angles. This, indirectly, is another 

point in favour of the present M3ES results®

As mentioned earlier, the most important effect of

absorption governing the alkali scattering problems, is taken

proper care of through the imaginary part of the second term

of the series. The table (3.13) exhibiting' the individual

tents of the MGES scattering amplitude throws light upon the

leading role of the imaginary part of the scattering amplitude.
(2)

Also, the terms f and f Xm are nearly equal, thus
GES

providing an indirect check for the present calculations.

In the course of his study of the ELi process, Vanderpoorten 

(1976) has compared the optical model and Glauber results.

The very fact that these two results almost coincide in the 

small angle region, indirectly reveals that the polarization 

effect which is important near the forward direction is 

quite insignificant in alkali scattering (Glauber results 

do not account for the polarization effect). This statement 

also is made clear through survey of Table (3.13), which 

shows the lower values of fRe^ compared to those of flm.

The convergence of an expansion series of the form 

(3.6) should naturally improve with the increase in the 

incident energy. But the simultaneously increasing effect of the
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core contributions should also not be forgotten. It can be 
seen that the effect of the core increases for large momentum 
transfers (for large 0 at fixed k^ and for large k^ at fixed ©) 
This is explicitly shown in a later chapter. Thus, for large k^ 
even though the MGES converges more and more, the error due to 
the neglect of core effect in the second and third order terms 
of the perturbative series becomes more and more prominent. 
Hence, the present results can be taken to be ideal for inter
mediate energy and small angle scatterings* Table (3.14) lists 
the present DCS results for certain sample energies*

3*6 Inelastic scattering of electrons from hydrogen atom 
(IS - 2S transitions) *

So far, the applications of MGES approximation were 
confined to elastic processes. In the light of the remark 
of Joachain (1977) that in the case of inelastic (s-s) transi
tions for the large momentum transfer, the higher order cross 
terms become more important than the lower order cross term
(such as f.f_ as included in the present method), it is a 1 3
real challenge to test the applicability of the present method 
to inelastic transitions as well. Hence, in the current section 
the inelastic scattering of electrons from H(is) to H (2S) 
(abbreviated as H-iSS process) is studied using the MGES 
approximation.

In the inelastic processes, the initial and final 
momenta are not same as in the case of elastic processes.
For the IHSS process, the final momentum becomes
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kf ~
(k.2

i
1/2

3/4)

where k. is the initial momentum. Thus# the momentum transfer 1 • .1/ 2 
is given as q = [k±2 + kf2 ~ 2k±kf Cos© ] (3.53)

where © is the angle between k^ and k^. The interaction 
potential for the IHSS process is the same as that for the 
ESGH process (3.10). The wavefunctions for the initial OavcL -fWt 

states of the target are given by

T IS 

? 2S

1 1 e
Jtc

i
__ ;(2-r-,)

, MUM I

and

"rl/2
e

The product of the wave functions may conveniently be 
represented as

* 1 -1«5r
Y IS y 2S = 4^---—(2~ri) e

-/ , -£ r -Ar
=A(-~-f—) S--- + B (----- ) (3.54)

1 dA .1
-1 *

where A = .- ; 3 = .. ; A = 1'• 5
y 2 2

The evaluation of the various terms of the scattering 
amplitude (3.6) can be done using the procedures adopted in 

the earlier sections. Hence the details of the derivations 

are non given here.
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The evaluation of the first term of the series gives

(l) Q//&
GES (q2+— )3

4
(2)Following the procedure adopted by Yates (1974), the f

(3) GES
and f terms are obtained for the IHSS process as

GES

(2) 16* t A d"
_____ z------ -

GES k. cr~ x H dz
2A B df2tz) + C75 + p) - f2(e> (3.55)

and
(3) 4*
GES k .2 3 d

A d2 2A B d
z —2f3^+C"”S + "”o 3 — f^(z)X3 X2 " d 3 

z
(3.56)

where z = 2
t

A 
Z “f„ (z)

1 4 Z
_4

1 + z
In----- and

z
f (z) 3

*■ / 1. + z2 2 t;2
- - - £4 [3^ —-— J + —1 + ; ~ 3

2A(z)

where A(z) is defined previously in the ESGH process.

As in the previous sections, the imaginary and real Born 
terms f Im and f Re^ for the IHSS process are obtained following 
Yates (1979). The average excitation energy parameter 0 for 
this process is chosen as j3 = 0.375/k^ . The analysis of 
the Born terms results in

f Im= B (----) f (jS2,q2,£2) + aC —2 ) f^32,q2,£2)
dX. 2 , df- . 2 (3.57)
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cl Gi
f Re, = B (--------,) f_(p2,q2#/-2) + a(~^ ) f,('P2,qV2) (3.58)

1 a£ 3 a£ 3

where

f ~(/32* q2* £2) = 4 1
. 2 r r Q t / ^ ^2 ■-

i

[21, (^2,^•2)
2 r2 nq + f-‘

I, (j8#0)]

and

f Cf^qV2) = —“"I [21 02,A2)
3 A k, ^ 2

g
2 ."a

q + *•

Using the Ochkur approximation similar to the ESGH process*

,2

‘exch

87J d
\&

ki2 at2 q2 + i2

1 d 1
+ B t-------- ) q2+A2

(3.59)

Now* in the MGES scattering amplitude (3.6), all the terms 

except fw2 are obtained in the closed form. The evaluation 

of fw2 for the IHSS process in the present formulation is 

rather tricky# because in the present work the static part 

of the interaction only is considered in the evaluation of fw^ 

because of the justifications given in section 3.1* An 

inspection of (3.4) reveals that a similar treatment invites
v

difficulties in the IHSS process due to the orthogonality 

of the initial and final states. On the contrary# talking 

in terms of static potentials# excitation becomes virtually 

meaningless. Because of these reasons# the contribution 

due to the real part fw is neglected in the present study®

Of course* the exact treatment of the term(3.4) - similar to 

the one adopted by Byron et. al (1982) for the ESGH process - 

is a remedy for the above-mentioned defect. But this analysis 

is bound to be rather more cumbersome and has not therefore



been attempted here. Without the inclusion of £w in the 

amplitude series (3*6), the following types of study are 

possible in the IHSS process.

(1) A GES analysis of the IHSS process and comprison with 

the conventional Glauber amplitude.

(2) The effects of replacement of the second GES term by 

the Born terms.

(3) The comparison of the present M3ES (excluding fw2) 

results with relevant data available.

It should be kept in memory that the DCS calculation 

in the inelastic processes involves the multiplication by.a, 

factor k^/k^ unlike in the elastic processes where k^ and k^ 

were taken to be of equal magnitudes. As in the previous 

studies TCS and TEC for the IHSS-process can be found out 

making use of the amplitude terms.

Results and discussion t
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The differential cross sections for the IHSS process 

are calculated for the incident energies 100 eV to 800 eV.

In fig.(3.9), the present results at 200 eV are given along 

with the data of other workers® Unfortunately experimental 

data is not available for 1S-2S transitions only. The 

available experimental data (Williams and Willis 1975) 

considers the transition from n=l to n=2* (i.e. 2S+2P) level. 

Hence, at present, no experimental data can be compared 

with the present data for the IHSS process. However, if the
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differential cross sections for the 1S-2P transition in 
hydrogen atom can be calculated within the framework of the 
samp approachy the sum of the cross sections may be compared 
with the available experimental data.

The fig (3.9) shows that the present results agree 
nicely with the compared data. The additional weightage of 
the present simple method is its ability to reproduce the 
results of such highly sophisticated calculations as the one 
adopted in the distorted wave method of Kingston and Walters 
(1980).

As mentioned elsewhere in this chapter# one of the 
aims of the present study was to test the applicability of 
the GES method to this inelastic process. As per the formalism 
of the GES method# it may as well be applied to inelastic 
processes also. But the real threat is the problem of the 
convergence of the series. Prom tables (3.16 and 3.17) the 
GES DCS for the IHSS process for the Incident energies 100 eV 
and 400^ eV may be calculated and compared with their Glauber 
counterparts. Rough calculations show that the GES with the 
first three terms of the series describes the Glauber 
amplitude reasonably well for the IHSS process.

In tables (3.16 and 3.17) the individual terms of the
present scattering amplitude are displayed. The notable

( 2)similarity between the f and f Im is another indirectJ GES
check for the correctness of the present calculations* These
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imaginary terms also agree with the corresponding term of 
Byron and Latour (1976). Another interesting feature of 
these tables is the relatively low contribution due to 
polarization and the significance of the absorption effect/ 
which is expected in- the case of inelastic scattering. In 
table (3*18), the DCS obtained in the present study for the 
IHSS process at various energies of incidence/ are given.

From the foregoing discussion, it is clear that the 
GES analysis of 1S-2S transition in hydrogen is interesting 
and it will be useful to have a generalisation for the 
inelastic scattering in hydrogen (IS — nS transitions), 
which is attempted in the following section.

3.7 GES for (iS-nS) transitions in H atom s

f noo 2

The wave function for nS state of hydrogen atom is
2 (n-1) 1/2 -il/n 1 2 r

[- rr~ J e 13 (——I) Y_(©,j3)(nl). ) 3 n-1 n 00

where Y C©,j2) 
00

1
and

1 2 r, n-1 m-±) = 2 (-1)L (---
n-1 . n
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m=o
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Since Y 'ri

IS J7\

* n-1 -X r.W w = 2 B rm e n 1
I IS FnS in—0 1

d d
=[B A----- )+ B° dX

n n

(-1) n dn
1dX 2 -I-** • • « +Bn-1 dX n

n

-X r_. n 1

Amwhere Bm J7\

The first Bom term is

and X = 1 + n n

. ..(3.60)

fB1 (rySl)
q
— ' dvi e X2*£i S TnS

"8^ ' d d2
--  [B (----- ) +B,( --- ~) +... +B_ ,(-1)n

q2,
o dXn

1 dX 2
n

an

n-1

dX n
n

2 •* 2 cr 4- xv» ^ n
• • • ( 3 • 61)

(2)
Now# f for IS - nS transitions will be

GES
(2) 1 d£ < ^

f _ -----  / —----- 2 <TnS / B(P) B (q-p) / ^ is >'
GES Ah.

X
/q-p/

following Yates (1974).

*
Considering the first term of the ’ above# and the
procedure adopted by Yates (1974) for the evaluation of the

(2) d
GES amplitude for the ESGH process# the f -for B (—

GES <ax~Knrl (2) n
—-----  (denoted as f ) will be B times the corresponding

r, o °
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term in Yates (1974) treatment.

(2) 16
* f ,= B 7s x ------tO . 4

n
1 +z

In n
0 kiq dX jt + Z ‘ 

n n n
d d d

changing -----  to-----Using —
dX dz dX

n

(2) 16 
f = BA X

z 2 d 
n______

n n q

4

dz
n

d z
( - ')

1 + 2
0 °' k .z 3 A 5 ' dz 1 + z 2

x n n n n

In n

n

(2)
i.e. f = B Axequation (3.15) with A =2. Hence 

„ o n

= B (-------------) f ( z )
o 0 dh 2 n

n
- 416A z

where f (z )
2 n

In 1 + zn
. 4 , t 2kiq l4, zn

n

This procedure can be adopted for all the terms in (3.60),
(2)

thus obtaining f for lS-nS transitions as
GES

(2)

GES

d
= ---------- ) + B

d

dX
n

1 dX 2 
n

+

,nn d
+ B , (-1) -------- ]f„(z )

- n 2 nn-1 axn

..(3.62)

Here all derivatives should be converted to corresponding

zR derivatives as done in (3.27) because zn _
” n

All the above arguments hold good in the evaluation of 

the third GES term for IS - nS transitions in hydrogen.
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_ -A r, “d n 1
Considering the analogy of Bq (—^—) —------- with the

n 1
wavefunetion used in the treatment of Yates (1974), it can

1
be seen that with B ~r and A 

7\ n 2, one gets the third

GES term as given by Yates (1974). Generalising, this to
(3)

the case of'different B and A values, the f for IS-nS
n n GES

transitions can be written down. Hence

(3)
f = B A x 

0 °

d
n

k 2 q
i

dh l + z *
n n

\ 4[
In

Hr

1 + z 2 
______

n
2A (zn) ]

where A (z ) is defined in (3.16).
no

Now 2 4 k.2q dA
n

, 2 3,5k, z 7s. 
i n n dz_

n

%

31

C
O

v0•C
O

+ id

C
O

N—
0̂1N

. 
1 

CO
b 

K [

Pa
to

+03
a a*

C
Q+

03

3

d■5bb3O
i

CO

toH. ro0)XK
c

mti

i

b

d

d£

PQ

co
coMD

o
H

iC
O

3£Irl

C
OtoN+r~ia

JSB
*p
=-

N

03
eN+Hd

03
-H

44

N

U
)H

i

53
*

C
D h C
D

O+>d H
-

H
i

H
i

C
D H C
D 3 (+ H
- & H
-

O 3 0) d <3 C
D C
+ O d C
D O B <5 CD H C+ C
D dC

D b C
D 3 t—
1 

to
 

O J*

+>o©dto©dbb•H&C
Q

do■HbC
O

•dbd©d©bbbUdd-HbdodC
Q

©ddOO



137
The second term in the HHOB series (Yates 1979) can also be 

evaluated for the lS-nS transitions as follows:

f Ira for IS-nS transitions is given as '

4^3 -
f Im = -------- / dP < ¥ /V (P+P X ) V (q-P-Pz*)/ ¥ >

* n s 21 ■ lb^i

*
Here also the expression for Yns ^-n the fQrm (3.60) can

be made use of. Following the above discussed methods, flm 

can be directly written down using the corresponding terms in 

Yates (1979).

~d 2 ^
Thus f Im = [b (—— )+B.(—-) + ....+B _(-l)n ~~~ ]f_U )

x ^ n “X n & n.dk.
n n

dh
n

(3.64)

4 1
where £ (X ) = — —r [2X (p z)

4 n *j£ ^ x n ii
i n

2 * 2 q +k ^ n

Substitution of B = - gives the corresponding imaginary term
O 7T

for ESGH process as given by Yates (1979)® This is a direct 

check to the above expression.

f Re = [B (-----) +B ~
1 ° dk_ 1 dh-

“d d2 n dn

+ -+B (-1)
n-1

n n
ak

•]f,(fc ) (3.65)
n J 3 n

n

where

\ [2I(P2,X2) - '-r—g I20 2,0)] 3n *k. k 2 2 n n 2 x 2 2. n
in 1 n

f (\ ) ss —
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For checking purpose# taking ESGI-I process and substituting 
1

bq = ~ # B^, b2 »««=0 # the corresponding real terra is 

obtained as given by Yates*

Thus the general expressions for the GES and HHOB terms
in the M3ES scattering amplitude for IS - nS transitions are
derived above* The substitution of n=2 will result in the

11S-2S transition in hydrogen atom. Substituting B^s ^
y 2

iB = — —.. and X =1.5# B # B - - -=0 in the above set
-i 2 n 2 3

of expressions# we get the corresponding terms (3*55# 3.56, 
3*57 and 3.58) obtained in the study of IS - 2S inelastic 

scattering# thus proving the correctness of these equations* 
Hence# they may be used for the study of the transitions 
involving n=3# 4* etc. states in the case of hydrogen atom.

We may now take up the more complicated generalisation
for tne IS - np transitions in H atom# from which we can arrive

\

at the expressions for IS - 2p transitions*

3*8 GES for IS - np transitions *

As in the case of IS - nS scattering in hydrogen atom#
it will be interesting to study the IS - np transitions also
For this we have to consider

2 (n-2) • 1/2 2rl **ri/n 3 2r.
Iff , s= —x [------- r-1 --- e L (—Y. (Qt0)“ nlra n2 t (n+1 ) l)3 J n ~ nn n-2 1m

n-2 n+1 (2rl)
) = 2 (-l)s(n+l)rl ( n-2-S ) —-—

S=?0 s*
3 2rwhere l* ( —“ 
n-2 n
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/ 3Y _/___  Cos©/ Y

1,0 =/ 4*
= / 3 

1,1 _/ ~4^f" Sin© Cos^ZS

_ / _J_ 
"1* “1 _/ 4nY. . = / -T- Sin© Sin/)

Thus corresponding to the three values of m, the wave 
function for np state of-hydrogen becomes

n-2 1+SIff . n = 2 A r,T n, 1/ 0 c—o ® 1
Vn ■ )

Cos©. /

^ li, 1 / +1
n-2
S=?0

))A rij-+S 1//n Sin© p + j
s 1 e 1 — J

(3.66)

where p. - Cos/) and P = Sin p. .*T X X
Cn-2) • 1/2 2 n~2 (--) n+1

Here AQ =—r[--- ----- ~S n2 C(n+l)l)3 £ JQ— Cn+i)l(n-2-S)// 3
n s=Q Si J 4*

In the first Born approximation.

B1
1 ig.r

1 dv / dv1 y np Crx) V (r,^) | xs (rx) e
27\

Here, contrary to the methods adopted in the previous 
chapters, it will -be convenient to evaluate, the dv integral 
first because of the orthogonality of the initial and final 
state wavefunctions. The following integral may be made use
of

Xg.r
dv

47Y

q
iq. -1

Hence £,.B1

/£ - £/
1 * 45T 1 2‘Eq

----- / dvMr ) —e
27\ 1**>1 q2 Y is lV
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The above integral is readily performed by choosing the
quantization axis to be along the momentum transfer q. Then
the factors exp Cjh that appeal* in the wave functions for
the magnetic substates m = + 1 of the state /np> prevent
these substates from being excited - by integration over jZ5^.
Thus* within the frame work of the FBA* tie state nP (m=0)

z
is the only final substate which is excited.

Thus f B]

2
= --

q

where B

/ dv.
27\

4ji e
^•Eiw Iff-LTn,l,o I IS

1
A

iqr^Cos©, n-2/dv,, e 1 1 2 B r
S=0 s 1

= — , XS _/ 7\ 1 + n

1+S -X r n 1
Cos©.

It is convenient to write

r1+S n 1 r., e- 1 t-l)‘ d
dXn

-X r. n 1

The above substitution combined with the application 
of a few standard integrals gives f31 • Thus* the final 
result for f can be obtained as

fB1 ClS-np) 6 4X1 n-2 ----- 2 B C-l) n
S=0 s 

1
dX S (g2 + X2)3

n ^ n
] (3. 67)

The substitution of B and X =J-®5 gives the well-knownS 42/ 2 n
first Bom amplitude for IS -2P transitions. This is a direct
check for the evaluation procedure®
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12 / 2Thus f Bi(ls 2P) =

q

i
(q^ +

4

(3.68)

It may be noted that the first Bom amplitude in IS ~ np

transitions is purely imaginary and in the large angle
. -7region; it falls off like q i.e. much faster than the 

elastic or IS - 2S first Bom amplitudes in hydrogen target.

Now we will take up the evaluation of the second term 

of the GES series for IS - np transitions.

(2)
GES :fik

1 dP

1 ‘ VB(P) B(g"p,/ ? is"
where B (P)B(q-p) = 1 1 £•& 1 /2“S/tri - ,

x -e -1 +e 1 (3.69)

Becuase of our choice of' the quantization axis# it can be 

seen that here'also

x x.r,< tjl / e / XjT iS > survives only for ^
npc

Thus < f n p / e 
“ z

xq.r,1 ' V IS >

i g.r, n-2J dv, e _ ^ B r.1+S e n 1 Cos 9,
1 s=0 s 1 1

Here it will be convenient to represent
2+S

1+S -%■ r.n 1 = (-l)k
•X r n 1

so that
cfK 2+S

n
integration process is simplified.

Again making use of standard integrals cLnd undertaking a 

lengthy procedure#
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< ¥ / e
I np

^•£1 n-2 S X/ ¥ > = -4Xi s B (—l)T 1& «_rv s g
2+S

d X -1+S
-CL

s=o-

1
ax2+s q2 + x 2 ' ax 1+sn H n n

2 y 2q +*n
1'

Similar expressions can be written "for other terms of (3.69)

also
whereas < ¥ / l / *f '

V ' np 11 IS
(2) 4i

Thus f (is-np) = — —
GES k.

0

s dP2 B (-1) / P2/S - p/2

,2+S
n n

X
ndXn2+S q(q2+Xn2) P(P2+Xn2) /q-p/(/q-p/2+Xn2)

n 
1+S

dX 1+S
n

q(q2+X 2) P(P2+?i 2)
^ n n

/q-p/(/q-p/2+Xn2

As in the analysis of the GES terms in the earlier sections#

here also the substitutions z __
X Xn

^ and P = P1 are made. 
X X 1

Hence f

n
(2) •“4 i n-2 _#

= 2 B (~1)S| —
GES k .1

SspO s , ^ ■ dX

d2+S 1 dP.
2+S x 4

n n
P12/z“Pl/2

1+S

i(l+z)'
—J +

P-(l+P.)2 /z-P./Uz-p./ +1) . dX
XX XX ]

!, 1+S 
n

Xn
dP.1 1

Pg ,/z-p^ z(l+s ) Px(l+P1)' /Z-P^C/S-Pg/ +1)

Grouping some of the above terms. and simplifying.
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(2) *4 i n-2 S2 B (—1)

d2+S x
CjjfljS k , 0^:0

X

d1+S 1

dTt. 1+S I -21, ]
n

* * ~z(zz+i) a D 
n

6k1+Sn
['

n
dP,

z(l+z )2\ a
21b ] I

2A
where I *= / —r a t> zV/-V

•J p / x x

lim, —- In —^ and
2>—>0 z ®

T~b
1» l1

(3.70)

» lim£4*f — In ~ - l]
i-xk* 2 *

4A
1+z'

1 2z 7V -1L— In —r----+ tan zj2z v 2

It is seen that the integrals la and 1^ are divergent separately, 
but the divergences cancel exactly for the combination of the 
integrals appearing in the equation (3.70). ThXs, is proved 
explicitly below:

1
We consider -------— I - 21,z(l + z ) a k

Taking the divergent terms in the integrals,

i.e. lim
2>->0

as lim lni[ 
2>-->0

z(l+z2)
2A -4 A 47V[---r In 2>ZJ -2 [—— In i> +

-4 A 47V

2z" 

4 A

2z(l+z2)In 2> ]

z3(l+z2) z3 z(l+z2) ■] = O.

Thus the divergent terms cancel exactly.
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Now in order to derive the imaginary term in the GES
C2)

i.e. f . for IS — 2? transitions# the substitution ,of 
GES
1

BS "lx.... and = A. in equation (3.70) is sufficient.

This gives

(2)
f (1S-2P)
GES

[ 1
(l+z2)

la “21, 1 
b

d
+ z(l+z )

!L a

(2)

(3.71)

An important feature of f for lS-np transitions is that
GES

it is imaginary. Thus the second term O ( — ) of the GES
, i

series becomes real# in contrast, to the situation in the

earlier studies. It may be noted that the same combination of(2)
la and r integrals appear in f (IS - 2p) also# hence no

D GES
need to worry about the divergence problem. This type of exact 

cancellations of the divergences J.s a peculiar character of 

the GES series and it provides an indirect assessment of the 

correctness of the expressions derived above.

(3)
The analysis of the third GES term f for IS - np

GES
transitions proceeds on a similar track as in the case of 

(2) 
f
GES
(3)

f (IS ~np) 2
3 36 7C k/3

dP„

p22 A-W2GES



145

< f np/ BCPX) B(P2> b / f >

Here < >f np / B -----/ f

n-2 c /4X1 2 B (~l)S I —
§=0

d

IS 
2+S

U> +C ^ 2+S n p (p 2 ^ 2j p (p 2+\ 2) 
n 1 1 n ' 2 2 n

(q-pi'p2) (Aj-i>i-V2+\12) Cq"pi) (/«-pi/2+’Vh2)

-I

Cq“P2) (/q~P2^2+Xn2) 

1+S

(P1 + p2) ((P1+P2,2+Xn2:i

( 2 r 2s J J M 1+S L . ,n 2 t 2^ + /„ 2 -s 2\
qtq +?»■ ) dX P-, (P, +X ) P0'P0 + X )

n n x JL n 22n

(q-P.-P,) (Zq-P.-P/2^2) ' /q-Pl/ C/q-p/txO2 , 2

/q-py C/q-P2/2+^n2) ‘ (p,+P0) (Cpi+P0)2+X^2)
2'

1

1 l2 Jrl *2 n

+ qCq2+?t
n

•3 I
t3)

Substitution of this expression in f will result in
,D ,rj GES
d-l dP2 \r

integrals of the form / —=— / —5---------------- 5— J * ■ These
pi p2/<rpi-V

integrals are same for y- P(P2+X2) pie 2 ^ 2)
1 1 n 2 2 n
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Hence these terms can be

/ <2"”p2 ^9^ C"*P^ ~P2^ +X-^ )

grouped together. Similar is the case with the negative 
terms in < J /(x) /J >. Thus grouping the'terms and applying

*v *certain simplifications like / q - P^/ = P^# we get

.(3) 1 n-2 S / d2+S
f = —=-- r 4*i S b (-1) t ---— A [31 - 31, n
GES 3/C k. S^O 0 C dfc- 2+5 n 9 10

1 n

+ 2 .12, 11q(q +Xn )
I, J

d1+S

dX
- [31 -3l4]n+ 1+S L 9 ICr

n
q(q2+Xn2) 11 (3.72)

dP, dP,
where I,9 /q-P/2 p22/Pi"V2 P2(P22+\i2)

ifQ- Z
dP1- / dP-2/g-V2 " p22/%-V2

dP, dP.
,I = /11 /q-Px/' P2 /P.-P/2

As in the previous cases# putting ■ z
n

A
" = P3 and -2
n A

P, in I. 4 9
n
dP, dP,

V /Z'V V'VV ’

Similar simplifications are possible for I^q and 
Hence the final-expression for f is arrived at as

GES
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(3)

f . (IS ~ np)GES 3*k 2 S=Q S
X

4 ‘i n~2 q , d2+S 1
---------- £ B„ c-i)s(-------— —-

jdh 2+s h 4
n n

r _ 1 i a1+s 1
[3 ^31- 3 X32 + ^ -33? + n

n n

[ 3 I—-i ^ t
31 32 z(l+z2) 33 (3.73)

dP3
where I . = 7 ---- =~s3K /_ n /2

dP„
/z“P/ P4 'W*

where jB
1 1
----- , 3, , 0=1,1 P4(l+P42) 2 P3<l+P32) 3

In all the above cases/ it is obvious that X should bed n d
converted to corresponding z and —■— to corresponding -- - •n dA dz

n n
A quick glance at the expression (3.73) reveals that 

(3)
f is imaginary for 18 - np transitions. It may be noted
GES

that in other scattering phenomena studied earlier, the

corresponding term was a real one. Also, the combination
(2) (3)

of the integrals appearing in f and f , in IS - np
GES GES

transitions carry the same form as in the analysis of Yates 
(1974). It is to be presumed that the individual integrals 

I s^ou-^ divergent. But from previous experience, it 

can be anticipated that the combinations of these integrals 

are such that the divergences cancel out exactly. This can 

be shown explicitly also.
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From the equation (3.73^# the particular case of 
(3)

f , for lS~2p scattering can be derived as in the case 
GES (2)

of f « Now# that the first three terms of the GES series 
GES

are known# the DCS for lS-2p scattering in the GES approximation 

can be calculated. However# these calculations are not 

included in this work*. .

To summarise the third chapter# the MGES formulation 

was discussed and it was applied to a variety of scattering 

phenomena. In the case of the electron scattering from H(is)# 

H(2S)# He and Li# the present IXGES method was found to 

improve upon the basic GES approximation quite significantly. 

Thereafter# the case of inelastic scattering in hydrogen in 

the GES approximation was studied with generalisations to 

IS - ns and IS - np transitions in hydrogen. The IS - 2S 

scattering cross sections were compared with available data®

In brief# the third chapter has been dealing with the GES 

as well as modified GES approximations. In the next chapter# 

we take up the study based upon Bom approximation and its 

associated approximations.
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Table 3*8 - TCS for BS3B process

S eV TCS

100

200

300

400

500

600

150.2 

83*4 

58 «8 

45 »8 

37*7 

32*2

Table 3.9 * Constants of wavefunction product for the He-
target

k Klk K2k

1 46.0536709 2.82 2.82

.2 18.7696245 5.22 5.22

3 29*4008522 2.82 5.22

4 29.4008522 5.22 2.82

5 117.6034086 4.02 4.02

6 46.9826758 4.02 5.22

7 46*9826758 5.22 4.02

8 73*59 39445 2.82 4.02

9 73.5939445 4.02 2.82

f
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Table 3.10 - Differentia], cross sections (in units of
2 “1 *aQ Sr ) for the EHe process in the MGES 

approximation.

e /
/ w/ £»

200 eV 400 eV

10 1.285 00 6.790 -01

20 6*219 -01 2.940 -01

30 3.195 -01 1.291 -01

40 1.859 -01 6.254 -02

50 1.027 -01 3.337 -02

70 4.557 -02 1.195 -.02

90 2 * 357 -02 ' 4*864 -03

110 1.388 —02 2.393 -03

130 9.029 -03 1.382 -03
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