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CHAPIER -~ IIL

MODIFIED GES APPROXIMATION

3.1 Introduction &

,Due to the recent advances - both theoretical and
experimental = in the study of electron - scattering by
atoms, the search for computationally feasible as well as
accurate theoretical methods has been enhanceds. The
Glauber Eikonal Series (GES) method proposed by Yates (1974)
as an alternative method for the evaluation of the Glauber
amplitude, has become very popular because of its simplicity.
The GES method is very significant in the light of the fact
that the lack of application of the Glauber Eikeonal approxi=-
mation to systems more comblicated than helium can be
attributed to the rapidly increasing computational complexity
involved in evaluating the Glamber amplitude expression.
Besides its simplicity, the GES method has an inherent
advantage that the expressions can be obtained in the closed
forme The GES approach involves expanding the amplitude in
reciprocal powersg oOf ki' tﬁe momentum of the incident electron,
for fixed momentum transfer q =/ g,/ , and attempting termwise
analysise Such an expansion can be expected to be a reasonable

approximate to the Glauber scattering amplitude when k, is

1
large. This method has been applied to investigate the
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scattering of electrons by hydrogen and helium (Yates

1974, Singh and Tripathi 1980) and it has been shown
explicitly that the first three terms of the GES are
sufficient to give a very good representation of the Glauber
cross sections for all values of ge As such the GES
expressions can be used in agnalyzing the higher order
correction within the framework of eikonal Born Series (EBS)
and the modified Glauber method of Byron and Joachain (1973,
74, 74V, thus avoiding the numerical evaluation adopted by

theme.

In spite of the advantages of the GES method as

cited above, it has all the disadvantages of the conventional
Glauber method -~ appreciable underestimation of the cross-
sections over the entire angular range except at very small
angles where the Glauber amplitude logarithmically diverges.
Hence a systematic study has been undertsken to arrive at a
modified GES (MGES) method which retains the advantages and
improves upon the GES method and removes the aforesaid short-
comingss Thig MGES method is agpplied to various scattering
rhenomena and excellent results are obtainede. The improvement

over the basic GES method is of specilal significancee.

FPormalation 3

One way of Obtaining improvements over the Glauber
approximation has been proposed by Wallace (1973). For the

case Of potential scattering Wallace wrote down éystematic
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corrections to the'Eikonal phase. Detalled studieg of the
relationsghips between the terms of the Born, eikonal and
Wallace series have been .carried out by Byron et al (1975,79).
In the light oOf these developments, Byron et al (1981l) recently
proposed a generalisation of the potenﬁial scattering Wallace
amplitude to the maltiparticle case, in the same spirit as
that of Glauber's origiﬁal_extension of the potential
scattering eikonal amplitude. This generalisation was: also
obtained subsequently by Franco and Iwinski (1982) and by
Unnikrishnan and Prasad (1982). However, it should be noted
that the resulting many-}éody Wallace a:r}plitude does not elimi-
nate all the difficulties inherent in the Glauber amplitudee.
In particular, the Wallace extension of the Glauber approxi-
mation is still a zero-excitation energy approximation and
therefore does not account for the long-range polarisation
effects at small angles and represents inadequately absorption
effects in the same region. These difficulties can be elimi~
nated by removing the term of the many~body Wallace amplitude
wﬂidh is of second order in the projectile-target interaction
and replacing it by an appropriate second Born term. The
guplitude thus obtained has all the strengths of the EBS
method at small and intermediate angles where pefturbation
theory is rapidly convergent. It also contains the two
leading terms (%n powers of ki—l) of each order of perturba-

tion theory summed to all orders so that at large angles the
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main feature of the scattering amplitude-which is similar
to what is found in pure coulomb scattering=is dealt with

satisfactorilys

In the light of the above discussions and keeping
in mind the simplicity of the GES method, a pgrallel termwise
analyéis of the Wallace Corrected Glauber series (Byron et al
1982) was performed in the present study, the troublesome
imaginary part was replaced by a very similar Born term
(Yates 1979) and the effects of exchange were included
through the Ochkur (1964) approximation. The resulting
scattering amplitude was called the modified Glauber eikonal

series (MGES) amplitudee.

The many body Wallace amplitude is given by (Byron

et al 1982)
k i gb Xo(b'X)
i = ,
£, = Tail © <Y &I/ exp [ K,

xl(b,x) )

— L 2

+ 3 )1%/gi x) > a%p (3.1)
L

where r = b + 2 ﬁ, ﬁ being perpendicular to g, is the
incident electron co~ordinate, X represents the target

electron co-~ordinates TyeX,= = L0 2 being the atomic

number, Xq is the usual Glauber phase, Xy is the Wallace

phase correction and Wi and,Yf are the wavefunctions of the

target at initial and final statese.



82

For consistency of 0 ( —5 ) in the DCS, £ can be

K.
i

expressed in the form of a series. i.e.

= i S - <
fw n=1 . 27nt @b e Vf / Xo /
! l ’ igo_k_)_ :
g, > 5 &% e <Y/ %/ ¥y, > (3.2)
i 2 1 i
27k ; .

The first part of the above equation gives the first three
terms ot the GES (Yates 1974) whereas the second part is
the additional real part in the second term of the series
corresponding to Wallace correction. Hence (3.2) can be

written as

(1) (2) (3)
f =f . + i f -F + fw (3.3)
w GES GES GES 2
where fw, = ——3= 1 db e NLVESVA e (3.4)
2753:1 .

As discussed previously, the trouble some imaginary Pwv{:

of the series (3.3) is now replaced by an appropriate Born

(2) -1
term. In the present study, f is replaced by the O(k, )
(2) GES 1
terms in £ in the HHOB approximation (Yates 1979) with
HEA
the following justificationse
1 : (2)
1. the O ( P ) terms in f (iece 1 fIm and fRel)
i HEA _
originate from the same (p;—.xrt of the Green's function
2
which corresponds to £ . ..

GES
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2s the procedure of thg linearisation of the Green's
function etc. adopted in the GES and HHOB methods
are very similar. (In fact, if the average excitation
energy parameter B is made zero in the HHOB, the GES

results will be obtained)e.

(2)
3 It can be shown that the O ( —3 ) term in £ |
ki HEA
(i.e. £ Rez) indirectly corresponds to the fw, in the
present anaiysis.
(2) :
Due to the replacement of £ . by the above mentioned
GuS
Bom terms, the B factor in i £Im removes the divergence
(2)
problem in £ _ | « Since the 'frozen target' model is
GES

derived from a many-obody Green's function in which closure
has been applied and the averaée ex¢itation energies in

both the initial and final channels have been set equal to
zero, the long-range dynamic polarization effects will be
missing from the many-body Wallace amplitude (fw). In
particular, Byron et al (1982) have shown that the real part
of the second term in fw(i.e. Re fw2) given by (3.4) is just
the ki—2 part of RG,ESBZ (where SB2 denotes the simplified
second Born term cbtained in the closure approximation) with
an average excitation energy value of zero, and thus lacks
the all-important contribution of order ki“l which is charac-—
teristic of dipole polarisation effects. —With the introduction

of fRel into the expression(3.3), it will take care of this
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polarisation effect which is not accounted for in the GES.

It may be noted that the Born termsg i £Im and fRe, can also

1
be Obtained in the closed forme

Hence imcorporating the Born terms, ,(3.3) becomes

(1) (3)
£ = £ . + 1 £fIm + fRe; = £ .+ fw (3.5)
W GES GES 2

When the exchange effects are also included, the scattering

amplitude becomes

(1) (3)

£ =f  + i fIm+ fRe, = £ . + fw, & £ (3.6)

The above expression gives the MGES gcattering amplitude.
Making use of the scattering amplitudes for different
scattering phenomena, the corresgponding DCS can be easily

evaluated.

Evaluation of the scattering amplitude =

The GBS terms in the scattering amplitude (3.6) are
evaluated following the prescription of Yates (1974). The
Born terms are evaluated following Yates (1979) (section

2.11). The exchange term f in (3.6) is calculated

exch
using the Ochkur approximation (1964). In the evaluation

of fwz given by (3.4), the static part of the potential only
ig taken because the'neglect of the contribution of the
second order effectg like polarisation treated in the second

order of “thecapproxmimation:omay notamakReilmuch of a difference

becaise those effects have already been incorporated through
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the Born terms. Moreover, calculations become abundantly
simpler with the static potentialse For the static potential

V(r) the phase function

o0
—~ o0

%, (b)

i

1

where V, (r)

i

d
vie) [ vig) + £ — viz) ]
. ar . .

This X, (b) is far simpler than the corresponding phase
function (for the exact potential V) given by

o0
I

(Vx ). (vx ) az (3.8)

-~ 4 -

X, b, x) =

ot

with
4 ' e
X, (b,2,X) = = L V b,z ,x) dz and

oLy ] 1
-3 v {b,z, x) az
Z

X_ (b,z,X)

It should be stressed that because of the complexity of

% (b,x), the many-body Wallace amplitude (3.1) is vastly
more difficult to evaluate than the many-body Glauber
amplitude. Still, the attraction of (3.1) is that it is
also unitary and containg phase correction. In view of

the tremendous difficulty associated with the evaluation

of (3.4) for higher atoms using (3.8), there is ample
justification for the replacement of‘xl {b,x) by xl(b) given

by (307) °

Thus, for static potentials, (3.4) becomes

l ig cp_ 20
fuw, = = m——— a% e Iy Vl(r) dz
2 27k, 2 e

i
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1 2 i 012 o« "’iPOb
= - I a%p e f az f apP e
2Rk, 2 —
i
o0 "‘iP Z -
[ P e 2 v,(P,P )
— Z 1 a

where V represents the Fourier transform of V.. Here the

1 1
following properties of delta functions are made use ofs.

08 -iP z
) e 2 dz = 2 A S(PZ)

~—e>
5 i(gvg).g 2 g (g-p)
I a8“b e = (2%) q
! ap &q-P) ¥,(R) =V, (g). The analysis of the
above term using these simplifications gives
ax?
fw2 = b X ) Vl (q) (309)
i

Now all the terms in (3.6) can be easily evaluated. The
feasibility and simplicity of the present MGES approach are
demonstrated in the later sections of this chapter through

applications to various scattering phenomenae

3.2 Elastic scattering of electrons from the ground

state of hvdrogen atome.

The elastic scattering of electrons from the ground
state of hydrogen atom (abbreviated as ESGH process) can be
termed as the simplest problem in atomic collision éheory.
OUpbviously, guite a lot of work has been reported on the
above processs. It will be of great interest to illustrate
the above discussed MGES approach through the application

to the ESGH process and to explore the position of the



Present results in the midst of a large amount of data

arrived at through a variety of estimationse.

The interaction potential for the ESGH process is

given by
1
vy = -_“:': t m— (3.10)
r /£~£l/

The groundstate wave function of hydrogen is

-

Vig = —=< = (3.11)
s ﬂ/ﬂ 3

For the ESGH process, ¥, = yf =¥

The static potential for H (18) is

1 -2r

Ve =<§/Vv/§>=={(14+ ) e (3.12)

~

r

The various terms in (3.6) are now evaluated using (3.10),
(3.11) and (3.12). It will be convenient to express the

product of the wave functions as

“Ar
2% 1 —-2r 1
1 e
 — = ( - o ) S / _ (3.13)
IP I}r A 5 ar ry A=2

Now introducing the dimensionless vector 2 = /N and

following the procedure(of Yates (1974),

(1) 1 iger 1 -2r
£, . =—fe (1+ = ) e dy
GES Z2A r
?D ? igr Cos® 1 =2r 5
={ Je (1 + ;) e r“dr 5in® d@e
(q2+hz+2k)

A



2 + z‘2
m ———2
AL + z2)
2
leee £ . | = >3 _(3-14)
GES AL + z%)
(2) 7;2 aP

Now, £ . . = < / B(P) B(g-p)/y.>

Here ' iP.xr ifg=P /ex iger
B(B) B(g=p) = l~e = L -¢ 1 1
+ e
(P) B(q-p) - =) [q2+2;"2
° < / B(P) Blg=p) / ¥, > = (= =) 4 [————
s ® . TFZE ‘ ) . Ifl ) dﬁ. }\2(q2+}‘2>
1 L J
P22 %q_p/2+k2
2
(2) 42 4 1 -2/ 2
LE - il t 2 2t T3 24t
©toeBsS Ak; A > P/ g/ g+ A A
1 1 ;
/a=p/% P? 4+ A%
Here partial fractions of the form
ar ar 1 1 1
-1 = s = m Sl =3
P/ q=p/ (P4 A7) /q=v/ A P4 P
are made use 0Ofe
Substitution of z = g/A gives
2,2 P d
/a=p/¢ = AN /z - = / and — has to be replaced by
A dk
zz d
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=

ar 2 1

| — — =, ¢ ,
** GBS Ak, g 4z A2 2241 PA? /z-% /

7

P 2
S -/ (szz))j

Substitution of f = Pl results in

A
(2) 42® 2% o ap |
£ o= — I — g 5T\ 3
GES Aky q 4z AT Y (2%41) P l/z-Pl/
2
+
2 2 %
/2=P1/“(1+P 9} * .
222 22 4 X : 2 ]
Ak, g d q4 l+z2 21 22
L Z
ap
where I = [ 7 £.=0, £_=1.
2k /2*2/2(P2+Lk) 1 2
Since 82 = 1,
(2) ( a ) 4[ 72 ‘]
£ = e () [~ ——— 1__ +2I
GES SWkiz'?' dz 14 g% 21 722

~

The evaluation of the integrals are shown in:appendixe
These results seem initially discouraging in that the

integrals I are absolutely divergent. However, for the

2k
particular combinations appearing in the above equation, a
tedioﬁs, but straight~forward calculation shows that all
infinities cancel exactly. It may be noted that similar
cancellations occur in the analysis Of the Massey~Mohr

approximation to the second Born term as demonstrated by

Moiseiwitsch and Williams (1959).



Thus the substitution of T integrals leads to

90

2k
(2) 1 ( a 2% 1 +22 ) o 15)
£ = — In 3.15
GES 2k123 dz 1422 0 Z
(2)
(Bventhough £ . does not figure in the MGES scattering
GES

amplitude (3.6), this term also is evaluated in all the

gcattering procesgses studied here in order to compare with

the imaginary part of the Born term.)

(~Z3) .
C(3) Ry , €, <, 1
£ = ! ‘
- 3, 3 2 2 2
GES 677k 2 P /a=(p,+p,)/

1 2

<y ./ B(Pl) B (Pz) B lq - (p}_"'pz) ] /s>

Proceeding in the same way as in
(2)

£ >
GES ’

<y / B(P,) B'(P2)B(q-}?l'"92)/lfi >

= —f ——

- d { 1 1 1 1
an -

b2

W2 p 2, 32 922%_2 p—— /2,32

1 1 1 1 }

+ + + -
/a=py/ P2 /q~P2/2+?%2 /prt—pz/2 2% g2l

Mszking use of substitutions like g- P; = Py it can be

ap sz 1
shown that the integral [ -5 J — T X will
F1 Pp" JaPy Ry

have the same form for the three values of X namely.
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-1 -1 -1

4 ,

2,2 2, 42 . 2 2
P %4n P %+ A /a=py=p,/ + A

» Similar grouping can

be done with the positive terms also of the above expression.

Now the substitutions

P
qu\/K' ;}-:%,-‘-—2 =P4 %'L\/&

A
2
£ 93 _ ! — (=) 2t [- Zz I, + 31, - 31, 7
GES 24 % k.%=z dz r+z
where Ty = /z=p /* ! P %P, P,/ e
By=1.,B,=1+P7% g =14+p7
The I3k integrals also are divergent like Izk integrals.

But the beauty of these calculations is the exact

cancellation of divergencies. The substitution of I3k into

the above expression gives

(3) 1 a z4 2 2 ‘
£ '=~*~'§“~3-(~*) > §4[In('l*;:"z-'3]+ﬁ'~2A(z)§
GEs 8k;% 2> az 1tz ) T3 :
..(3.16)
2 (-2)"

o0
where Alz) = 2(ln 2)2 + &~ + &

. 6 n=l n
o B
@ (=1/z%)
L ———,2z2>1.
n;l i 4

1

> s,z L1

Y

it

Now the Born terms are evaluated following Yates (1979).

The evaluation of these terms differ from that of the
GES terms mainly due to the inclusion of average excitation

energye. For ESGH process.,



U~ (g=p-BX.,P+B X) = a
£, -= - . A PP%) Ugmeres?) A
q2+2 A2 1 1

]

M(PED) /et phpa?

The above expression reveals the correlation with the
(2)
corresponding expression in £ . but ftor tne average
: ‘GES
excitation energy parameter B. Hence f£Im can be written -

making uge of partial fractions - as

-4 4 ap 1 g2 1
fIn = == — ) = (55 =2 ) 5
Aky dh (/a=p/“+8%) % g+ A . P4+ B
—
b ——
P2+82#&2 .
Which may be written as
4 a1 2,2 : 2
£fIm = - 5 [21, (B°A°) = —— 1,(8%,0)]  (3.17)
Kki dA A X g +h .

The average excitation energy parametér g = 0646S/ki (Byron

and Joachain 1977).

‘A very similar procedure can be adopted for the

evaluation of the real Born term fRel. In this case, Uéi)

is similar to the one given above but for the replacement of

B by PZ. Thug £ Rel becomes
3
45 1 1 a 20 1
fre, < L1 Py Te
kK, XA —o B qep/tP %) (P _-p)
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1 [ q2+2 A% ) 1 2 ]
-—2 + -
- 2,42 2 2 2 2,52
A P A .
2\\\2 g+ + Pz P +PZ +

which may be written as

2

4 d 1 g
£ Rey = =3 (— ) — [212(52,k2) - = 12(32,0)] (3.18)
Ak, S dh . A i . g +h ) ,

h e
: 2,2 2 4,2 : .
The integrals Il(B %) and 12(6 A7) are given in the
appendixe I; (8%,0) is obtained by putting A=0 in Il(az,hz)

Now, fw, in (3.6) is evaluated using (3.12), (3.7) and (3.9).
. .2 1 24
This gives fw2= kiz [ 2)2

22
— 4+ 4448 = @107 (3.19)
(l6+g“) (16+q (16+g7) .

The application of Ochkur approximation in the evaluation

of the exchange term gives

2 iq.r *
fegch =7 T 2 fe == ¥ (v) Vi)
i - . - -
32 1 ( )
= - . 3.20
k.2 (W%g?)?

i
Substitution of the terms from (3.14) to (3.20) gives the
MGES scattering amplitude (3.6) for EGSH process. Now the
DCS is given by
dag 1

—_——— £+ /%4
a2 4 €

N

, .
/ £ - fe/ (3.21)

and £, = £ =~ £

wheré fe = feXCh a W e

The total elastic cross sections (TEC) are calculated using

(1,9). Thiszig-givén -bycacmeasure-of the area enclosed by the



. ac . .
curve drawn with __ Sin® against ®. The total cross
an

sections (TCS) are calculated from

6; = — £ (0=0) (3.22)

Results and discussion

The DCS for the ESGH process are calculated using (3.21)
for incident energies from 100 &V to 800 eV. The TEC and TCS
are also calculated using (1.9) and (3.22). The DCS at 100
and 400 &V are displayed in fig.3.l and fig.3.2 alongwith
other theoretical and experimental data for comparison. The
individual terms of the MGES amplitude (3.6) are exhibited in
tablef 3.1la and 3.1b at the incident energies 200 &V and
400 eV. In table 3.2, ﬁhe>DCS at the sample energies are
given. The TEC values in the present study along with the
data of other workers is reported in table 3.3. Similarly.

table 3.4 digplays the TCS valuess.

A glance at fige3.l and 3.2 reveals that all the DC3
curves lie clogse to one another in the small angle region
and they depart from each other as @ increases. The real
test_of a particular approximation is in its satisfactory
description of the scattering process in the entire angular
range.’ Fige3.1 shows that the present MGES results agree
very nicely with the experimental éaté and perhagps they are
nearest to the experiments. They improve upon the basic

GES results considerablye. The present results closely agree



with the OM results (Byrom and Joachain 1981). The
disa@reement of these results with the HHOB results (Yates
1979) is not at all discouraging because the HHOB results

are proved to be very much overestimating in the large angle
region (Rac and Desai 1981, 1983J). The present results

agree véry nicely=-for all @ - with the gophisticated DWSBA
calculations of Kingston and Walters (1980) (not shown here) ;
and also almost coincide with the recent UEBS results

(Byron et al 1982) in the small angle region.

The’pfesent MGES method (3.6) may in general be
considered as a termwise analysis of the UEBS method in the
same spirit of the GES analysis. Hence, if the inequality
k; >> 1 is satisfied such that the MGES (3.6) can be antici-
pated to be rapidly convergent, the present termwise analysis
gshould give a Qery good representation of the UEBS cross
section for all values of g. From Fig.3.l, it can be seen
that the MGES results differ from the UEBS results in the
large angle region. This difference is mainly due to the
difference in the treatment 0f exchange in the two methods.
In UEBS, Byron et al have used a new non-perturbative approxi-
mation for the exchange scattering anmplitude which leads to
lower differential cross sections at large angles, whereas in
the present MGES, Ochkur approximation is used for exchange

calculations. However, excluding exchange effects, the MGES
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and UEBS methods give very nearly the same results. The
agreement of the two sets of results becomes better at
large energies because the present amplitude series (3.6)
becomes more rapidly convergent then. It may be noted in.
fige.3.2 that at 400 eV, the MGES "and UEBS results are very
close to each other, even with ?he different treatments for
exchange. Thus the MGES (3.6) proves to be a satisfactory
representation of the UEBS for all values of g, even when

the inequality ki >> 1 is only marginally satisfied.

However, it may be noted that the UEBS eQaluation
is tremendously difficult even in the case of hydrogen (Byron
et al 1982). It is bound to be more and more complicated
for other atoms like He, Li etc. But the present MGES
analysis, which represents the UEBS series satisfactorily,
may be easily evaluated even in the case of higher atoms,
as shown in the subsequent sections of this chaptere. This
is precisely the most important advantage of the present

methOdg

H

The present method, which is a high-energy-approxima-—
tion method, should be naturally expected to give better
results at higher incident energies. This fact i1s explicitly
clear from fig.3.2. It is encouraging to note the improvement
over the basic GES (Yates 1974) results here also eventhough

the improvement 1s less than in fig.3.ls

o
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Table 3.la shows the individual terms of (3.6) for

the ESGH process a% %00 eVe The similarity be%w?en the
2 ‘ 2
imaginary terms £ and £Im is striking. £ comes from
GES GES
a zero-~gxcitation energy approximation whereas the excitation
energy parameter is present in £Im. Their similarity is
(2)

another point in favour oOf the replacement of £ by the

. GES
HEA Born terms in the present study. In Table 3.2 the

present DCS values at certain sample energies are exhibited.

Table 343 throws liéht upon the similarity of the TEC
values calculated in the MGES and UEBS methods. It is
obvious that the agreement improves as the energy increases.
This supports the argument that the MGES sgatisfactorily
represents the UEBS as found in the DCS comparisonse. The
table also shows that the present results agree nicely with
all other theoretical calculgtions whereas all of them differ
from the experimental values. In the light of the excellent
agreement between the theoretical predictions, it is difficult
t0 see what effects could be invoked on the theoretical side

t0 explain the differences between theory and experimente.

The table (3.4) of total cross sections also shows
such a behaviour as is qualitatively similar to the one shown
by table 3.3. .Remembering equation (3.22), it can be easily
understood that the present values of TCSﬂshouldvbe the same
as those obtained in the HHOB method of Yates (1979) because
both the methods have identical imaginary terms. Naﬁurallyc
the present results compare better with the other sets of data

for higher energies.
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Through’ the above discussions, the feasibility, simplicity
and significance ©f the MGES approach are brought to light.
The satisfactory representation of the sophisticated UEBS
amplitude, the ease of calculations in comparison with the
UEBS evaluation and the highly encouraging results oObtained
in the ESGH process provide enough motivation to extend the

present MGES approach to other scattering phenomena.

3.3. Elastic scattering of electroms from the excited (28)

state of Hydrogen atom i

in spite of its numerous applications in astrephysics,
plasma pﬁysics and various gaseous phenomena = besides the
intrinsic theoretical interest associated with it -, very
less work has been reported on the study of electron scattering
from excited metastable states of atoms, when compared with
the bulk of éstimations of similar process fromtphe ground
state. The same is true even in the case of hydrogen atome
Electron~scatteriﬁg from 2S5 state of hydrogen ~ abbreviated
as ESEH - is.a fundamental process for which it is reasonable
tc assume that experimental aata will become available in the
near future. A recent revival of theoretical interest on
this scattering problem has resulted in the extension of many
a theoretical method to study the above problem. Even then,l
the available data can be considered as scarce. Added to this,
the motivating factors cited at the end of section 3.2 are
enocugh for an exploration of the ESEH process from the

dimensions o0f the MGES approaches
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The interaction potentiazl for the ESEH is the game

as for ESGH (3.10). The H (23) waverunction is known as

-r ‘
— (2-r,) e 2 (3.23)
43R 1

Vo5 =

. . , - < ,
The static potential is gvaluated as Vst Yf/ v/ Vi>

~

2 -r
.3 . ¢
= - S+ 5+ 7+ E ) e (3.24)

because Yo =§; =¥ -

(3.10), (3.23) and (3.24) may be used for the evaluation of
the individual terms of (3.6). For similarity with the ESGH

Pl
process, the product ? V may be represented as

3 -y, 2
* -d 171 4 -y I d
Py =cy (—) & y o, (—5) 2L o (= —)
aM, 3 d r 4
Y35y
e (3.25)
1
where y; =Y, = y3 = 1,
1 -1 1
C o ——— C = C o —
L7 228 2 g=x 3 gn
(1)
£ . is essentially the same as first Born term (Yates
GES

1979), the evaluation of which is straight forward. This

gives

2 2 . 2,
(1) C3(q+2ts) , -d g% + 28° . a
- 3, 2 .22 2 3 122
GES ] LB(q +L3) d;z £5 (q2+£§)2 dﬁl
2 2
+ f- =
d 271 % (3.26)

202 ,2
Ll(q +Ll)2
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Now proceeding in the same way as in ESGH process., the

second and third GES terms may be obtained.

{2)

The expression for £ i in the ESEH proc:eés can be
easlily Obtained by consideriigsthe similarity of the wave=-
function product (3.25) with the corresponding expression
(3.13) in the ESGH process. Corresponding to the three

- #
terms in the Y Y (3.25), three expressions will constitute
(2)

the £ s Hence ‘
GES
(2) (2) (2) (2)
F = £ + £+ £
GES 1 2 3
. - e'yari
Gorresponding to the term <C,( ) ,
397y Iy
{2) -4
£ = c_7n{ 7} ) D+ f2(23)
3 3 A kiq

1l , , .
where D7 is the differentiation weret. z as transformed

4a
from -
dy3 ,
d Z
[l — £ (y,) = = — £ {z,) ] ana
3 3
dy . g az :
3 5 3
zi 1 + Z4 q
£ (= ) = AT B 1y e dith g m
23 ' l-i—z3 Zg 3 Y3

Similarly, for the other terms in (3.25),

(20 —d : 11 )
f . = C,A{(———— ) D £ (= and
2 A S 272
- A
— 11
£ .. =C A 7 ) D fz(zl)

1
1 2y kiq



121

. 11 111 , . .
where D and D denote differentiations of the second

3
2 d
and third orders w.T.te z as transformed from éE and —3 .
dy dy
Using the expressions
a2 23 da ‘ g2
— £ (y) = [ 2 — £ {z) +2—= £(z)] ana
2 2 az dz?
dy d - z .
43 2% a 32 ) a3
— £ (y) = - = % 6 — f£lz) + 637 —3 £(z) + =z —3 £(z) g
day . q ' dz dz dz
: (2)
in the above expregsions, £ becomes
GES
(2) 164 c, : I a? W) a3
£ = —5 % -5 L6 — £tz ) + 6z, —3 £ a2/ + 2 —x
- 3 4 2 1 1.2 7271 1 3
GES kiq yl dzl . dzl . dzl
C2 ) d2
£ (Zl)] + 3 [2 — Lz(zz +22—;;§
7, 2 ' 2
C a
£z )] + =2 —— st (z.) (3.27)
2 y2 dz 2 73
3 3 : )
4 2
a o _a () 2 1+z
where 2, = =—— , 2Z_ = , T and £ _\lz)= 5 1n
L7y 27y, " By, 2 liz Z

A similar argument follows in the evaluation of

(3)
£ which may also be split as
GES
(3) (3) (3) (3)
£ = £ + £ + £
GES 1 2 , 3

By analogy with similar expression in ESGH process,

(3) -4 .
£ = C_ A (—=————) D" f3(z3>
3 3 k. g . ..



(3) -4 11 )
£ =C_RA { ——— 3 DT f =z and
2 2 k25 ! 372
i
(3) -
. s 111
1 . ki aq ..

1 11 111
where D, D and D have the same meaning as in the

previous cade, and f3(z) is as defined below. After

. (3)
performing the differentiations, £ .  Dbecomes
. GES
R cl[ (z,) < (z.)
£ = % o 6 ~—— £ _(z + 6z —— f Az
L 2 3 4 .31 1.2 "3
GES kg vy dz, : dz]
R D S R
+z, == £ _\zZ ot — 22— £ \z +z
1.3 7371 3 372 2 . 2
dzl y2 dz2 d22
£z )] + = £ {z_) % (3.28)
3772 2 dz 373
. y3 3 - -
Z4 ) l+222 7‘2
where £, (z) = ———— % 4 [ ln —— ] + — -2a(z) %
o L+ z ; z 3

where A{z) is same as in (3.16)

In the expressions (3.27) and (3.28), by putting

1 (27 - (3) - ' (2)
C,=__ andy, = 2, £ . and £ . get reduced to the £
3R 3 3 3 GES
. (3)
and £ . for the ESGH process (3.15) and (3.16). This
GES ,

provides an indirect check to the present calculations.

The evaluation of £Im and fRe, are now done following

1
Yates (1979). The average excitation energy parameter for



the ESEH process is taken as 0.0556/ki. Using (3.10) and

(3.23) £Im and fRel may easily be obtained.

As in the case of the GES terms, the evaluationg of
the Born terms are als¢ made easier by making use of the
correlation betwaen the‘vﬁq in the ESGH arid ESBH processes.
As a result, f£fIm will be constituted by the sum of fIml,
fIm2 and fIm3 - the contriﬁutiens ariging from the three

X
parts of § ¥ (3.25). -In comparison with the ESGH process,

fIm3 may directly be written as

f1m3 = C3 A LfIm for ESGH process (3.17)]

with A = Y and B = 0.0556/kio Simiiarly fIm2 and fIml
d

may be obtained by replacing Cye¥,g and — by C. v,
d2 . d3 ’ dy
and —3 and Cl, Yq and -3 respectivelg. Thus the
dy : ay
2 1 ,
imaginary Born term in (3.6) may be written as
2
d d
£Im = C, (= — ) £.(8%, 4%, v2) + c, —= £, (8%, 4%, v?)
3 2 3 2 2 72 2
dy , . . dy, °.
3
d 2 2 2
+Cl@~ -—3—) f?(B g ’Yl) ' (3.29)
dyl i} .
2 2 2 4 4 2 2 o’ 2 -
where fz (B e q oY ) = o - [211(3 ey ) - 73 Il(,B ,G)J
: : k, ¥ q +y

The type of shortcut mentioned in connection with the
evaluation of £Im is equally succegsfully applicable to the

evaluation of the real Born term fRel.- Thus it follows that

(R

1 2
fRel = fRel + f Rel + £ Re
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With £ Rei = cx [ fRe) for ESGH process (3.18)] with the
3 i
same A and f as in £Im . Similarly, the expressions for fRe, &nd
2
fRe2 are obtained by substituting C_, v.. L= and C., v..
1 2" 2 dy2 KRS}
2
QE_ in the place of CB' Yy f; « Hence, the final form of fRel
3 '
dyl dy3
for the ESEH process becomes
2
: -d d
o (e 3 2 2 2 2 2
£ Rey = C, (d ) £,08% &, v3) + C,—p £508%, 4%, y))
Y. . dy .
3 2
3
~d 2 2 2
+ Cy{ e ) £_(B°, ¢°, v7) (3.30)
1 av> 3 1
\'g
1
where
. 2
4 i g
2 2 .2 . 2 2 2
f(B:QlYM)=~"'—— [2-£(B'Y)"WWI(BlO)]
3 Ak, 2 2 q2+y2 2 :
Now £ , is obtained using (3.24), (3.7) and (3.9). The
evaluation of this term is quite sﬁraight forward and gives
1 7 @& 1 a® 1 a® 3 &t
fH, = —— [le — —— 4 — — — — +—
2 2 2 3 4
2ki 4 ax 2 ah 2 dk 8 ah
5 6
_ 1 4 1 4 1 (3.31)
5 f 6 4.2 2
16 dr”, 16 ar A%%g

where AN = 2

Using Ochkur aspproximation, similar to the ESGH process,



1 c d2 1
= é €1 3 + 2 7 .2
exch 2
k,
i ‘dyl q2+y‘2 'dyg q + Y2

(3.32)

a 1
, . )

C
3 2 2
dY3 9 +Y

Again, the similarity between the wave function products is
made use of here. Now the MGES scattering amplitude (3.6)
for the ESEH process can be obtained using equation (3.26) to

(3.32). Here also, the DCS is given by (3.21).

Results and discussion 3

The differential scattering cross sections in the frame-
work of the MGES approach for the ESEH process are calculated
for incident energies ranging from 100 eV to 800 eV. In each
case, the DCS in the GES method were sepérately evaluated
using (3¢26) to (3.28) in order to compare with the corresponding
élauber cross-sections. Such comparison had not been made
previously eventhough Yates (1974) ﬁad mentioned that the
determination of the validity of the GES analysis for collision
processes other than ESGH reguires further study. Moreover,

a comparison of the present MGES results with the UEBS results
(as in the case of ESGH process) for the ESEH process is not
possible because the UEBS results for the same are not available

sC fare

The present results at 200 &V and 400 eV are displayed
in fig.3+3 and 3.4 alongwith the data of other theoretical

methods. It should be remembered that absolute experimental
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et

-~

measurements on the ESEH process have not been reported so fars
In tables 3.5a and 3.5b the constituent terms of the amplitude
series are listed separately. The present DCS results for

certain sample energies of incidence are given in table 3.6.

In £ig.3.3, along with the present MGES results for the
ESEH process (curve a) the corresponding MSES results for the
ESGH process (curve b).at the same energy are given for the
sake pf comparison between the twoe. It is seen that beyond 50?
they almost coincide. This is actually what 1s expected since
the nuclear part of the interaction progressively dominates the
scattering as @ increases. Similar type of coincidence was
previously mentioned in the EBS and two-potential approaches to
the ESEH p:.;ocess (Joachain et al 1977, Pundir et al 1982). The
same may be expected to be true in the case of UEBS approxi-
mation alsoe. Such a situation allows a rough estimate of the
UEBS cross section for the ESEH process in the large angle
region (say above 50-) evdn though the exact calculations have
not been performed. It may be anticipated that the large
angle cross sections will be nearly the samefor ESGH and ESEH
processes. The UEBS results for ESGH process - for large & -
may be compared with the present MGES resultse. The nice
agreement between the twd further strengthens the argument

that the MGES satisfactorily reproduces the UEBS results.

A study of £fig.3+3 and 3.4 reveals that theM3ES results
compare withlother'data in a way similar to the one found in

section 3.2« At small angles, all of them show close agreement
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and they depart in the large angle region. The HHOB regults
(Rao and Desai 1983) depart the most from the MGES values =-
sometimes even an order of magnitude. The present results
lie between the OM (Joachain and Winters 1980) and two=-poten-
tial results (Pundir et al 1982). Since all the cited fesults
agree with each other in the small angle region where perturba-
tion theory is rapidly convergent, the real test of the
accuracy ©f a particular method is in the large angle DCSe.
In the absence of experimental data to support the theoretilcal
predictions, it is rather difficult to comment on the accuracies
of the various approachess In the light of the results obtained
in the ESGH process and the comparison between the ESGH and
ESEH processes, it is only reasonable to expect nice agreement
of the present MGES results with experimental data when it
becomes available.

As(i? the case of ESGH study, hefe also the imaginary
terms £ ’ and £Im show striking similarity (table 3.5).
The presegismethod is expected to give better results for

higher incident energiess

Table 3.7 shows a compafison between the DCS values
obtained in the present study in the GES approximation and
their Glauber counterparts (section 4.4). It may be noted
that such a comparison has not been reported earlier. It is
clear from the table that the GES and Glauber results are
approximately the same and the proximity of the results

increases with incident energye Thus,it can be concluded that
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the first three terms of the Glauber eikonal series are
sufficient to represent the Glauber amplitude in the case of

ESEH processs

Tablé 3.8 lists the total cross sections obtained in
the present study using the optical theorem. It should be
noticed that these TCS values are proportionate to those
obtained in the case of ESGH process (table 3.4). Similar

behaviour is discussed in detail by Pundir et al (1982).

From the above discussions, the general conélusion
‘drawn is that the MGES is a successful method in describing
the ESGH an@ ESEHlprocesses. Stimulated by the encouraging
results, we now take up the study of electron scattering

from helium target using this methode.

3ed Elastic scattering of Electrons from the ground

state of Helium atom

Recently 8ingh and Tripathi (1980) studied the electron=-
scattering from helium atom within the framework of the GES
methode. They concluded that the inclusion of only the first
three terms in GES gives a good representation of the Glauber
differential cross~section for elastic scattering from the
ground state of helium (abbreviated as EHe process). However,
the DCS were too low in compariscon with experimental data at
all angles (except very near the forward direction where they
divergel). Henhce, it was desirable to study the EHe process
using the MGES method which has given improvement over the

GES results in the case of electron scattering from hydrogene.
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The interaction potential for tne EHe process is

given by

~2 1 1

+ b — (3.33)
r /E-gx/ Fe-z/

vV (z, ry. rz) =

The ground-state wavefunction of He is chosen as the Hartree-~

fock wave function of Byron and Joachain (1966).

¥ (rl,rz) = ﬁls (rl) ﬂls (rz) (3.34)
1 -er -er
with Els(r) = [ 2 e +B e ]
JTE
where A = 2.60505,
B = 2.081l44,
Yl = le4l.
Y2 j=—1 2061.

The static potential of He, V i, was chosen following Cox

and Bonham (1967). Thus,
5 -hjr
v = =2 5 Y? & — - (3.35)
st jel J
!
Here kl = 2.4908 yzg 1.0030
R = . 3 = "UVe
b, o= 3 8608 V5 0.6146
ma = 641256 yge -0.1840
A, = 2.8522 Y= 06116
R = = Oe
AS = 5.1284 yg’ 0.1841
a X ~ 1.
| 1
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The validity of these type of potentials in the range of
energies studied here, was discussed in an earlier section .

Now the equations (3.33) to (3.35) may be used in the evaluation

of (3.6).

(1)
£ is given -

by |

(1) 1 iger £ 2 1 1
£ == = I J I av e V [“ — +

GES 0% r /E‘Ei/ /£~£2/

ya Vyav,
] * 1 9 K . r., =K . T
Substituting Y ¥ = 5 bH D e k™l 2k 2
and f e = - fe s we get
/L =,/ q

. (1) ) g 8D, [ 2 _ Koo

S 2 2, 2

GES k=l ¢ K3 Ky 3 ky3 (g +le2>

ko ] (3.36)

Z
Bypd (gk 22

where the values of DK' le and.kZK are llsteq in table (3.9).
(2] (3)

£ and £ for the EHe process using the same wave
GES GES

function (3.34) were earlier reported by Singh and Tripathi
(1980). They had given the numerical results at 200 and 400 eV

alsce. In the present study, the same procedure was followed.
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The lengthy expressions for these GES terms are not given here
because they will be unnecessary reproduction of earlier

resultse

In the evaluation of the Born terms, Yates' (1979)

procedure was followed. For the case of helium target,

A
(P+P X;r. r ) 1 i P.r i P.r
7 z 12 _ [e 1 + e 2“2]

2x2(P2+P22)

The B parameter was chosen as B = 2.2/ ki(Byron and Joachain
1977). For the Helium target,
(2)

U .
£i

i

*

- A — ) A

< ; e e ; >

Y /V (P+P 2 rl,rz) V (g-P Pz*~,r1’r2)/ y

3 1 1 9 K1 KoK 2
3 > T A E e ©

64A (P +P22) (/ g~/ +PZ ) K=l

i

1 ! lEoEZ i/g—g/.rl

- igeb; ig-R, iP.x
L e + e ~2e -2e -2e

Va-p/ £, i(g.gl§/g~§/.£2) i(E.£2+/g—B/.£l)

-2e + e e +4

Now taking each term and integrating,

(2] 1 g ) d . 2 4
U Tz e— D. g - S———— -
. " 3
£1i 4x Ksi A s (q®+k 2) K3 By

4 ] d )T 2 4
+ (=
0 2K k,.3 (g%x
ko3 A 1K

2K2 ) les B

4 -d ~-d R 1 16
1% ¢ ) ( ) [ + j

T e L S L ST R o

o

Kix3 By

1

2 2 2 2
(p +PZ ) (/q-P/ +PZ )

(3.37)
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Sy _ p2 2
where A, = /a-®/" + P, + k.2, B = P° 4 P + K2
2 2 2 .2
v, = /q- = P ,
By =/q®/" + P, + k2 B, +PT 4 k2

The following method of partial fractions was used im the

calculations.‘
1 1 [ 1 1 .
(% 2% (2 4 22 a2 (PR hptad)
z z ‘ z Z
a3 (2) : :
since fIm = ——— J g2 U + the above simplification
. £i '
has to be used rep%titively.
Thus f£Im becomes
3 ik ok
fIm = =—— DK L F
Ak, K=l Kox3 (Pak,.2)% k.3 (qP+k..2)2
T 1K 1k® T TRk
16 5 4 a 1
+ 11, (B%0) + ( )
ki3 kg3 kog? . kg2
5 5 4 a 1
[2 1,(8%0)=2 1, (B%, k.2 )] + ( )
1 1 KE T Tk 3 ax., k.2
- : : 1KY TR oK

a
21, (2, 0)=-21, (B2, x_.2)]+ ( ) (=)
[ l‘ ﬁ l— .2K. ] dkle oK

1

- 2 2 2
S Lzll(g ,0) -211({3 ,kZKZ) + 214(3 .le2,k2K2>
1K Fox :
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2
- L
21, (B ,lez)]g)
Performing some of the differentiations and simplifying the

above expression, the imaginary part of (3.6) was thus derived

as
_ 1 g 4 ' ke
L, = Dy 2 5 ¥ 3 2
Ak, K.?l o kZKB(’:; +le2) ki3 (q +k2Kz).
5 4 a 1 5
- ] Il(B ,C) - ( ) 11(13 ,le2>
le3 k2K3 ! k2K3 - dle : lez
4 a 1 5 ' a
- — ) L Bk 2 ) + 2l )
K3 ak oy K2 ) , dky
a 1 5 ‘ \
(dsz ) > I, (8 21Xy 20k 2 § (3.38)
- T1IKT Tk - - :

.

Here Il (82, y2) and 11(32,f0) are similar to those given in

(317 I, (g2, % 2 ) is given in the appendix.

k2 ¢ Koy
Proceeding in a fashion similar to the above one, £ Rel is

obtained as

2
-4R -] ar 9 1
w 2
£ Re, = —— JPIaR § 7 Z D z
1 s =P B xa X 4R (%) (fqmp /4RD)
ik Kok | 16 _ 4
¢ + s ]+
Fad (gt 202 K3 (a2 Kix3 Kyl Kox3
a 1 1 4 a N a a
— e =] 4 ( = + =} + ( ) )

dklk Bl AK' Klk3 dk2k ; 32 AZ dKlk dKZk



1 .
LB + ] %
12, AB
109 Koy 4K 16
2 k 2 2 2 2
== - K ¥
A kg ksl TR 3 g%k, 2) Ri3(a%K,, 2)° K 3K, 3
2 2 2 -
I_(g%,0) + ( ) L 2z (g%, 0)=21_(B%,K,, 2)]
2 K. 3 &K K. 2 2 2 1k
2k 1k 1k
a a
4 a 1 1
4 (——) ( ) [21 (g%,0)-2 I (52,1{ 2”*”( ) { )
K. 3 K K 2 2 2 R P
1k 2k 2k
1 2 2 2
[21 (g%, 0)-2 1 _(B%, K., 2) -21_(B“,K_ 2)
K. 2K _ 2 2 2 1k 2 2k
1k° T2k

2 ; i
/

The simplication of some ©f the terms as in the case .of fIm

results in

-1 g [ 4K Kok
L y
el 2 Tk 2 p) 2 p)
Ak, k=l D O (g +Klk2) K3 (g +K . 2)
8 ) 5 4 a 1 5
-] 1 (g%,0) - ( ) 1,(8% K, 2)
Kpp3 Ky 3 - LKy,3 o &K, K2
4 d 11 %% 2) +2 (—%—)(—4.)
- ( ) 2 2k K ak
K3 aK K, 2 ’ 1k 2k
! (g2 ) (3.39)
S ——— 1 B K 2, K 2 ; ® ow 3.39
X 2K 2 55 i 2k’ )

1k 2k
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Here I, (82, yz) and 12(82,0) are similar to those given in

: , - 2 \ . o
(3.18). The integral 15 (g<, Klkz, szz) is given in the
appendix. Now fW2 is calculated using (3.9) and (3.35)
8 5 5 Y%A
fw2 = Z 2 J J e 0-0(3.40)

k,2 1=l J=1 [ (n o )22
i L{ l"}'}\XJ) +q]

"

The Ochkur approximation for the evaluation of £__ in (3.6)

ch
gives
2 iqorl
= ""‘“"‘""'"ff a s [y
£ e 3 dv, dv, e /Y5 qf/ (3.41)
i

which can be easily evaluated uging standard integration
techniques. Now the substitution of the various terms in (3.6)
gives the MGES scattering amplitude for EHe process from

which the DCS can be calculated. Here also the TCS and TEC

may be calculated similar to the ESGH processe

Results and discussion &

The differential cross sections for the EHe process
are calculated as above at intermediate energies. The results
at 200 and 400 eV are represented graphically (fig. 3.5 and
fige 3.6 respectively), and compared with the data of other

WOXKELS

A perusal of fige.3.5 reveals that the present results
improve over the basic GES results quite significantly and they

show very nice agreement with the experimental data. As in the’
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case of ESGH and ESEH process, here also, the HHOB results
overestimate the present results in the large angle region.
But the two sets of results exhibit close agreement in the
small angle region (upto 690).. In the case of EHe process,

- there is no UEBS result availabie in order to compare with

the present MGES results. The complexity involved in the
evaluation of the UEBS scattering amplitude is obvious from
the experience-.-with the EHe process. The beauty of the MGES
method is the comparative ease Of evaluation of the scattering
amplitude, all the terms of which are Obtainable in the closed
form. Hence, there is no need for the Eomplex numerical
methods similar to those used in the UEBS method. However,
there is enough reason to believe that the present MGES
results will satisfactorily represent the UEBS results for

the EHe process when they become availables

The present results should naturally give better
results for larger incident energies. The comparison of
figures 3.5 and 3.6 prove this. It may also be noted that
the deviation among the various results obtained through
different approximations narrows down as the incident energy

increases.

In table 340, the present DCS results at certain sample
energies are givene Table 3:11 shows the TCS values. Here
élso, the TCS wvalues should be the same as in the HHOB approxi-

mation. Tables 3e12a and 3.12b show the individual terms of
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the amplitude series (3.6) at 200 eV and 400 eV. The

- i (2)
similarity between fGES

process also. From a tabulation of the above form (table

and £ Im is repeated in the EHe

3.12), an idea about the convergence of the series can be
obtained. It should be remembered'that‘the wavefunction
used for helium (3.34) is approximate, thereby introducing
an additional source of error into the calculations. However,
the agreement of the present DCS with the experimental

oObservations is definitely a matter of encouragemente.

3¢5 Elastic scattering of electrons from the ground

state of Lithium atom @

\

Motivated by the successful application of the MGES
method to the elastic scattering of electrons from the ground
states of hydrogen and helium, an attempt was made to study
’the similar process from the ground state of Lithium atome
The study ©of alkali atoms has special significance in certain
specific areas like magneto~hydrodynamics. & knowledge of
the scattering cross~sections is an important desSign parameters.
However, it i1s difficult to believe that methods which apply
well in the study of atoms with a closed she;l can be equally
successfully applied to the case of alkali atoms. The reasons
for this are elaborated in the later chapter on alkali scattering.
However, the most important point to be kept in mind is that
the absorption effect (removal of electrons from the elastic
to the inelastic channel) plays a leading role in the alkali
scattering. A comparative study of the optical potential model

and EBS type of approach has revealed that the absorption part
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Vabs of the optical potentilial treated in the first Born along
with the contribution arising from the treatment of the
static part VSt twice in the second order of perturbation
will give the imaginary part of the EBS amplitude. This
takes proper care O0f the absorption effectse. Since the present
MGES method is, in one sense, an EBS type of approach, there
is enough reason to believe that the MGES amplitude will
account for the absorptive part quite satisfactorily. Hence,
there is no much scope for hesitation to extend the MGES
method to the elastic gcattering of electrons from the
Lithium atom (ELi process). Moreovér. Lithium being the
lower extreme of the array of alkalli atoms, the discrepancies
arising in the study of these atoms will be the least in the
case of Lithium. In spite of the main features of alkali
atoms =~ the loosely bound 8 = electron, the large polariza-’
bility and the quasi-degeneracy of the ground and first
excited states =, the Lithium atom may, by and large, be
consldered similar to the hydrogen atom when it is modelled
in the core - approximation of Walters (1973) = the nucleus
and the inner shell forming the core and the 28 ~ electron

behaving as the valence electron.

As mentioned previously, the computational complexity
involved in the evaluation of scattering amplitudes goes
‘5n increasing with the atomic number of the target atom. Hence,
the decrease in the available data. In order to reduce the

computational difficulties, the lithium atom iz modelled in
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the core-approximation. Earlier, Walters (1973, 1980) has
used thigs approximation to gtudy the alkali scatteriné. It
is anticipated that thig approximation results in an error
which is ingignificant in the light of the diminished labour
and the computer time saved. According to the core approxi=~
mation, the total interaction between the incident electron

and target atom can be written as
V = V. + V (3.44)

where V;; 1s the hydrogen - like term (3.10) and V. is the

potential due to the core of the atom, given by

J ﬂi(rl) (3.45)

n ¥ v 1
v Ly 3 a8 (x) [- =
¢ i=1 + r /r-zg/

for an alkali atom with (2n+l) extra-nuclear electrons. Here
ﬁi(rl) are the spetial wavefunctions of the core electrons.
For lithium atom, n = 1 and

3 1/2
‘ﬂls (rl} = [ Lgﬁ%;~ 3 exp (—2.7rl).

Hence, from (3.45),

1 -
Vc(r) = =2 [ ; + 247) exp (=5.4r).
1 -5 e4dr
So that V = =1 + o _2(1r+2.7) e (3.46)
“ Yo7z r

Similarly, the valence electron wave function is written as

( following Coulson 1961)



y 05 (rl) = C ﬁzs + Dﬂls such that
5 * (r, ) {(r. )
¥ oos ‘57 Yog t5p? 95y = Lo
Fy (e) (r.) 0
Va5 5! Pigtng? dgy =0 and
I P * (r,) & (r,) dr. = 1.
1s ‘T1 1s "Mt %y
v T -X T
. _ 151 271
oL Y 28 (rl) = A r, e + B e
where A = 0.11252, B = «0,42204

The remark
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(3.47)

of Walters (1973) should be remembered at this

juncture that the calculations involving the wavefunction

(3.47) give much the same results as those obtained using

the more sophisticeted one =~ electron wavefunction of Szasz

and Mc Ginn (1967). The same will be provéd explicitly in a

later chapter of this thesise

The static potential for

lithium atom is taken similar to that of Helumfollowing Cox

and Bonham (1967).

Vst (x)
where
A = Q.
1 8737
Py = «80
4 3.8024
‘F'l = le3215
ﬁ = lvl407
g0 that 5 'VT

o

7~

Thus

6

-3 =
izl

*
s
Y2
13

1l-

YA

iy
jr

J.

#

It

r

79227
1.3839
~0.2273
-1.6110

{3.48)
\
K, = 2.2685
Ao = 2.7056
T3 = 1.3369
Yo = -0.9567



. | 121

Equations (3.46), (3.47) and (3.48) are now used in the -
evaluation of (3.6) for ElLi process. The calculation is

made simple by'conéidering the analogy between the wave-
functions of Li and H (28) (BEguations (3.47) and (3.23)),

and their interaction potentials (equations (3.46) and (3.10)),
In the case of Li also, it will be convenient to express the
prﬁduct of the wavefunctions W? ? in a form similar to that
of ESEH process (3.25)« In both the cases, only the

coefficients and exponential parameters of the terms will

differ. For ELi process,

Yl = le3 YZ 335 . Y3

= OQO = 0.0 :
Cl 1266 02 9498 C3

544

1]
il

0.17812

It has been pointed out by Mathur (1972) that the
difference between the scattering parameters obtained using
one or three electron wavefunction of Li atom is not very
appreciable at intermediate and high energies. He has
arrived at this conclusion by using the Glauber approximation.
Since the present MGES method is another way of representation
of the Glauber amplitude with certain modifications, the use
of one electron wavefunction in the present study is justified.
Moreover, it was “also pointed out that the inclusion of the
core potential in the double scaitering terms will not affect
the cross sectiong appreciably. Later on, the same assumption

was followed in the study of EL1 process in the fixed scatterer

approximation = FSA - (Guha and Ghosh 1979) and in the HHOB
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approximation (Rao and Desai 1983). Hence, in the present
study also, the effect of core is taken into account only in
the first term of the series (3.6) and is neglected in the

higher order terms. As a result,

(1)

f . ean‘be.wfitten as ;
GES 2 -
() '

£ o= E_ o+ £ (3.49)
GES a '

where fa ig thecontribution arising from the treatment of

the hydrogen - like temm V, of the interaction potential (3.44)
and fb is the term originating from VC- Considering the
analogy between (3.23) and (3.47), it can be easily understood
that the expression for fa will have essentially the same form

(1)
as £  in the ESEH process (equation 3.26). Only difference

GES
will be in the values of C's and ¥'s. These values are
defined earlier. The evaluation of fb arising from the core

part Of the interaction is guite straight forward giving

1 a2
£ = 4 % + § (3.50)
where A = 5.4 ’
(1)
Thus £ . = £ 4+ £ can be easily obtained. In the
a X

valu tiggsof £ (2) and £ (3) because of the neglect of
evalua GES GES’ a d

the core effect (VC) of the interaction potential (3.44) and

the analogy betwéen the wavefunctions (3.23) and 3;47), the

. : (2)
resulting expressions will have the same form as the £ and
(3) . GES
£ in ESEH process (equations 3.27 and 3.28) with new
GES

values for Ci and Yi.
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To find out the average excitation energy parameter B

for the BELi1 process used in the evaluation of the Born terms

£ Im and £ Rel of (3.6), the prescription of Byron and

Joachain (1977) is followed. Accordingly

: 2
2 < /S 27/ & .
»= Bk = \W Y (3.51)
E

where W is the excitation energy, & is the dipole polariza-
bility of the target atom, W is the ground state wavefunction

and £ is the average excitation ener parameter.
gy

Using the wavefunction (3.47) < v/ 22 / § > = 64055 a.u.
Using the experimentally determined value of & for Li

1( £ = 167 a.u.) (Sternheimer 1969), w (given by 3.51) works
out to be 0.0723. Using the Hartreefock wavefunctions of
Clementi (1965), Vanderpoorten (1976) has, in his optical
model. approach to the BELi process., worked out the value of

<y / X ¥ > as 6.211 seu. resulting in & = 0.0745 using
the same value of ;. The agreement between the two values
is another point in favour of the choice of the wavefunction

(3.47).

As in the case Of the GES terms in (3.6), the Born
termg £ Im and £ Rel also become similar to their counterparts
in the ESEH process (3.29 and 3.30). Of course, the values

of Ci’ Yi and B should be changed éccordingly.
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The evaluation of £ w, becomes simpler in the light

2
of the comparison between the static potentials for helium

and lithium (equations 3.35 and 3.48). Hence

A
18 & 6 Yi Yfkd
£w, = —3 R 7z 2 (3.52)
k,© isl jsl [(ki+kj +q 4

5

The Y's and A's are defined under (3.48).

The exchange term feX also becomes similar to the

ch
corresponding term (3.32) in ESEH process, but for the constants.
Now that the scattering émplitude is ready., DCS may be easily

evaluated for the Eli process.

Results and discussion

The differential cross sections for the ELi process
within the frame work of the MGES method are exhibifed in
£fig 3.7 and 3.8 (at 100 and 200 eV) in order to enable the
comparison between the present resulits and the data reported by
other workers. It is quite unfortunate that the experimental
data is not available for comparison at these energies.
Experiments have been performed on the Bli process, but the
results are reported for incident energies 20 eV and 60 eV
which are too low for the present approximation. It should
be remenbered that the convergence of the GES amplitude
series 1s poor at energies less than 100 &V. Hence there is
no other choiée but to wait till experimental data becomes
available at higher energies in order to have a comparison

with the present results.
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An observation of the figures reveals that at small
angles, all the cited results agreeAnicely with each other
and they start departing from each other with the increase
in the sgcattering angle. As in the previous sections, here
also the HHCB results give the highest values. It is also
Observed that the present results almost coincide with the
EBS and corrected static results at small angles (upto 40°).
In the large angle region, the present results are in between
the two sets of data. In the sbsence of experimental values,
it is difficult to ascertain the validity of the different
theoretical results. However, from experience of the
results arrived at in foregoing few sections, it ig reasonable
to predict that the present MGES results may show nice agreement
with their experimental counterparts when the latter become

avallable.

It should be noted that the applicability of the GES
method to the EL1i process has not been tested so far. Hence,
in the present study, the GES DCS were also calculated
(table 3.15) to have a comparison with the conventional Glauber
results. A comparison of the present GES results with the
corresponding Glauber results reported earlier, points out that
as in the case of hydrogen and helium atoms, the ELi process
can also be sﬁccessfully applied to the GES method and that the
first three terms of the series are sufficient to have a satis-
factory representation of the Glauber amplitude. A comparison
of the pfesent GES and MGES results (table 3.14 & 3.15) shows

that the MGES values are much higher than the corresponding GES
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valuese This is an encouraging situation since the GES/
Glauwber results are well=known for their apprecisble under=-
estimation at large angles. Thig, indirectly, i1s another

point in favour of the present MGES resultss

As mentioned earlier, the most important effect of
absorption governing the alkali scattering problems, is taken
proper care of through the imaginary part of the gecond term
of the series. The table (3.13) exhibiting the individual
terms of the MGES scattering amplitude throws light upon the
leading role of the i?aginary part of the scattering amplitude.
Also, the terms £ (f and £ Im are nearly equal, thus
Providing an indireiischeck for the present calculations.

In the course of his study of the ELiLi process., Vanderpoorten
(1976) has compared the optical model and Glauber results.
The véry fact that these two results almost coincide in the
small angle region, indirectly reveals that the polarization
effect which is important near the forward direction is
gquite insignificant in alkali scattering (Glauber results
do not account for the polarization effect). This statement

also is made clear through survey of Table (3.13), which

shows the lower values of fRel compared to those of £Im.

The convergence of an expansion series of the form
(3.6) should naturally improve with the increase in the

incident energye. But the simultaneously increasing effect of the
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core contributiong should also not be forgotten. It can be
seen that the effect of the core increases for large momentum
transfers (for large © at fixed ki and for large ki at fixed ©).
This is explicitly shown in a later chapter. Thus, for large X,
even though the MGES converges more and more, the error due to
the neglect of core effect in the second and third order terms,
of the perturbative series becomes more and more prominent.
Hence, the present resulits can be taken to be ideal for inter-

mediate energy and small angle scatterings. Table (3.14) lists

the present DCS results for certain sample energieéo

366 Inelastic scattering of electrong from hydrogen atom

(s = 28 transitions)

So far, the applicationg of MGES agpproximation were
confined to elastic processes. In the light of the remark
of Joachain (1977} that in the case of inelastic (S-8) transi=-
tiong for the large momentum transfer, the higher ordér cross
terms become more important than the lowef{ordef cross term
(such as £, £, as included in the present method), it is a
real challenge to test the applicability of the present method
to inelastic transgitions as well. Hence, in the current section,
the inelastic scattering of electrons from H(1S) to H (28)
(abbreviated as IHSS process) is studied using the MGES

approximatione.

In the inelastic processes, the initial and final
moments are not same as in the case of elastic processese.

For the IHSS process, the finsl momentum becomes
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/2
2
ke = (ki - 3/4)

where ki is the initial momentum. Thus, the momentum £ransfer
. . /2
is given as g = [kiz + kf2 - 2kikf Cogh J (3.53)

£ The interaction

potential for the IHSS process is the same as that for the

where 8 is the angle between ki and k

ESGH process (3.10). The wavefunctions for the initial GﬁVdf£%maL

states of the‘targét are given by

- 1 e—rl

q 1s d/;? and
-r

¥,5 = (2-rl) e

L _72%.
The product of the wave functions may conveniently be

represented as

X 1 ~1.55,
Vs ¥ oos =apm==lar) e
/2
B -fr
42 ! a S
=A( > ) — + B (~ —) = (3.54)
as 1 a~ | 1
1 1
where A B ——— D B m p———— ﬁ- = 1’.5
53 2R/

The evaluation of the various terms of the scattering
amplitude (3.6) can be done using the procedures adopted in
the earlier sectionse. Hence the details of the derivations

are not given herece.
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The evaluation of the first term of the series gives

(1) 8//2 \
£ . == —a——g—. ‘
GES (qP4—2)3
4

- (2)
Following the procedure adopted by Yates (1974), the f

(3J GES
and £ terms are obtained for the IHSS process as
GES
2
(2) 167 A d B _a
£ o= 3% i (Z)+[~_+__3m.f(z)§ (3.55)
GES ki aq - dz . 82 dz ' '
and
(3) 4x A a® 2A B d
£ .= 53 é 3 2 f (z >+['“'+‘“ 3 — f (z) % (3.56)
GES k% g . & 4 J.'.. a
i - Z 2
where 2z = 2
L
2% 1+ z?
£ (z) = 1n and
2 X § 22 -
4 2 2
z° L+2" 2 7 2
fB(Z) = —— %4 [1n 17 = - 2a(z) |
1l + =z . . 3

where A(z) is defined previously in the ESGH processe

As in the previous sections, the imaginary and real Born

terms £ Im and £ Re; for the THSS process are obtained following

Yates (1979). The average excitation energy parameter B for
this pfocesé is chosen as B = O°375/ki « The analysis of

thg Born terms results in
d2

f Ine B (- —) £ £,8% % 8% + al —5 ) £,6%,4% 8% (3.57)
ak as?
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and
d ) 2 2 .2 d2 2 2 .2
= B = emm— ﬁ' m—— \
£ Re; ( = £.(8% q% ) + A(dﬁz ) f3~(B b G #°)  (3.58)
where
2
4 1 q
2 2 .2 2 .2 2
: .k, F g + &
i
and
(52 2 g2 -4 1 [ 2 .2 q’ 2 )]
£ (B%, g% #°) = —— — [2I (8%, #&°) = —— 1_(B%,0)
3, ! Kki LZ 2» ! i q2 + ;-2 2 ¢

Using the Ochkur approximation similar to the ESGH process.,

8A % a2 1 a ) 1 , )
A + B (- } 3.59
2 k. gkl |

£ = -

Now, in the MGES scattering amplitude (3.6), all the terms
except fw2 are obtainedlin the closed form. The evaluation
of fw2 for the IHSS process in the present formulation is
rather tricky, because in the present work the static part
of the interaction only is considered in the eﬁaluation of fwz
because of the justifications given in section 3.l An
inséection of (3.4) reveals that a similar treatment invites
difficulties in thé\IHSS process due to the orthogonality

of the initial and final states. ©On the contrary, talking
in terms of static potentials, excitation becomes virtually
meaninglesse Because of these reasons, the contribution
due to the real part fw2 is neglected in the present studys
Of course, the exact treatment of the term(3.4) - similar to
the one adopted by Byron et. al (1982) for the ESGH process -

is a remedy for the above~mentioned defects But this analysis

is bound to be rather more cuibersome and has not therefore
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been attempted here. Without the inclusion of fw2 in the
amplitude series (3.6), the following types of study are

possible in the IHSS process.

(1) A GES analysis of the IHSS process and comprison with
the conventional Glsuber amplitude.

(2) The effects of replacement of the second GES term by
the Born termse.

{(3) The compariéon of the present MGES (excluding fw2)

results with relevant data available.

I+ should 'be kept in memory that the DCS calculation
in the inelastic processes involves the multiplication by a
factor kf/ki unlike in the elastic processes where kf and ki
were taken to be 0f egual magnitudes. As in the previous

studies TCS and TEC for the IHSS process can be found out

making use of the émplitude termse

Results and discussion @

The differential cross sections for the IHSS process
are calculated for the incident energies 100 &V to 800 ev.
In fig.(3.9), the present results at 200 eV are given along
with the data of other workers. Unfortunately experimental
data is not avallable for 18-2S transitions only. The
available experimental data (Williams and Willis 1975)
considers the transition from n=l to n=2' (i.e. 28+2P) level.
Hence, at present, no experimental data can be compared

with the present data for the IHSS process. However, if the
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differential cross sections for the 18=2P transition in
hydrogen atom can be calculated within the framework of the
samp approach, the sum 0f the cross sections may be compared

with the avallable experimental data.

The fig (3.9) shows that the present results agree
nicely with the compared data. The additional weightage of
the present simple method is its sbility to reproduce the
results of such highly sophisticated calculations as the one
adopted in the distorted wave method of Kingston and Walters

(1980).

As mentioned elsewhere in this chapter, one of the
alms Of the present study was to test the apblicability of
the GES method to this inelastic process. As per the-formalism
of the GES method, it may as well be applied to inelastic
processes alsoOe But the real threat is the problem of the
convergence of the series. From tables (3.16 and 3.17) the
GES DCS for the IHSS process for the incident energieg 100 eV
and 400 eV may be calculated and compared with their Glauber
counterparts. Rough calculations show that the GES with the
first three terms of the series describes the Glauber

amplitude reasonably well for the I[HSS process.

In tables (3.16 and 3.17) the individual terms of the

present scatterihg amplitude are displayed. The notable

similarity between the £ éé; and £ Im is another indirect

check for the correctness of the present calculationge These
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imaginary terms als0O agree with the corresponding term of
Byron and Latour (1976). Another interesting feature of
these tables is the réiaﬁively low contribution due to
polarization and the significance of the absorption effect,
which 1is expected in the case ©of inelastic scattering. In
table (3.18), the DCS obtained in the present study for the

IHSS process at variocus energies of incidence, are given.

From the foregoing discussion, it is clear that the
GES analysis of 15-2S transition in hydrogen is interesting
" and it will be useful to have a generalisation for the
inelastic scattering in hydrogen (18 =- nS transitions),

which is attempted in the following section.

3.7 GES for (1S-n8) transitions in H atom s

The wave function for nS state of hydrogen atom is

2

[(h~l)£ 1/2 Fi/m 1 : 2 o, © o)
= ] e L —=) Yy (8,0
V noo n2 (n£)3 i n-1 n. 00 ’
< ey
where Y__ (e,2) = T aend
. . m
1 2 ry n:l m n ( 2521)
L ( ) =& (1) n ! (n=1-m)
n-lL . n . ms0 . . mb
* Y can be written as
. o noo N
n:l m _r}_/n /
Ynoo == Hn T1. e
n m=0 {;l
’ 2 - 1 _1/2 l ("‘l n _2- m
Where A =—s [(n 1)L nt (n=1-m) ( = )

. R
n? "y R ™



, 1
Since = e »
> Vs E
W * _ ngl g oM e—mn rl
18 IfInS = m=0 M 1
n
. a : g2 (-1) & ] = ATy
b1 B - — ) b B +1-000+B
o) 3 1 2 n-1 . I T
0 ah an : 1
«ee{3.60)
A.m \ 1
where B = == agnd R = 1 4 =
m ;;~ n n
The first Born term is
-2 ig.r *
= TN I =1
fgy (nAL) 2 dv, e Yis Yas
-“8A a d2 .
s ——— B - e— ® e -
2[0< ax)J’Bl(axz” +8_ (A1)
q - n- n -
ah 1
ese(3.61)
oy 2 2
dkn 4 + kn
(2]
Now, £ for 18 -~ n8S transitions will be
GES
(2) 1 ap <Y
£ - I = 2 <ns/B(P)B(q—p)/tplS >,
GES Ak, P/g=-p/ ~. T

following Yates (1974).

*
Considering the first term of the’ ?15 ?ﬁs above, and the

procedure adopted by Yates (1974) for the evaluation of the

(2) a
GES amplitude for the ESGH process, the £ .for B (-
Ty (2) GES ° *y,

= (denoted as £ ) will be B0 times the corresponding
0

Iy



term in Yates (1974) treatmente.

(2) 16 a zn4 1 4z 2
* F = BO’KX — (= ) 5 In e
. @ - N ~
© kiq d;\n o+ Zn “n
~ a d 4a -z 2 d
changing -~ to == Using = 4 .
dﬁn azy dkn q dzn
(2) 16 a z * A
£ o = Boﬂ:x 35 ( ) 5 1n L
klzn Kn dz L+ Z, z,
(2)
iees £ = B Axequation (3.15) with hﬂ:z. Hence
o
(2)
£ = Bo( oy ) f2( zn)
n
= 4 2
16 A 2, 1n 1+ 2,
where f£.(z_) =
2 n k 4 lep = 2 Z
i n n

This procedure can be adopted for all the terms in (3.60),

(20

thus obtaining £ for 1S-nS transitions as
GES
A P a ) = e o)
£ = B - +B ""—""‘—'{- ese + B -1 S —— qu
(o] di‘- 1 dl\'-2 n=1 d}‘in & n

GES n n n
eee(3.62)

Here all Rn derivatives should be converted to corresponding

z, derivatives as done in (3¢27) because z, = Xn

21l the above arguments hold good in the evaluation of

the third GES term for 15 - nS transitions in hydrogen.
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A T
~d e B 1
Considering the analogy of B ( ) with the
o dh, r
. n 1
wavefunction used in the treatment of Yates (1974), it can
. 1 ‘
be seen that with BO = o= and hn = 2, one gets the third
GES term as given by Yates (1974). Generalisin%,)this to
3
the case of different B_ and A values, the £ for 18-nS
_ n B GES
transitions can be written down, Hence
(3) 4 a zn4 1+ zn2 2
£ O:Boﬂx . A ) 5 ég[lnm—-—}
ki g d}&n 1+ Zn Zn

ZZ
b e 22 (zn) %
3

where A (an is defined in (3.16).

~
4 a 4 a
2 4 - ah ) = x,2 3 n 5 az
i 4 n i?%n "n - S%n

Now
k

Putting kﬂ = 2y
(3)

£ =B Ax eqn (3.16)
0 o .
(3) s ¢ a ) a® s n 1
Thus £ = B o — s B i +0000+B - -1
GES ° @ Lo ? n-l a
n n n
£ (z ) (3.63)
3""n
. 4 2 :
FAR zZ 14z 2 =%
where fB(Zn) = 54 n2 é@n b 3 + - 2a (z )
k."q" l+z z 3 n

Here also Rn differentiations have to be converted into

corresponding differentiations with respect to Zn'
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The second term in the HHOB series (Yates 1979) can also be

evaluated for the 13-nS transitions'as follows:

f Im for 1S=-nS transitions is given as ’

3
4R - A A
o — < PP & >
£ Im = , I ap I}Tns/V(P+PZX)V(q P-P2)/ L
i ~

: *
Here also the expression for ¥,. ¥ o in the fom (3.60) can

be made use of. Following the above discussed methods, £Im
can be directly written down using the corresponding terms in

Yates (1979).

—d d2 n dn
Thus £ Im = [By(=— )48, (—=%) + eccetB _ (-1)7 —F Je, ()
ar, an_< n dr n
n n n
. as (3064‘)
) : = [21.(B %,n 2 ' i
where £ (kA ) = — ~—— | 2I (B “,A ©) = —meee
2" n" k. & 2 l, n'’n qZ%K 2
i n s}
2 )
:cl(Bn ,0)] (

Substitution of Bo = % gives the corresponding imaginary term

for ESGH process as given by Yates (1979). This is a direct

'check to the above expressione.

B il c>ndn]cx>( )

£ Rel [Bo(dh ) +Bl ax 2 T + n-1 1 AP 3" n
n n n
where
q2

- 2 25 2

£(A ) === —=[21 (B %A “) = I,(B_%,0)]
3 K]{i knz 2" n n q2+An2 2 "n
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For checking purpose, taking ESGH process and substituting
1

B o — B B e o0 i i
o = ¢ °1 P, 3 the corresponding real term is

chbtained as given by Yates.
Thus the general expressions for the GES and HHOB terms
in the MGES scattering amplitude for 1S5 =~ nS transitions are

derived aboves The substitution of n=2 will result in the

18-25 transition in hydrogen atom. Substituting B = . 2
O 2A,/5
—/ 2
. l |
Bl = - and A =l.5, 82, BB - - ==0 in the above set
47/ 2 "

of expressions, we get the corresponding terms (3.55, 3.56,
3.57 and 3.58) obtained in the study of 1S = 2S inelastic
scattering, thus proving the correctness of these equationse
Hence, they may be used for the study of the transitions

involving n=3, 4 etc. states in the case of hydrogen atome

We may now take up the more complicated generalisation
for the 1S = np transitionsg in H atom, from which we can arrive
!

at the expressions for 18 = 2p transitionss

38 GES for 1S = mnp transitioﬁs ]

As in the case of 18 <« nS scattering in hydrogen atom,
it will be interesting to study the 1S = np transitions also.

For this we have to congider

2 (n=2)% 1/2 %%y "Fi/m 3 o2r
o = oz ot g2 2 e 2 Py e
n n“ ((n+1)%) . B n-z 2 m
s gr.  n-2 n+l (>71)
where L  ( —&) =2 (~1)%(n+1l)y ( n-g=g ) —B

n-2 n 5=0 ) s
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/3
Ylvo =4 4R

S ————

/3

Cosé, Xy,, =/ 15 Siné Cosp

=/ 3 g ing
= 47‘811‘19,5311,@

b4
l: w] _/

Thus corresponding to the three values of m, the wave

function for np state of-hydrogen becomas

2 1+8 '.rl/ n

n; g
b ! A o
IF n,1,0 o s rl e Cooel )
- ) (3.66)
)
n=2 -1
3 1+8 /0 .. ) )
Y E=1 Pl ol
I}n,l,_«z_;l S=0 8 T e Sin€, Pz )
where ,®+ = Cosﬂl and P_ = Sin ﬂle
S i
2 (n=2)t 1/2 2 PT3(:2) ool 3
Here Agq = 2[ ~ —— L (n+1)i(n=2-8)/ ——
n® ((n+1)8)° C n S=0 s% e
In the first Born approximation,

£a, =~ ~;; I av # v, ¥ oo (rl) v (r,rl) ¥ 1s (rl) e

Here, contrary to the methods adopted in the previous
chapters, it will be convenlent to evaluate, the dv integral
first because of the orthogonality of the initial and final

state wavefunctions. The following integral may be made use

of
o lgo.g 4~ ig‘l‘_:l
[ —— av = mz e
/r = ./ 4
= = i ger
t W ) il = (r.)
Hence £.. = = = § avWr ) = ¢ r
B1 o byl 2 ¥i1s ‘51
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The above integral is readily performed by choosing the
quantization axis to be along the momentum transfer ge. Then
the factors exp (+ i,i?il) that appeal in the wave functions for
the magnetic substates m = + 1 of the state /np> prevent
these substates from being excited - by integration over @l.
Thus, within the frame work of the FBA, the state nPZ(m=03

is the only final substate which is excited.

s *
l lg.x 1
Thus £ Bl = = e dvl an e l?n,l,o P 1s
2R 2
q
2 igr, Cos®, n=2 s AT
= = 5= Idvl e I Br e Cos8y
q ss0 &1
where B = ‘ = 1 +
e~ n
5 _/7{ 11
It is convenient to write
S A I
~N T ar n 1l
S
rll+s e MY o (-1) e ry

an =
n

The above substitution combined with the application

of a few standard integrals gives £, - Thus, the final

result for £ B, can be obtained as

L
S
6 471 n=2 d A
s n
£, (18=-np) = — £ B (-1) L 1 (3. 67)
B1 - s 3 2 233
g S=0 ar (g” + %)
1
The substitution of BS m w— and hn=;fe5 gives the well=known
4%/ 2 .

first Born amplitude for 18 =2P transitionse. This is a direct

check for the evaluation procedures
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12_/2 1

q (q2 + ga.y3
4

Thus £ B (15 —> 2P) = =i (3.68)

It may be noted that the first Born amplitude in 1S -~ np
trangitions is purely imaginary and in the large angle
region; it falls off like qf7 ieee much faster than the

elastic or 1S - 28 first Born amplitudes in hydrogen target.

Now we will take up the evaluation of the second term

of the GES sgeries for 18 = np transitionse

(2] 1 ; ap () Blamp)/ N
£ = < B Blg~p
i B i/g-pjfer; . iger
where B (P)B(gq=p) =1 =~ e 1 e s +e L (3.69)

Becuase of our choice of the quantization axis, it can be

seen that here-also

l > ]
only fo
¥ np/ e / § i > survives only for ¥ np,
iCIQ
1 >
Thus < V‘n P / e / ? 1s
-
1 ger n=-2 - I
= av, e 1 27 18 o lge
Here it will be convenient to represgent
248 -k I
-k r n 1l
T 1+5 e B 1 _ (-1)5 d € so that
1 o 248 _
o 1

integration process is simplified.
Again making use of standard integrals &nd undertaking a

lengthy procedure,
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< o igern Rz Sl
[ > = =axi - -
?’np/e /Tls = 47:::.5:01 B (-1 -
2+8
[d A gt+s 1, ;
+
2 ,
d;\“;+s q2 + kﬂZ d}“nl.{-s q2 +}.‘

Similar expressions can be written for other terms of (3.69)

also

whereas < T

/l/I’JlS> = 0

.~ BP
(2) 4i  n=2 s ap
Thus £ (1S=np) = = =——— I BS(-—U f 55—,
W — L d
GES | ky S5=0 P°/g - B/
d2+8 A A - 2
§ n - n _ n
2
d7\n2+8 q(qzmn?‘) (%) g/ U D)
Il n
1+38
a 1 1 1
+ 1+s[ 2 . 2. 2 . 2 - 7 2)]3
ar glg™ ) P(Fom %) /a-/ g/ TN

As in the analysis of the GES terms in the earlier sections,

here also the substitutions 2z = E_ and P = Pl are made.
' hn kn
(2) “4 i n=2 PR S | aE,
Hence £ . = 20 B_(-1) g — 10 T .
GES k; S= c AN 0 1 /z-Pl/
[ 1 1 1 e alts 1
\ - - gl B
- 2 2 2 1+3 -
P P - - , n A
z(l+z) l(l—l— l) /2 PI/(lz pi/ +1) dﬂn a
apy [ 1 1 _ 1
, : : )
2 3 L2 2 - - - /2
Ei ‘/Zupl/ z(1l+z2%) PI(1+P1> /z pl/(/z pi/ +1)

Grouping some of the above terms.and simplifying,



143

(20 ™1 P52 )8 ats 3 : 1 ]
£ o= s B (=1 t I =21
GES  k, 80 S d}&nl*'s An‘g‘ z(z241) @

dl+s 1 1 ]
20 s T
ap 2R 22
where I =1/ = lim K6 ~~— 1ln — and
Pl /Z"'Pl/ >0 Z 2
ap )
B
1 1
4R
= 1im {4t 1q %5% - 1] = —
7)-——-)0%23 2 l+z

It is seen that the integrals lIa and Ib are divergent separately,
but the divergences cancel exactly for the combination of the
integrals appearing in the equation (3.70). This, is proved
explicitly below:

1

We consider —T I =- ZIb
z(1 + z°%) a

Teking the divergent terms in the integrals.,

1 [ 2R 2] [ ~4 A 4x 2)1
ilegce lim o - == ln»°] -2 In® + In2 ]
D om0 z(1+22) 22 , 22> 22(1+22) '
[ -4 A 4R 4 AR ]
= lim 1n? -+ - = 0.
D> 23 (1+22) 23 2(1+22)

Thus the divergent terms cancel exactlye.
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+

Now in order to derive the imaginary term in the GES

(2)
i.e. £  for 18 ~- 2P transitions, the substitution ,of
GES
1
By =y7——— and M =1x.5 = R in equation (3.70) is sufficient.

/’2

Thig gives

(2) ) i a% 1 1 ,

* ers (13-«2?» B mﬁxkg % A’ ad | - (1422) ta "zlb,l
d 1 1
+ == =5 [ ———3a - 2] i (3.71)
(2)
An important feature of £ for 1S8-np transitions is that
it is imaginary. Thus theGiicond term O ( %.) of the GES
i

series becomes real, in contrast. to the situation in the

earlier studies. It may be note? that the same combination of
2)
Ia and I integrals appear in £ (1s = 2p) also, hence no
GES

need to worry about the divergence problem. This type of exact
cancellations of the divergences is a peculiar character of

the GES series and it provides an indirect assessment of the

correctness of the expressions derived aboves

(3)
The analysis of the third GES term £ for 18 - np
: GES
transitions proceeds on a similar track as in the case of

(2)

GES

£

P D
(3) 2 Ak, g aE,

£ (18 -np) = { !
- = 3 3 2 2 2
P P P
GES 6K k, pl 2 /a Pl 2/




< YJ np/ prl)_ B(Pz) B (q—Pl-P2) / y 1s >

i -

Hq < B (P.) —=m >
ere <Y 5/ 8¢ l,) /¥ is
n-2 )S a%*s { 1 1
= 4 A1 B w1, t e R +
. S . 2+5 ' 2 < 2 2 . 2
=0 A P (P. 2.A P (P
S @n l(l+2\n) ,2( 2+?\n)
” l 3 l
. -
____ 2.2 _ 2 2
(q=p,-p,) (/q=p =P, /" ) (gq=p;) (/a-p,/+ X\ %)
1 1 1
- 2, 2 - 2 . 2
- - A
(g-p,) (/g Pz) 4D (p, +p,) ((pl+p25 +_ )
1 Y : 1 , 1
+ + +
2 . 2 Y oIEs LT T2 o2 2 . 2,
alg o ) ak Pl(Pl +R ) ztzoz(p2 + ?xn )
1 1
N -
2 - 2, . 2 . 2
(g P pz) (/g 0, Pz/ +h ) ' /g P,/ (/g 0,/ A )

1 . 1
B 2 2y ‘ 2. 2
E o NARVE o VAR ) (p+p,) (B +p, )" )
—
2 4 2 g
alg ) ) :
(3)
Substitution of this expression in £ will result in
aB, e, GES .
integrals of the form f I / o' These
P2  p2/gp -p_s?
1 2 /a B Py

1 1

14

integrals are same fory.—. 5 5 5 Z >
P (P A P gy 4
LB 2 %) BB a f)
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1 N
» Hence these terms can be

- — o so o 2
/apy P/ amp, =p /TR %)
grouped together. 8imilar is the case with the negative
terms in < Y?I/(x) /§ >« Thus grouping the terms and applying

certain siﬁplifications like / g = pi/ =F, , we get

T1
(3) 1 o P52 s §2+s |
£ GES ) 34 ki-z- o S=0 ®s (-l)_ t dxr.l2+8 An[sl'g“ 340
1 _ é;+S 1
q(q2+?;§§? 111,j * ;;\:i?é‘ [31,-31p0+ D) 1,] % (3.72)
where 19 = f dgl 5 i) 5 dgi 5 12 —
/q=p,/ P /P T, P (P % )
ap ap 1

IlO d l2 d 2 . 2 2 2
- - P (P
/a nP]./ P.?, /pl p2/ l(' 1 +hn )

it

ap ap
=" ._.12 = ~2 2
- P ~p
/q Pl/ P / 1 2/
q
As in the previous cases, putting z = -—
Kn
P P
L _-p ana-2 =P, in I,
A 3 A 4
I n
1 Coap apP 1
I = ! . 4

g T . 5 2 2 2 2
A - -
s /z 93/ P, /p3 pé/ P4(1+P4_ )

Similar simplifications are possgsible for I 0 and I ..

: (3) 1 11

Hence the final-expression for £ is arrived at as
GES
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(3) 4:i n-2 5 248
£ (18 - np) = > & B (-1)
GES 32k, 4 520 S grn 2t8 x4
1 n n
[ 1 1 atts 1
3 I .-31I e +
31 32 7 L(1422) 33 g 1+ 3 5
n n
[ - ]
3 I =3 I, + = - T i (3.73)
31 32 7 L(1422) 33°
ap ap 1
where I = 3 J 4
3k

! —
/Z'P3/2 P42/P3“P4/2 &

1 1

wnere [, = m==—— s B.=
155 (1.p 2 2% 5 2,
4(l+ 4 ) 3(1+P3 )

+ By=le

In all the ébove cases, 1t is obvious that % should be

d n a
converted to corresponding z, and = to corresponding —— -
A dz
n n
A quick glance at the expression (3.73) reveals that
(3 '
£ is imaginary for 1S - np transitions. It may be noted
GES

that in other scattering phenomena studied earlier, the

corresponding term was a real one. Also, th? gombination
(2) 3

of the integrals appearing in £ o and £ in 18 - ap
GES GES

trangitions carry the same form as in the analysis of Yates

(1974). It is to be presumed that the individual integrals
i3k should be divergent. But from previous experience, it
can be anticipated that the combinations of these integrals

are such that the divergences cancel out exactlye This can

be ghown explicitly alsoe.
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From the equation (3.73), the particular case of

(3)
£ . for 15-2p scattering can be derived as in the case
GES (2)
of £ « Now, that the first three terms of the GES series
GES

are known, the DCS for 18-2p scattering in the GES approximation
can be calculated. However, these calculations are not

included in this worke .

To summarise tﬂ; third chapter, the MGES formulation
was discussed and it was applied to a variety of scattering
phenomena. In the case of the electron scattering from H(1S),
H(25), He and Li, the present MGES method was found to
improve upon the basic GES approximation guite significantlye.
Thereafter, the case of inelastic scattering in hydrogen in
the GES approximation was studied with generalisations to
18 - ns and 1S ~ np transitions in hydrogen. The 15 = 25
scattering cross sections were compared with available datae
In brief, the third chapter has been dealing with the Gés
as well as modified GES approximations. In the next chapter,

we take up the study based upon Born approximation and its

assoclated approximationge
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Table 3.8

- IC8 _for ESEH process

E eV

100
200
300
400
500
600

s

Sor———

150.2
8344

-

58«8
45.8
377
3262
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Table 3.9 = Constants Of wavefunction product for the He
targst
x Pk S ok
1 46.0536709 2+82 2082
2 18e7696?45 522 522
3 29 .4008522 282 5.22
4 29.4008522 522 2.82
5 117.6034086 4.02 4.02
6 46,9826758 4.02 5022
7 46.9826758 5.22 4.02
\ 8 73459 39445 2082 4.02
9 735939445 4,02 2.82
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Table 3.10 = Differential cross sections (in units of

a02 Sr:-]') for the EHe process in the MGES
a2pproximation.
V 200 ev 400 ev
10 1.285 00 6.790 =01
20 60219 =01 , 2.940 =01
30 ‘ 3.195 =01 1.291 Q1
40 1.859 =01 | 64254 =02
50 ‘ 10025 =01 3.337 =02
70 4.557 =02 1.195 =02
90 2.357 =02 4,864 =03
110 1388 =02 2393 =03

130 9.029 =03 l.382 =03
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