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CHAPTER - IV

MODIFICATIONS TO BORN AND EIKGHAI 
APPROXIMATIONS

4*1 , InProduction i

In spite of a huge variety of theoretical approxi
mations with respect to the study of electron scattering 
by atoms, it is rather strange that none of them explain 
equally successfully all the observed phenomena in 
scattering problems. Hence# the theoretical physicist 
resorts to a particular method \diich applies best to the 
problem under consideration. With the introduction of 
certain modifications# the range of applicability of the 
method can be widened. In certain cases# it is even found 
that simple modifications in a particular approximation 
improve the results tremendously. It may happen the other 
way round also - i.e. certain highly sophisticated calcu
lations come out with poorer results than those of simpler 
approximations. In such cases# there might me some 
conspiracy of cancellation amongst the effects neglected by 
these simpler approximations. There is lot of scope for 
the modifications of some of the commonly used approximations 
such that their validity criteria are relaxed resulting in a 
wider range of applicability of the method. In the previous 
chapter# an improvement over the conventional Glauber method
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was proposed with the name of "MEGS method" - and was 
successfully applied to a variety of scattering phenomena.
In the present chapter# another giant pillar in the' field 

of the-oretical approximations - the Born approximation - 

is taken up and various methods of its improvement are 
studied in detail.

The modified Born approximation - resulting from a 
simple modification over the conventional Bom method - is 

rather outstanding for its simplicity. Proposed by Junker 
in 1975# it was later on applied to the scattering problems 
concerned with simple atoms like H and He (Gupta and Mathur 
1978# a# b, 1979). Recently# Kaushik et al (1982) have

pointed out that the MBA completely fails to explain the
/

scattering of electrons from complex atoms like C and G.
Hence it was desirable to test the applicability of this 
method to some more of the scattering problems in a bid to 
understand its failure for heavier atoms# while the results 
were quite satisfactory for the simpler atoms. Keeping this 
in mind# the MBA was applied to two different scattering 
phenomena - elastic scattering (2S - 2S transition) in 
hydrogen and alkali scattering (electron-Lithium elastic 

scattering). The formulation of these studies and a detailed 

discussion of the results obtained constitute the first part 

of the current chapter®
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The HHOB approximation proposed by Yates in 1979 

has several attractive features. To point out a few# the 

expressions are obtainable in the closed form thus avoiding 

complex# numerical procedures# the problem of divergent 

integrals (like those in GES) is absent and the method as 

such is simple and computationally feasible. But the irony 

of the situation is that this systematic method# when 

applied to electron-atom scattering# results in spuriously 

large values of the DCS in the large angle region (Rao and 

Desai 1981# 83). Hence, it was desirable to try certain 

modifications on this approximation such that better 

results can be expected out of the application of the 

improved methods. The success of the two independent 

attempts - the Wallace correction (Wallace 1973) and the 

two potential formulation (ishihara and Chen 1975) - to 

improve upon the Glauber method worked as a boost to the 

attempt of parallel modifications of the'Bom method. With 

the aim of having a deeper knowledge about the two - 

potential eikonal approximation such that a parallel 

treatment can be given to the Bom approximation# few more 

scattering problems were studied in the two - potential 

eikonal approximation. Inspired by the success - of these 

studies# two ways of improving upon the HHOB method were 

tried - Wallace type of trajectory correction in HHOB and 

two - potential formulation in HHOB. The two methods were 

formulated and independently applied to scattering problems*
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Thus the high lights of this chapter are

(1) the study of ESEH process in the modified Bom 
approximation (including polarisation and exchange).

(2) Study of ELi process in the MBA.
(3) Study of ESEH process in the two - potential eikonal 

approximation•
(4) Formulation of two-potential HHOB approximation (TPHB).
(5) Study of ESGH process in TPHB.
(6) Study of EHe process in TPHB.
(7) Wallace type of trajectory correction to HHOB and 

application to ESGH process®

Now, let us take up the above problems one by one*

4.2 The Modified Bom Approximation (MBa) s

Amongst the first order theories used to study the 
scattering of electrons from atoms, the first Bom approxi
mation (FBa) is known to be inadequate in the intermediate 
energy regime. Attempts to improve the FBA by including the 
second-order effects have been made by Jhanwar et al (1975). 
Around the same time, Junker (1975) proposed a modification 
of the Born model for the study of the inelastic scattering 
which, while retaining the simplicity of the Bom approach 
gives much better agreement of the theoretical calculations 
with the experimental data* The modification of Junker 
consists in taking the incident wave to be distorted instead
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of undistorted incident plane wave in the Bom approximation. 

The distortion of the incident plane wave, which is 

represented by a Coulomb wave is produced by assuming an 

effective nuclear charge *5 at the nucleus. A( similar 

procedure -was used by Geltman and Hidalgo (1971 a* b# 1974) 

Geltmah (1976) and Stauffer and Morgan (1975). An extension 

of the Bom and the Coulomb-Bom model# the distorted wave 

polarised-orbital approximation# has also been used success

fully in electron-atom scattering by Me Dowell et al (1973#

74# 75a, b).

Later on# Gupta and Mathur (1978) studied the ESGH 

process using the method of Junker. They included the effects 

of exchange and polarisation-corresponding to a Coulomb- 

projected Bom-polarisation approach. Later on, this method 

was used successfully to study the electron-scattering from 

He. The results were found to be satisfactory in view of the 

simplicity of che method. The study of Kaushik et al (1982) 

on the electron scattering by complex atoms using the MBA 

revealed that the MBA completely fails in the case of those 

atoms. H'ence# it was desirable to carry out work on some 

more scattering problems ,and explore the reasons of the above- 

mentioned failure of the MBA. Thus# in this chapter the 

2S-2S scattering in Hydrogen (ESEH process) and the alkali - 

scattering (Eli process) are taken up.
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4.3 - BSEH Process in the MBA i

The Hamiltonian for the electron plus hydrogen atom 
system is

12 12 1 11
H = - - V ~ V, “ " “ “ + “ (4.1)2 2 "l r2 r12

(r^ and are the position co-ordinates of the atomic and
2 2incident electrons and V ^ and^ are 'the respective 

kinetic energy operators. Writing H = + v where Hq is
the unperturbed Hamiltonian and V is the total interaction 
potential;

Ho **i = Ei (4.2>

(Ho'i'v> Yi - Ei Yi (4-3)

In a collision in which the initial and final states of the 
target atom are / i > and / f >, the D£S is

d<r 
d-o.

1 U 2
2 / < K V > /

47? v £ 1
(4.4)

In the first Bom approximation# ^ assuming that
the scattering potential is weak and therefore the incident 
plane wave does not get distorted in the scattering region. 
This will be true only for high incident energies -when the 
incident particle spends very little time in that region. 
For intermediate and low energies# this assumption is not
valid
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Most of the contribution to the matrix element in 
the above DCS expression comes from the region where V is 
largest- Thus it is expected that a better approximation 
will result if, instead of replacing ^ by jZh, one uses a 
scattering wave function which is closer to reality in the 
region 'which contributes most. Thus, following Junker 
(1975)

H = H + W = H + U + W, ° 1-S
where U = - ^/r , W = - ----- + ——

2 r2 12
and is the screening parameter. As pointed out by Junker, 
uhe breaking of H contains a certain amount of physical 
significance and has the advantages that the eigen functions 
of H are known exactly and closed form expressions exist 
for the evaluation of the integrals needed in the calculation 
of the cross sections*

Assuming X^ to be the solution of the Schrodinger 
equation (Hq + U) = fh Xi in the modified Bom approxima~ 
tion, in (4.4) can be replaced by

fi ■= Xi trl' r2> = Fo lt2) uo (ri’ u-5)

Where UQ(r^) is the atomic wave function in the initial 
state and Fq (r^) is the scattered electron wave function
given by
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O 2
—,

7\ a ■F (r„) = Hl-ia.) exp (i k. r0 + )-, F, (ia..#!#2 ' 2 1 l x

where

1 kir2 - 1

/kr

Thus (4.5) takes into account the distortion of the incident 

wave but ignores the effects of exchange and polarisation. 
Intorudcing exchange (4.5) becomes 

+
Y: Xi (r-,,r2) ± XjL (r^r^ ..(4.6)

To account for the perturbation of the target system by the 

incident particle# the polarised - orbital method of Temkin 
and Larrikin (l96l) is followed. Thus including the polarisa

tion term in (4.6)

Yi* (rl'r2) = [Uolrl) +Upol Crl'r2]?

± [UQ(r2) + (r„,r,-)].pol 2 1‘

Ignoring the exchange polarisation term FQ(r^) U ^ (r2#r^) 

fr (U'r2) = Fo(r2> tUo(rlJ +Upol (rX'r2,J

+ F (r,) U (r ) — o 1 o 2 .. (4.7)

It -is assumed that the neglect of the exchange polarisation 

term will not introduce significant errors since the polari

sation of the wave-function is small at distances where 
exchange is most important. Using (4.7) in (4.4)# the 

differential cross section for SSEH process will be
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a<s~
d-H- 4tc

[ - / T+./ 2 + - / T" / 2i
A. A ■* (4.8)

±where T **• = l(l-i a..) exp (75 ai ) [ I + I + I ] (4.9)
J, ““ D ir "" K

. 2 .

= / d-r„ exp (i q.r„) /F, (ia.#l#i k..r0 - i k_. .r„)-2 It 12 *1 “2
< U (r,)/V/U (rn)> (4.10)

O 1 O 1

I = / dr exp (i q.r ) ''F ' (ia.#l#i k.r - i k..r )
* k. lx i i ^ "■“*1 "“<6

<Uotrl^/V/ Vltrl'r2) >U*11)

XE ~ 1 dr2 exp [i - kf*JT2^ ] 1F1 (ia±/l#i k±rx

i kr£l) <oo(r1)A/ %(r2) * (4.12)

Here q is the momentum transfer. Using the Ochkur (1964) 

procedure#
47i i q.r *

*E = t~2 ‘ d r2 e Uo “oS1'
*i

ih U ai' X’ 1 kir2 ‘ 1 —i'*—2^ (4.13)

For the ESSH process#

u (r.) = o 1
i

V 2tt
The evaluation of U

-r,/2(2-r^) e A (4.14)

pol
1 Cos © 1

is given in the appendix. This gives

pol 4 (2r,
^2 K r22 5rl X

^ ) e"ri/l(.r1J»r2) (4.15)
3



187
Q is the angle between and To evaluate the

integrals/ the standard integral of Nordseick (1954) is 

followed. This gives

1(A) = / dv
-Ar i 3*r

r
•n a,

.F. ( i a./ 1/ i k.r - i k.®r )11 r i —i —

47^ e / a + A \ ia.
Cq2 + ^2) 2i/*i -X2 (4.16)

In the evaluation of Ip/ the following simplification is
used*

_ t ~ 12 2 1 r , n
1 — e ^ ( 1 + £r^ + —~ + <£~r, n

n

= e
rq m-Xr oo X- r0 

2 s ---- 2-
m=n+l mi

(4.17)

Using this/ all the integrals can be written in the form of 
A-derivatives of I (A), thus avoiding the numerical methods 

and saving computer time. To check the procedure the 
calculations of Gupta and Mathur (1978) were repeated. It 

was found that three terms in the infinite series given 
above (4.17) are sufficient to give exactly the same results 

as reported by Gupta and Mathur using complicated numerical 
procedures (Table 4.2a).

In the evaluation of the parameter £> / the procedure 

of Junker was followed. First/ the value of r^ was found
out for which



9 oO ft 2K 7
ri f S S (r,) V (r.,,r„) (r.,) dr. Sin ©., dQ, 60,

2 0 0 § °

as maxxmm.

Now,

i. 2 fi 2* #- J J / u (r.. ) u (r.) r2 dr. Sin 0. d©1 60. (4.18) 
ooo ° ox x x x x x

For the ESEH process, £=1
and & was found to be equal to 0.93, corresponding to the 

value r^ = 2.8.

Evaluation of x^, Ip and I %

As mentioned earlier 3b, I-, and ID were evaluatedDP E
using the standard integral. This is possible if

< lb /V/ U > , < U /V/ U , > and U U can be o ' o ' o ' pol o o

represented in the form of e
-Xr2 fln e"S
vr or —3?—

(refer 4»10, 4.11, 4.13 and 4.16).

Here V
1 1

+ -7
> 12

(4.19)

and Uq and U ^ are given by (4.14) and (4.15)

< U (r,) / V / u (r ) > = / dv, Or,' . o x o l1- 1
'“ylrl+Be -y0r2 1.

1
:12

+ — 1

V

(4.20)

V2*
B = V2*

where A B
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0.5 Y_ = 0.5

, *1*1 y2ri 2Now ihr1 e + Be ^ ) = de
C1 S + S "dT

Vl

where C1 B

-2AB
A2

+ C3 ',a£?

2Y,

*2 - yl+y2

2 y.

—{. x3 1
(4.21)

Also# following Joachain (page 543)

12

<*> l 4fi
2 2 ■—.. y YJL?0 m=-i (2-1+1) r^1 lm lm

r<

4 7\
45\

( *.* Only 1 =0 term survives)

x

r«
(4.22)

Using (4.2l) and (4.22) in (4-20),

°° 2 r ~l'r'
x dr1[ C± d -j: r.< Urt / V / UQ . > = 4* t x1 2 dr,[ C, e 1 1 + C„~vf e 2 1

0 '2 dA,

+ C3 e ^3ri 1 [ ^
d*Y r> r2

oO 9 A _,£,ori
4fi 1 Y dr1(C1 e + C2 e 2 *
r2 2

• ]

-A„r,,2 "3 1+ c ---5-- )3 d£ 2

c ]
•1 2 ..

The evaluation of the above expression is lengthy but 

straight forward/ which gives



2C1 'V2 d -£• x 12
< Uc/V/0o> =-4* 5
' 1 *1 dil r2

+ 2C
d 1

2 <57 
2 2

-,2

-X r. 2 2 a
2 d£ X 2 dX

i <a “i2r2
( -- e----- )

2 2
-X r 3 2 d

+ 2C3 ^2 j. 3 h. (
2 .

3 dX 2- x / . dX 
3 3 3

-X_r e 3 2 j

Now a glance at the above expression shows that it can be 
substituted in (4.10) to give a number of integrals of the 
form I (X) (4.I6) or the ^-derivatives of I (M.

substituting < U /V/ U > in (4.10),
• • o o

-8 7\ C, 4 O
D 1 ( xi} +TT

d

dX.
i (x^)

+
24 ^ C 16 A C d

I (£ J----- —. ---- X(X„)4 *2 *2
4^C2 d“ 96 ft C. 72 AC,

i (x ) -X * dXo 2 2
X (X ) +

24^ C3 dz 4AC3
I (X_)------— --- - I (X) +

dX ^ X dX3 3 3
^ ~ 3’ r ^2 ^ 3 " ’ 3i Xx ) (4 <

Here ^ = E'

C,
c.

■2AB
2Y,
Y, + Y \12 )

A 2Y.
1
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In the evaluation of I , the relation (4.17) is used to obtain

Jr ‘
integrals of the form I (X)•

< Uo ^upoi> =* e -bri
+ Be

*Y2ri )

(- -— + -—) U r2 12. P 1

Because of the property of 4 in U

---  = ---  + —r Cos © +- -
JO JO JO ^12 2 2

1x2^ °o
< U /V/U , >o' ' pol

2 . “yiri
20/27s r

4 o ri drl^Ari + Be
"y2ri}

[2r14- rx5 ] e
~3

r„

1//2 J Sin © Cos2© d©

_/2F 1 7 - 6 ^rl „ B „7 ^-^2.

30 r,
S dr., [2B r, e 

4 0 A A rl e

+ 2A r e
-£r —£r~1 A 8 rl

----- r e3 A
1 1where £ = y1 + ^ ; J3 = y2 + ^ *

This evaluation is also long but straight forward which gives

<u /v/u > / 1

pol 30 r.
6!2B -s [(1----- )■ -|3r.

•e3 6 jS
((1---- )

60

7 7 7 ri
-v r.,+ (3 - -) r +(3--- ) 3—®- +(3--- >6 Z 6 2*. 6 31

7 32r2 7
+(3---- )

n3 4 n q4 5 „ _5 63 r 7 3 r 7 3 r0---+ (p----- ) ---2— + (p-- ) ---si-
51 . 6 6!

7 $6rl _ 71
— ---— )] + 2A —?r
6 71 ■
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8 -£r2

[ (1 - — ) -e ((1
6X

8 8 8— ) + (X- - ) r„+ (X- - ,) 
6X 6^6

Xr
21

aV
+ (x - - } ---2 + (X - - )

6 ' 3i 6

r 3 4X r

41
+ (x - -5

6

4. 5X r
51

+ (X - — ) 
6

r5 6
*• r 

61
+ (X — — )

X6r 7 
2

8 (1 8 ^ ** T*r2
81

)I (4,

Here, (4.17) is used for the simplification of (4.24). This 
gives

y/Hk 1 ->n n
< U /V/U .> =y~-^ —— £ 2 B —A- [ d ' pol _n 4 ( -7 L30 r2

61 -/Sr 8'r02 £ -- 2_8' n=7 nl

7 -8r oo 8^r_n _ 71
-- e 2 E -- 2_ ] + 2a -q-
6 8 n^8 nl X

n n-Xr oo Xr 8[e 2 SQ-- 2------
n”8 nl St,

n n-Xr ^ r 2
2 £ -----  ]n=9 _, Jn.

-V {
30 r

612B —- [ e 
q7 l

•8r 8?r7 72 —^ + (1 - “T7T-)
7,1 68

2 . 

n
e
-8r 0 r92 £ -- 4n=8

n 8 8
71] + 2A ~g [ e

nl - l

-Xr2 _X_*2_ + (1. _ )
81

8
6%

-Xr °o X'n n
e 2 ?„ -- -n=9 nl

d'2j2% i Br u , ,_ «__*--- r i30 f
8

d86

7Ld8" v ^ 68

— 8r„
8 d/3' + (1---- )

68

. . . • i
d*

8
72

8 X+ (1----- ) — d“ [- 5
8 dX° 6X 9 dX"

24)
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3 X <1- — ) - 
ex

d3 -Xr
+90 &£‘

.. (4.25)

The above expression may readily be substituted in (4.1l) to 
get

‘ 3
I = 3P *

I (3) +

v/2A
30

A
8

B r d4 
7 L d34

,§d__ + Kf
82 d6

8 d3“

. ,6

72 d3 + 3

" r + K. ’ VdX5 * 9 dX6 * 90 dX7 +
•] l(X)J

(4.26)
where Kn = 1 - —- ; KX 1

1 63 6X
*Now, for the evaluation of I„, ¥ U is given by (4.2l)

J2i O OIt may be still conveniently written as

4 <3 yVi a2 e-ViU U = ~G. T7-- ---- ---- c ------ ------o o 1 dX, r i 2^,2 r-j 3 ^ 3 ^

d3 _J*3ri 
e

"1 dX,

Now I_ can be directly written as

E b.2
47s i d dC1.T'r".. I (X - ) +C'i dxx ”2 dX,

d jI(X ) +C ---—- I(X ) \ (4.27)
£• *5 (3.X ^ of

Now the substitoition of (4.23), (4*26) and (4.27) in (4.9) 
and (4.8) will give the differential cross sections for 
electron scattering from the excited state of H - atom (SSEH 
process) in the modified Bom approximation (MBA). ■ x

Results and Discussion i

The DCS for the SSEH process obtained in MBA are calculated
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for different incident energies ranging from 100 eV to 
800 eV (table 4.1b). The results are graphically exhibited 
and compared with other data in fig.4.1 and 4.2 at incident 
energies 200 eV and 400 aV at which data is available for 
comparison. The present results are compared with the EBS 
(Joachain et al 1977) and the optical model results (Joachain 
and Winters 1980) alongwith the most recently reported two- 
potential results (Pundir et al 1982) and HHGB results (Rao 
and Desai 1983) . In the absence of enough experimental data# 
it is rather difficult to comment on the accuracy of the 
various approaches. Hence, it will be desirable to review 
the behaviour of all the approximations in regard of various 
scattering process and draw the conclusion with respect to 
the concerned ESEH process. The HHOB results are always 
found to be overestimating (Rao and Desai 1981, 83a,b) 
especially in the large angle region. Hence, the deviation 
of the present results from HHOB results is not at all 
discouraging. The present results closely agree with the 
data of Pundir et al (1982) and almost coincide with the 
results of optical model calculations (Joachain and Winter^s 
1980) which has in other scattering problems, produced results 
agreeing well with the experimental data. In the small angle 
region, the present results are very near to the EBS results 
(Joachain et al 1977) but they are less than the EBS values 
at larger angles* This is encouraging situation since EBS 
results were, in previous studies found to be slightly over
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estimating in the large angle region whereas they showed 
nice agreement with experimental data at small angles* The 
satisfactory result of the application of the MBA to e -H(ls) 
scattering (Gupta and Mathur 1978) further enhances the 
evidences in favour of the present results.

In fig.4.3/ the present results at 200 eV are compared 
with the corresponding results of e - H (is) elastic scattering. 
The two DCS values are found to approach each other for larger 
angles where the interaction between the incident electron and 
the target nucleus progressively dominates the scattering. 
Similar type of behaviour was observed in the SBS (Joachain et 
al 1977) and two-potential (Pundir et al 1982) calculations 
as well as earlier in this thesis (MGES approximation). Since 
the e - H (is) results in MBA have shorn nice agreement with 
experimental data, we have all reasons to expect nice agreement 
of the present results with their experimental counterparts, 
especially in the large angle region.

The present results are bound to become better as the 
incident energy increases. In view of the simplicity of the 
present approach, we expect that it would provide reasonable 
description of the scattering process from the excited 
metastable states of the hydrogen atom.
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4.4 Electron - Lithium elastic scattering in the 

Modified. Bom Approximation s

The motivations behind the application of MBA to Eli 

process are many. One is the desirability to test the appli

cability of MBA to higher atoms as discussed earlier. The 

success of the application of MBA to ESEH process is another 

factor. Moreover/ a study of ELi process means the investi

gation on the first member of a class of atoms i.e. the 

alkali metal atoms which involve more practically applied 

collision processes. In the light of the scarce data 

available on electron alkali scattering/ the extension of 

MBA to ELi process has enough justification. Moreover/ by 

modelling the Li atom in -the core-approximation (Walters 1973) 

the study of the effect of the core compared to the valence 

electron would also be interesting. It may be investigated 

as to how the collision process compares with the study of 

Walters. Moreover/ the present method being simple/ saves 

a lot of computer time which is definitely a covetable feature 

in modem atomic collision theories.

For lithium atom/ the atomic field extends over a 

great distance-when compared to the case of H - and hence the 

incoming wave will be distorted even at a large distance 

from the nucleus. Hence the consideration of the distortion 

of the incident plane wave due to the target atomic field will 

definitely improve the model. This type of a treatment is given



197
in MBA. Moreover, the effects of polarisation and exchange 
are also taken explicitly. There is enough reason to believe 
that part of the absorption effect will also be taken care 
of. This point will be discussed later on. Altogether, the 

MBA may be expected to give a reasonable model of e - Li 
scattering.

When a model is applied to electron-alkali scattering, 
special care should be given to the peculiar nature of this 
scattering. As discussed elsewhere, it cannot be assumed that 
methods that apply well to the study of elastic scattering by 
atoms with closed shells will be equally effective in dealing 
with alkali atoms because they have a single outer electron 
loosely bound in an S-orbital of large radius, have large 
polarizability and there exists a strong coupling between the 
ground and first excited states. These disparities are the 
least in the case of Li and increase as we go to Na, K etc.
The atomic radius of Li is not very high (compared to H) and 

the valence electron is not very loosely bound. Hence, it may 
be assumed that the Lithium atom, with its core and valence 
electron by and large resembles the H atom. In the study of

I

alkali atoms by waiters, the Li results were reasonable whereas 
Na and K showed large discrepancies. Similarly, many theories 
which were applied to the scattering by H and He atoms, 
were equally successfully applied to the Li atom without 
any changes which account for the special nature of electron 
Li scattering (Eg ! TPE, HHOB, EBS etc.). The present MBA being



a high energy approximation like them# there is enough 
support for the feeling that it-can also be effectively 
applied to the e - Li scattering.

Calculation Part s

As mentioned previously/ the core-approximation of 
Walters (1973) is used to represent the Li atom. According 

to this/ the Li atom consists of a core at the centre and 
one electron in the outer orbit. Hence# the electron target 

interaction can be represented as
„ 1 + 1 + V (r J (4.28)
V = - "— ~— c 2

2 12
1 -5.4 r0where V = -2 ( — + 2.7) e

c r2

Keeping in mind the suggestion of Mathur (1972) that the 

difference between the scattering parameters by using one 
or three electron wave function of Li atom is not very 
appreciable at intermediate and high energies# the one-electron 
wave function for the Li atom was derived following Coulson'. 

This gives

-0.65 r, -2.7 r,
Uo (rx) = C rxe 1 + D.e (4.29)

where C = 0.11252# D = -0.42204 so that UQ is orthogonal 
to the IS orbital and is normalised. The extent of simpli
fication which the complicated expressions - for the total

interaction and the exact wave function of Li atom - have
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undergone is quite clear from the expressions (4.28) and 
(4.29) which are the approximated values for the interaction 
and wave function.

Now the total Hamiltonian of the electron plus
target system becomes H = H + U + W whereo

u =
-i

w •12
+ V (r ) c 2

The derivation for the differential cross section for the 
SLi-process follows in a way very similar to the ESEH process 
with only the above-mentioned change in the Hamiltonian. As 
a result# expressions (4.8) to (4.13) are obtained with 
V, UQ and U ^ being replaced by the corresponding new values. 
It will be convenient to represent the wave function product
as
Do* uo = Kie ^ + K2 aKd e 2 1 + K3

_n2 “X3ri 
d (4.30)

where K1
K

K

= D 
= -2CD
_

h = 5-4
= 3.35

X = 1.3

As in the case of ESEH process/ the 
obtained as

0= 0.98.

3 i for E LI process is

In the evaluation of U the H (2s) wave function has been
taken as an approximation to the one-electron wave function



of Lithium. This procedure simplifies the mathematical 
analysis in a manyfold way as will be clear from a glance 
at the derivation of f°r SSEH process given in the
appendix. Any way, this type of ah approximation will defi
nitely not result in any serious error because the effect of 
polarisation is almost negligible in the case of ELi process 
when compared to the all important excitation effects. This 
will be clear from an analysis of the study of Vanderpoorten 
(1976). There, it is found that the optical potential 
results almost coincide with the Glauber results in which 
polarisation effects are not taken care of. This provides a 
clue to the fact that the contribution due to polarisation 
should be negligible in the case of ELi process. Moreover,
it has been explicitly shown that the calculations without

(2)the real Part of V in the optical potential, which 
corresponds to polarisation part - gave results which differ 
by about 10% at small angles and 1% at 90°. All these 

results point to the not - so - significant roll of polari
sation effect in the ELi process. Hence, there is all 
reason to believe that slight approximation - as the 
replacement of one electron wave function of Li by H (2S) - 
wave function can amply be justified in the evaluation of 
the polarisation effects when the extent of simplification 
brought about by such an approximation is thought of.
Moreover, the contribution due to the core (V ) is alsoc
negligibly small at small angles at which polarisation is
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important. This fact also will be explicitely proved in a

later section. Introducing this approximation also in the

evaluation of 0 , it can be seen that the same value as
pol

(4.15) will be obtained for in the ELi process in the

present study. However, it should be remembered that these

approximations are taken only for the evaluation of U ^ and

that I will be different for ESEH and ELi processes due to P
the difference in U , V and *b for the two processes.

In the ELi process also, the standard integral of
Nordseick (1954) can be used for the evaluation of I , Ip

and I_. To evaluate X^, < U / V / U > can be written asE D o o
< U / ( —;) / U > + V (r.) because of the property 

o ' r2 r12 o c 2 *
of the wavefunction. The evaluation of the first term is

similar to that in ESEH process, thus giving

Uo/V/Uo> ( 2K,
- 4 -A (

A r 1 2
( K*

K, d ■X r12

*■1 dX,

+ 2K2
d 1 -X r e 2 2 ” K2 ddX2 r2

aS

+2K3 -
d2 1 ■“K3

d2
a \23 r2 dX2

—X re 4 2 +K5
— X rd e 4 2+K4 \ d^4 T

2

where K = 4 -2, K = 5.4 5 X : '4 = 5.4.

-X r 2 2
dX"

1
X2
3

d
"dT

-X r 3 2

(4.31)

All the terms in (4.3l) are such that in the evaluation of

I._ (4.10) the standard integral (4.16) can be made use of. 
O
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Thus the substitution of (4.3l) in (4.10) gives

XD = C lK.
8A X, 4 * K,

4- ,3L) + (V “ T'2A.} d^7 ^ l(V
1

24 X K 16 X K d
, r^ _______z ______[ * \3 d\ 

2 2 ^

1
4 A K,

1 .

a*

ax;
] KX J

-96 A 72 XK a
N5 \4 ^

24 A K3 a
~x3 ‘

3

4 A K

ax:

I (X )
3

a'
aX 3 '

(4.32)

In the evaluation of <U / V / U , > is written in such
P o pol

va way that the standard integral may be used here also.

■0.65r,
4 v^vt -1 dvi [ cn e +

-2.7r1

[ + — + v 3 u
•12 pol

20

1 -0.65r,
——— $ dv^ [ Cr^ e

•2.7r,
De

s/2 7s r
.4

[-| cos © + Vc ] Cos © (2rJ--------1- ) e 1/2

It can be seen that the Vc part becomes zero becauj 

Cos © d© = 0.

7s
f Slid © 
0

The remaining part becomes very much similar to that in ESEH 

process with only a few changes. Thus

< V^pol*
yuL

30
1 ( 2D [ (1- g|-)
rf ( ,7

•Or,

V



2'32.3+ &p J—Z
3i

( ( 1 - -p- ) + AS r2 + A/3 Prt

2 • A

e3r4 04r5
+ 0 -jr- + 0 -5^

j85r6
+ P 61 TT^-^ )] + 2C-£»[U-£ —iAi--) - e 2

Q 0 (• 2 38 S At- 2 , * ro
Ul- —x) + * 2 + aj; 4f- + 4 —r2- +Ar4i

c 3 4jr ■ 4 5
2 + ___2_

2'.
.5 6£ r2

+ 7\, 6® + A.
,6 7 * r7. ,7 8' ,o £ r0 _ )3-------2— )] )6 81 J 5

51

(4.33)

where £ = 0.65 + 0.5, 0 = 2.7 + 0.5

A~= j3 - — A = £ -. —
p 6 ' £ 6

Now using (4.17) for the simplification of the above 

expression.

< U /V/U .> o' ' ool
v/2 A 
.30.

+ • * • • 3
where

r
))
)

= i
8
&£•

__d
d£

7
7

(4.34)

It can be seen that this expression is very similar to (4.25), 

but there is difference of the values of certain parameters 
only. The above expression is in a directly substitutable form 
for the standard integral (4.16), from which we get
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"P 30 * 7 L d^4

13
K,

C d“x C/s) + — [--- + rr JXf8 d£ d£

d~
dr

+ K, +

K

72 d/3
a7'

—]

X, 7*90 dX + ]kx):

where C
S-

0.11252,
1.1-5,

D = -0.42204, 
IS = 3.2 .

(4.35)

The evaluation of I for ELi process is also easy because of
Jit

the analogy with the ESEH process. The product of wave 
functions (4.30) can still further be expressed as
* a ■ .“Vi a2 a-Hri a3 -Vi

u. u_ = -Vat S-j— - k2 —— a-jr-- -k3O 1 'I dV ‘1 dK

Using this, I-, can be evaluated as in the SSEH process to giveii
4^

X,S k^ 2
d
dK

I (X ) + K,
dk

2 1 ^2^

d'
+iC,

dV »S> 1 .. .. (4.36)

Now using the expressions (4.32), (4.35) and (4.36) for 1^, 

I_. and X , the differential cross sections for the electronJr E
scattering from Lithium atom (ground state) canbe obtained.

To see the effect of the core with respect to that of
the valence electron of the Li atom, the above studies were
conducted neglecting the V part of the contribution. Becausec
the V Dart becomes zero in the evaluation of <U /v/U , >, it c ~ o pol



can be easily understood -that the suppression of the core 
potential will not affect the contribution due to polarisation. 
This is true from the physical point of view also because 
polarisation# being the distortion in the charge cloud, should 
be vastly affected by the outer most electrons only, since they 
will be subj ected to the strong interaction with the incoming 
electron.

To suppress the core-contribution in the 1^ Part K and 
can be directly made zero in (4.32). Incidentally this 

does not amount to any irregularity like divergencies. The 
resulting expression will give the contribution of the valence 
electron to I • The expressions so obtained can be used to 
find the DCS for S Li process in MBA, neglecting the core 
effect.

Szasz and McGinn (1967) have given a more sophisticated 
calculation for the Lithium wavefunction than -that of Coulson 
(4.29). Walters (1973), in his study of Li atom has taken 
only the simpler Coulson wave function with a comment that 
both the wave functions should give more or less the same 
remits. To explore whether there will be any improvement on 
using this sophisticated wave function, in the present study, 
the DCS in M3A are also calculated using the wave function of 
Szasz and Me Ginn after orthonormalizing the valence state 
explicitly.

*

According to the work of Szasz and McGinn (1967), the
one-electron wave function of Li is given as
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c(p> (P) (P)

f (nim) = T,nl A R Y
nl nl 1m

(P)
where A =

nl
[ (2 (P)

n 1

2n+l / 1/2) / (2n) l ]

(4.37)

and R
(P)

nl

The functions Tp 

table (4*2).

n-1
exp (

(P)
rl -?

J nl

(P) (P) (P)
1 P A . and C
nl nl nl

r^)

are tabulated in

Hence the total wave function can be written as
1^ R2S + B R1S} (4.38)

where R, „ and R„„ correspond to the core and valence electrons IS 2S
respectively and are given by

-4.4r
RIS

, -2.4r.2.4723 e X + 6.7989 e X
—4*40r. a

-0.4185 rx e - 0.3047r-, £ ^ 1 ;

-2 .48r->
R s 0.0651 e + 0.0488 e

15*3

■1

-4.71r,

-1.735r., -r,
-0.399 rx e x + 0.1014 r± e X

+ 0.3969 r-^ e
-0.66r, _4 -0.35r,X + 2.66 x 10 rxe x

For the orthonormalization of the valence state/ the following

Rn r,
# IS

properties are used :
%/ V ¥ dvn =1/ / ¥ --- dv,V4* 0
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From these conditions# A and B are obtained as '

A = '1.0448 #•
B =,-0.2031 so that the one electron wave function for Li 
becomes

4 -K.r., 6 ~0.r..
V = 2 C. e / 1 + S D.r. e 3 1 (4.39)
1 i^l 1 j=l J 1

the leading terms of which give
-0.66r, -2.4 r

Jf = 0.11 7r^ e 1 -0.3894 e 1

which is very near to the Coulson wave function (4.29). This
is an indirect check of the procedure adopted to obtain the
wavefunction (4.39). The constants G , ^ ,,D. and B. arei 1 J J
tabulated in table (4.3). Using this wavefunction instead of
(4.29) , thb whole calculation can be repeated to get the DCS 
for ELi process in the MBA. However# in the present study# 
polarisation and exchange are neglected in this part and only 
ID is taken because the purpose of this study is only the 
comparison of these results with those obtained using the 
wave function (4.29) . Hence in both cases# Ip and I are 
neglected in (4.9) and the results are compared.

The evaluation of I using wave function (4.39) is 
rather more cumbersome than the earlier evaluation using
(4.29) '. In the present case



j, a a -X.r., -X r,* 4 4 a 1 m 1U = 2 2 ' c. C eo o x=l m=l i m

6 6 o+.£. 2 D. D rfj=l n=l j n 1
-P r

e J
-B rn .

4+2 ,2 1=1
6£ C, D. r.j =1 i j 1

— X. r i 1
e

-iB.r. J 1 (4.40)

which is definitely more complicated than the corresponding
-Xr -d ~^r]

expression (4.30). Using the simplification e = e 1

the expressions for <U'0/V/U > and 1^ can be obtained in a 
same way as (4.32) is derived. The analysis is very lengthy 

and the result is given by

4 41_= -4fi.£. £ C. Cr) 1=1 m=l i m

4 6

(X.+X )3 (X.+X )2 d(X.+X )

I (X.+X ) + £ .2- C. D. £
, _ ' i j (

1

l m ' l m
6

l m

i m i_1 j—1 i J ^ +£? )
i j

■A I(X.+/3. ) + ------ ;4 1 J (V+P.)
i J

i1--(x.+.e.)i i j (X.+0.)‘x J

I2^Xi+iS-) ] - 47v 26 6E
j=l n=l

D.D I„ O.+jB ) - - 18 X, (3.+0 ) + , 24
3 n 5 <0.+j3 )3 2 J n (0.+I3 )4 1 J n (J3.+/3 );

J n ■ " J n ‘ ‘ j n

X(B,+B ) -
i \ d
----  2 xA&.+B ) 3 -21 (X ) + 5.4 ---  l(X ) (4.41)3 n. (JB.+0 ) 3 3 n l 1 dX< 1
j n ■ : i

where X = 5.4; x (X) is the standard integral (4.16);
,2a dXl (X) = rj-^— l(X); (X) = ---^ I(X) etc. Now# the DCS can

^ - r~ - dX ^

be obtained by substituting (4.4l) in (4.9). Similarly, 
using the 1^ value (4.32) in (4.9) and neglecting Ip and I 

also,the DCS is taken which corresponds to the Coulson wave-
function
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Results ana Discussion t

The DCS for ELi process in the MBA is calculated for 

different energies varying from 20 eV to 700 eV. The present 

results at 20 eV, 100 eV and 200 eV are exhibited in 

figure (4.4)/ (4.5) and (4.6) along with the available 

experimental data of Williams et al (1976) and the recent 

theoretical values (HHOB results of Rao and Desai (1983)/ 

close coupling results of Issa (1977)/ EBS results and Two 

potential - Eikonal results (Tayal et al 1980)# corrected 

static results of Tayal et al 1981)-

The present approximation/ being a high energy approxi

mation/ should not be expected to give good results below 

100 eV. Hence/ 20 eV is definitely too low/ but the results 

are shown because experimental data is available only at 

such low energies. The comparison of the present results 

with experimental values is quite encouraging, when considering 

the energy region.

The disagreement of the present results with the most 

recent HHOB results need not be looked upon as a bad omen 

because# as discussed earlier the HHOB results have been 

found to be higher than the corresponding experimental values. 

At 100 and 200 eV, the present DCS at small angles almost 

coincide with the EBS and CS results. Naturally# the present 

resalts are bound to be better at higher incident energies.

The DCS values for certain sample energies are shown in 

table (4.4).
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In order to see the effect of the core compared to 

the valence electron/ the present results# with and without 
core potential are shown in Figure (4.7).# at the incident 
energy 60 eV. For comparison purpose the present values of 
first Bom results' are also shown (taken from calculation in 
the previous chapter). It can be seen that the effect of 
the core increases with the scattering angle. As Q increases# 
the interaction between the core and the incident electron 
progressively dominates the scattering and the effect of -the 
core becomes more and more significant. In the present study, 
it is found that at 60 eV# the ratio of the contributions 
of the valence electron to the first Born amplitude for the 
scattering angles 10° and 150° is 40.3 s 1 whereas the 

corresponding ratio for the core contributions is 1.9s 1# 
which illustrates the less repid variation of the core-contri
bution with angle.

Similarly# it was observed that when increases# the 
core-contribution to the DCS also increases. As we go from 
60 eV to 700 eV, the ratio of the DCS with and without core 
changes from 6.7*1 to 9.1s 1 at the scattering angle 150°. The 
corresponding ratios in the first Born Calculations are 5si 
and 9.3*1. This is actually what is expected because# as the 
incident energy increases# the projectile penetrates deeper 
into the target system and the projectile - core interaction 
becomes more significant. In table (4.5)# the DCS values ifv 
first Born and MBA for EI>i process (with and without core 
potential) are given at energies 60 eV and 700 eV.
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In figure (4.8) comparison is made between the DCS 

at 60eV calculated using the two wavefunctions - the simple 

wave function of Coulson (4.29) and the sophisticated Szasz 

McGinn wavefunction (4.39). As discussed earlier, polarisation 

and exchange effects are neglected in this calculation in both 

methods. ' It can be seen that the cross-sections do not differ 

much, as anticipated by Walters (197 3).

It may be concluded from the above analysis that in 

view of the simplicity of MBA, it gives reasonable results in 

the study of e - Li elastic scattering. However, the results 

are much less satisfactory when compared with the observations 

in electron scattering from H and He.

The table of total elastic cross sections obtained in 

the present study (table 4.6) also displays satisfactory results. 

It is also clear that the results improve with increasing 

incident energy.

In the case of Lithium, because of the guasi-degeneracy 

of the ground and first excited states, 98% of the polariza” 

bility arises from the interaction between these states. As a 

result, excitation effects become much more important than 

polarisation and exchange effects. Earlier it was pointed 

out that the contribution due to polarisation is very little 

in this process. Hence, eventhough methods like polarised 

orbital calculations will have difficulties in electron - alkali
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scattering, the error in the polarisation part of the present 
study taken through the polarized orbitals will be very 
in sign if ic an t.

It looks unclear why the MBA should be expected to
model the absorption effect. In the comparative study of the
scattering amplitudes in the optical potential approach and
the SBS method, Byron and Joachain (1977) have pointed out
that the absorotive part V of the optical potential treatedabs
in first Bom combined with the static part V treated twice 
in the perturbative theory gives the imaginary part Im f 
of the BBS amplitude. Same will be the case in the Born 
series also, because of the comparison between eikonal and 
Bom imaginary parts. In the MBA analysis, which is in fact 
the modified first Born approximation with the second order 
effects like polarisation included, we get an imaginary part 
in the direct scattering amplitude. This imaginary part in 
the first Bom frame work, may be attributed to the absorptive 
effect. Of course, the contribution of the static part Vst
treated twice in the perturbative theory will be very small Otfc 
angles at which absorptive effects are maximum. The above 
argument is evidenced by the fact that the present MBA results 
at small angles almost coincide with the EBS results which 
explicitly account for the absorption effects. Thus there is 
some logic behind the presumption that the loss of electron 
flux from the elastic channel which plays an important role 
in alkali scattering is implicitly takenin the MBA, unless
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some unknown conspiracy of cancellations works* However/ 
rough calculations taking absorptive effects explicitly# 
have given results which are very near to the previous results.

In Vanderpoorten1s (1976) work/ it has been shorn that 
the optical potential results almost coincide with the Glauber 
results. The table (4.6) of total elastic cross sections 
shows that the present MBA results also almost coincide with 
the Glauber results. Hence# the MBA results can be anticipated 
to be very near to the optical potential results at these 
energies® This is another evidence for the fact that the 
present study accounts for all important effects taken in the 
optical potential approach.

Anyway# in view of the complexity of the e - I»i 
scattering process studied here# the present results are 
definitely not poor. Considering the agreement with the 
results of existing sophisticated methods# the present results 
can be termed as quite good especially when we think of the 
results given by a recent modification over the Born series# 
namely HHGB, which explicitly takes care of all the effects 
like polarisation and absorption. As such# the present 
studies of the ESEH and ELi processes in the MBA do not 
provide any clue towards the unsatisfactory results reported 
by Kaushik et al (1982) when MBA was applied to complex atoms 
like C and 0. More rigorous investigations have to be under
taken in the search of the missing link between the present
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results and the disappointing results of Kaushik et al. 

However# a comparative study of the scattering of electrons 

from H# He and Li using the modified Bora approximation 

reveals that the higher the atomic number of the target# the 

poorer the results. This sort of cumulative effect may be 

responsible for the predictions of Kaushik et al (1982).

With so much discussions on the modified Born 

Approximation# let us now switch over to the next part of the 

current chapter.

4.5 Two-potential eikonal approximation «

As mentioned in the introductory part of -the present 

chapter# the search for an improvement over the HHQB approxi

mation (Yates 1979) led to further studies on the two-potential 

eikonal approximation of Ishihara and Chen (1975). Hence# the 

same is incorporated in the current chapter which deals mainly 

with improvements over Born approximation. In an attempt to 

formulate a parallel two-potential Born approximation# an 

indepth analysis of the two-potential eikonal approximation 

(TEE) was undertaken. For this purpose# the TPE was formulated 

in such a way that it may be applied to the elastic scattering 

of electrons from any of the nlm states of H atom. This 

formulation was afterwards applied to e - H (2S) scattering 

and the results are discussed in detail. It is noteworthy 

to mention here that, as stated in an earlier section# the 

study of the above scattering process bears a certain amount
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of significance. Recent revival of theoretical interest on 

this scattering problem is evident from the reports of work 

done regarding the problem (Joachain et al 1977, Ho and Chan 1978# 

Joachain and Winters 1980, Pundit; et al 1982, Rao and Desai 

1983).

TPs approximation for e - H Cnlra) scattering i

The Glauber approximation is known to be in appreciable 

error at all angles when applied to the elastic electron- 

atom scattering at medium and lower energies. Ishibara 

and Chen (1975) have shown that this is mainly due to the 

inadequate semiclassical treatment of close-encounter collisions. 

TheTPS approximation provides an effective1 method to treat 

such collisions properly.

The basic idea underlying this approximation is to pull 

out an arbitrary potential from the interaction potential

V such that the rest of the interaction potential i.e.
/VQ/

V = V - V, satisfies the semiclassical conditions v / 1
° x . e

for all values of r, wher'e E is the energy of the system and 

VQ being a slowly varying function.).

To start with, let us consider the scattering by a 

central field V (r). Now V (r) = VQ (r) + (r). In the

two~potential form given by Rodberg and Thaler (1967), the 

scattering amplitude can be written as
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k, oo iX (b) q 1

F (O) = -r= lb dt» (e -l) J (2 k. b Sin — ) + —:— ? (2 X +1)x 0 O'- 2 k^ L

2i /
e - ' Sin 0

d} . ai)
^ P^(Cos ©) (4.44)

where the impact parameter .is introducted by

0i = ^+2 ^ ki x = 2

How generalizing the above formula to the case of 

electron-atom scattering in the frozen target approximation, 

the inter-action V depends on the position r of the projectile 

as well as the Coordinates of the target electrons* The 

equation for may further be approximated as

X (b/b^Zj^) = XQ(b/b1z ) +^x(b,b1,z1) (4.45)

with XQ = 

and Ax =

/ V
—*0 o dz

V (2=0) x 
o r z v, z-t L z ~ 1 r J

E

i i/2 dz

where it is assumed that is attractive and short range. 
XQ is the glauber (straight-line) phase for VQ = V - and 

is the correction due to the separation of V .

Nov/, an average over uhe direction fi of b^ iiv the 
second term of (4.44) is made. This is reasonable if the 

range of (given by d) is chosen to be shorter than the

atomic size. Moreover, we need only a few terms in the second 
term of equation (4.44) if d is chosen small enough. Thus the
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evaluation of (4.44) will not add any further practical 
difficulties to the usjSual Glauber approximation calculations. 
Hence/ in the two-potential eikonal approximation/ the 
transition amplitude from the initial state /1> of the target 
to the final state /£> is given by

F (©)
f i

/
9 i*q»b 
do e ~

11 1 + ^ (2^+l)

(Cos O)
.(1)

i 01
(4.45)

ix= < f / e / i > (4.46)
S

and X = XQ + A X where XQ is the usual Glauber phase 
function.

Here f i
(b)

Xo dz V -o

For the scattering from H atom/ the interaction potential 
is given by

V ( r / r^) =
r /r-r/

In the present

study/ the short range central potential V which is thes ^
static potential of the target atom, is chosen for V^.

Vo VstV
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Hence from equation (4.45) it is clear that V is treated

in the Glauber approximation and the contribution of V , isst
calculated quantum - mechanically by talcing few partial waves.

In order to make use of the above equation (4.45) to
study the electron scattering from any of the excited states
(nlm) of H# it is necessary to have th V and X correspondingst. o
to those states. The general form of V for elastic
scattering is given by

nlm * i ■,
V =/dv1Tf ¥ (-- + --- ----- ) (4.47)st nlra 1 nlm r /r - r^/,

where ^ represents the standard form of wave function

given by

= J. r (n -t-1) nlm n2 Un+1) *.)3-
1/2 l r-2r % - l/n1 ('2rl )

2 l+l

n-i-1

Now/
2 X +1

L
n-X-1

2r-i n-i 1 m
( — ) = S (4)n m==0

(n+ X-)

2
( n )m

m;

(4.48)

n + i
( ----- )n-X-l-m .

nlm
Using this# V can be deducted through a lengthy
procedure which gives
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V +
nlm

st r

n + L
^ ^ ^ n-l-l-j

00 n—l-l n—l-l
E E E,
P^O m^O j^O

m+j / 47T

J 2 P+1
2 ^ m+j+2>l

) _5_
n +l C = ) 4 (n -1-1)1

ml j l n (n +1)1

f (2X+I)2(2P+l) ^ p ^ l p l
L 4 7\[ J K 0 0 0 J v m Q m

-2r S 'S, ,

)

i BX 1

.P+1 &Sj^+l n £1 l k
k=?0 k,l (2 ^i"^1 

n
_ 2r °2 S l
nr. z+ IT S ^ ——

p
k=0 kl (2)S2“k+1

n
where S-^ = P+ 2 + m+j + 2^

S2 = 1 + m + j + 2it- P 

1 P 1and ( Q 0 0 ^ are usual Wigner notations.

nlm
The general form of X is

nlm
o

1 OO 1 <5(3
— / V dz + — / V
k. -°o 1

nlm
dz

k. -°o st 
x

For all states of H, the interaction potential
1 1V Cb,Z/fo, >z, ) = - — +
r ■ /r-rj/

1 °o 2 /b - b, ,7— / v dz = -7— In -------k± -» ki bso that -

°o nlmNow ..{a v st d.z may be calculated from (4.49) using 
standard integration techniques. Since this is a very

(4.49)

(4.50)

(4.51)
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lengthy expression, we may take up the (ns) states, 

nsDeriving V from (4.49) and performing the integration
st

over dz,

ns/V dz = 
st

(n-l) l n-l n--l (*l)
4 n« ~ m Ci 1 • nn m=9 j-0

m+j

s.n m+j 1( n. ) ( ..)<£) — r-T-r £ 2
n-l-m n-l-j n m l j 5. vk=?0

(s3, .) 1
Ul)

k+1 k+l
, t „ S *hk+l kl / 2 \ 3

n
(s^+i) »
k'. /2\ s3+2“k 

n

dX

"Hi
, pt (bX) - ^k+l h o k=0
d

(-1)
k ,k )“V Ko(bX)

a\ k

y\

(4.52)

8^ * *vvv + ^| + -(- d/wji, X -
Using (4-5l) and (4.52), one can find the general expression 

for Xq for any Kiis) state of H.

4.6 e - Ii(2S) elastic scattering (ESSU) s

As a special case, ^ ,V and XQ are derived from (4.48) 
(4.49), and (4.52) for the E S E H process."Ehus

1
^2S 4 y/'r2li

2 -r

-r,/2(2 - rx) e

V
st

( 1 3 f is\ -+-+-+- J e
r 4 
/b -b

+ ~
4 8

and X = ---  In ---r—° ki b
u.

k. [1 3d Id
4 dX 4 dX'

(4.53)

(4.54)

8 dX
r*

where X = l .

i ] Ko (bN] (4.55)
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The correction Ax to the phase Xq contributes very 
little for energies greater than 100 eV and hence can be 
neglected. Now ns> given by (4.46) may be evaluated to 

give

(b) = Y e
•P X K (bX) o e o

Bb^o
(4.56)

where B
2 i

k.i
1

, X

d d'
(a-------- i A

8 ax aX2

d
+4 dA

.3

d
4 dX‘

1 d~
8 dX3 '

8 -3-2) 2 ° X °

(1 + i/kj J(l + i/kJ

Evaluation of the eikonal part of the scattering amplitude 
(4.45) gives

V2 /k.
'eik 3_ SinK^k, [8 20

k.1
+ i (

20 >}
k.1

-2Y
r|(l-i/k.) Kl-i/k.)

X X 1 1 -ne L ------- -------ST-71---- 1F (l— i/k./ 1 Vk±;

x2 ) 3 (4.57)

where F (a; b;cjz) represents the hypergeometric function,
in the simplification of which, following expression is used:

zF (a, b; c;z) = (l-z) F (a, c-b ;C;^r ) •
After simplification.
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q

^eik

6 -2

4 Sink A/k^

20
[ (s- —„ )+ i (

k
i

20 8

k,
)1

*A
- [ “

^ Sink ^/k,
1 [ (8

k,

20 20 
) +i ( —

8

k, k.'
i i

) 3

r 3 d 1 cT 1 d
U---------------------- +---------------r----------------------A

4 d'\ 4 8 dA
(G + m)

where G =

H =

CS - DP

IDE 4- CF

-In Q 1 <f
= e Cos ( — In Q ); Q = 1 + /

Ki

-In Q Sin
1

( tT-
p = e ki

c = A Cos T — 8 Sin

D = A Sin T + B Cos !
K . 

1

In X

A = 1 + S +
TT72

S

B =

ki

s +

4k/
l

l/v 2 N(1 + /ki )

2k±
%

S; S

2/>2q /A

The summation of partial waves in the evaluation of 

the scattering amplitude is done similar to the procedure 

adopted by Jhanvzar et al (1978). According to this,

.58)



1 oO , , C ,
- £ (2JL+1) P, (Cos Q) eX°l Sin 0,
\±U0 , 1 , h

IN . C .
= ----- ^ (2I+I) Pj (Cos 8) e ^ Sin

k± t=0. K L

1 H /(B)
+ -----v~ ^ (2L+I) Pi (Cos ©) Oj . (4

B1 ki Ua .

where fB1 is the first Bom amplitude for the potential

V
; £>,̂  and ^ are the exact and Born - approximation

phase shifts for the same potential. Thus the contribution
06

of those partial waves is taken through the Bom

approximation to the phase shifts. The value of N is so 

chosen that the values of exact and Horn phase, shifts 

differ by only a small percentage (say 3%) beyond this N 

value.

For the central potential V (r), the Born approxi-
S

mat-ion to the phase shift is given as (Schiff 1968)

(3) oO n
l = -2ki !o Vot(r) h (kir) 2 .» r dr (4

1,

where js/jkp 0^+y (kir)
l+y,

The exact phase shifts were calculated solving the second 

order differential equation for V^(r) by the NumeroV 

method etc. This procedure will be discussed in detail 

later on. With the knowledge of the phase shifts the

evaluation of the partial wave part of the scattering 

amplitude (4.‘45) is easy by using the simplification (4.59)
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The following approximation is again used that, for the

r-cj-npartial wave summation ti1® I becomes approximately

1, because Xq is very small for t values greater than N. 

This is very much justified in the sense that for higher
values, the phase shift becomes less and less significant,,(o) (o)
Since X^ = 2 o^ where is the phase shift for the

l

potential V = V - V , the significance ofst
(o)
l and

hence that of XQ becomes less and less when compared with 
the phase shift corresponding to the total interaction V. 
Using this, the partial i>?ave part of (4.45) can be written 

as

LPW
l
d0

2%

H2
1*0

i 6 (i)
(2l+ 1) P^ (Cos 6) e1 1 Sin

(1)
l

(V}f i + fBl

1

k,

N '(B)JM /\a JS (2£+l) Px (cos Q) t>^ (4.61)
1U0 ■

Thus the scattering amplitude F_^(©) (4.45) is evaluated from
(4.58) and (4.61). The DCS may be found out as

d(T 2-- =/£(©)/
d-d

Results and Discussion s

The e - H (2S) elastic differential cross sections 

are calculated at the sample energies 100 eV, 200 eV and 
400 eV at which data is available for comparison. It should 

be remembered that during -the evaluation of the scattering

-ta-
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amplitude (4.45) for different energies/ each time the 

Bom and exact phase shifts are to be calculated/ their 

values are to be matched to fix the N value etc. Since 

all this procedure consumes considerable computer time/ the 

results were taken only for the above three specific 

energies. It can be noted that in almost all of the reports 

of the work done on this problem/ the results are given only 

at 200 eV. The present results at these energies are 

represented graphically in figure (4.9) and figure (4.10) 

and compared with the results of eikonal Bom series (SBS) 

approximation/ optical model (Gm) and the Galuber (g) 

results alongwith the most recently reported two-potential 

results (Pundir et al 1982) and high energy higher order 

Born (HHGB) results (Rao and Desai 1983).

As mentioned earlier, in the absence of sufficient 

experimental data, it is rather difficult to criticise the 

accuracy of the various approaches. Earlier, in the study 

of electron-scattering from H, He and Li, the two-potential 

eikonal approximation has provided reasonably good agreement 

with the experimental data and other sophisticated theories 

(ishihara and Chen 1975, Tayal et al 1980]). The BHOB results 

are found to be overestimating in the large angle region 

whereas the Glauber approximation is well-known for its 

shortcoming of under estimation (except at small angles) .

The present TPE results lie between the above two results and 

nearer to the EBS results which has given good agreement with 

experiments in other scattering processes.



227

As in the case of e,- H (is) elastic scattering 

(Ishihara and Chen, 1975), here also the two potential 

eikonal approximation should improve the conventional 

Glauber results because of two reasons*

(1) the singularity in interaction V is properly taken
S V

care of by partial wave analysis.

(2) The semi classical condition necessary for the 

Glauber approximation is better for the interaction 

Vq than for V.

The above aspect is clearly brought out by the
comparison of the eikonal phase function Jto> for the

|... 1
interaction potentials V and V (fig.4.1l). 1(b) for V is

o o
a smooth function of b while that for V oscillates strongly 
for small b values. Practically, the smooth function Hb) 

makes the numerical b integral much easier than in the 

Glauber approximation. The first term of (4.55) is the 

usual Glauber phase for the scattering process considered 

here. The singularity of this term at b = 0 is cancelled 

by the second term. Hence, in contrast to Glauber approxi
mation, Hb varies smoothly in the two-potential formula

tion. Similar behaviour is observed in the electron

scattering from H (is), He and Li (ishihara and Chen 1975,

Tayal et al ,1980). It may be noted that as in the case of
r------* t~-i

e - H (is) scattering, here also Re / (b) » Im j (b)
I------- 1

everywhere. Since a real i corresponds to an imaginary phase
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p... ishift/ I (b) contains almost no scattering, but mostly 

absorption. Since zu is a relatively small correction, 
rs with the approximation X —X behaves similarly. 

Therefore, the Glauber approximation, roughly speaking, 

contains the scattering by the static potential, the 

treatment of which is the motivation of the two-potential 

eikonal approximation as such.

The present e - H (2S) scattering cross sections 

at 100 eV are compared with the corresponding e - H (is) 

cross sections and are found to approach each other for 

larger angles where the incident electron - target nucleus 

interaction becomes more and more significant. Similar 

type of behaviour was discussed in an earlier section.

The Glauber approximation when applied to electron- 

atom collisions encounters difficulties coming primarily 

from; (a) the frozen target approximation, (b) the semi 

classical treatment of small angular momentum contributions. 

The frozen target approximation which neglects the long-range 

polarisation effect gives rise to inadequacies at forward 

scatterings and improper treatment of the small angular 

momentum contribution gives rise to errors in a wide range 

of scattering angles. The electron atom interaction behaves

like - - as r -------> 0 and the condition /V/ «E for the

eikonal approximation does not hold for low energies. As>is 

well known it is this nuclear coulomb interaction that
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predominates in large angle scattering, and for lower 

energies it effects the cross section at all angles* The 

observed discrepancy of the Glauber approximation in elastic 

electron-atom collisions is largely due to the above reason.

The TPS approximation provides an effective method to treat 

the close-encounter collisions properly. Hence, the present 

method may hold good for little lower energies also. As is 

evident from the small angle behaviour of the present results, 

we have to go beyorjd the frozen target in order to improve 

the forward angle scattering. Anyway, in view of the simplicity 

of the present method, the results are quite reasonable, and 

it definitely leads to substantial improvement over the ordinary 

Glauber approximation.

4*7 Two-Potential Formilation in HHOB :

The High energy higher order Born approximation 

proposed by Yates (1979) has recently been applied to various 

scattering problems (Rao and Desai 1981, 83) • It being a 

computationally simple approximation gives reasonably good 

results at small angles for the scattering parameters in the 

electron-atom scattering process. in this approximation, no 

question of divergent interals arise as in the case of the GES 

approximation (Yates 1974). The main shortcoming of the HHOB 

approximation is the appreciable over-estimation of the cross 

sections in the large angle region. As the scattering angle 

increases, the differential cross sections deviate more and 

more from the corresponding experimental values.
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It is well-known that the Born approximation gives 
better results for weaker interaction potentials. Keeping 
this in mind/ the present two-potential HHG8 approximation 
is formulated in the same line as the two-potential eikonal 
approximation (TPfi) of Ishihara and Chen (1975). As 
discussed in the previous section/ the success of the TPE 
approximation in the study of various scattering phenomena 
provided enough motivation for the present formulation. 
Moreover/ it was quite logical and reasonable to believe 
that the present formulation/ in which the interaction 
potential V treated in the Born approximation will be 
replaced by V - V^, being given a better treatment through 
partial wave analysis/ would definitely give better results.
As in the case of TPE approximation/ in the present study/ 
the basic formula is derived for potential scattering and 
is generalized to thecase of a target. In order to see 
the usefulness of this method/ it is applied to elastic 
scattering of electrons from H and He at intermediate 
energies. The improvement over the basic HHOB approximation 
(Yates 1979) is qu ite appreciable/ as expected.

Formulation of Two-potential HHOB approximation (TPHB):

Consider the scattering by a central field v(r) which 
may be singular at r = 0. An arbitrary potential is so 
chosen that VQ = V - satisfies the semiclassical conditions. 
(V being a slowly varying function and Vq/E «1 for all 
values of r, where E is the energy of the system).
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Now V(r) = VQ(r) + Vx(r) (4.62)

He write the scattering amplitude in the two potential form
of Rodberg and Thaler (1967)I 

1
£■(«)= — 2 (2I+1) TlPl{Cos 0) (4.63)

k_.
£ (o) /"(o) 2i ^ (o) i £Q)
^ Sin bJi .+ e 1 e 1with T^ = e

41)
Sin £T' 40> . 4-4^

(1)
where 6^ and b^ are the ^th phase shifts for the - 

potentials V and V^, k^ is the asymptotic momentum and 0 is 

the scattering angle. Hence

1 i 4Co) c(o)F (©) = --- 2 (2i+l) e ^ Sin ^ P^ (Cos «)

+ —'£ (2i+l) e ^ Sin
k. 4

2i £(o) 4l) i /}(l)
1 . Sin - e 4 P^ (C^(Cos ©)

... (4.64)

He now evaluate by Born approximation. The radial
part of the Schro"e- dinger equation for VQ(r) is

^ | ^ 2 ^(l+l) _ U„(r)
2 + ? ki

dr'

where UQ(r)

(o)
ul 0

2m-r V (r) •
■h2 .

(4.65)

The solution of this equation is
(o)

l ~ M
V «5 I I I (_) IU , (r) = F, (k^r) + /dr g (r,r ) U (r ) U , ' (r )

l
(4.66)
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tan
=o— /dr F. Ck.r) U Cr) U , 
olio l

k.

(o)

where g Cr# r ) represents the green's function. Now the 
4/

exact phase shift is given by-
Co) 1 
l

k. r
In the second Born approximation 

Co)

Cr)

00 ,Ut = Fl (kir) +ldr_ (3i • -O(r#r ) U^Cr ) F^ (k^r)

C4.67)

C4.68)

Thus phase shift C4.67) becomes
,Co) °0 / OO ,tan hi = --- £ ^ F. Ck.r) U Cr) IF. (k.r)+/ dr■. o lx o t 1 x oKi ................

Cr# r ) UQ Cr ) F^ C^r ) j C4.69)

The first part of C4.S4) is the amplitude factor for the 
potential U • When is small# we have

Co) 1 Co)
l

_ ^ S C2£+l) , P^ (Cos ©)

/Co)Substituting for ^ from C4.69)# 

„ Co) 1 oO
^ --- £ C2X+I) P^ (Cos 0) —— / dr /F^ CkAr)/

k.1 ki

U.
* >
\ X t X o0Cr) 5 1). --- S C2t+l) Pj Ceos O) C----/ dr F. Ck.r)v k 0 -tx

UwCr) / dr g^ Cr# r ) U^Cr ) F, Ck,.r )

• _ Co)x.e. F^_ _ = FU_

1 . i 1
o’-.' " L ' ~i

Co) (o)
+ F

(4.70)

1% '

Now# consider the first part of (4.70) •
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F

(o)

41 '
oO

k. 
x

9 ^ (24 +l) (P, (Cos ©) / dr /F. (k.r)/ U (r) 
4 4, t o ' 4 1 ' o

c6(24 +1) p. (cos ©) / dr r/j, (k.r)/2U (r)
1 4, o J4 1 o

? (2t+l) P, ( Cos ©) 4 dr —— r2/j (k.r)/2U (r)
0

oO .p/ dr, r U (r) 
o 0 qr

Sin qr
2k 4+1/2

We know that

i q.r ®o „ Sin qr
/ e U (r) dv = 4 7i / dr r u (r) -----------

o o o qr

(o) 1 %*£
Thus F = — ------ / e U (r) dv which is first Born

ll 4 A °

amplitude. A very similar but lengthy procedure will give

(o)
F = second Born amplitude, a slight modification on

42
which will give the corresponding term in I-IHOB. Hence,

(o)
F ^ . can be shown to be equivalent to the Born series, for 

the potential scattering.

f (e)
(o) 1

Fl + -----5(24+1) P^ (cos e) e

1 tb

2i ^
(o)

Sin

(1)

X
(4.71)

Generalising this to the case of target,
(o) 1

4
Ffi {&) = «; f / P^ / i> + — \ <21+ l)

- * x ^(l)1 • Al) 94

P^ (Cos ©) e °4 Sin . <f/e 2 ^ /i>
(o)

i.e. F (©) 
fi

F +, f
HHQB PW

(4.72)
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where :fhh0b = f

i—>f
+ f +i—>f

as given by Yates (1979) for the potential VQ(r, r^, r^—--r^) 
where Z is the atomic number of the target.

(i>• and ,(o)
^ . anu . are the phase shifts for and Vq
(0) 2i
C. is small, < f / e /i> can be approximated

(0)

When

as 1 + 2i < f / l) / i > (4.73)

An interesting consequence of this arises if we choose as
the exact static potential. Now, V (r, r_.) = V (r, rm)-V , (r)o T T st

(o)where r^ represents target co-ordinates. If is taken
in the Born approximation,

, (0) #°o 2< f / ^ ./ i> = ~2ki / dvT y y / r dr (k±r)

( v(r,rT) - V (r) )

= -*i t r2dr J X2‘kir) ! dvT /V [vtr,rT)-Vst(r>]
This becomes zero since / dv,^ J y V = V , the static
potential by definition. This happens only when V is chosen

st:
for . Hence, in such cases,

2i &i0)
< f / e "/ i > = 1, as a rough approximate.

This reduces computational complexities also. However, i^ 
one is particular about retaining the contribution arising 
from this term, in the evaluation of the second part of (4.72), 

may be evaluated by the JWKB approximation to first 
order in VQ , as is done in the case of the TPE approximation.

,(Q)
0-1
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Thus (4.72) gives the two potential formula in

the high energy higher order Born approximation. It is
obvious that the basic idea underlying this formulation is
to pull out a static potential V , (r) from the total inter-st
action potential V (r# r^). The rest of the inter-action • 
Vq=V-V ^ is treated in the HHOB approximation and the 
contribution of V to the scattering amplitude is calculated 
through partial wave analysis. When we compare this with 
the simple HHOB approximation of Yates (1979), it can be 
seen that in the present two-potential formulation, the 
Born approximation is applied to a weaker interaction 
when compared to V, and that part of the interaction, V 
is given proper treatment via taking partial waves. Thus/ 
the two potential results should be better than the HHOB 
results® To demonstrate this/ the present two-potential 
HHOB formulation is applied to electron scattering from H 
and He in the subsequent sections®

4.8 e - H elastic scattering in TH3B

In this section/ the elastic scattering of electrons 
from H atom will be studied in the newly formulated two- 
potential HHOB (TPHB) approximation. Whenever a new theory 
is demonstrated/ the application to the Hydrogen atom system 
will be convenient because of many reasons like computational 
ease/ availability of large amount of data - both experimental 
and theoretical - for comparison# and less scope for mistakes



from other sources like choice of wavefunction. Moreover,
with respect to this scattering process# the accuracies of 
various approaches can be criticised with more confidence. 
Hence if a theory produces better results (in comparison 
with available data) when applied to this scattering process# 
the theory can be considered to be a successful one. Hence# 
naturally# the choice for the demonstration of the TEHB 
approximation discussed in the previous section fell on e - H 
elastic scattering.

In order to find out the differential cross sections 
for the ESGH process using the TEHB approximation# it is 
necessary to evaluate the scattering amplitude (4.72) such 
that

dG" 2— = / F (©) / (4.74)
d-n. fi. .

For the ESGH process# the interaction potential
1 1V (r# rJ = - — + -------
r /r - r-j/

and VQ(r, r^) = V (r#^) - V1(r)

In the present study# for the arbitrary central potential 
V^(r)# the static potential given by Bonham and StEand 
(1963) is chosen because of the simplicity in calculations 
and the ease with which the theory may be extended to other 
atoms. (For all atoms# using this static potential the 
formulation remains the same with changes only in the 
coefficients and exponential parameters.).

(4.75)

(4.76)
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Thus (4.76) becomes

VQ (r, rx) = V (r# - V (r) (4.77)

Now it is obvious that the F in the scattering amplitude
HHOB(4.72) represents the amplitude factor evaluated in the 

HHOB approximation of Yates (1979) for the potential Vq given 
by (4.77).

(1) ' (2)
* F = f . . + f + ....

* * HHOB i -> f i -> f

= Inl + i Im f B + Re, f + Re» £ B B1 2 12 2 2

+ f B + • . . (4.78)

In the present study# the third Born term is neglected 
because of the following reasons s

(1) It is found that even for the whole interaction
V, the contribution due to this terra is very small. 
Hence# in the present case where the interaction 
is only V - V # the contribution of the term'will 
be still less.

(2) In order to have a comparison of the present TEHB 
results with the simple HHOB results# the TPHB 
results excluding the contribution of the third Bom 
term may be compared with the HHOB results excluding 
the contribution of the same term. Thus the comparison 
is justified.
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(3) The computational complexity increases tremendously 

with the attempt to include the third Born term.

This type of practical difficulty was felt during 

the evaluation of the similar third GES term, in 

the course of the present study.

(4) It was observed during the process of evaluation of 
the various terms in (4.78) that the contribution due 

to the Re term in the second Born egression is
Ct

spuriously large. Hence, the inclusion or exclusion 

of the less significant third Born term does not make 

much of a difference because Re2 and fB are of the 

same order.

Taking into account the above points, the evalua

tion of FItTT/^- reduces to the evaluation of the first and HHUB
second Bom terms in the HHGB approximation, for the inter
action potential given by (4.77).

Here V (r) 
s*c

-5 -k ,r
. 2 < S--—-j,l J r

X1 = 164.564 Y^= 0.0126671

k2 = 1.3060 0.0580612
k3 = 1.48219 Y^~ 0.927968

The evaluation of first Bom amplitude is simple,

. (4.79)

f B., = —1 2 7\

1 ig.r 4
/ dv e / Tjp V"0 Ip dv^

2 (q+8 )

(q +4) 2
•2? f —5---~

l 2 (q2+k 2)
(4.80)
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Daring the evaluation of the fB^# it can be noted that the
first Born amplitude itself should be very small in the

*
large angle region because of the presence of / J Vq TjfF dv^£because | V | dv^ is the static potential'by definition. 
Naturally# the contribution due to the higher order Bom 
terms should be proportionately small# which shows the 
insignificance of the third Bom term which is left out in 
the present study. Moreover, the V part in the interaction,s W
which is treated through partial wave analysis# should be 
contributing more to the scattering amplitude. This treatment 
should improve the present results over the basic HHOB 
results which overestimate appreciably in the large angle 
region.

in the evaluation of the second Born term#
(2) _ A A

U = f /Vq(P + VQ(/q-p/-P X) / f >
f1 V — —

(P +P„£) V (/q-p/ -P„X)/y >
Z Z 1

-2<f /v (P +PZ$ ) Vst i/q-p/-PX)/y >

+< fAst^p + P £ ) V (/q-p /-P £);/ Tjj > (4.81)

As a result# in the evaluation of the imaginary and two real
parts of the second Bom term# three terms each will be

there# the first term corresponding to the second Born
amplitude for the total interaction V(r# r^)# the last term
corresponding to the amplitude using the static potential
V , and the middle term which is a cross term of V and V . st st
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Thus Ira fB = Im, + Im + Iin 2 12 3
Rel fB2= Rell + Re12 + Re13

(4.82)
(4.83)

Re2 fB2“ RS21 + Re22 + Re23 (4.84)

Im^ for ESGH process is given by (3.17)

m2 “ k. x (-2) x / dP < W / V (P + P X)
—. j _

V Iq - * - ' ? (4.84<$

Here

V Cq - P - P *) 
2

3 -f. s I__i
'i = 1 2%2 (/q-p/2+Pz2+^i2) (4.85)

Now#
A 1 r -1

V (P + P_X ) = --5 [
e1

z 2flf (P2+P 2) (P2+P 2)

* <XjT/V (P+PzX)/|r>

-2 d

7^
2 ^p2+p2 ) p2+p 2+ ^2 2 2(p2+p 2)
k z z z

(4.86)

8 7\3
Im• * 2 k± j

s -4- / dP [
27n

^2(P2+P 2) dX P2+P2 +x2 
’ z z

]2n2 (P2+P 2) - </q-p/2+P 2+X 2)
2 2 J

8tT
k.
h YT

j
/ dP d 1

a.

ft
/ dP

dX x2 (P2+j32) (/q—p/2+ P2+hj2)

d 1 " r 1-
dX X2 (p2+j32+X2) (/q-P/2+82+Xj2)



9/j41

IT

+ / <ap
4 ;a
38 ft

---  £k. .i 3

(P2+02) (/q-p/2+02+^.2)

d 1
i%H dX X J dP

1
(P2+02+X2) fr'q-p/2-^2^ 2)

J

Thus

Im„ =
3 ^

8 A s 3
^i d, a4

d
dX

'-2 ^C^2^2^2) (4.87)

2 2 * 2where the integral of the type I O * X , X, z) has been 
, 4 3

come across earlier and is given in the appendix. Now* Im, 
given in (4.82) is the contribution arising from only.

* Im. 4 / dP ¥ AP + P * ) V (q-P—P X) — st z st ^ z

4 A3 r dP _^L_ | |
/ yr rr'x 'j

k. 4A"1 1*1 j=l (P2+P2 +X/) (/q~p/2+P X z)
JL <u J. 2 J

3
£

7\k, * . 'i 'jwi i==l j,l
2 YT < I. (02,X.2, X.2)

*n *i A * n # -I ' (4.88)

Thus Im £B„ in (4.78) will be the sum of Im. * Im and Im_ 2 12 3
given by (3.17)* <(4.87) and (4.88).

A similar procedure can be adopted for Re^ fB^ 

given by

Req fB^ 4 X*
kx

T
, dP. (2) 

/ dP / ---- u
““ -*> p

On glancing through (4.81)* (4.83) and (3.18)* it can be 
easily understood that Re^ for the ESGH studied here will
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a»

be given by the expression (3.18).
4 7? -Tp, ' ■« dP
— x2 xJ^/dP /Howi Re]_2 = +

-2
x
d

<*> P -83

X2(P2+P 2) dX P2+P 2+A2 27?(P2+P 2)
2 z z
3x 23=1 2 t? (/q-p/^^.2) 3

Now splitting the terms using partial fraction method and2 Yi risimplifying, Re12 = J> ! dB J —2 j f ^4 dA

c
X2 P2+P 2 /q-p/2 +P 2 +A2 x4 dX

z ^ z 3

V*

d____ _______ 1___2 P2+P2 +X2
z

1 rr/q-p/2 +P 2+X 2 + 4 7^4 P2+P 2 /q-p/2+P 2+X2
Z j z z

£.
k

oo dP 
T~Z
' 3

ld~ d 11
-8 — IP ' dP f *r=-i . ? -T------ o" • “2—^--2JJ -et> P„ P 3 X2 ? P2 +P 2+ X2

3 Z

/q-P/2+P 2+X.2
z 3

3 -Q~fT d 1 o o o E _~L __ —T(82,X2,X 2) 
3=1 7fk± dX X 5 J- „ (4.89)

2 2 2where I,-(p # X , X. ) has been defined earlier and is shown o 3
in the appendix®

By analogy with the imaginary part expressions,

dP
Re- can be directly written as

•la O ry

-4 7\ ^ ^5
Re13

P' » ' z v . (p + p X )St 3P - ,8 3
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vstlAr-P/

. 2* ±- l I Tfk, , „4 1 J Ji 4 /\ i=l J=1

1
(P -0), (P2+P 2+K.2) (/q-p/2+P 2+h.2)
Z Z 1 ^ Z J

PO

-1 3
= 0 s*2k± i=?l

3E
j=l

YTi Ic(02,
b

h2- V> (4.90)

where I-D
k 2 s2) is of the same type as the integral

defined in (4.89).

Hence the Re^ fB^ term of the fhhqb Part (4.78) is 
the sum of Re.^# Rel2' Rel3 g;*-ven ^y (3.18)# (4.89) and 
(4.90). ",

Hext is the evaluation of Re£ ffi2 ^ (4*^8^ for "the
(2) , „ . ' - • three terms in U ^ given by V4.81J.

n ^r2 i. SO **\ <-* dR = - p / dP / dP (P2+P 2)
k.'21 53 d£ P -0 

z

<y/v (p + pz *) v (q - p - pz* ) / y >

2a: dT«* ---9k± d*>
(P2+P 2) 
_____ z

-^4 f ,dSA
®o d
io dPz djT P

z £
q2 + 2^2

(P2+P 2) (/q-p/2+P2) \2 (q2+\2) P2+P2+\2
Z Z M

/q-p/2 +P 2+X2 ]
n
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a a

= A2 2 * ctf

dP q2 + 2h2 1
oo Z

X aP X  --------- [ —r—-7—5—' ---------5------ -
" B -» N2(q+N2) /q-p/2+P 2

CP2+P 2+\2) Vq~P/2+e 2) k2(P2+P 2) N2 P2+ P 2+*.2
Z Z Z Z

- - 2 * 2a a q + 2A.[ (7rrf-,?- ~ -T2; z3 cA 0) + T5*V ^ ^ L V2(g2+X2> N

I JB.\) - I CS2,A ]
3 2

2 - d a 1 2
= ~2~T ST aT t T* V3'*0 -i2(s

7C k± (

.*>]
' (4.91)

2 2The integrals X O# M and I00 A ) are discussed in the
3 _ . 2. a

appendix. It may be noted that ^ I (0, G) = 0

3
since I_ ( (l

7i tan

(2)

-1 V

Now taking the second term in U, „ ,
f i

4 71'
Re22= k2

zy °o 0„dl £ Y
f ' d£ L A lP +pz 1 dF t=t j l 3

Z , , A

yT

YT

dK (P2+P 2) (P2+P 2+^2) </q-p/2+P 2+X,2) 4k4 • P2 + P 2
z z ^ z j z

tQ 
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d 1 1
74™ ”72 t,2 n 2 \2^ P^+P^+X* /q-p/2+Pz2+\j2

S
j

4 Tj" d 1 <=0 d 1

2fr i dpz
x k 2 dX X

"p2% p 2 
_______ z

(P2+P 2+X2) (/q-p/^+P Z+X /)
Z Z j

. n 2.V 2.

Now writing P + P = (P +P + X ) - X2
js z

and splitting the above integral into two,

d 1
Re„„ == E

-4vr
_L_

'22 j 2.2 dX' W d/3

d ,, 06 dP
-------J5 / bP _/ ------------

S» - |3 
z ”

1
/q-P/2+P 2+X,2 (P2+P 2+X2) (/q~P/2+P 2+X . 2)

z J s Z j
-4 tT
■4 ’j a

5 CT ~
d [ I 0hh.) - \2 IS^2>2.V2)3 (4.92)

A dX X^ d/3

A A

where X C/3, X.) is derived in the appendix. Ic(|3 ,X # X,2) 
3 j 5 j

has also been defined earlier.

Now, Re23 arisin9 purely from the static part of 

voCr, rx) can be evluated using the above principles*

Re « - J> f dP / dP (P2+P 2)
° -11 •“ —oO z z'23 ki 2 dlS P -JS 

s

?stCP + Pzi ) vst (c-p-pj)

27, i i 7 7 f ' Z dP
k.
i

4 A4 issl j=l



246

where the in tegrals X {B, X.) and X (B , X,^) have the
3 3 5 x j

same meaning as in (4.92) but for some changes in the 

values of certain parameters. Hence/ the sum of Re^, Re22 

and Re„_ given by (4.91), (4.92) and (4.93) will give the
2o

Re £B in the HHOB scattering amplitude (4.78). With all 

tlie terms evaluated term by term, the PHHQg is now known, 

for the evaluation of the TEHB scattering amplitude (4.72). 

Now the task remains only to evaluate the partial wave part 

of (4.72).

The important part in the partial wave analysis is 

the evaluation of the phase shifts. Since it is difficult 

to carry out the infinite summation of the partial waves, 

the method described earlier was used throughout this study. 

By this way% of summing of the partial waves, the contribution
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of the less significant higher partial waves also is taken 
care of through the Born approximation (4,59). For such a 

type of analysis# the evaluation of the Born and exact 
phase shifts becomes necessary. The evaluation of the Bom 
phase shift is simple as given in (4«60), whereas the 

determination of the exact phase shift involves the 
solution of second order differential equation. In the 
present study# the Numerov method was developed for the step 
by step integration of the radial Schro"dinger equation out 
from the origin into tile asymptotic region where the potential 
has a negligible effect. In this region, x » *A, the range 
of the potential# we know the values of the unknown variable 
and its derivative. So the phase shifts can be computed®
The details of this'procedure is given below*

Consider the second order ordinary differential 
equations of the form Y" = F(x) Y (4.94)

It can be written as

Y'f = F (x.) Y.
J J 3

Using Newton's formula for forward interpolation and the 
method of replacing the derivative of a function by a 
polynomial and integrating that polynomial over an interval#
we get the Numerov formula

Jo(1- • F . ) Y . ,12 j+1 J+l 2 (1- £12 F.) Y.' 
J J

(1-
,2
12 j-1

) Yj-1

2+1, F .Y. 
J J (4.95^



Thus for j=l# we have a formula for determining provided 
we know the two previous ordinates Yq and Y^. Here 
denotes the step - interval®

Now# in the scattering problems# for example electron-
hydrogen scattering, the second order differential equation
is given as 

<^2 ^
( —r + ki-- - 2V (x) ) F. (k.x) = 0 (4.96)
dx2 x ' . . 1

1 -2xwhere k. is the incident momentum and V(x) = -Cl + --)e x x
Comparing equations (4.94) and (4.96) Y = F. (k.x) and

■V 1

F(x) = - k,2 + 2V(x) (4.97)
2 1 X

Thus if the original two values of
F^ (k^x) at x = 0 and x = 0 + -L are known# using the
Numerov* s formula (4.95)# the value of F. (k.x) at x = x,x A
can be computed. For x ^ x # the potential V(x) can be 
neglected. At such distances# the differential equation 
being solved is simply Bessel's equation with the solutions

F. (k.x) ~ k. x (A. (k.) j (k.x) - B. (k.) n, (k.x) )(4.9s) l x i kx lx ixtr

At x = TL * our algorithm for solving the radial equation
jn.

(4.96) using Numerov method repetitively out from the origin
£U?1to x = X yields numbers for F. (x ) and / , TheA _ A dx xA

functions j, (k.x ) and n, (k.x ) can be obtained# for i X A 4* X A
example# from tables. Therefore# the unknown coefficients
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A. (k.) and B. (k.) of (4.98) can be determined from the f i x
pair of equations

F, (x )
——r~-= A. (k.) j, (k,x ) - B. (k.) n, (k.x ) kjX, x A lx l i A (4.99)

1 A 
du JL’# Ql. Uii,t- ‘ 3,-W W [-*-]dx . i -%* dx

for each value of the energy k ^
i

dn
dx • r'A

The phase shift is

(4.100)

given by B, (k.) 
s xxtan o, (k ) = ------ =■1, X, A. (k.) (4.101)

l i
Thus# it is obvious that if the two initial values of the 
solution (k^x) of (4.96) are known# the phase shifts for 
different X values for corresponding energies can be computed 
using (4.101) through the procedure discussed above. Hence# 
the remaining task is the computation of these initial 
values. For starting the solution# we assume that at small 
values of x# it is possible to expand the solution in an 
ascending power series in x.

r <kiX>
00

2
n^o

n + 6“X (4.102)

Substitution of this in (4.96) yields
X+l

F, (k.x) rv x # since it is regular at the origin
X 1 *—po
and we want physically significant solutions (i.e. no 
infinite probabilities) . Hence# the physical solution 
demands that at the origin#

xi l0) - 0 (4.103)
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If the numerical integration is begun at x = 0# for % >1,
dF.then F. (k.x) and , 

l i dx
are zero and we get the trivial

solution P^ (x) = 0 for all x. However# if we step a very

small increment away from the origin# then and its

derivative can be computed from the first term of their
series expansion (4.IO2). Hence P, (k.x) s a

v 1 o
However to obtain greattr accuracy in the solution than that 
offered by the leading term at &,# one can retain the next 

terms in expansion.

In the above discussion of the numerical procedure
to solve second order differential equation# we have assumed
that the potentials V(x) tend to zero exponentially and that

at X # the value of the independent variable beyond which
V (x) can be neglected# the numerical solutions can be fitted

to the Bessel functions. However# for potentials which

vanish at Infinity as x 0 s ^1# x value would be very
great indeed if we adopt the step by step procedure discussed
above. This would have the following undesirable consequences:
(l) greater amount of computer time required (2) the

accumulative effects of truncation in the numerical formulas.
Hence for such long range potentials some corrections like

the WKB method or the numerical procedure due to Burke and
Schey (1962) should be made after stopping the integration

at some x . However# for exponential potentials - which A
are used in the present study - the inaccuracy due to the 
above mentioned reasons will be negligible. This fact is 
obvious from the later analysis of the phase shift values



obtained in the present study.,

The two principal disadvantages of the above - 
discussed Numerov method are (l) the process of getting the 
method started (2) the difficulty in changing the mesh-size* 
In the Runge-Kutta Method of solving the differential 
equation# both the above disadvantages are absent. It is 
a self-starting method and the step-size can be changed at 
any point in the integration. (Refer Kenneth Smith). Hence, 
in the present study, both the procedures - i.e. Numerov 
method and Runge Kutta method - were used to find the phase 
shifts for the Yukawa type of potentials* It was found 
that the results almost coincide*

For the purpose of checking the computer programme 
set up in the present study for the evaluation of the Born 
(4.60) and exact (4.101) phase shifts for a potential, both 
the phase shifts were evaluated for the Yukawa type of 
Potential.

The resalts obtained for different L values ranging 
from 0 to 10 are shown in table 4.7. It may be noted that 
for higher values of , both the phase-shifts approach each 
other. The exact phase shifts are calculated in two ways: 
using the Numerov method and the Runge-Kutta method for 
solving the differential equation (4.96). It can be seen 
that the results (second and third columns of table (4.7) 
almost coincide.



252

Thus for the Yukawa type of static potential (4.79)#.

where Qj^ represents the defined polynomials tabulated as

(x) = 1 In 1 + x

2 1 - X

X 1+x

X 11 — In ------
2 1-x

The exact phase shifts for the static potential (4.79) are 

determined using the Numerov method described earlier.

Both the phase shifts are compared and the JL value is so 

fixed that beyond this value of X# the phase shifts differ 

by less than 3%®

Now# another major step in the evaluation of the
2i

Fp^ (4.72) is the evaluation of the quantity <f/e /i>.

Here# taking the JWKB approximation#

,(o)AO)
= X = XQ + #dX as given in C4.45)

2 b-b, 3[ln/T-V.S ^ K (bV> ]Here Xo k^ 3-1
(4.106)

where Kq is defined earlier.

2 / 00 °6 J— V(p$ / dz ** / dz + J* £ -----
k.'O 0 OJ2E

1

■Xr
Now zix

1 #

r dz

1

k.E
1

(/b~b^/2 + Zl2)1/2 b +
-X b

yf ®__ j E -Ta

(-J-) x. K, (b x.)
dX. 3 di j

J «- ^

(4.107)



Now |—i

= e

< f / e
v

- 2i 
ki

i(xQ + Ax)
/ i >

x x.
-A ,b

S K7 K (b A.) + --------- l%r.
J J ° - J k> E ‘-j 'j

b

(£r /b-b,/ ix
< f / /x in —+ -r-^ 

SL b k.E i/h-h1/2+Zl2)1/2
)/ ±> (4.108)

where

d
xi = i 'Q 1 sk.) \*o Cb V

i x

/b-b,/ 2i/k. . 1 1
**• \ 1 r i ^ .

k.E //, . /2 2% 1/2x (/b-b,/ +2| ) '

pL Y < f / ( —) ' 1 [1* ]/i*

where. v b\ ^ r lx. 1 N
Y = e ki ? f. K (b A.) + —i Bf, -----------------1 )3 1 o . j kjE Lj b b J J

In the evaluation of the above expression# the assumption is 

taken that b « bn

/b-b^ 2i/k. b
so that ( —r------- ) = ( —r— )

2i/k,

Now the evaluation of | is possible using the standard 

integration techniques which is little lengthy# thus giving

r= y-l |(nTf ) luTf) +rl-xil^ + ^ )
I Cl + f- ) (4.109)

2i
where I = — and and Y are same as defined above. The

expression for r can further be simplified using some'

simple mathematical conversions
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f-- lThus if 1 can be written as e

X
, K (bM +
J o j

xy ( e + if) where

_ £
i j

-r K (bV> + nr ? X -e
~h ,b

■ J
k.E

-1 >
k.

1
In b,

..(4.110)
1 .(1)

then F = r— ? (2<l+ l) Pi (Cos ©) Sin 6»
PW Ki 4 ^ ^

[ (e Cos X ~ £ Sin X) + i (f Cos X + e Sin X)] (4.111)

il)
where

X = . + Y where ^ is the phase shift

(*)

,(1)
%

for = V . Now using different values of phase

shifts in the exact and Born methods# the i, value upto which

the above series may be summed is fixed at N and the

summation is carried out as described in (4.59). With the

help of the tabulated values for the polynomials P (Cos ©)

such as P (Cos ©) = l,P<Cos ©) = Cos © etc. the evaluation 
o i

of F in (4.72) becomes easy. From the knowledge of the 
JrW

complete expression for the scattering amplitude (4.72)# the 

DCS may be computed.

In order to obtain the total cross sections in the 

TPHB approximation# the usual expression for TCS may be used.

Thus Im F (©)
k f i i a so
i *

i7X \ lm FBV +■ Xm F /
= k— i 2 q=0 ™ q=0



2d5
Im, / + Im / +

q=0 * q=0

( f

Prom the expression (3.17) 

-4 d 1
Im, / =-------—r 2x q=o 7\ k± dX X^

r 1 /D
3 /q=o + k A sinr. .

Cos X + e Sin X) j (4.112)

for Im^, it is obvious that 

dP
(P2-h82) (P2+j32+X2)

2 2which may be simplified using the substitution P +j3 = x to

give Im./' = - Un ^±§- - -&L > U.U3)
1 q=o k± _ 3 02+4

From the expression for (4.87),

Im
3 8 YT d 1 y dP/ = £ __ lL_ _ __ I Z

q=o j*l *ki d?S /\2 d (P2+/3?+X2) (P2+|92+X2)

2^2where the substitution P + = x will be convenient.
Thus using standard integrals,

-1
lm2/

3 8t7
_ _£ —3—q=o 37^ k^ ; (X? “4) (02+4)

d2 \2
+ in

/32+ 4

[ (X^-4) 4(Xj2-4)‘ (4.114)

Further, making use of expression (4.88) and proceeding
similarly as in the previous cases,

4 7? 13 3
Im_ / =s ;—— / dP ..~x 2 £ —3 ' k, - „_4q=o x

YT T.
1 3

4* inrl j-1 tp2+jg2+x2j (p2+)g2+x2)
-L J



Another study performed in the present work was with 
regard to the significance of Ax in the phase shift. For 
this/ the differential cross sections were obtained after 
suppressing the Ax part in the expression for X and using 

only XQ. The resulting J ' for this case will be
L 2i 2i /h h ;r- . S S t K Cb K )) < £ / e *i In /i->

J J U - J ^
■* ' V.

which is much simpler compared to the J ' given by (4.108).
But in actual practice/ the inclusion of Ax part in the 
expression for X resulted in only a negligible contribution 
for energies greater than 100 eV. Similar was the case 
reported in two-potential eikonal approximation (ishihara and 
Chen 1975) also. Thus it was concluded that<4x can be 
neglected-for computations involving incident energies 
greater than 100 eV without any significant error.

Another important scattering parameter/ the total 
elastic cross-section (TEC) can be calculated using

1•H

dCD£

03jni+03CQ.

•C
O tv + > H- t
o£

Vn

, P
-M
 

, l_
».

W

H-
mr—

{
l—

{•t, b

> >■ t_i.
to
I

’h
T to

3

OJ

TO
to

mr—
I

H

ft»f
s. • I-
*
I-
1

ib

co

iHCQGO■HCQm0u

x0 ft o ct 0 H1 0 H O cn m cn (0 o & H- § m H
i O H A b (0 w£ $

H 
| M

e~ W

CDod0■Hbdbbto1

H- H lb <t (D

CM 
i—
I
rH

8•HbnJ6•HXOgdft«jegoXXH(0•ribcCDb0 ft1osbCD

•-SCQCQoooMft



257
Results and Discussion :

The differential cross sections, total cross- ' 
sections and total elastic cross sections are calculated 
for the ESGH process in the two-potential HHOB approximation 
as discussed above for a variety of incident energies and a 
wide range of scattering angles* In figures (4.12) and 
(4.13) the present TPHB DCS are shown at incident energies 
100 eV and 400 eV alongwith other theoretical and experimental

Qdata (experimental data of Williams (1975) and Van Wingerden 
et al (1977), EBS results of Byron and Joachain (1977), and 
HHOB (Yates 1979) results). From the figures, it is obvious 
that the present results agree with experimental values 
nicely over the entire angular region. .Since tne present 
TPHB forirulation was basically an attempt to improve upon the 
HHOB method of Yates (1979), the real comparison should be 
made between the results produced in both the methods i.e. 
curves A and B. It may be noted that in the present TPHB 
calculations, the contribution due to third Born term is 
neglected on the basis of thfe assumptions drawn earlier. 
However, this type of reasonable comparison between the 
curves asserts that the improvements whatsoever obtained 
are due to the approximation introduced and not due to the 
inclusion or exclusion of any particular term. Thus the 
avoiding of the laborious third Born evaluation finds enough 
justification.



258
(3) ( 3 ) ( 3)

In the HHOB approximation, Re f = £-. + £HEA X 1
(3) (3)and if p = 0, then only £, remains such that Re f

HEA
(|3 = 0) = f .1? = 0) s f . In the high energy

1 AE. GES
approximation, & = ^— being very small, it can be approxi-

1mated as zero in practical situations for the sake of 
simplicity. The contribution of $ in the scattering amplitudes 
is small (as seen in the comparison between the imaginary 
terms in the GES and Bom methods) when compared to the 
important part played by it in saving some of the integrals 
from divergence problem (conparison between GES and HHOB 
integrals). Hence the significance of the 0 factor. Keeping 
all these points in mind, third Bom term can be approximated 
to the third GES term within a certain accuracy. Thus in 
the present study the HHOB calculations were done incorporating 
the third GES terra. However, it was observed that, curve A, 
only gives better agreement with experimental values reported 
in the recent past®

The main attraction of present TRHB results is that 
it gives reasonably good results even at lower energies, for 
the entire angular range. Since the total interaction V is 
replaced by a reduced interaction V - in the TPHB approxi
mation, the lower limit of E can also be pulled down slightly
such that - < < 1. Hence the approximation should give better 

Eresults than in'the simple HHOB approximation in the case of
lower energy of incidence also. From the comparison between 
the two figures (4.12) and (4.13) at 100 eV and 400 eV, it
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can be readily observed that as expected the results 
improve with higher incident energies. But the most 
covetable feature of the present TPHB results is the very 
satisfactory cross sections in the large angle region.
The general experience is that maisy a theory which gives 
quite good results at small angles# gives poorer results 
at large angles. Same is the case with the HHOB approxi
mation of Yates (1979). Hence# the improvement of the 
present TEHB results over the Yates' method is most 
significant in the large angle region. At all energies# 
the two-potential HHOB results are far better than the 
simple HHOB approximation at large angles®

In table (4.8) the present DCS in the two potential 
formulation are given at certain sample energies 100 eV#
200 eV and 400 eV• Since the summation of the partial 
waves as described elsewhere requires the evaluation of 
the phase shifts in two ways#, comparison of the values etc. 
it takes more computer time and hence the present studies 
were carried out only at certain chosen values of incident 
energies# at which quite a lot of data is available for 
comparison. However# the present work can be carried out 
for other energies also if required# without much difficulty. 
Since the motivation behind the present T£HB formulation 
was the necessity to modify the HHOB approximation# the 
prime interest in the present study was only comparison 
between the two sets of results# which can be carried out 
with two or tnree sets of data.



In tables (4.9) and (4.10)# the total collision 
cross sections (TCS) and total elastic cross sections 
(TEC) for the ESGH process calculated in the two potential 
HHGB approximation using expressions (4.112) and (4.116) 
are given# alongwith other data for comparison. The 
present results are quite ^encouraging and as in the case 
of DCS# the TCS and TEC results also improve with higher 
incident energies.

4« 9 e - He elastic scattering in TPHB s

The success of the TftIB approximation in describing 
the ESGH process as demonstrated in the previous section 
is the main motivation behind the application of this 
approximation to EHe process. The study of EHe process is 
computationally rather more cumbersome than the ESGH process. 
Naturally# with an increasing atomic number# the interaction 
potential as well as the wave function of the atom are 
bound to become more and more complicated. This increasing 
complexity results in studies which are centred on lighter 
atoms - .sometimes even the lightest atom, hydrogen. With 
the advent of the hydrogen - like representations of the 
alkali atoms through core approximations# the study of such 
atoms is rendered easier. But the helium atom, with no 
such facility for simplification# remains a computational 
hurdle in the atomic collision theory. A comparison of the 
expressions to be given in this section with their counterpart? 
in the previous section will give a quick idea regarding the
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The procedure for the evaluation of the scattering 
amplitude in the T£HB approximation can be carried out 
exactly parallel to the study of the ESGH process. Hence/ 
the first problem is the evaluation of given by (4.78).
For this purpose# the ground state i^ave function of He is 
taken as the Hartree - Fock wave function given by Byron 
and Joachain (1966)•

increasing computational complexity as we go from H to He. 
However# inspired by the results of the previous section# 
a study of the more complicated EHe process using the TPHB 
approximation is undertaken in this section.

For the EHe process# the interaction potential is 
given by

V (r,rx,r2)
/r -r-j/ /r-r2/

(4.117)

and VQ (r# r-^# r2) = V (r, r^, r(r) • Here also, 
for the arbitrary central potential V^(r)# the static 
potential of Bonham and Strand (1963) is chosen# considering 
the simplicity rendered by this choice as well as the 
reliability of this potential as experienced in the previous 
section.
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Y *rl' X2 " *1S ^lS(r2J
1

with Pls(r) (

where A = 2.60505,

Y1 “ 1 * 41 $

A e 1 + B e 2 )

B = 2.08144

Y2 = 2.61

(4.120)

The evaluation of-the first Born amplitude in (4.78) is 
simple which comprises of two parts resulting from the two 
parts of Vo(4.118). The first part has been evaluated in 
an earlier section whereas the evaluation of the second part 
is exactly similar to its counterpart in the previous 
section, but for the numerical values of certain parameters. 
Hence the first Born amplitude can be derived as

9. 8 D,f B, = 2 ---~ [-
X k==l 2

q
k

Klk3K2k3
Ik K2k

K2k3(<32+KUc2) Klk3^2+K2k2) 2]

34 S
3-1 Cq^+kp)

(4.121)

where

VT and X, -J
transfer.

Kfk and K are same as given in table (3.9), 
are defined constants and q is the momentum

As in the case of ESGH process in the present EHe
(2)process also, U ^ which appears in the second Bom 

amplitude is given by (4.81). As a result, each term 
(imaginary, Real 1 and Real 2) in the second Born expression 
will consist of three terms each and can be written as
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Xm fB2 = Im^ + Im2 + Im^

Rel £B2« Reu + Rel2 + Re13

Re2 fB - Ra2l + Re22 + Re23
(4.122)

For the e - He scattering,

A 1
V (P + P % ) = —50 z 2 7v (P +P 2)

1 E- r•7 !£•£+ e 2 2)

and Vst (q -P - P„ £ ) 3 £i=l 27^ (/q~P/2+P„ 2+?a- , 2)
z 1

(4.123)

The evaluation of Im^ involves the first term in (4.8l),
(n )which is the U defined by (3.37)

fi
4 t;2 (2)

Since Im fB = —r— / dP U Im, is given by (3.38)2 1 fi 1

Now Im = - 2-2L. / dP<|/V (P + P %)/ >

V . ( q-P -P*)st ^ *

/ dP * -1
ki

°l 3
» 2 D, Y"4 1 • * -j r7^ (p2+p 2) ^=4 (-

d
dK„

p2+PZ2+Klk2
1 d+ ---- (- — )

K2k3 ““lk 

4
Klk3 dK_2k. (P2+P 2+K^2 ) K,,3 K„. 3 ']

z T 2k Ik 2k*

<Kq-P/2,- V Pz2+X])

which can be simplified using partial fraction method and
can be broken up into integrals come across earlier
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Thus Im = —— D, If.2 7\ k± kssl j=l k j
Kn. 3 2k dK

2 „ ^ \ 2\ 1 , d
I4cr, Klk2, Kf) +

lk

)

Klk2

K.Ik dK,2 k K2k

h 10 • K2k ' y> (4.124)

Here D, , X.. and K_. are same as defined above. The k Ik 2 k

constants originating from the static potential are given 

as

K1 a 85.4037 » 4.0832-03
&2 = 7.8945 yj a 1.1249-01

K = 1.4502 yj"» 8.8296-01

3 A
Now/ Im. a ..^dP V (P + P fc ) V Cq-P-P X )

o sr z st z
Considering the analogy between -the V for ESGH process and
EHe process (given by 4.85 and 4.123) it can be seen that 

there is change only in the values of the coefficients and 

the exponential parameters. Thus the derivation of Im3 

should be similar to the Im^ for ESGH process# but for the 

above changes. Thus Im^ for EHe process can straightway be 

written as

13 3
Im = 4 ----- S S3 7\ k± 1*1 j*l
where and c are

ri V h2- ^2) (4.125)

as defined above
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Now the real part x of (4.78) is evaluated. Prom 
(4.81)

24 X*
Re11

fs oa dP
dP / —-

k. p -jg 
z

< Y / V (P+P £) V (q-P-P X )/TjT>

which is same as the fRe^ evaluated in section (3.4). Thus 
Rell is 9iven by (3.39)®

Rel2
8

k.x

JP «> dP/dP J —S- 
“ “aa P -8

< ijr / v (P+P X >/xp >

V (^p-pzx }

8*T _ *o dP / 9 3 B VC-   IP ; 3P / - 2 f 2 2 ——_-k-J- - -——k. P -.8 * k=l j=:l tt4(P2+P 2)(/q-p/ +P 2+K )
X 2 2 2 j|

K.,3 dfclv P2+P 2+K 2 K,, 3 d*. P2+P.2+K 2
2k .Ik z lk lk 2k z 2k

Ki ,3 3lk 2k

3]

This can be also brought to the integrals of known form by 
the method of partial fractions. Finally/

Re
-8 9 32, .2 n ~f. -L_ ( —3—)

12 ’ M J=1 *' J ' K2k3 ' *lk ' Kl*2 ^

O2, Klk2 , X 2 ) + 1 d 1( ----  ) ---
^ dK_ „ K 2 lk - 2k 2k

i5C02,K2k2.y,j

(4.126)



Here ekG* kaVe bhe same values as in

their counterparts in imaginary terms*

Re “4 X
13 k, i

°* dP2
/ dp / ---- V . (P + P i ) V , (q—P-P i )156 p _j9 st z st ^ z

z
can be compared with similar Re, in ESGH process. Thus

JL O
in the present case

-4 3 3 -r /»2 * 2 * 2-
Re13 ^2ki i=l j=l ff >5 <B ' V- Y> (4.127)

Thus Re, term of the F,T.irw, part (4.78) for the E He1 2 HHOB
process will be the sum of Re.^/ Rei2 3X1(3 Rel3 given by 
(3.39), (4.126), and (4.127).

In order to evaluate Re_fB , a parallel procedure2 2
as \tfas used in the ESGH process may be adopted. Thus,

•X2
Re.21 ~ ki2 FS dP ? dP (P2 + P2 )

— —aO Z Z

d
d0 P -J8 

z
< Iff / V (P+P X) V (q-P-P X) /W >

2 2 2 2

Using the expression (3.37) for < y / V V / y > in the above

term,

Re
■2

21 IP / dp 7 dP (P2+P 2)<4/ ““ «. art Z 2 d/3

CP2+P 2) (/q-p/2+P,2) 4 K* k=i4 , ?
4Klk

K2k3 ‘^Ik2)2

4R2k. 16
Klk3 Cq +K2k2)2 *lk3 K2k3

+ ( d
dK

) [
lk ' K2k3 B1 K2k3 A1
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<a+ ( — [• 4 4 d d 1 1——— ~ jj ....  __ (   + ——
^k hk3 B2 hk3 A2 ' *1* *2* B1 A2 A1 B2

> )

where A-^* B^, are defined in (3-37)

* Re21 2*2kj2 k=1
9 d£ Dxk d8

( t"
v t

4K'Ik
K2k3 k2+Klt2)2

lk
4K2k 16

+
] l_(0#o) +—i— (—£—)

Klk3l<I2+K2k2)" hk3 *2k3 K2k3 ®lk

> + r^r I3(P'0') - k^2 13 (P'kL,] +
Klk2 lk

<---- )
K__ 3 dK 1 lk 2k

[I2 (0 ,K,V2 ) +2k

1

1 (0,0)
K01 2 2k

-----I3lP,K2k2) ] +
K 2 3 AK
2k dKlk

diC2k K2k2
I (0 , K..2 )2 # lk 22k

5 ^ ' Klk2' K2k2)

K 2 lk

1 2 _ „ „ a, -L-. Ia(p, K,2)]]
Ic(02, K^2 "i^a

lk ' 2k ik
dSince --- (0, 0) = O, simplification of the aboved0 3

expression yields
1 9 d

Re21 2*2k±2 k=1
S. Dk ** K2k3

2 d
•( ----- )

[I.(02/K1V2)
2 ’ '' v 2 3

Io(0, Klk2) ] +

dKlk

2 d---- ( ----  )
lk

Klk3 . dk2k

[I2C02.K21c2 ) - -3
K2k2

2 d dI, (0, K2k2) ] - ( ---- ) (-----)
^Ik .«2k

!s(P ,Klk2 #K2k2j + ---__ j5(/32,Elk2#K2k2)]j (4.128)
*2k2 Klk2

Now Re„„= ~-t- T / dP ? dP (P2+P 2)
—_k y *7.'22“ k±2 d0 p - ez H



9A*

9 32 2
d. yTk h

z J
fk=l J"1 a4(P2+P^2) (/q-P/2+P^2+^,2) K2k3 dKlk

1 I'd
--- + -----  ----

4
p2+Pz2+Klk2 hk3 ^2k p2+PZ2+K2k2 W~'

Re

4 92-r^k ^* i k = 1

1 d
K 3 2k-5 dK,,lk

4
KXk3 K JL2k3

2^
223 h2

d/3

V^xk2-^ +7~; ce2'K2k2'Kj2)
Kik3 ^

3«,'V } .. (4.129)

P J dP / dP 1 (P2+P 2)
^ ~ _„o Z z

d 1
z dj3 P -0 

z

v ^ (P +P VC ) V . (q-P-P X ) st Z sfc z
Considering the analogy between the for H and He(4.85)
and (4.123) Re can be directly written from (4.93) as

^ O
2 3 3

Re23" a\2 i
i 1 tr if—[ -\2 x.-(/b2,^2^?)].=1 j*l J d/3 3 _ -3 / 5 1

--- (4.130)

Now Re^ fB = Re„, + Reon + Re„_ given by (4.128), (4.129)
2 2 2X 22 22

and (4.130)#

Now/ with all the terms in (4.78) being evaluated,
P.TTTrt„ is known for the evaluation of the TPHB amplitude riHOB
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for E He process. Now the partial wave part Fp^ of (4.72)

has to be evaluated for the same process. For this
2 r /k-b-j/./b-b./C In  —i-*- =* -2 2 fXo 6l' S2> = ]. . K (b\.)](4.131) 

jo j"i . b* „

is neglected assuming that it will not be much significant
i X

fi, (V -<<?./ / y±

Assuming that for large momentum transfers# b is small 
compared to bj^ and b^

Ifi

where £

. = e*"*i ^ ^ ko CbV))<yt/( blb2 i

b‘
> /y±>

2i
k.i

Using standard integration techniques# the above expression 
can be re-written as

j '(b. ) 4Y 9 2* - (3+<fc)‘fi 1 r = —XT S d. 2 (K K ) 
b^ k=l K lk 2k

l#> j----------- .x 2
| (1 + - ) | (2 + —- ) j (4.132)

where Y
( *i S ^ Ko

The constants and were defined earlier in this
section. Writing £ I(l + — ) ](2 + ^ )jj as E + iP

4: D

fi
9 .. „(b. ) = 2 -------1-

k==l k3
lk 2k

iY (e 4* iF )

1 In (k , K ) 
% lk 2k
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where Y
4 z*-1 /j.
---- ? 'j K CbX ) + «— In 2
k, ■? ° J . *i

4
In b.

i ' ” i
Writing the above expression in a convenient form

'fi ‘V lg
= e (e + if) (4.133)

Using this in the scattering amplitude Fp^ (4.72)#

F
.(i)

pw - 2 {2l+l) \ (Cos O) Sin b . [e Cos X - f sin XJ

x ,(i)

ki
^ (2X +l) (Cos ©) Sin <5^ „ |l f Cos X + e Sin X]

... (4.134)

where X

Here
S}1 )

.(1)
- + 3

is the Bom phase shift for the interaction

given by (4.119). Hence 

(l)

i
_ 2k.2 + N.2

_ _L s t7 \ (-i—2^->4 ■ k j 2ki

HHOB and PPH f°r ^ E HeThus having computed the F H 

process# the scattering amplitude for this process in the 

TEHB approximation can be calculated using (4.72). From 

this DCS can be evaluated at different incident energies and 

angles-

In order to evaluate the total corss-sections for 

this process# the imaginary part of the scattering amplitude 

(4.72) has to be evaluated for © = 0 such that



tot<r
4* /— ! Im. /*1 ' 1 5=°

+Im,2 / +Im3 . 
q=o ' q=o

1 (1) ■ s+ — 2 (2,1+1) Sin b.| , (f CosA + e Sin f-) j (4.135)
ki

Evaluating the integrals occurring in (3.38), (4.124) and 
(4.125 ) ^

} It (0Z,k*)/9 . O O TTI (0 ,£» / a--X „ . q=o j32 X
02+k2

q=0
j32+\ 2

K2 3h

Ia^2'K±*K2) / = “---2
4 1 „2 , q=o K2-K2

^ 2 1
In 1 1 1 r lrl r r ' " " ? ^ —.m/.*

/S2^2 ,1 2

%
~ 02 + \2

1 9s K L*Im / a — - -kx q=0 K± k=l K
4 d 1 in 6 +K1*2

K„, 3 dK._ K 22k Ik lk 0*

1 0 +Knl 2_—. In __7..Z&.
Klk3 d*2k K2k2

+ 2 ^Ik (3K2k Klk2 K2k2
X } (4.p6)

where X in forKl^K2k
K2K2-Klk2 * + KUc2

0*^ -t K 2
lk

for K1]c - .

Similarly Im /
8 9 3 t* A \ ^ i 1 d 1

--------- ( -- ) ---
q=o k^ k=?l j=?l K , 3 dK,, K,, 2 2k - lk lk
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Results and discussion s

The scattering parameters DCS and TCS obtained in 
the present study of the elastic scattering of electrons 
by Helium atom using the two-potential HHOB approximation 
are compared with other theoretical and experimental data. 
The results are found to be encouaraging as follows the 
comparison. In fig.(4.14) and (4.15)# the present DCS 
values at 200 eV and 400 eV are compared with other recent 
data (HHOB results of Rao and Desai (1981)# GBS results of
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Singh and Tripathi (1980), EBS results of Byron and 
Joachain (1977), experimental data of Bromberg (1974), Jansen 
et al (1976), Register et al (i960)).

It can be seen from the figures that the present 
results agree well with other data. It may be noted that as 
in the previous section, the two-potential formulation in 
HHOB approximation yields better results than the simple 
HHOS approximation (Rao and Desai 1981), especially at large 
angles. Thus the two-potential formulation is an appropriate 
remedy for the main disadvantage of the HHOB - approximation 
namely over estimation in the large angle region. From 
the comparison between the present results at 200 eV and 
400 eV it is obvious that the results improve for higher 
incident energies.

In table (4.1l), the present results for differential 
cross sections are given at few sample energies. The 
calculations were carried out only at these energies because 
of the lack of computer time, since the calculation for each 
energy involves the evaluation of the Bom and exact phase- 
shifts, their comparison etc. besides the lengthy evaluation 
procedure for the scattering amplitude. Since the study at 
few chosen energies is sufficient for the prediction of the 
behaviour at other energies, the present study was confined 
to only those energies with an abundance of data available.



In table (4.12) the present TCS values are 

compared with the results reported by other workers.
The present results are rather satisfactory, the trend 
being the same as discussed above. Hence better results 
are to be expected for higher incident energies.

In the light of the above discussion, the conclusion 
can be drawn that the two-potential formulation in HHOB 
(TPHB) as derived in an earlier section, improves the 
basic HHOB approximation of Yates (1979) in the study of 

the elastic scattering of electrons from hydrogen and 
helium atoms.

4.10 Wallace type of trajectory correction in HHOB 

approximation s

In the foregoing few sections, an attempt to modify 
the recent HHOB approximation of Yates (1979) - namely 

TEHB approximation - was discussed. In the present section, 
another effort is put in with a view of improving upon the 
HHOB approximation. The chief motivation behind such an 
idea is the work reported by Wallace (1973) wherein he has 

incorporated the trajectory correction in the expansion of 
the Green's function of the eikonal approximation and 
carried out further analysis of the perturbative series*
As mentioned elsewhere in a previous section,the similarity 
between the modes of expansion of the Green's function in
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the eikonal and HHOB approximations gives much scope 

for a similar attempt in the HHOB approximation also. 

Keeping this in mind, in the present study, the HHOB 

analysis was carried out after incorporating the 

correction in the Green's function, the scattering 

amplitudes in the second Bom approximation were derived 

accordingly and the new expressions were used to study 

the elastic scattering of electrons by hydrogen atom 

(ESGH process)•

Theory

The second Born amplitude in the HHOB approximation 

is given as (Yates 1979)

(2)

i -> f

1 ig»r
— £/dre v- (r ) I
ft n ~o fn —o n

where In = 1 d£0 e -1' Vni (ro-rQ) Gn (ro)

1 . _ 1 -£o
_ --------- / dr ^ e ' V . (r -r )

(2*>3 -.° nl ° °
xs.r e — -o

t ds
s +2s.k -i-G

~ Tl

4 T3* -> on

(4.139)

(4.140)

where s = k - k^

It is assumed that is slowly varying over the distance

of a wavelength of the scattering electron i.e. k^ a>l

where a is the range of V., and that k does not differ
m ~n

greatly from ku in either magnitude or direction.



Let us denote
1

G In (4.140)
s + 2s.k,

n

(suppressing -€ for the time being)

-1 2 
a.e« G = s + 2s.k (a)

n ----- >

Nov// dropping the quadratic term in the Glauber way*

-1 2s*kp -> (b)

Abarbanel and Itzykson (1969) have taken

k = K = (k.+k )
n 2 u f

* G = 2 s
• • A1

■> (c)

From (a) and (c)/ G 

, -1

-1 -1 ■ 2 
ss G + S

K

-> (d)

g GAl
= 2s*kn (1" kn) X 2s.k

n

where X = 1 “ Cos

— 1 —1i.e. g = G + ^2s.kuAl 11

From (d) and (e)#

G"1 = g-1 - X 2s.k^ + s2

„-l -1i.e.G s=g ~N

-> (e)

■> (f)

where N = X 2s.kn -

“1, -1 gNG



i.e. G = g + gMG = g + gNg + gNgNg + -

i * s • 2s.k +S* n
+

2s. kn 2s.k.
1 1--- ( X 2s.k -s2)

n 2 s »k
n n

i.e< s +2s.kn 2s.k n 2s.k n
(2s.k )‘ 

n
(4.141)

It should be noted that in the HHOB analysis (Yates 1979), 
X

2s*k,'n
term- is absent. There it was assumed that k does*~n

not differ much from k^ in either magnitude or direction
t 2and hence the integrated expansion of vs +2s. k / in— ~n2powers of s should be rapidly convergent. However, in the

k. + kf
present analysis# since provision is given for k «= --------

11 2
rather than kfi *= k^# the present expansion (4.141) should 
be logically more accurate® Since X -1-Cos ^ # it may be

noted that at Q = 0, the additional term in the expansion
(4 141) i. _____  becomes zeros However, the

2 s *kprominence of X increases in the intermediate angles region. 
Now# further analysis of the second Born term using (4.141) 

can be carried out as follows*
Substitution of (4.14l) in

I (4.140) gives

n ---- =• / dr,
(2*)3 "°

-i(k,-k ) .r ,
-1 -xi -o ( )ni -d —o

ds
2s*k -i@ — ”n

[(1+X)
2s.k -i@
—

ls.r — —o
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Making use,of ,the result 

i s. r
f ds ^ (b' ) H (z )

2s.k -i€ 2 kn n
where id,) is the Dirac delta function and-H (z ) is th 

o o
Heavy^side function defined by H (x) = 1, x > 0

» 0, x < 0

Hence 1 =n
JL i —i (k, ~k ) * r ,--- far e _1 ^ V . (r -r !

—o nr ~o “o2kn
/ x 2[U+M &(bQ> H (zq) +— Vr*Q [£(bO zHizQ) + 0(kn“2)] (4.142)

o '2k ’ “on

In performing the above s integration in cylindrical polar
» i i Aco-ordinates# k was chosen as the polar axis and r = b +z k .“n —o —o o n

Now the second term in the above equation is integrated 
by parts twice thus giving the approximation

i oo • £i a •
I = --- / dz_ e (k.-k ).k zj #* \ rn 2k ° x ^ n.o H U0' **

n

l zu^)+^
n

„ 2Vr. ]

< <£ ■-r')/,V„ . VO. —i #/ |nl ° ° b =o,
—o

Noting that (k. - k ). k of k.-k
n i n

A A J
and kn or jr

n k.a
+ 0 ( --)#

V
I can be finalised as n ii oo , — i/3 z
t = ----- / dz e^ 2k± “■* °

X z'H u„> [U+JO + - a2-V; ]vni

(r^~r^ ) —O “O
(4.143)



Here 0 can be obtained using energy conservation conditions® 

The above equation embodies the central approximations in the 

trajectory corrected HHOB analysis.

Now# W£
(2)

HEA 2Xkl

O0 . —J.h'ti i ZU v—r ,
/ dz e - H (z ) [ (l+?0 + ~rr—y £* 3 V . (r -i: )/ n 

o . o 2kA ru -o -o £/ =0

1•i0z

2 / dr e a*£o (r ) 
n “o fn —o

zo

...(4 *144)

The infinite summation over atomic states can be treated

by the simple method of defining an average excitation energy
AE

and then employing closure® Hence 0 = —r—
^i

where Ae is the average energy transferred to intermediate 

atomic states during the course of the collision. Thus

(2)
Wf can be represented in a simpler form as

HEA

(2) i 1 s*-<

wf * TtHT S d £o eHEA 2 A *i °

0
Y / v'‘£o- r ) 

—n

1 1 -i jS z • a
/ (l+X) d z H(z ) e [v(r -z /C *-oo . o o ^ o o

«

' it VLV-<='*o'£1—

i

7b -0 3/ Y i ■ > (4.145)

The rest of the analysis can be carried out exactly similar 

to that done in the HHOB analysis. The fourier transform 

of the interaction is written using



n q
/%»sS-3

-iP.b 90 -iP z
V (r-----r ) = / dP e ° / dP e 20

O ”“N *“ z-00

V (P+P fc,£.------r ) ,
“ Z —1 “N

and the v2 operation is carried out.

(2) X OQ | eO |
Thus Wf = ---------  / dP / dP /dP / dP

HEA 2Xk. “ -o 2 “ —<<5 - 2

- - »b co
< 1/ V' V / Y ± / dbo e . - °JT dzQ

, 2 2 
P -j-P* d-i(P +£> )z» «, ,

z z 1» -5^*- F* )_V ao

-i(P -0) zn ,
e z ° H(z )

o

«3 -i P z 
/ e z

-DO

Making use of the following properties of o functions#

dz = 27s 6(P ) , 
z

/ d2b e ^SrS)^ = (27s)2 (q~P)#

and J dP £(q-P) Vx CP) = V^q)

(2)
the final expression for Wf can be written down as

HEA

(2)
Wf

HEA k.
x

*|^ [i/dP ( (l+X) +~jr- ~— (P2+|32))

CSl} a A T "77^ °0
U (<2 -3 X, P + 3 X) ~ - p / dp / dp

£ J. A *"* — 0$ z
P2+P 2 d

(11+*) + ------- 2- -------  )

7\

1

2ki d$ P - jS 
z

(2)
U (n -P -P * ,P + P VC. )] 

* — z ““ z
(4.146)

where ]P stands for the principal value of the integral and



:81/ 
9V*

(2)
U A *

f i
(P + Pz^ ,P + Pz *>= < Tf/ 7 (P+P^ ,£l.....rH)

v(p+p £ ,£ , 
— _ z 1 *NVf, >

In arriving at the above expression the following result 

was used*
o0 -i a x , -|/ dx e H (x) a) - i P( -)

- 06 €t

(2)
Comparison of the trajectory corrected Wff (4.146)

I4EA
with the corresponding term in Yates (1979), we can see that

only 0( — ) terms differ in both cases whereas 0( ~~2) terms 
ki ki ,

remain same- Obviously* this should be the case since in
the expansion (4.141), 0(7—) term is additional than in

ki
Yates (1979) where 0 terms are same in both expansions.

1
In short, the real and imaginary parts in the second Bom 

approximation accounting for the tragectory correction can be 

written as
(2) (2)

W Xm f = (1+X)lm f
HEA _ HEA

(2) (2)
W Re f . = Cl+X) Re f

HEA HEA

(4.147)

(4.148)

(2) (2) 1
where Im f and Re f . represent the 0 (—7—) terms

HEA HEA
in the second Bom of Yates (1979).

, k. 1

Now let us apply the tragectory corrections to the(2) (2)
ESGH process. Since Im f and Re f are positive

HEA HEA
quantities in ESGH process and X is also positive, the

corrections will increase the values of the DCS only. In 

view of the fact that the DCS obtained using the HHOB analysis
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of Yates (1979) slightly underestimates the experimental 
values* the above situation is really welcome. The DCS 
values at 100 eV obtained after incorporating the traj ectory 
correction in HHGB are exhibited in fig.(4.16) and compared 
with the HHOB results without correction and experimental 
data. The values are shown at small angles only because

(1) HHGB is good for only small angles®
(2) The correctness of the Wallace type of trajectory

correction has not been established for large angles.

It should be noted, that in the work of Unnikrishnan 
and Prasad (1982) incorporating the Wallace correction, the 
results are given for angles 30°onlv®

On the observation of fig. (4.16) it becomes clear 
that eventhough there is slight improvement.in the results 
due to the incorporation of the trajectory correction, the 
difference in the two results is not quite large* The 
present results have shifted towards the experimental points 
of Williams (1975)® However, since the improvement brought 
is not that much as expected in the start of this work, 
further computations for incident energies other than 100eV 
were not carried out. However, there is enough reason to - 
believe that the correction described in this section 
combined with the previously discussed modification in HHOB 
(viz. the two ~ potential HHOB formulation) will definitely 
give very good results. Turning back to fig. (4.12), in the
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small angle region# the results of the present work
were underestimating the experimental values and this
underestimation may to an extent be removed by taking

(2) (2)
W£ instead of simple f in the two potential HHOB

HEA HEA
analysis leading to the results displayed in fig.(4.12). 
More work in this direction is in progress in our research 
group.

In the foregoing few sections# the modified Born 
approximation# the two-potential elkonal approximation# 
the two-potential HHOB approximation and the trajectory 
correction to HHOB were discussed. In all the above cases# 
the applications of the various theories considered were 
made with respect to scattering phenomena involving light 
atomic targets. In the following chapter# an entirely 
different class of atomic targets - the alkali atoms - are 
taken up in the study of electron scattering from atoms.



2 -»1'Table 4.1a - Comparison of DCS (a S ) for ESGHo r
process in the M3A using different modes 
of evaluation of the integrals at 200 eV.

© Gupta
Mathur

and
(1978)

Present
study

10 0.192 01 0.1830 01
20 0.490 00 0.5044 00

, 30 0.160 00 0.1623 00
40 0.650 -01 0.6550 -01
50 0.310 -01 0.3110 -01
60 0.170 -01 0.1672 -01
70 0.990 -02 0.9927 -02
90 0.440 -02 0.4407 -02
100 0.320 -02 0.3219 -02
120 0.200 -02 0.1983 -02
140 0.140 -02 0.1435 -02
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Table 4.2 “ Various constants for the Li atom in the

Saasa Me Ginn (1967) formulation

Basis c(p)
Core Wavefunctions

(P) (P)Cnl) ^n.l C nl A nl-

IS - 4.4 0.133937 18.459
IS 2.4 0.914304 7.436
2S 4.4 -0.008925' 46 .89
2S 2.4 -0.029575 10.304

IS 2.4803

Valence electron wavefunction

0.0083285 ‘ 7.812
is 4.7071 0.0023871 20.42
2S 1.735 “0.0871464 4.578
2S 1. 0.0877919 1.1547
2S 0.6615 0.9653271 0.41
2S 0.35 0.0031811 0.08368

T able 4.3 - The constants for the Szasa Me G inn (1967) wave-
function for the ground state of Lithium atom.

V.3 C, i X.i D.J
j8 .
J

1 0.01919 to » •P*
. 00 “0.11759 1.735

2 0.01438 4.71 0.02989 1.0
3 -0.14162 4*4 0.11698 0.66
4 -0.38945 2.4 0.00008 0.35
5 - - 0.02397 4*4
6 - 0.01745 2 #4
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2Table 4.6 - Total elastic cross sections ( Aa " ) for the
o

3 Li process - comparison of different results*

E
eV

Present
results

Walters (1973)
Bom Glauber

PSAa HHGBb

100 2.9 3.08 2.58 3.379 3 .152

200 1*4 1.69 1*40 1.614 1 .577

400 0*8 0.82 0.78 - -

a “ Giaha and Ghosh (1979)

b - Rao and Desai (.1983)

Table 4*7 - Phase shift analysis for the Yukawa potential

-h.
-a, for the wavenumber

' r
k = 5

1 Bom Exact phase shift
Phase shift a b

0 0.2308 00 0.2384 00 0.2379 00

1 0.1354 00 0.1383 00 0.1378 00

2 9*1739 -02 9.2820 -02 9.2809 -02

3 6.5710 -02 6.6315 -02 6.6296 -02

4 4.8488 “02 4.8843 1 -02 4.8783 -02

5 3*6456 -02 3.6629 -02 3*6601 -02

- 6 2.7766 -02 2.7618 -02 2.7587 -02

7 2.1348 -02 2.1254 -02 2.1298 -02

8 1.6533 “02 1.6498 -02 1.6501 -02

9 1.2878 -02 1.2776 -02 . 1*2834 -02

10 1.0078 —02 1.0076 -02 1.0081 -02

(X = Using H umerousmeSiod br. Using Eunge-Kutta method



290
U-IO

00 00 04O1
03
OI

ro
01

CO

o
ro
O1

COo1
ro
O1

el
as

tic
 sc

at
te

rin
g

ap
pr

ox
im

at
io

n »
%

■Oo 0.
56

73
0.

17
23

4.
69

08 CDOro
CO

»(H 7.
9 

37
4

2.
35

74
0.

99
40

0.
66

05 O
inCO

.o

a)
c-P H

H
O

B 00 00 00 o'
I

03
O

1

CO

O
i

ro
O1

ro
O

1
ro
01

M0
4-1

7*
uCO

■a
•HjJ. r~i

Q!-+J
0C4
1

>0)
oo
04 1.

04
38

0.
35

15 r>oCO 

•—i
6o 0.

51
32

2.
51

18
9.

26
09

 •
4.

58
03

2.
59

84
1.

67
81

2
4.

8 — 
D

iff
er

en
tia

l cr
os

s se
ct

io
ns

 ( a
o 1O£

+>

(is
) in

 the

00

00 00 00 OIO
03
O1

03
O

I
ro
O

ro
o1

X
S
0u
m
mr~i

0M
+>
0CD

>-4(D

>0)
o
o
H 1.

78
99

0.
76

09 HintO
•o 0.

16
39

8.
70

71
3.

24
19

1.
64

88
9.

84
21 ro

mro
IDa
ID

Ta
bl

e

w
CD^ 10 20 30 40 50 70 90 11

0 Oto
f—3



Ta
bl

e 
4.
9 T

ot
al

 c
ro

ss
 s

ec
ti

on
s 

(T
CS
) 

fo
r 

ES
GH

 p
ro

ce
ss

 i
n 

th
e 

tw
o 

po
te

nt
ia

l 
HH

OB
291

0.
39

8S°0 
0^

9 T

2.
03

0.
77

0*
32

1.
57

0.
63

0.
28

10
0 1®

50
 

20
0 0.6

4 
40

0 0.2
9

Va
n 

Wi
n g

ar
de

n 
et
 a

l 
(1
97
7)

e
Wi

nt
er

s
HH

OB
(w
it
h 

ex
ch

an
ge

)
b

EB
S

Pr
es

en
t

st
ud
y

eVTa
bl

e 
4»

10
 T

ot
al

 e
la

st
ic

 c
ro

ss
 s

ec
ti

on
s 

(T
EC
) 

fo
r 

th
e 

ES
GH
 p

ro
ce

ss
 i

n 
th

e 
TF

HB
 

ap
pr

ox
im

at
io

n 
(u
ni
t 

a“
 )

Ya
te

s 
(1
97
9)

By
ro

n 
an
d 
Jo

ac
ha

in
 (

19
77
) 

Wi
nt

er
s 

et
 a
l (

19
74
)

a b c

7«
73

4.
49

7.
49
 

4.
39

2.
50

7.
56
 

4.
37
 

2 ©
48

7.
95
 

4.
62
 

2 ©
61

10
0

20
0

40
0

Wi
nt

er
s

EB
S

HH
OB

Pr
es

en
t

re
su

lt
s

E eV

ap
pr
o x

im
at

io
n



292
Table 4»11 - Differential cross sections

in the TEHB approximation.
for the SHe process

s/
E

200 eV 400 eV

10 1.2471 00 2.248 ~0l

20 0.5533 00 1.937 -01

30 0.2812 00 7.608 “02

40 0.1629 . 00 3.016 -02

50 0.1071 00 1.453 -02

70 0.3819 “01 4.829 -03

90 0.1886

OI 2.247 “03

110 0.1112 -01 1.326 “03

Table 4.12 - Total cross sections

TfflB approximation.

2(aQ) for, E He process in the

b
2
eV

•Present
results

HHQB Winters
et al J

Byron and, 
Joachain

EBS

200 3.58 2.93 3.55 3.37 2.92

400 2.08 1.69 '2*00 1.86 1.71

a - Rao and Desai (1981) 

b - Byron and Joechain (1977)
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Fig. 4. 14 
E = 200 eV 
i - He

(A) Present TPHB
(B) GES
(C) EBS 
- HHOB

• Register et al {1980)
A Jansen et al (1976)

100 110

Scattering angle {81
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Fig. 4.15 
E = 400eV 
e - He

© Bromberg (1974)
A Jansen et al (1976)

(A) Present TPHB
(B) 6ES

(C) EBS 
-- H HOB
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