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CHAPTER - IV

MODIFICATIONS TO BORN AND EIKONAL

APPROXTMATIONS

4.1 . Introduction ¢

In gpite of a huge variety of theoretical approxi-
mations wigh respect\to the study of electron scattering
by atoms, it is rather strange that none of them explain
equally successfully all the observed phenomena in
scattering problems. Hence, the theoretical physicist
resorts to a particular method which applies best to the
probiem under consgideration. With the introduction of
certain modifications, the range of applicsbility of the
method can be widened. In certain cases, it is even found
that simple modifications in a partipular approximation
improve the results trémendously. It may happen the other
way round also - le.e. certain highly sophisticated calcu=-
lations come out with poorer results than those of simpler
approximationse In such cases, there might me some
conspiracy of cancellation amongst the effects neglected by
these simpler approximationse There is lot of scope for
the modifications of some of the commonly used approximations
such that their validity criteris are relaxed resulting in a
wider range of applicability of the method. 1In the previous

chapter, an improvement Over the conventional Glauber method
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was proposed with the name of "MEGS method" - and was
successfully applied to a variéty of scattéring phenomenas.
In the present chapter, another giant pillar in the field
of the-oretical aspproximations = the Born approximation =
is taken up and various methods of its improvement are

studied in detail.

The modified Borﬁ approximation «~ resulting from a
simpie modification over the conventional Born method - is
rather outstanding for its simplicity. Proposed by Junker
in 1975, it was later on applied to the scattering problems
concerned with simple atoms like H and He (Gupta and Mathur
1978, a, b, 1979). Recently, Kaushik et al (1982) have
pointed out that the MBA completely fails to explain the
scatteringlof electrons from complex atoms like C and O.
Hence it was desirable to test the applicability of this
method to some more of the scattering problems in a bid to
understand its failure for heavier atoms, while the results
were cuite satisfactory for the simpler atoms. Xeeping this
in mind, the MBA was applied to two different scattering
phenomena - elastic scattering (2S = 25 transition) in
hydrogen and alkali scattering (electron-Lithium elastic
scattering). The formulation of these studies and a detailed
discussion’of the results obtained constitute the first part

of the curfent chapter,
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The HHOB gpproximation proposed by Yates in 1979
has several attractive features. To point out a few, the
expressions are obtainable in the closed form thus avoiding
complex, numerical procedures, the problem of divergent
integrals (like those in GES) is sbsent and the method as
such is simple and computationally feasible. But the irony
of the situstion is that this systematic method, when
applied to electron-atom scattering, results in spuriously
large values of the DCS in the large angle region {(Rao and
Desai 1981, 83). BHence, it was desirable to try certain
modifications ¢n this approximation such that better
resultg can be expected out of the application of the
improved methods. The success of the two independent
attempts = the Wallace correction (Wallace 1973) and the
two potential formulation {(Ishihara and Chen 1975) - to
improve upon the Glauber me thod worked as a bOOSt’tO the
attempt of parallel modifications of the’'Born method. With
the aim of having a deeper knowledge about the twO =
potential eikonal approximation such that a parallel
treatment can be given to the Born approximation, few more
séattering problems were étudied in the two - potential
eikonal approximation. Inspired by the success - of these
studies, two ways of improving upon the HHOB method were
tried - Wallace type of trajectory correction in HHOB and
two =~ potential formuilation in HHOB. The tw0 methods were

formilated and independently applied to scattering problems.
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Thus the high lights of this chapter are

(1) ~ the study of ESEH process in the modified Born

approximation (including polarisation and exchange).

(2) Study of ELi process in the MBA.

(3) Study of BSEH process in the two - potential eikonal
approximatione

(4) Formilation of two-potential HHOB approximation (TPHB).

(5) Study of ESGH process in TPHB.

(6) Study of EHe process in TPHB. '

(7) Wallace type of trajectory correction to HHOB and

application to ESGH processs
Now, let us take up the above problems one by oOnee

442 The Modified Born Approximation (MBA) :

Amongst the first order theories used to study the
scattering of electrons from atoms, the first Born approxi-
mation (FBA) is known to be inadequate in the intermediate
energy fegime. Attempts to improve the FBA by including the
second~order effects have been made by Jhanwar et al (1975).
Around the same time, Junker (1975) proposed a modification
of the Born model for the studf of the inelastic scattering
which, while retaining the simplicity of the Born approach
gives much better agreement of the theoretical calculations
with the experimental datas The modification of Junker

consists in taking the incident wave to be distorted instead
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of undistorted incident plane wave in the Born approximatione.
The distortion of the incident plane wave, which is
represented by a Coulomb wave is produced by assuming an
effective nuclear charge % at the nucleus. A similar
procedure .was used by Geltman and Hidalgo (1971 a, b, 1974)
Geltman (1976) and Stauffer and Morgan (1975). 2n extension
of the Born and the Coulomb~Born model, the distorted wave
polarised-~orbital approximation, has also been used success-
fully in electron-atom scattering by Mc Dowell et al (1973,

74, 758.: b) .

Later on, Gupta and Mathur (1978) studied the ESGH
process using the method of Junker. They included the effects
of exchange and polarisation-corresponding to a Coulomb-
projected Born-polarigation apprcach. Latér on, this method
was used successfully to study the electron-scattering from
He. The results were found to be satisfactory in view of the
simplicity of the method. The study of Kaushik et al (1982)
on the electron scattering by complex atoms using the MBA
revealed that the MBA completely fails in the case of those
atoms. Hence, it was desirable to carry out work on some
more scattering problems and explore the reasons of the above-
mentioned failure of the MBA. Thus, i this chapter the
25-2S scattering in Hydrogen (ESEH process) and the alkali

scattering (Eli process) are taken up.
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4.3 - BSEH Process in the MBA @

The Hamiltonian for the electron plus hydrogen atom

system is

1 2 1 2 X 1 1

H=z=- - V72 - Vﬁ - - = =4 - (4.1)
2 2 ry r2 rl2

(rl and r, are the position co~ordinates of the atomic and

incident electrons and <7§ andiéz are ‘the respective
kinetic energy Operators. Writing H = Ho + V where HO is

the unperturbed Hamiltonian and V 1is the teotal interaction

potential;
(z-;(;x—v) V=B ¥y (4.3)

In a collision in which the initial and final states of the

target atom are / 1 > and / £ >, the DES is

dc K, 1 . )
-_— = T =3/ <¢f/V/I¢Ji >/ (4.4)
an i an

In the first Born approximation, ?i = ﬁio assuming that

the scattering potential is weak and therefore the incident
plane wave does not get distorted in the gcattering region.
This will be true only for high incident energies when the
incident particle spends very little time in that region.
For intermediate énd low energies, this assumption is not

valide.
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Most of the contributlion to the matrix element in
the ahove DCS expression comes from the region where V is
largest. Thus it ig expected that a better approximation
will result if, instead of replacing ‘yi by ﬂi‘ one uses a
scattering wave function which is closer to reality in the
region which contributes most. Thus, following Junker

(1975)

H = H

- ¥ T“
5 + W= HO + U + W

1-5 1

+ ——
a T12

where U

]

- g/rz,y W = =

and 6 is the screening parameter. As pointed out by Junker,
the breaking of H contains a certain amount of physical

significance and has the advantages that the eigen functions
of H are known exactly and closed forﬁ expressions exist

2
for the evaluation of the integrals needed in the calculation

.

of the cross sectionse

Assuming Xi to be the solution of the Schrodinger
equation (H  + U) X, = B, X, in the modified Born approxima-

tion, ¥, in (4.4) can be replaced by

tfi = Xi (rl, r2) = FO (rz) UO (r1) (4.5)

<Where Uo(rl) is the atomic wave function in the inffial
state and FO (rz} is the scattered electron wave function

given by



. . Aay .
Fo(rz) = (l-lai) exp (i hi.gz + 5= )l Fl(lai'lf
ikyr, =4 5i.£2)

where a; = %/}{i.

Thus (4.5) takes into account the distortion of the incident
wave but ignores the effects of exchange and polarisatcion.

Intorudcing exchange (4.5) becomes

+ .
To account for the perturbation of the target system by the
incident particle, the polarised - orbital method of Temkin

and Lamkin (1961) is followed. Thus including the polarisa=~

tion term Upol in (4.6)

T3 (rl,r ) = Fo(rz) [Uo(rl) + Upol (rl,rz)J

£ F (o) [Uo(rz) + U

pol (r ,rl)]

Ignoring the exchange polarisation term Fo(rl) U (r ,rl)

pol 2

Tii (rl,rz) = Foirz) [U (r ) + U pol (rl,r )]
x Folr) U _(r,) ea(4.7)

It 4is assumed that the neglect of the exchange polarisation
term will not introduce significant errors since the polari-
sation of the wave-function is small at distances where
exchange is most important. Using (4.7) in (4.4), the

differential cross section for ESEH process will be
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a6 1 [ L B
—_— = - -/ 1T/ -/ T /
£ o
+ 3 . 7Aa, s
where T % = J(1-1 a;) exp ( E& ) [oy + 1, ¢ IEJ (4.9)
- f . . N . -4 R A
I d.r, exp (1 g r2) 1y (ia;,1,1 ko, = 1k, ;2)
(e dv/o (e))> (4.10)

-

= ! i gqor.) P (ia,,1,ik.,r. - ik,-
I dr, exp {1 g 52) 45 (lai'l ixe, =ik 52)

<Uo(rl)/V/ U {r

pOl lp.rz) >(4-ll)

~

. . F. (. .
IE = { drz exp [l (]_{_io_r.;l - 5f‘£2> ] 11 (lai.rlrl kirl -
i Ei.gl) <uo(rl)/v/ U fr,) = {4.12)
. .

Here q is the momentum transfer. Using the Ochkur (1964)

procedure,
4R i ge.x
e e [ =2
I, = = dr,e U (rz) Uo(rz);
i
i ' 4 i x Ad y L 4.-
1F Hoaye 1 ik, -4 53,:2) (¢.13)

For the ESEH process.

1 * ~r./2
) 1

4V/' 2K

The evaluation o0f U

(a.14)

pol is given in the appendix. 7This gives

5
) 1 Cos @ 1 4 51 Tty
U ol 2 t 2 3t (2r, 3 ) e %(rl,rz) (4.15)
r>rl

>
I‘l r
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6,15 the angle between Ty and Tye To evaluate the

integrals, the standard integral of Wordseick (1954) is

followed. This gives

e “?\r i JeL
I(N) =1 av e F. (ia,, 1, ik,r - 1ik.,er )
r 171 i i i
-Aa. .
1 2 2 .
- 4% g+ A7 yiay (4.16)

(qz . Az) ’ 21Aki =52

In the evaluation of I., the following simplification is

P
useds:

n

--‘er ) £2r22 &L "y;zn

1l -e ( 1 “+ £r2 + 2! 4+ e a2 e » -"“";I'T"‘—
g mom :

) £
= e 25 _— (4.17)
m=n+1 mi '

Uging this, all the integrals can be written in the form of
A-derivatives of I (M), thus avoiding the numerical methods
and saving computer %iﬁe. To check the procedure the
calculations of Gupta and Mathur {(1978) were repeated. It
was found that three terms in the infinite series given
above (4.17) are sufficient to give exactly the same results
as repérted by Gupta and Mathur using complicated numerical

procedures (Table 4Jda).

In the evaluation of the parameter 6 . the procedure

of Junker was followed. First, the value of r2 was found

cut for which
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@ ]
o o]

2Rk
2 .
g U, (rl) Uo(rl) ry dr; Sin 8, ae, dﬁl (4.18)

For the ESEH process, &=l
andg was found to be egual to 0.93, corresponding to the

value r2 = 28

Evaluation of ID' IP and IE‘ H

As mentioned earlier ID' IP and I were evaluated

—
5

uging the standard integral. This isg possible if

X
<
< Uo // Uo >, Uo /v/ Upol 2 and Uo Uo can be

~ -~

A n  =Ar
represented in the form of e

I, an .

(refer 4010, 4.11, 4.13 and 4.16).

, 1 1
Here V = =7 + (4.19)
: 2 12
and U, and U, are given by (4.14) ana (4.15).
° . :T"'V'erl “erl
< > =  Ta
RN C SRRV V4 Uo(rl) ! av,[ar;"e +Be 72
[ - =+ (4.20)
2 12 -
where A = o~ —f—— , B = =2
4v/27v 4 /oA



Y, = 0.5 Y, = 0.5
-&
. 271
it1 RERW: =17y de
Now (Arl e + Be ) o o= Cy e +Cy 3 Lz
52 ~F3T1
+ Cg 5 e (a.21)
~as
, 3
where Cl = B £l = 2Y2
C2 = =2AB 1&2 = yl+Y2
2
Also, following Joachain (page 543)
1 0d 1 4R 1 *
— = L z r;l Y Y
12 120 m==1 (2{+1) X im  “lm
1 1
= 4A =—  — (" Onlyizo term survives)
ry 4A .
Lo
ry ’
Using (4.21) and {(4.22) in (4.20),
] -L. r d -L T
_ 2 171 I 271
<U, /v / Uy -2 = 4%’2 ry drl[ C, e + C, dfze
2 )
+ C d” -L3rl ] 1 1
372 ¢ [s--1]
Ak > -
2 R X a "ot % BEE
= 4aA T rfar,(C, e +C, 2 2% o 4 )
1“1ttty 2 af 3 )
r . 2 ak
2 3
1 1
(L - L]
Iy )

The evaluation of the above expression is lengthy but

straight forward, which gives
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2Cl R lr2 Cl B a . L r2
<Uqu;zwfo3 - - p” .
~ 1 2 1 1 2
a 1 “fr, a 1 a  —Fr
<] [
* 2% L& 3 "% L o¢ 2 ( L
d o 5 r2 d 5 5 d r2
a? 1 -Lr a2 1 a4 -f.r
32 . o 372
+ 2G5 3 T3 ~ %3 T3¢ )
. L L
d'LS 53 2. d£3 5 - d 3 r2

Now a glance at the above expression shows that it can be

substituted in (4.10) to give a number of integrals of the

form I (N) (4.16) or the A~derivatives of I (A).

°, substituting < A U, > in (4.10),

~

—chl 4TCl a
= —— — £
I, E (L) 3 " I ()
1 - ) 1 i 1 -
28 RC_ leﬂc2 4
L) —-
+ o1 T 2) E " I(ﬁz)
2 : 2 2 -
47 C a2 96 A C 72AC
+ T (&) - I (&) +
2 2 T Y2 5 3 Z
Lz aL ) LB ) ) 3
a 247 C a® 4Ac, a3
—_— T () - I (&) +
3 3 L2 3 2 3
d£3 £3 a 3 Y LB dFB
Here C - B2 £ = oY )
1 = 1 2 g
C2 = - 2AB .;'2 = Yl +4 Y2 g =1
c = a° £ = oy 3

1990

(4.53)
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In the evaluation of Ip. the relation (4.17) is used to obtain
integrals of the form I (A).
. —_
< > = F 171
U, /V/Upol av, (Arl e + Be
~ h 1 1
(= = =) U

r2 rlz‘ pol

—y2rl )

Because of the property of £ in Upol'

Ea A ]
[2r14~ ris le 1/2 6 Sin © C0326 ae
"3
r
S 2 -8r B T=B1r
_____,2__5_3‘___ I drl[28r16e l-——-rl7e 1
30 r24 0 3
— -F
1 A g 1
+ 22 r, e - *g” r,” e ]

where&nyl-rlz'—; Bzy2+-;

This evaluation is also long but straight forward which gives

/o1 64 7 ~Br 7
<o > b s — (- —)=e 2 (- —)
e P 30 £, B 6 B , 6p
. 2 2.3
7 7 7 r 7 B'r
7 (e = =) k(B =) g 4 (g = =) = i (pm —)
, 6. 6 2% 6 34 6 .
3_4 4 5 A5 6 6-7
B r 7 B'r 7 Br B r 7%
2 4 (B =) 2 g (f = =) e - 2 )] + 2a
4i 6, 5% , 6 6L 6 7% . £
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8 ~Fr, 8 8 8
[ (0 -—) - (@ = —=) ¢ = =) r+ (= =)
66 , 6é 6 6
‘ 4_ 5
2 2.3 3_4
Lfx 8 #°r 8 £°r g8 L ¥y
e € R € D I S (S
24 6 3% 6 4% 6 5%
] 5 6 ) 6.7 8 ,7._8
8 &r 8 &r . k'
(F o =) —e (£ - =) 2. 2 22y (4.24)
: 6. 6t 6 7% 6 8l

Here, (4.17) is used for the simplification of (4.24). This

gives
Cr I 64 -Br_ « B "
; 2% 2 2
R o pol 30 r4 7 n="7 nt
2
7 -Br, anrzn _ 74
- e z J + 2a - .
6 B n=8 ni
n n
nn -
-Lr o0 kr 8 - 00 + r2
[e o 2 - e 2 5 ]
n=C nt 66 n=9 4
‘}/27( 1 64 [ —-,’33:'2 B7rz ( 7 |
= 28— [ e b (1 = ———
4 é 7 7L 68
g
3 r2 A ) ‘
B BB ' L Or,°
-Br, r . 7% ~-Lr, & %2 .
2 3 2 e 2 + (1= — )
e n=8 ~ _, lroa 5le gt 6
. » v L
_.‘cr Lnr‘n
e LR " . §
nf nt .
4 5 7 2
2 /IR B, 4 7 (B 4 I
- (1= g ) = — o+ L= — ) —
30 8 ag 72
6B
)
4é e"'erz A : ad , 5 £ a
—— E I R N “+ — g l -
aB® o 8 aL> 6L 9 gL
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2
8 4 4T,
£
- (lme— ) — 5 - = - ji i .. (4.25)
6F 90 gk r2

The above expression may readily be substituted in (4.11) to

get
2 6
—_— B d
2 B 4 B 5 -
N T A
30 as 8 aB 72 d
2 .
A [ dS L d6 & d7 ] @)
I B+ — - ot K, - - K, — 4 ——=] Il& }
) at> F o g8 T
8 .o {4.26)
7 K = ] = ——— :
where Ky = 1= =, & 66
68
* . .
Now., for the evaluation of IE' UO UO is given by (4.21).
It may be still conveniently written as
-L - -
X a J1f1 a? 2*1 a’ 3Ty
Yo Uo="C1 3 T T 5% - Cy—3 '
-1 L
1 dlz d 3 ry
Now IE can be directly written as
4R a ) 2 ) a? )
I, = — §01 3 T(£,) +C, 7 z(.ﬁ2 +Cy TIE I(.L3 ? (4.27)
Yi . 2 : 3

Now the substitution of (4.23), (4.26) and (4.27) in (4.9)
and (4.8) will give the differential cross sections for
electron scattering from the excited state of H - atom (ESEH

process) in the modified Born approximation (MBA). -

Results and Discussion 3

The DCS for the ESEH process obtained in MBA are calculated
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for different incident energies ranging from 100 eV to

800 eV (table 4.1b). The results are graphically exhibited
and compared with other data in fig.4.l and 4.2 at incident
energies 200 &V and 400 eV at which data is available for
comparison. The present resulis are compared with the EBS
(Joachain et al 1977) and the optical model results (Joachain
and Winters 1980) aléngwith the most recently reported two-
potential results (Pundir et al 1982) and HHOB results (Rao
and Desai 1983). In the absence of enough experimental data,
it is rather difficult to comment on the accuracy of the
various approaches. Hence, it will be desirable to review
the behaviour of all the approximations in regard of various
scattering process and draw the conclusion with respect to
the concerned ESEH process. The HHOB results are always
found to be oversstimating (Rac and Desai 1981, 83a,b)
especially in the large angie region. Hence, the deviation
0f the present results from HHOB results is not at ali
discouraging. The present results closely agree with the
data of Pundir et al (1982) and almost coincide with the
resalts of optical model calculations {Joachain and Wintergs
1980) which has in other scattering problems, produced results
agreeing well with the experimental data. In the gmall angle
region, the present results are very near to the EBS results
(Joachain et al 1977) but they are less than the EBS values
at larger angles. This is encouraging situation since EBS

results were, in previous studies found to be slightly over



135

estimating in the large angle region whereas they showed
nice agreement with experimental data at small angles. The
satisfactory result of the application of the MBA to & -H(1ls)
scattering (Gupta and Mathur 1978) further enhances the

evidences in favour of the Present results.

In fig.4.3, the present results at 200 eV are compared
with the corresponding results of e - H {18) elastic scattering.
The two DCS values are found to approach each other for larger
angles where the interaction between the incident electron and
the target nucleus progressively dominates the scattering.
Similar type of behaviour was Observed in the EBS (Joachain et
al 1977) and two-potential (Pundir et al 1982) calculations
as well'as earlier in this thesis (MGES apprOximation>. Since
the e = H (1S8) results in MBA have shown nice agreement with
experimental data, we have all reasons to expect nice agreement
of the present results with their experimental counterparts.,

especially in the large angle region.

The present results are bound to become better as the
incident energy increases. In view Oof the simplicity of the
Present approach, we expect that it would provide reasonable
description of the scattering process from the excited

metastable states of the hydrogen atome
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4.4 Electron ~ Lithium elastic scattering in the

Modified Born Approximation 3

The motivations behind the application of MBA to ELli
process are many. One is the desirability to test the appli-
cability of MBA to higher atoms as discussed earlier. The
success of the application of MBA to ESEH process is another
factor. Moreover, a study of ELi process means the investi-
gation on the first member of a class of atoms i.e. the
alkali metal atoms which involve more practically applied
collision processes. In the light of the scarce data
available on electron alkali scattering, the extension of
MBA to ELi process has enough justification. Moreover, by
modelling the Li atom in the core-approximation (Walters 1973)
the study of the effect of the core compared to the valence
electron would also be interesting. It may be investigated
as to how the colligion process compares with the study of
Walters. Moreover, the present method being simple, saves
a lot of computer time which is definitely a covetable feature

in modern atomic collision theories.

For lithium atom, the atomic field extends over a
great distance~when compared to the case of H - and hence the
incoming wave will be distorted even at a large distance
from the nucleuse. Hence the consideration of the distortion
of the incident plane wave due to the target atomic field will

definitely improve the model. This tvpe o0f a treatment is given
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in MBA. Moreover, the effects of polarisation and exchange
are also taken explicitly. There 1s enough reason to believe
that part of the absorption effect will also be taken care
of. This point will be discussed later on. Altogether, the

MBA may be expected to give a reasonable model of e - Li

scattering.

When a model is applied to electron-alkali scattering,
special care should be given to the peculiar nature of this
scattering. As discussed elsewhere, it cannot be assumed that
methods that apply well to the study of elastic scattering by
atoms with closed shells will be equally effective in dealing
with alkali atoms because they have a single outer electron
loosely bound in an S-orbital of large radius, have large~
polarizability and there exists a strong coupling between the
ground and first excited states. These disparities are the
least in the case of Li and increase as we go to Na, X etc.
The atomic radius of Li is not very high (compared to H) and
the valence electron is not very loosely bound. Hence, it may
be assumed that the Lithium atom, with its core and valence
electron by and large resembles the H atom. In the study of

|
alkali atoms by walters, the Li results were reasonable whereas
Na and K showed large discrepancies. Similarly, many theories
which were applied to the scattering by H and He atoms,
were equally successfully applied to the Li atom without
any changes which account for the special nature of electron

Li scattering (Bg : TPE, HHOB, EBS etc.). The present MBA being
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a high energy approximation like them, there is enough
support for the feeling that it -can also be effectively

applied to the e - Li scatteringe

Calculation Part

As mentioned previously, the core-approximation of
Walters (1973) is used to represent the Li atom. According
to this, the Li atom congists of a core at the centre and
one electron in the outer orbit. Hence, the electron target

interaction can be represented as

- _t Lyov (@) (4.28)
= = - C 2
2 12
-5.4 r,..)
where V = =2 (-~ 4+ 2.7) e “
c r,

Keeﬁing in mind the suggestion of Mathur (1972) that the
difference between the scattering parameters bylusing one

or three electron wave function of Li atom is not very
appreciable at intermediate and high energies, the one-electron
wave function for the Li atom was derived following Coulson.
This gives

-0.65 r. -2.7

1 +De 1

U, (rl) =C rye (4.29)

where € = 0.11252, D = =0.42204 so that UO is orthogonal
to the 1S orbital and is normalised. The extent of simpli-
fication which the complicated expregssions - for the total

interaction and the exact wave function of Li atom - have
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undergone is guite clear from the expressions (4.28) and
(4.29) which are the approximated values for the interaction

and wave function.

Now the total Hamiltonian of the electron plus
target system becomes H = HO + U 4+ W where
6 l - 6 l

U:"‘"”""",W =~ + +V(r)
2 2 T1p c2

The derivation for the differential crogs section for the
8Li process follows in a way very similar to the ESEH process
with only the above-mentioned change in the Hamiltonian. As
a result, expressions (4.8) to (4.13) are obtained with

V, U, and U

o pol being replaced by the corresponding new values.

t will be convenient to represent the wave function product

as A
- r
U: U, = Ke e + X, ET? en}‘zrl + Ky --5%2-2- e 34 (4.30)
where K = ;2 N = 5.4
K, = =2CD Az = 3.35
K3 - c? ?\3 = le3

Fh

As in the case of ESEH process, the g for E LI process is
ontained as

6: 0.98.

In the evaluation of Upol' the H (28) wave function has been

taken as an approximation to the one~electron wave function
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of Lithium. This procedure simplifies the mathematical
analysis in g manyfold way as will be clear from a glance

at the derivation of Upol for ESEH process given in the
appendix. Any way, this type 0f an approximation will defi-
nitely not result in any serious error because'the effect of
polarisation is almost negligible in the case of ELL process
when compared to the all important excitation effects. This
will be clear from an analysis of the study of Vanderpoorten
(1976). There, it is found that the optical potential
results almost coincide with the Glauber results in which
polarisation effects are not taken care of. This provides a
clue to the fact that the contribution due to polarisation
should be negligible in the case of ELi process. Moreover,
it has been explicitly shown that the calculations without
_the real part of V(Z) in the optical potential, which
corresponds to polarisation part -~ gave results which differ
by about 10% at small angles and 1% at 90°. All these
resalts point to the not - s0 - significant roll of polari-
sation effect in the ELi processs. Hence, there is all
reason to believe that slight approximation - as the
replacement of one electron wave function of Li by H (28) -
wave function can amply be justified in the evaluation of
the polarisation effects when the extent of simplification
brought about by such an aﬁproximation is thought of.

Moreover, the contribution due to the core (Vc) is also

negligibly small at small angles at which polafisation is
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important. This fact also will be explicitely proved in a
later section. Introducing this approximation also in the
evaluation of U s it can be seen that the same value as

(4.15) will be ggiained for Upol in the ELi process in the

éreseﬁt study. However, it should be remembered that these
approximations are taken only for the evaluation of UDol and
that Iﬁ will be different for ESEH and ELiL processes éue to

the difference in Uo' v and.g for the two processes.

In the ELi process also, the standard integral of

Nordseick (1954) can be used for the evaluation of I, I

P
and IE. To evaluate ID' < Uo /S VvV / UO ’ can be written as
<U_/ «( S /U_ >4+ VvV (r.) because of the property

o r2 rlz o c 2

Oof the wavefunction. The evaluation of the first term is

similar to that in ESEH process, thus giving

y ~NF I ~A
O/ é ZKl . 4 2 K.l a . lrz
KU /V/U 2 = — 4K - ~
0 3 r 2 X
o ~A
a 1 2"2 1 4 e 22
2 d 7\2 rz 2 4a A 5 r2
2 -A_r 2 “A3r2 )
d 1 e 372 d 1 a e
+2Kg an A3 r = Ry an2 A2 d7\3 T, §
3 3 2 3 3
-A -
P “aT2 & e 4" (a.31)
4 }%, 5 4d 4 r,
5 F = - = - 7\ = ol
where K4 = =2, K5 5.4 4 5.4

all the terms in (4.31) are such that in the evaluation of

I, (4.10) the standard integral (4.16) can be made use Of.
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Thus the substitution of (4.31) in (4.10) gives
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87 K, T 4R K, a . ‘
ID = [ (.K4— -—-7\—3—-—) + (K5+ "'—"}'\"‘,2"‘") '57\'; ] 1(7\1)
- l - - l N . -
i, . 2
K 167K
NELCRELC R N LI
A A A ;
2 2 2 ™2 ah,
~96 % K 72%K. a4 2uAK. @’ 4AK a3
+ 1 N5 * N Ya - A3 el 7\23 A3
3 3 3 3 3 3 afy
I (2\3} . .o (4.32)

~

In the evaluation of I_, < v, /S vV / Upol > is written in such

P

a way that the standard iﬁtegral may be used here also.

—08651‘1 -2073:1
. s .
< UO/V/Upol =1 av, [ Cr; e + De ]
1 1
[ - + +V_JU
T, 1o ¢ © pol
1 ; [ --O.65rl -2-7rl
I ——— av Cr, e + De
2%/27\ rg L L ]
&
r . r -r
—% Cos @ + Ve | Cos @ (2r§ - é )y e M2
r -
5 . .

It can be seen that the Vc part becomes zero because

CQS @ d@ = Oo

A

f Sim @

0

The remaining part becomes very mach similar to that in ESEH

process with only a few changes. Thus

V37 ;¢ -Br

. 6L 1
SO/ ¥ =50 ! %2}357"[ (1= z57) - e
: .

~ ~
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56 7 }
B r r -fr
A Y A 2 . 1% . 2
+ OB —¢% =— B = )]+ 2c e [ (1~ =) - e
. 5 J:21:3 3r4 4: 5
- A, T ) T A 2 , 2 + A 2
5 6 )
£r, ﬁsrg Y ;7r28
th TR v A T T g g 1 (4.33)

where & = 0.65 + 0.5 , B = 2.7 + 0.5

7
A‘B=B—gl A;-:L.-—.

(o)}

Now using (4.17) for the simplification of the above

expression,
VA ED o B K B2
At > — = — - —— S———————— % —tr—
ULV 01 255 (50 58% ¥ 5 5t Kg
N as 72
a® ~fr, ¢ a° & 6 2 7
f S e 8 [
ap® r, 8 as>  F o a® TR g0 g’
-Er
" 1 -= 2 ; (a.34)
P e s r
2 )
-7 8
k7 — - —— — — ———
where KB = 1 K§~ 1 cL

6B

t can be seen that this expression is very similar to (4.25),
but thers is difference of the values of certain parameters
only. The asbove expression is in a directly substitutable form

for the standard integral (4.16), from which we get
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S (v & B & g2 &
I, = 2 '35 E 5 L EEZ = Kg —g— ggg + Kg ;; ;Eg + -——}
c ds ‘ 3° £ d?‘ ~
w0 s Tt oy v 126)]
....;(4.35)
where C = 0.11252, B = =-042204,
F = 1.15, B = 3.2.

The evaluation of IE for ELi process is alsc easy because Of
the analogy with the BSEH process. The product of wave

Functions (4.30) can still further be expressed as

© =N -A2 -A
¥ U K d & S d2 e ?zrl d3 e 3rl
U = - - K - -K
N T
° ° ah n 2an 2 T 3 ah] 1

Using this. IE can be evaluated as in the BSEH process to give

4n S o) a? :
= K. e I ) 4 K e A
g K, 2 g 1 N
- 1 ; 2 -
a3 : g
K "“-'_—"I.?\ g LY " -
+K, 3 ( 3 (4.36)
d :
5 -
Now using the expressions (4.32), (4.35) and (4.36) for I
I, and IE' the differential cross sections for the electron

scattering from Lithium atom (ground statel can be obtained.

To see the effect 0of the core with respect to that of
the valence electron of the Li atom, the above studies were
conducted neglecting the VC part of the contribution. Because

the Vc part becomes zero in the evaluation of <UO/V/UpOl>, it
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can be easily understood that the suppression of the core
potential will not affect the contribution due to polarisation.
This is true f£rom the phyvsical point of view also because
polarisation, besing the distortion in the charge cloud, should
be vastly affected by the outer most electrons only; since they
will be subjected to the strong interaction with the incoming

electron.

To suppress the core-contribution in the ID‘part K4 and

K, can be directly made zero in (4.32). Incidentally this
does not amount to any irregulari‘t‘;y like divergencies. The
resulting expression will give the contribution of the valence
electron to ID. The expressions so Obtained can be used to
find the DCS for E Li process in MBA, neglecting the core

effect.

Szasz and kHcGinn (1967) have given a more sophisticated
calculation for the Lithium wavefunction than that of Coulson
(4.29). Walters (1973), in his study of Li atom has taken
only éhe simpler Coulson wave function with a comment that
both the wave functions should give more or less the same
results. To explore whether there will be any improvement on
using this sophisticated wave function, in the present study.,
the DCS in MBA are also calculated using the wave function of
Szasz and Mc Ginn after orthopmormalizing the valence state

explicitly.
-

According to the work of Szasz and McGinn (1967), the

one=electron wave function of Li is given as
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(p) (p) (p)

C
nlm)= - A - R Y (4.37)
W( ‘nl‘ nl nl Im
(p) 2n+l 1/2
where A =[ (2 §'(P) ) // (2n) ¢ ]
nl . nl B
(p) n-1 ( (p) )
and R = T exp - r
nl 1 gnl 1
(») (p) (p)
The functions ?} s A and C are tabulated in
nl nl nl

table (4.2).

Hence the total wave function can be written as

1
Y = Ry +BRJ) — (4.38)
v/a}::'r
where Rls and st correspond to the core and valence electrons
respectively and are given by
"4-43:‘1 -204‘3:1
RlS = 2.4723 e o+ 5.7989 e
- “4.40]’."1 "_2.41\
~2.48rl ~4.7lrl
R = 0.08651 ¢ + 0.0488 e
25
-l.735rl ) -rl
1 1
+ 0.3969 r, e 4+ 2.66 x 10 r,e

For the orthonormalization of the valence state, the following

properties are used 3 R

* * 18
I p V dvi = 1, [ v —_—dv, = 0

Vi



From these conditions, A and B are obtained as

AA — 1."..00448 ;
B = =0.2031 éo that the one electron wave function for Li
becomes
4 -A.r 6 -B.r
p=2 ¢ e Ay g pr e I (2.39)
isl J"'—:l J
the leading terms of which give
, "'00661,'1 -2 4 rl
? = 0.11 7rl e ~0.3894 e

which is very near to the Coulson wave function (4.29). This
is an Indirect check of the procedure adopted to obtain the
wavefunction (4.39). The constants c N ;D and Bj are
tabulated in table (4.3). Using thislwavefunction instead of
(4.29), thée whole calculation can be repeated to get the DCS
for ELi process in the MBA. However, in the present study.
polarisation and exchange are neglected in this part and only
;D is taken because the purpose of this study is only the
comparison Of these results with those obtained using the

wave function (4.29). Hence in both cases., I? and IE are

neglected in (4.9) and the results are comparede.

The evaluation of I, using wave function (4.39) is

rather more cumbersome than the earlier evaluation using

(4.29). In the present case
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* ¢ 4 1 1
UO Uo = izl m=l Cl Cn ©
6 6 -B.r -3 r
< 2 1 n 1
S 0%
tiZ1 21 %5 P 1 ©
4 6 SlATE -Biry
+2.2. X _C. D, r, e (4.40)

di=1 j=1 "1 73 71

which is definitely more complicated than the corresponding

M _=a 7™
expression (4.30). Using the simplification rl e = In e

the expressions for <UO/V/UO> and ID can be obtained in a
same way as (4.32) i3 derived. The analysis is very lengthy

and the result is given by

§ % 2 1 d %
= ~4%, . c, C g —
7 amme %1 S UG T G002 ineh)
1 m 3 m 1 m
(M+A ) 5 n ) b —
I . 87, . . D, AL+B, e
R O = N R g (\.+B.)% o l+}83 ¥ (A, +B )3
(N .+B.) ! "IN +B) 2 8
I, 4B,) = e T_{N_ 4B, § - 4R
iy (Ai+Bj)2 2 173 j=1 n=1
° {B B ) - - - (B,+8 ) 2
D.D g — X A+ -— 4B ) 4 ————
Im Vg ap 372 i (pyp )t Tl T3 (g e )R
i n’ i n’ ~J ' n
) . ( ) AL ) o Aa.)
. .8 - I . § - - — 1 .
1(BJ+ - Y )2 3 BJ+Bn 21 ( 1!t 544 " 1 (4.41)
. i™n - - i
where Al = 5.4; I (A) is the standard integral (4.16);
2
a .
LM =2 I T, () = —7 IM) ete. Now the DCS can

~
~

be obtained by substituting (4.41) in (4.9). Similarly,

P and IE

also,the DCS is taken which corregponds to the Coulson wave-

uging the I_ value (4.32) in (4.9) and neglecting I

D

Functione
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Results and Discussion &

The DCS for ELd process in the MBA is calculated for
different energies varying from 20 eV to 700 eV. The present
results at 20 eV, 100 eV and 200 eV are exhibited in
figure (4.4), (4.5) and (4.6) along with the available
experimental data of Williams et al (1976) and the recent
theoretical values (HHOB results of Rao and Desai (1983),
close coﬁpling resuits of Issa (1977), EBS results and Two
potential - Eikonal results (Tayal et al 1980), corrected

static results of Tayal et al 1981).

The present approximation, being a high energy approxiw-
mation, should not be expected to give gcod results below
100 eV. Hence, 20 eV is definitely too low, but the results
are shown because experimental data is available only at
such low energies. The comparison of the present results
with experimental values is quite encouraging, when considering

the energy region.

The digagreement oOf the present regults with the most
recent HHOB results need not be looked upon as a bad omen
because, as discussed earlier the HHOB results have been
found to be higher than the corresponding experimental values.
At 100 and 200 eV, the present DCS at small angles almost
coincide with the EBS and CS results. Naturally, the present
resalts are bound to be better at higher incident energies.
The DCS values for certain sample energies are shown in

table (4.4).
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In order tc see the effect of the core compared to
the valence electron, the present results, with and without
core potential are shown in Figure (4.7)., at the incident
energy 60 eV. For comparison purpoée tﬁe present values of
first Born results are also shown (taken from calculation in
the previous chapter). It can be seen that the effect of
the core increases with the scattering angle. As € increases,
the interaction between the core and the incident electron
progressively dominates the scattering and the effect of the
core becomes more and more significant. In the present study,
it is found that at 60 eV, the ratio of the contributions
of the valence electron to the first Born amplitude for the
scattering angles 10° and 150O is 40.3: 1 whereas the
corresponding ratio for the core contributions is 1.9:1,
which illustrates the less repid variation of the core-contri=-

bution with angle.

Similarly, it was observed that when ki increases, the
core~contribution to the DCS also increases. As we go from
60 &V to 700 &V, the ratio of the DCS with and without core
changes from 6.731 to 9.1:l at the scattering angle lSOO. The
corresponding ratics in the first Born Calculations are‘Stl
and 9.3¢l. This is actually what is expected because, as the
incident energy increases, the projectile penetrates deeper
into the target system and the projectile = core interaction
becomes more significant. In table (4.5}, the DCS values ih
first Born and MBA for ELi process (with and without core

potential) are given at energies 60 eV and 700 eV,



In figure (4.8) comparison is made between the DCS
at 60eV calculated using the two wavefunctions =~ the simple
wave function of Coulson (4.29) and the sophisticated Szasz
McGinn wavefunction (4.39). As discussed earlier, polarigation
and exchange effects‘are neglected in this calculation in both
methods. It can be seen that the cross~sections do not differ

much, as anticipated by Walters (1973).

It may be concluded from the above analysis that in
view of the simplicity of MBA, it gives reasonable results in
the study of e - Li elastic scattering. However, the results
are much less satisfactory when compared with the observations

in electron scattering from H and He.

The table of total elastic cross sections obtained in
the present study (table 4.6) also displays satisfactory results.
It is also clear that the results improve with increasing

incident energy.

In the case of Lithium, because of the quasi~degeneracy
of the ground and first excited states, 98% of the polariza-
bility arises frém the interaction between these states. As a
result, excitation effects become mich more important than
polarisation and exchange effects. Earlier it was pointed
out that the contribution due to polarisation is very'littie
in this processe. Hence, eventhough methods like polarised

orbital calculations will have difficulties in electron - alkali
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scattering, the error in the polarisation part of the present
study taken through the polarized orbitals will be very

insignificante

It looks unclear why the MBA should be expected to
model the absorption effect. In the comparative sgstudy of the
scattering amplitudes in the optical potential approach and
the EBS method, Byron and Joachain (1977) have pointed cut

that the absorptive part V of the optical potential treated

abs
in first Born combined with the static part Vst treated twice
in the perturbative theory gives the imaginary part Im £ BZ
of the EBS amplitude. Same will be the case in the Born
series also, because of the comparisén between eikonal and
Born imaginary parts. 4n the MBA analysis, which is in fact
the modified first Born approximation with fhe second order
effects like polarisation included, we get an imaginary part
in the direct séatteriﬁg amplitude.s This imaginary part in
the first Born frame work, may be attributed to the sbsorptive
effect. Of course, the contribution of the static part Vst
treated twice in the perturbative theory will be very small ot
angles at which absorptive effects are maximume. The above
argument is evidenced by the fact that the present MBA results
at small angles almost coincide with the EBS results which
explicitly account for the absorption effects. Thas there is
some logic behind the presumption that the loss of electron

flux from the elastic channel which plays an important role

in alkali scattering is implicitly takenin the MBA, unless
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some unknown conspiracy of cancellations works. However,
rough calculations taking absorptive effects explicitly,

have given resulte which are very near to the previous results.

In Vanderpoorten's (1976) work, it has been shown that
the optical potential results‘almost coincide with the Glauber
results. The table (4.6) of total elastic cross sections
shows that the preseﬁt MBA resgults also almost coincide with
the Glauber results. Hence, the MBA results can be anticipated
to be very near to the optical potential results at these
energiess This is another evidence for the fact that the
present study accounts for all important effects taken in the

optical potential approache

anyway, in view of the complexity of the e -~ Li
scattering process studied here, the presgent results are
definitely not poor. Considering the agreement with the
results of existing sophisticated methods, the pregent results
can be termed as quite good especially when we think of the
results given by a recent modification over the Born series,
namely HHOB, which explicitly takes care of all the effects
like polarisation and absorption. Ag such, the present
stuudies of the ESEH and ElLil processes in the MBA do not
provide any clue towards the unsatisfactory results reported
by Kaushik et al (1982) when MBA was applied to complex atoms
like C and 0. More rigorous investigations have to be under~

taken in the search of the missing link between the present
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results and the dissppointing results of Kaushik et ale.
However, a comparative study of the scattering of electrons
from H, He and Li using the modified Born approximation
reveals that the higher the atomic nunber of the target, the
pogorer the resultse. This sort of cumuilative effect may be

responsible for the predictions of Kaushik et al (1982).

wWith so much discussions on the modified Born
Approximation, let us now switch over to the next part of the

current chapter.

4.5 Two-potential eikonal approximation $

As mentioned in the introductory part of the present
chapter, the search for an improvement over the HHOB approxi-
mation (Yates 1979) led to further studies on the two-potential
eikonal approximation of Ishihara and Chen (1975). Hence., the
same 1s incorporated in the current chapter which deals mainly
with improvements over Born approximation. In an attempt to
formilate a‘parallel two-potential Born approximation, an
indepth analysis of the two-potential eikonal approximation
(IPE) was undertaken. For this purpose, the TPE was formulated
in such a way that it may be applied to the elastic scattering
of electrons from any ©of the nlm states of H atom. This
formulation was afterwards applied to e - H (28) scattering
and the results are discussed in detail. It is noteworthy
to mention here that, as stated in an earlier section, the

study of the sbove sgcattering process bears a certain amount
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cf significance. Recent revival of theoretical interest on

this scattering problem is evident from the reports of work

done regarding the problem (Joachain et al 1977, Ho and Chan 1978,
Joachain and Winters 1980, Pundih: et al 1982, Rao and Desai

1983).

TPE approximation for e - H {nlim) scattering :

The Glauber approximation is known to be Iin appreciable
error at all angles when applied to the elastic electron=-
atom scattering at medium and lower energies. Ishihars
and Chen (1975) have shown that this is mainly due to the
inadequate semiclassical treatment of close-encounter collisions.
TheTPE gpproximation provides an effective method to treat

such collisions properly.

The basic idea underlying this approximation is to pull
out an arbitrary potential v, from the interaction potential
V such that the rest of the interaction potential i.e.

V, =V =V, satisfies the semiclassical conditions Qif%fﬂ < 1

for all values of r, where E is the energy of the system and

V, being a slowly varying function.).

TO start with, let us consider the scattering by a
central field V (r). Now V (r) = v (r) + vy (r)e In the
two-potential form given by Rodberg and Thaler (1967), the

scattering amplitude can be written as
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. (o) (o)
] lg&o %O
F (6) = f% (2l+1) e sin 9 p,(Cos )
+ é?) (1) (1)
21 L lg/f, ) g
+ %51 2‘3 (24 +1) e e sin Oy PL(COS Q) (4.42)

(1) th
where SL and %i, are the l, phase shifts for the

potentials V and V, and € is the scattering angle.

(o)
(1) : (o)
64} = at - 8& . Hith our choice of Vl, %{ may

be evaluated by the JWKB (Jeffreys - Wenzel - Kramers -

Brillouin) approximation to the first order in Vo'

1
1w L+ = 2 v, -_1/2
‘Then i?) o= EI él dr Vo(r)/ [l—( T E ) - Ei } (4.43)

<

vwhere 4y is the classical turning point for the potential Vl.
If we neglect the quantity of order Vovl' the above eguation
reduces toO the usual form of the Glauber (or Moliere) phase

shift for VO.

Since most of the effect of Vlis included in the
pecomd term of £ (@), the contribution of the first term is
concentrated in the forward direction and may be evaluated by

using the asymptotic formula (Ford and Wheeler 1959).

2 (Cos ©) = JO({sz+1) Sin -'g)

oo

S ow f

Thus we have
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k. o0 iX (o) o 1
r ®) = gf 5b do (e o =1) JO(2 k, b Sin 3) + ~E; %(2l,+l)
04 %o} (1) i gi:w '
e - Sin %JL e ‘PL(COS Q) (4.44)

where the impact parameter is introducted by
b o= (L k2 )/ k. max @)= 2 8
1 2 i 1 L

Now generalizing the above formula to the case of
electron-atom scattering in the frozen target approximation,
the inter-action V dJdepends on the position T of the projectile
as well as the Coordinates of the target electrons. The

eguation for %&?) may further be agpproximated as

X (b,bl,zl) = Xo(b,blzl) +AX(b,bl,zl) (4.45)
1 7
with o= = z’ A VO d=
1
A ° (2=0) % £ ( dz
and AX = — V (lz=0) x 1- " I
k; o 5 [ L2V, rzji/z

B
where it 1s assumed that Vl is attractive and short range.
X, is the glauber (straight-line) phase for V=V -V and A%
is the correction due to the separation of V

*

1

Now, an average over the direction ¥ of bL in the
second term of (4.44) is made. This is reasonable if the
range Of Vl (gi&eﬁ bj d) is chosen to be shorter than the
atomic size. Moreover, we need only a few terms in the second

term of equation (4.44) if d is chosen small enocugh. Thus the
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evaluation of (4.44) will not add any further practical
difficulties to the usgual Glauber approximation calculations.
Hence, in the two-potential eikonal approximation, the
transition amplitude from the initial state /1> of the target

to the final state /f> is given by

:

e £ 2 tegebk &) . ’
Ff_ﬂ =357 fabe [f;._ ~l_{+3-{~_-§(2£+1)
1 . 1 .
(1) :
. (1)
i %,(, djz‘ I ' T )
Py {Cos €) e Sin 6&' § ;;; Fi 4 (4, 45)
_ s (bl ix .
dere | g5 = <f/ e Ji> (4.46)

.

and X = XO + A X where XO is the usual Glauber phase

function.

For the scattering from H atom, the interaction potential

is given by

1 , I
v {c. £l> e m— » In the present
r

/,;.:-.J;l/

study, the short range central potential Vst which is the

static potential of the target atom, is chosen for Vl.

. — - ”
. - VO - v v st
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Hence from equation (4.45) it is clear that V. is treated

in the Glauber approximation and the contribution of Vnt
[=1

calculated quantum -~ mechanically by taking few partial waves.

is

In order to make use of the above equation (4.45) to

{

study the electron scattering from any of the excited states

(nlm) of H, it is necessary to have th V__ and X corresponding

st

to those states. The general form of Vs for elastic

t
scattering is given by -

nlm

¥ 1 1
' =17 avy§ ¥ (-;+—-——-———-—-—-—-) (4.47)
st nlm nlm /T - /.
where \Pnlm represents the standard form of wave function
given by y
1/2
w =~E h1—£~l)£} (2T § grbh
B a?2 T (k) 03T TR
2441
(25 Y (e,8) .o {4.48)
o Y n {m
2] +1 2r; n-l-1 m n+ L
Now, i = ) = I @) (+i) e e
n-,»(,"l ; me=0 . 3 . n--i"l'-m
2 m
(n ) rlm
- mb
nlm
Uging this, V st can be deducted through a lengthy

procedure which gives
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where Sl P+ 2+ m+ J + 2L

S, =1l +m+ J + 2l- P

2
1 P11
and ( 000 are usual Wigner notations.
nlm |
The general form of XO +s
\ lm
l o L H
xonlm === [ Vdz+—{§ V dz
ki 00 ki -0 st

For all states of H, the interaction potential

1
v (b,Z,bl:Zl> = ¥R 7..—3:::537
so that = Eﬁﬂ—; v dz = = in
i % i b

nlm
st
standard integration technigues.

- .
Now _I v dz may be calculated from (4.49) using

Since this is a very
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{4.49)

(4.50)

(4.51)
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lengthy expression, we may take up the (ns) states.

ns .
Deriving V from (4.49) and performing the integration
st
over dz,
w6 IS 8 (n-1) % n-l ngl (?1)m+3
f v dz = 4 - n‘ — Z
—~o st n ° m=0 j=0
' S
. 3
n 4+ 1
(= ( ) (2 i
n=l-m n=1l=j n me j e \k_o
(33 ) ( >k+l k+1 S,+1
wl] d
- - K _(bh) = Z
Kt 5 S3+ﬁ+l A k+1 04 =
(=)
n
(s3+1) L ( )k gk € o) ) ( )
= -1 e b 44,52
n

- - ‘+i ‘ :_2--
Whine 3= M+ | omd, A =
Using (4.51) and (4.52), one can find the general expression

for ng for any (ns) state of H.

4.6 e - H(28) elastic scattering (ESEH) :

As a special case, w 'Vs and XO are derived from (4.48),

t
(4.49), and (4.52) for the E S E H process.Fhus

1 -r./2
Yos = — @ - r3_> e T (4.53)
4 2% .
, 2 -r
voo=-(2e2E L) o (4.54)
st r 4 4 8 -
2
2 /R -k 2 3 d 14
and .XO: rln——-—b——-;é— E“""‘[l-—n—m.‘*.-—-———-—é—
i . i 4 an 4 3
3 ~
L 4Tk A
~ = bA] (4.55)
8 a3 o 7

where N = 1.



The correction AX to the phase X, contributes very
little for energies greater than 100 eV and hence can be

neglected. Now J(b) given by (4.46) may be evaluated to

give
l ' —ﬁox K (oN\)
) = Ye e o (¢.56)
bﬁo
2 1 3 a4 1 at 1 a°
where £ = B S I T e B O
ky e 4  4aa 4 aia 8 ah
L@ a® & | e -2
Y=w={—4a—+—3 )27
8 aA aA ah

J(l + i/k) (1 + i/k)

Evaluation of the eikonal part of the scattering amplitude

(4.45) gives

- A
£ i = 8 = ——= 3+ i (—~ = —
eik s LR 2 3
4 sinh/k; Xy ky kg
| ) K )
(1=-i/k 1-i/%k
-2¥ x x_ [ i i e .
[ B 2_5 E (l .l/kil 1 l/kil
20 A o .
qz
1; - = ) 4 e (4.57)

where F (a; b;gz) represents the hypergeometric function,

in the simplification of which, following expression is used:

- 2
F (a, b; crz) = (1-2)"2 7 (a c=biG—y ) -

After simplification;



B =2
q° %3 20 20 8
i .
£oix = — [(e- — ) 1 (— - — )]
4 Sinh /ki ki . ki ki ,
K
L e, L2 20 20 8
..Z[ A 1[(8"“"‘2)+i(’“’“‘-§)1
Sinh "k, k., k. k.~
i i i i
3 a 1 & 1 &
[1~———--—+—---—§--—----—-—-3-,}(G+1H> (8.58) .
4 an 4 aA 8 aA
CE -~ DPF
where G = >
A
IDE + CPF
H = et
AZ
-in Q 1 q2
E = e Cos o InQl:o=21+ / 5
e § A
1 -
-ln Q . .
F - e sin 73 In Q)
C = A Cosg T~ B Sin 7T
2
D = ASinT+ B Cos:Ty;T =— In A
1 .
)
1 (1+ K‘;L'z 5
k. ik
i i
1 2
k 2 a2
B o w—— 5 4 Sy S ==

The summation of partial waves in the evaluation of
the scattering amplitude is done similar to the procedure

adopted by Jhenwar et al (1978). According to this,



1 e . .g

~ L (2l+1) EZ(COS 6) et sin éi

Xk, 1=0 . .

i

1 § i0p , S
= —— & {2f+1) PL (Cos ©) e Sin i

k, L=0.

1 g [ 2(3)
+ f51 T T F (2L+1) B (Cos @) L - (4.59)
L X,:;O .

where fBl is the first Born a@plitude for the potential
B) - . .
v oy ék'and éé are the exact and Born - approximation

phase shifts for the same potential. Thus the contribution
o0

of those partial waves LiN is taken through the Bommn
approximation to the phase shifts. The value of N is s0O
chogen that the values of exact and Born phase shifts
differ by only a small percentage (say 3%) beyond this W

valuee.

For the central potential V_ (r), the Born approxi=-

T
mation to the phase shift is given as (Schiff 1968)

2

Vst(r) i (kir) r° ar (4.60)

(oo e

where jk(kz);’_z_//zkir 3?(,-;-‘1 (kir) .
2

The exact phase shifts were calculated solving the second
order differential equation for Vst(r) by the NumeroV
method etc. This procedure will be discussed in detail
later on. With the knowledge of the phase shifts‘the
evaluation of the partial wave part of the scattering

amplitude (4.:45) is easy by using the simplification (4.59).
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The following approximaticon i1s again used that, for the

o o
partial wave summation L%ﬂ' the , fk(b) becomes approximately
1, because XO is very small for"[ values greater than N.
This is very much justified in the sense that for higher L
values, the phase ghift becomes less and less significant.

(o) (o _
Since XO = 2 <8L where %u, is the phase shift for the

potential V_ =V - V_r the significance of gg?> and

tl
hence that of XO becomes less and less when compared with
the phase shift corresponding to the total interaction V.

Using this, the partial wave part of (4.45) can be written

as
(1) (1)
Epr, = = g (2l+ 1) 2 (cos @) ot 8L Sin ‘gL
W .
- L R (2{+1) P, {Cos ©) (4.61)
£i- + £ 7 % 4 4
2A il=0 - \

Thus the scattering amplitude Ffi(g) (4.45) is evaluated from
(4.58) and (4.61). The DCS may be found out as
4G 2
—_— =/ £(Q) /
d L2

Results and Disgcussion @

The e - H (28) elastic differential cross sections
are calculated at the sample energies 100 &V, 200 eV and
400 eV at which data is availlable for comparison. It'should

be remembered thet during the evaluation of the scattering



amplitude (4.45) for different energies, each time the

Born and exact phase shifts are to be calculated, their
values are to be matched to fix the N value etc. Since

all this procedure congumes considerable computer time, the
results were taken only for the‘above three specific
energies. It can be noted that in almost all of the reports
of the work doﬁe on this problem, the resu;ts are given only
at 200 eV. The present results at these energies are
represented graphically in figure (4.9) and figure {(4.10)
and compared with the results of eikonal Born series (EBS)
approximation, optical model (OM) and the Galuber (G)
results alongwith the most reéenily reported two—poténtial
results (Pundir et al 1982) and high energy higher order

Born (HHOB) results (Rac and Desai 1983).

As mentioned earlier, in the absence of sufficient
experimental datas, it is rather difficult to criticise the
accuracy ©Of the various approaches. Earlier, in the sgtudy
of electron-scattering from H, He and Li, the two=potential
eikonal approximation hag provided reasonably good agreement
with the experimental data and other sophisticated theories
{Ishihara and Chen 1975, Tayal et al 1980). The HHOB results
are found to be overestimating in the larée angle region
whereas the Glauber gpproximation is well-known for its
shortcoming of under estimation (except at small angles).

The present TFPE results lie between the above two results and
nearer to the EBS resgults which has given good agreement with

experiments in other scattering processess.
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2s in the case of e,- H (18) elastic scattering
(Ighihara and Chen, 1975), here also the two potential
eikonal approximation shéuld improve the conventilonal

Glauber results because of twoO reasonss

(1) the singularity in interaction V_, is properly taken

€
care of by partial wave analysis.

(2) The semi classical condition necessary for the
Glauber approximation is better for the interasction

VO than for V.

The above agpect is clearly brought out by the
comparison Of the eikonal phase function fz;) for the
interaction potentials V and V_ (fige.4.11). fz;> for V_ is
a smooth function of b while that for V oscillates strongly
for small b values. Practically, the smooth function f?;)
makes the numerical b integral mach easier than in the
Glauber approximation. The first term of (4.55) is the
usual Glauber phase for the scattering process considered
heree The singularity of this term at b = 0 is cancelled
by the second term. Hence, in contrast to Glauber approxi-
mation, rzé) varies smoothly in the two-potential formila-
tion. Similar behaviour is ovbserved in the electron-
scattering from H(1S), He and Li (Ishihara and Chen 1975,
Tayal et al ,1980). It may be noted that as in the case of
e - H (18) scattering, here also Re F&) >> Im m)

everywhere. Since a real,, corresponds to an imaginarv phase
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shift, rz;) contains almost no scattering, but mostly
absorption. Since AX is a relatively small correction,
rzg) with the approximation XSTXO behaves similarly.
Therefore, the Glauber approximation, roughly spesking,
contains the scattering by the static potential, the
treatment of which is the motivation of the two-potential

eikonal approximation as suchs

The present e - H (28) scattering cross sections
at 100 eV are compared with the corresgponding e -~ H (18)
crogs sections and are found to appfoach each other for
larger angles Where the incident electron - target nucleus
interaction becomes more and more significant. Similar

type of behaviour was discussed in an earlier section.

The Glauber aspproximetion when applied to electron-
atom collisions encounters difficulties coming primarily
from; (a) the frozen target approximation, (b) the semi
classical treatment of small angular momentum contributiong.
The frozen target approximation which neglects the long-range
polarisation effect gives rise t0 inadequaties at forward
scatterings and improper treatment of the small angular
momentum contribution gives rise to errors in a wide range
of scattering angles. The electron atom interaction behaves

"

. 7
like -~ ; as r

> 0 and the condition /V/ <<E for the
eikonal approximgtion does not hold for low energies. As.is

well known it is this nuclear coulomb interaction that



predominates in large angle séattering, and for lower

energies it effects the cross section at all angles. The
observed discrepancy of the Glauber approximation in elastic
electron-atom collisiong is largely due to the above reasone.

The TPE agpproximation provides an effective method to treat

the close—~encounter collisions properly. Hence, the present
method may hold good for little lower energies alsoc. As is
evident from the small angle behaviour of the present results,
we have to go beyond the frozen target in order to improve

the forward angle scattering. Anyway. in view of the simplicity
of the present methéd. the results are gquite reasonable, and

it definitely leads to substantizl improvement over the ordinary

Glauber approximation.

4.7 Two~Potential Formalation in HHOB :

The High energy higher order Born agpproximation
proposed by Yates (197%9) has recently been applied to various
scattering problems (Rao and Desai 1981, 83). It being a
computationally simpie approximation gives reasonably good
results at small angles for the scattering parameters in the
electron-atom scattering process. In this agpproximation, no
question of divergent interals arise as in the case of the GES
approximation (Yates 1974). The main shortcoming of the HHOB
approximation is the appréciable over~estimation of the cross
sections in the large angle region. As the scattering angle
increases, the differential cross séctions deviate more and

more from the corresponding exverimental values.



it is well-known that the Born approximation gives
better results for weaker interaction potentials. Keeping
this in mind, the present two-potential HHOB gpproximation
is formuilated in the same line as the two-~potential eikonal
approximation (TP&) of Ishihara and Chen (1975). Asg
discussed in the pfevious section, the success of the TPE
approximation in the study of various scattering phenomena
provided enough motivation for the present formulation.
Moreover, it was quite logical and reasonable to believe
that the present formulation, in which the interaction
pgtential V treated in the Born approximation will be
replaced by V - Vl’ Vl being given a better treatment through
partial wave analysis, would definitely give better results.
Ag in the case of TFPE approximation, in the present study,
the basic formla is derived for potential scattering and
ig generalized to thecase of a target. In order to see
the usefulness of thig method, it is applied to elastic
scattering of electrons from H and He at intermed;ate
energiess The improvement over the basic HHOB approximation

(Yates 1979) is gquite appreciable, as expected,

Formilation of Two-potential HHOB approximation (TPHB):

Consider the scattering by a central field V{(r) which
may be singular at r = 0. An arbitrary potential Vl is 56
chosen that Vg, = V = Vl satisfies the semiclassical conditions.
(VO being a slowly varving function and VO/E <<1 for all

values of r, where E is the energy of the system).
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Now V(r) = Vo(r') + Vl(r) (4.62)

We write the scattering amplitude in the two potential form

of Rodberg and Thaler (1967):

1
F (@) = — ¥ (2b+1) 7Py (Cos 0) (4.63)
. i » . . -
i § (o) (o) 21 $¢) 1§
with T, = e L sin O) 4 e e

(1)
sin 6{ © and gz@ } 51__51(&“)

(1)
where gf, and é& are the yth phase shifts for the

potentials V and V,+ k; is the asymptotic momentum and @ is

the scattering angle. Hence

. (o) (o)
1 i §
F (@) = =—2Z (2+1) e ¢ sin g,& P, (cos @)
i, 4 ] _
l . . “
2i ) (1) i S(1)
T % (20+1) e gé,o, Sin é_/(’, e 54/ P (Cos ®©)
k, %
i ;

eeefd.64)

We now evaluate 810) by Born approximation. The radial

part of the Schroe- dinger equation for V_(r) is

2y, (o)
a (o)
e N B T (4.65)

dr r

2m
where Uo(r) = ;5 Vo(r)-

The solution of this equation is

(O) oo 1 1 ' (O) t
vy Fr) =¥ (kir). + gdg gL—(r,rﬂ)- UO‘(rA) UL (r_) (4.66)
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f
where g, (r, r ) represents the green's function. Now the

exact phaée shift is given by

) 1 o= (o)
tan by == —Jar ¥, Gr) U (DU, (o) (4.67)
k. ' - —
RN

In the second Born approximation

(-O) [24] ' [} ] 7
Uli = F, (e,x) + édr- 9, (r.r') Uo(rﬁ) F, (kir) (4.68)
Thus phase shift (4.67) becomes
(0) "t e 0,
tan gt = ;T— { ar ) (k;z) Uo(r) %Fi(kir)+é ar g,
1 1 ]
(rx') v ') o) | (4.69)
The first part of (4-64; is the amplitude factor for the
ol
potential Uo' When X, is small, we have
(o) : é)(o)
Fp.o = E;“ i (2l+1) o . Py (Cos Q) -
(o)
Substituting for gi from (4.69),
p 0)_ 1 , 1 o 2
L. — 1 (20+1) P, (Cos &) g- ;—-—-éf dr /F, (kir)/
i ~ - < . - i f
' 1 1 =
Uote) § % —F (1) By (os @) f- — T ar 7 Gye)
~ i - . - i .
o0 ' 1
Ugle) £ ar -7 (r.rf) Uo(r-) Fy (kir.) % (4.70)
Lo (o) (o) (o)
leRo F{/ ) b Flj: + F ’{,2, .

Now, consider the first part of (4.70) -
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(0)

1 )
v- T T Eg el Flees @) [oar (e, x)/ %0 (x)
S ‘

2
= == (21 +1) P, (cos @) g ar rz/jL(kir)/zUo(r)

4
bt 2 ‘ 2
= - % (2t+1) P, ( Cos ©) [ dr ré/g Ge,x)/%v_(r)
© . 0 2k .r L+1i/2 * ©
o0 5 Sin qgr 4
=~f dr, v _(r)
o © qr
We know that
1 ger 0 Sin gr
e U {r) av = 4 x#J 4dr % (r)
o o o .
) qr
Thus F == — f e U (r) dv which is first Born
L1 4 °

amplitude. A very similar but lengthy procedure will give

(o)

F = gecond Born amplitude, a slight modification on

42

which will give the corresponding term in HHOB. Hence,
(o)
)

the potential scattering.

can be shown to be equivalent to the Born series, for

g(o)
(o) 1 21 oy |
* £ (8) = F + —2(2L+1) P, (Cos ©) e
. . L k. 4 4
N - .l L ) 0
. ¢ (1)
U
e Sin SL‘ (4.71)

Generalising this to the case of target,

(o) . 1 s )
Fgy (e) = “t/ VA 2L+ 1) o)

N (i (1) . <
PL {Cos @) el SL Sin gL _ <£f/e 21 A /i

ioe- F (.9) = F -+, £ (4072}
£1i . HHOB Pw
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(1) (2)

f -+ f . 4+ evers
i—of im—>f

kY =
where Fanos

as given by Yates (1979) for the potential Vo(r,rl,r2~--rz)

where %2 is the atomic number of the target.

(1) (0)

&L . and éL, are the phase shifts for V. and Vo. When

1
(0) 21 59
6L is small, < £/ e /1> can be approximated
’ (o)
as 1 + 20 < £/ éb/i> (4.73)
An Interesting consequence of this arises 1f we choose Vl as
the exact static potentiale. Now, Vo(r,rm) =V (r,rT)-VSt(r)

. 0 = -
where r, represents target co-ordinates. If é{b) is taken

in the Born approximation,

(0) . * oo 2
£/ S’L /o> = mmy oav, Yy Locfar g, Gegx)

A

( V(r,rT) - Vst(r) )

o 2 2 # ’
=2k focfar 3, Gex) favy Y Y [v(r,rT)-vSt(r)J

i

*
This becomes zero since J{ dv, YyyVv=V_., the static
T st
potential by definition. This happens only when VSt is chosen
for Vl. Hence, in such cases,
21§80
< £/ e /i > =1, as a rough approximatée.

This reduces computational complexities also. However, ig

one 1s particular about retaining the contribution arising

from this term, in the evaluation of the second part of (4.72),
(0)

%4} may be evaluated by the JWKB approximation to first

order in VO s+ as is done in the case oOf the TPE agpproximation.
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Thus (4.72) gives the two potential formula in
the high eneigy higher order Born approximation. It is
obvious that the basic idea underlying this formilation is
to pull out a static potential vst(r) from the total inter—
action potential V (r, rT). The rest‘of the inter-action

vo=v-vs is treatec"l'in thé HHOB gpproximation and the

t

contribution of VS to the scattering amplitude is calculated

t
through partial wave analysise. When we compare this with
the simple HHOB approximation of Yates (1979), it can be
seen that in the present two=-potential formilation, the
Born approximation is applied to a weaker interaction VO
when compared to V, and that part of the interaction, Vst
is given proper treatment via taking partial wavese. Thus,
the two potential results should be better than the HHOB
resultse To demonstrate this, the present two-potential

HHOB formilation is applied to electron scattering from H

and He in the subsequent sectionse

4.8 e — H elastic scattering in TPHB

In this section, the elastic scattering of electrons
from H atom will be studied in the newly formulated two=- |
potential HHOB (TPHB) approximation. Whenever a new theory
is demonstrated, the'application to the Hydrogen atom system
will be convenient because of many reasons like computational
ease, availsbility of large amount of data ~ both experimental

and theoretical = for comparison, and less scope for mistakes
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from other sources like choice of wavefunction. Moreover,
with regpect to this scattering process, the accuracieg of
various approaches can be criticised with more confidence.
Hence if a theory produces better results (in comparison
with available data) when applied to this scattering process.
the theory can be considered to be a successful one. Hence,
naturally, tﬁe choice for the demonstration of thé TPHB
approximation discussed in the previcus section fell on e - H

elastic scattering.

In order to find out the differential cross sections
for the ESGH process using the TPHB approximation, it is
necessary to evaluate the scattering amplitude (4.72) such
that

de 2

—_— = /F (8)/ (4.74)

d-- £4. . .

For the ESGH process, the interaction potential

1 1
v (r, rl) U . (4.75)
r /L ~ £,/
and Vo(rpr ) =V (r,rl) - Vl(r) (4076)

1
In the present study, for the arb:itrary central potential
Vi{r), the static potential given by Bonham and Stmand
(1963) is chosen because of the simplicity in calculations
and the ease with which the theory may be extended to other
atoms. (For all atoms, using this static potential the
formulation remains the same with changes only in the

coefficients and exponential parameters.).
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Thus (4.76) becomes

v, (r, rl) =V (z, rl) - Vst(r) (a.77)

Now it is obvious that the F in the scattering amplitude
- HHOB
(4.72) represents the amplitude factor evaluated in the

HHOB épproximation of Yates (1979) for the potential VO given

by (4.77).
(1) - (2)
¢ F = f } B o £ . + eseece
¢ " HHOCB i=>F i =-> £
= FBl 4+ i Im £ B2 + Rel £ B2 + Re2 £ B2
+ TB_+ o o o (4.78)

3
In the present study, the third Born term is neglected

because o0f the following reasons $

(1) It is found that even for the whole interaction
V, the contribution due to this term is very small.
Hence, in the present case where the interaction

is only V = Vs the contribution of the term will

e’
be still lesss.
(2) In order to have a comparison of the present TPHB
results with the simple HHOB results, the TPHB
results excluding the contribution of the third Bom
term may be compafe@ with the HHOB results excluding
the contribution of the same term. Thus the comparison

is justified.
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(3) The computational complexity increases tremendously
with the attempt to include the third Born £em.
This type of practical difficulty was felt during
the evaluation of the similar third GES term, in

the coursge of the present study.

(¢) It was observed during the process of evaluation of
the various terms in (4.78) that the contribution due
to the Re2 term in the second Born expression is
spuriously large. Hence, the inclusion or exclusion
of the legs significant third Born term doeg not make
mach of a difference because Re2 and fB3 are of the
same order. | _

Taking into account the above points, the evalua-
tion oOf FHHOB recduces to the evaluation of the first and
second Born terms in the HHOB approximation, for the inter=-

action potential given by (4.77).

..>\ r
Here V. (r) = = 3 Y & (2.79)
st ) —,—-l J r '
where A, = 164.564 YE; 0.0126671
?\ = ® O O = -
, = 1.306 = 0.0580612
A = Py )== 009 9
, = 1.48219 7 27968

~

The evaluation of first Born amplitude is simple.

fBl=--2--7—§—--fdve fI}TVOTFdVl
2(q2+8)
= "‘%“"’"ﬁ 2% YV e, (4.80)
+4) J, 3 (q +7\- )

(g

- - /‘-
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During the evaluation of the fBl' it can be noted that the
first Born amplitude itself should be very small in the

large angle region because of the presence of i) f(Vo W dvl
because J §*V |} dv, is the static potential by definition.
Naturally, the contribution due to the higher order Bomm
terms should be proportionately small, which shows the
insignificance of the third Bom term which is left out in
the present study. DMoreover, the VSt part in the interaction,
which is treated through partial wave analysis, should be
contributing more to the scattering amplitude. This treatment
should improve the present results over the basic HHOB
results which overestimate appreciably in the large angle

region.

In the evaluation of the second Born term,

(2) - A - "
Ufi =%y /U (P + PZX) VO(/g-E/mPZX) /¥ >

~

W7 (® +Pz‘2) \% (/E-E/ -PZQ)/I}I >

:2<I}I /7 (P +PZ‘Q) \75.t (/q-p/-Pz‘;(A)/!p >
+< rp/ﬁst(P + Pz‘f() \7st(/q-p /-PZQ.).’/ ¥ > (4.81)

As a result, in the evaluation of the imaginary and two real
parts of the second Born term, three terms each will be
there, the first term corregponding to the second Born
amplitude for the total interaction V(r, rl), the last term
corresponding to the amplitude using the static potential

v and the middle term which is a cross term of V and VS

st t
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= I I I z .
Thus Im fB2 m, o+ Im, + @3 (4.82)
Rel f82= Rell + Relz + RelB (4.83)
Re, fBZ.—.. Re,, + Re,, + Re,, (4.84)

Im, for ESGH process is given by (3.17)

4 7T3 - A
In, = x (-2) x f @B <y /¥ (p + P %)
2 ki - A
- A
V. (g~ P« pzz) /Yy > (4.849
. Here
( 2) s 2 . (4.85)
v g-P-P%x) =2 4.85
Now,
_ S -1 el E-5y
v (P -+ P X = +
2 27 (P%:p 2) (%2 2) T i
2 a
. Al
AR VA (P+P X)/§>
_ -2 a . _ . (4.86)
T2 .2 .2 N 2 o 2 a2 2,2 _ 2
A (P7ePT ) ah PR %h A 2 7°(P74P_“)
8 A°> . Y5 [ -2 a 1
* Im == J ap
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1 1
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3 7 o
8A j
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Z 'rJT d l -~ [l l
Sl = eGP e e
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2
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2 ki d & an A J
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where the integral. of the type 14 (82, Az, Xj 2) has been

come across earlier and is given in the appendix. Now, Im

3
given in (4.82) is the contribution arising from V . only.
s A> pe 5 o ’
* Im, ==~ 7agpVv (P4+P 2)T  (g-P-P %)
o o 3 . = st Z st Z
1 ,
Y, Y
4K3 aP 1- 3 3 i j
= =gt 7 2 2 252 . 2
. A i=l = P A -
L3 47 izl j=1 ¢ +B7 +M %)/ qmp/ P %+ 7\3_ )
L R v I, 84,2, A.2%) (4.88)
- . + + ) . ’ . 'y
AKy izl j=1  *~ 3 4 + J «

Thus Im f82 in (4.78) will be the sum of Iml, Im2 and Im3

given by (3.17), €4.87) and (4.88).

A similar procedure can be adopted for Rel f82

given by

. 47\"2 oy dPZ (2)
Re; £B, = = I ap ! UL
}i e PZ_B 1

On glancing through (4.81), (4.83) and (3.18), it can be

easily understood that Re for the ESGH studied here will

11
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be given by the expression (3.18).

a7 : ap_
= e f P f
Now, Re,, = + - X2 x ap 575
3 Z
1
% ~2 d 1 1
7\’2(92+922) A P2+PZZ+R,2_ 27<2(p2+p72) ,
3 - F ' ‘
x ¥ 2 i
jsl oA (/q-p/ P, AR 2)
Now splitting the terms usmg partlal fraction met}?d and
87\' i arp a
simplifying, Re = P I ap Z % _....4. =
P -8 J
4
' , ! . + ’"{ d 1 ﬁ
1 Y; 1 1
2 - * %
/q-0/* +Pz“+?@j2 an® Php 2 /qmp/ e 2P
2 P w AR Y a 11 1
= ""8 — f dp f - ot el - . -
k. = = P, B3 7?4 a2 = p? +£>22+ A2
1
2 2 . 2
/ q=o/ +Pz +kJ.
3 =8Y. a 1
= & ’—z-"—l e “"2"‘1(332,7\-2,3‘..2} (4.89)
izl Aky AR A 5 J,

where I5 (BZ. ?\2, 7‘@3.2 ) has been defined earlier and is shown

in the azipendixe

By analogy with the imaginary part expressions,

Re can be directly written as .
L -4 A 2 og sz > f
P
Re.. = IP Foagp f ee—— Vgt (P42, X))
13 Xk —-00. PZ — B N

i
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- 1 3
T 2

T g P f e

i 4 7% izl =1

1
2 5 2,5 2 2 5 25 2
(PZ~B?,(P +P_ M%) (/q=p/ P, +Aj )

-1 3 3
= = X Z

Yo ¥, z.(B%, A2 A2y - | .90
xzki izl j + 7§' 57 71 ? (4.90)

1

where I (82, 2\5_2, 7&3.2) is of the same type as the integral
defined in (4.89).°

HHOB ,
+ Re;, given by (3.18), (4.89) and

Hence the Re; fBz term of the F part (4.78) is

the sum of Re,., Re

11 12

(4.90).

P

Next is the evaluation of Re, fBZ in (4.78), for the

. 2) .
three terms in U ., given by (4.81).

2 00 d 1
Re,, = - 28 Prap 1 ap (Pip ) —
2 k-i . - 2z 2 ) dB PZ-B

<V/\7(P+P ‘Q)V(q—p—Pzé.?/lf>
2

d 1

272 & 1 j? ?
_ ==z fap {, ar_

g -

) kiz ah A dﬁ Pz P .
(P2+P22) [ g + 2A? S |
(82,0 2) (/gmp/%4p %) AP (PP PRy P
. - t, l » N ~ . ~

/a-p/> -1-Ir?zz+7\~2 -

e]
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2 a a * C e OF, a4 A? 1
= —— e I ap ! [ :
2 2 dN 4 L - : 252
A ky . k ’° P ~B A2 (q"+A") /q—p/2+PZZ
) . o
. ;«;; . L 2 1 ]
(Pz-i-PZz-i-?\lz) /q=p/ +PZZ) ?\2(92-;-92'2) A P2, P22+A2 .
2 a d [ a?+ A2 Lo ;L
= b I B O +
7(2}{'12 an as g A2 (q2+X2) ;\2 ) 3 L A2
A) = I (B2,A2
13(§ ) ) (B<,\%) %
2 .4 4 1 2 .o _
=<3 v T L[ =% 13BN -1, (B )J - {4.91)
xRy ; ; . { . .
The integrals 13 (B, N) ana Iz(ﬁzéxz) are discussed in the
appendix. It may be noted that 55 I3, 0) = 0O
3 N e
since I, (B, AN) =-A (1 ~ -7%- tan 1 }\ )
' o ’ 2) °F
Now taking the second term in U. . .
£i
2
4 % o0 a 1 Y.
Re,, = y 5 IF S ap ;L} sz (P +PZ ) 3 T3 E
i ) . z > YA
d 1 _ 1 . ﬁ 1
I e s I e I SRR A

- -~

- 3
"y 2 s 2
/a=p/° + p, "+ ?\J- ’

After partial fractioning and simplification of the terms,
- ) oo N ' l .
ar? Piae g, ar (p%4p_2) T
= 5 - —ob % Z
ki -

Re ) g8 . p -p .3

Z
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4 an 2 2 o 2 42 2 2., 2
A A P +PZ A" Sag=p/ +PZ +Kj
5 4 73— a 1 ]P] ?3 a 1
= ko dg dp-—-—-——-—
J xz kiz an a2 —o0 z dB PZ~B

nzr\ 2

P

+PZ

(PZ+P22+A2) Q/q~9/2+922+kj2)

Now writing P%+ PZZ = (P? +PZZ + A%y~ A2
and splitting the sbove integral into two,

o0 ap
S ap § e—e

2. 2 g ) E -
Ak, ah AL as ?z - B

-4w]f a 1 a

- 3
Re)y E

~” -~

1 A2

2.0 2.0 2 (p2,p 2.2 5 2. 2
/arR/ TR T SP P, ) (gp/ 5P T 7))
=4 'G d 1 d ' N 2 .2 2
2 2 2 [ 13(3,A.) - Kz 15(6 AN :Aj )] (4.92)
x ki d}\ A dB J_ . . <

~ n

-3
]

where I,(B, M) is derived in the appendix. I (82,72, 2\3,2)

has also been defined earlier.

Now, Rez ariging purely from the static part of

3
Vo(r, rl) can be evluated using the above principlese

—a 00 d 1
Re z= -2-’-4—-? S agp [ ar (Pz-;-P 2) D
23 K, T B 2" aB p_-B
z
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d P +PZ

2 2 .
asg (Pz—.B) (p +P22+?\12) (/q-p/ +P22+2\j2)

Again writing 92 + P2 as (B% 4P 2+ >~i2> - A2

17
1 33 " o0 ap
Re23 = = s PH z i ' S 1? I @p {o —_—
22%%, % i=1 j=1 p -8
1 &
1 A?

— Y
— 2 ., 2.2 Z o 2. 2 2. 3
/a/" +P %+ . (p +P_“h %) (Vgmp/ +P +Rj )

~

1 3 3 d
_ 2 Y. i G A) - 2
2ﬁ2 714 5% ih dP L I, (8, ? A
24 2 4 20 - ‘
ALt (4.93)

where the integrals 13(3, Aj) and IS(BZ,Aiz, 352) have the
same meaning as in (4.92) but for some changes in the

values of certain parameters. Hdence, the sum of Re Re

21’ 22
and Re,, given by (4.91), (4.92) and (4.93) will give the
Re, £B, in the HHOB scattering amplitude (4.78). With all

the terms evaluated term by term, the FHHOB is now known.,
for the evaluation of the TPHB scattering amplitude (4.72).
Now the task remains only to evaluate the partial wave part

of (4.72).

The important part in the partial wave analysis is
the evaluation of the phase shifts. Since it is difficult
to carry out the infinite summation of the partial waves,
the method described earlier was used throughout this study.

By this way of summing of the partial waves, the contribution
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of the less significant higher partial waves also is taken
care of through the Born approximation (4.59). For such a
type Of analysis, the evaluation of the Born and exact

Phase shifts becomes necessary. The evaluation of the Born
phase shift is simple as given in (4.60), whereas the
determination of the exact phase shift involves the

solution of second order differential equation. In the
present study, the Numerov method was developed for the step
by step integration of the radial $chro"dinger equation out
from the origin into the asymptotic region where the potential
has a negligible effect. In this region, x > Xye the range
of the potentials we know the values of the unknown variable
and its derivatives. S0 the phase shifts can be computede

The details of this procedure is given belows?

Consider the second order ordinary differential
equations Of the form ¥Y" = F(x) ¥ (4.94)

It can be written as

v = F (x.) Y.
b J h

Using Newton's formula for forward interpolation and the
method of replacing the derivative of a function by a
polynomial and integrating that polynomial over an interval,

we get the Numerov formula

2 2 2
h 4 ~F) Y,
{1— E Fj-l-l) Y_j+l = 2 (1- ) FJ) YJ, Fl 12 j-1 j-1

-

2
+h F.Y, (4.95)
I ‘
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Thus for j=1, we have a formula for determining Y _ provided

2

we know the two previous ordinates YO and Y Here 4L

l.
denotes the step = intervale
Now, in the scattering problems, for example electron-

hydrogen scattering, the second order differential equation

is given as

2
d 2
( —3 + k- JQL%iil - 2v (x) ) F (kix) = 0 (2.96)
. odx X ' )
1l =-2x
where k; is the incident momentum and Vix) = -(1 + ;)e

Comparing equations (4.94) and (4.96) Y = F, (kix) and

2 ¢ 2vix) (4.,97)

Thus if the original twO values of

F (kix) at x = 0 and x = O + & are known, using the

Numerov's formila (4.95), the value of El(kiX) at x = x,

cen be computed. For x 2 X,+ the potential V{x) can be

neglected. At such distances, the differential eguation

being solved is simply Bessel's equation with the solutions

L i:kaki

F (kix) L

X (A& (ki) jL (kix) - ab(ki) n

{(k.x) )(2.98)
- l -

At X = xA. our algorithm for solving the radial equation
(4.96) using Numerov method repetitively out from the origin

, dF
to x = X_ yields numbers for F, (x ) and Lot / » The
A toa ax
- XA

functions jL(kiXA) and n (kixA) can be obtained, for

example, from tables. Theréfore' the unknown coefficients



Ay (ki) and B, (ki) of (4.98) can be determined from the

pair of equations

5 b ) ) ) (4.99)
—Ez§;*7 = B (ki) it (kiXA - Bt(ki n, (kixA 4,99
d F dj dn
{ L 14
[— ( =) J=a&)[ =4-8 (k) [ =] (4.100)
dx ey x 2 UL ax ]%A E N e Ty
for each value of the energy k2. The phase shift is
i
given by BL(ki)
tan b (k) = : (4.101)
L1 )
: Al(ki

Thus, it is obvious that if the two initial values of the
solution Fb(kiX) of {4.96) are known, the phase shifts for
different | values for corresponding energies can be computed
using (4.101) through the procedure discussed above. Hence,
the reﬁaining task is the computation of these initial
values. For starting the solution, we assume that at small
values of x, it is possible to expand the scolution in an

ascending power series in Xe

% n 6
F, (k. x) = 2 a, X * ' (4.102)
L i
. - n=o0 .
Substitution of this in (4.96) yields

L+l
B (kix) ~  x + since it is regular at the origin

x>0
and we want physically significant solutions (i.e. no
infinite probabilities). Hence, the physical solution
demands that at the origin.

(0) = o .o (4.103)
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If the numerical integration is begun at x = 0, for 2 >1,
aF.
then FL (kix) and . are zero and we get the trivial

ax
solution FL (x) = 0 for all x. However, if we step a very
small increment %Jaway from the origin, then F; and its
derivative can be computed from the first term of—their
series expansion (4.102). Hence FL (kix) = ao‘%%+l.
However to obtain’greatér accuracy in the solution than that

offered by the leading term at A, one can retain the next

terms in expansione.

In the above discussion of the numerical procedure
to solve second order differential equation, we have assumed
that the potentials V{x) tend to zero exponentially and that
at @A, the value of the independent variable beyond which
V (x) can be neglected, the numerical solutions can be fitted
to the Bessel functions. However, for potentials which

—er o

vanish at infinity as x °, 8 31, x, value would be very
great indeed if we adopt the step by step procedure discussed
apbove. This would have the f0110wing undesirable conseguences:
(1) greater amount of computer time required (2) the
accurulative effects of truncation in the numerical formuilass
Hence for such long range potentials some corrections like

the WKB method or the numerical procedure due to Burke and
Schey (1962) should be made after stopping the integration

at somé on“ However, for exponential potentials = which

are used in the present study = the inaccuracy due to the

above mentioned reasons will be negligible. This fact is

ocbvious from the later analysis of the phase shift values



obtained in the present studye..

4
-

The two principal disadvantages of the above -
discussed Numerov method are (1) the process of getting the
method started (2) the difficulty in changing the mesh-size.
In the Runge—Kuﬁté Method of solving the differential
equation, both the above disadvantages are absent. It is
a self=starting method and the step-size can be changed at
any point in the integration. (Refer Kenneth Smith). Hence,
in the present study, both the'procedures ~ i.ec. Numerov
method and Runge Kutta method = were used to £ind the phase
shifts for the Yukawa type of potentialse It was found

that the results almost coincide.

For the purpose of checking the computer programme
set up in the present study for the evaluation of the Born
(4.60) and exact (4.101) phase shifts for a potential, both
%he pﬂase shifts ﬁere e&aluated for the Yukawa type of

Potentiale

The results Obtained for different L values ranging
from O to 10 are shown in table 4.7. It may be noted that
for higher values of , bhoth the phase~shifts approach each
othere. The exact phase shifts are calculated in two wayss
using the Numerov method and the Runge~Kutta method for
solving the differential equation (4.96). It can be seen
that the results (second and third columns of table (4.7)

almost coincide.
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Thus for the Yukawa type of static potential (4.79)..

the phase shift in the Born apprgximat%on (4.60) is given'
A
b ¢ R AV N N ' (4.105)
v = =2 1 Q(—t——-l 4.105
L kyd=t Aoaxk,? .

where Qb represents the defined polynomials tabulated as

Q(x)—_llnl'x
o w—
1l -x

l+x
In —— =~ 1 etce
l=-x

(SR - A N

Ql (X) =

The exact phase shifts for the static potential (4.79) are
determined using the Numerov method described earliers.
Both the phase shifts are compared and the .L value is so
fixed that beyond this value of L, the phase shifts differ
by less than 3%e

Now, another major step in the evaluation og g{xe)
pr (4.72) is the evaluation of the quantity <f/e21 L /i

Here, taking the JWKB approximation,

(o)
281,‘= X = X + AX as given in $4.45)

O
2 b-b 3 o :
Here X_ = — [1n / 1= Z {3_ K (or,) ] (4.106)
[o) ki b =l o 3j -

where Ko is defined earlier.

2 o0 o) a0 '{J- -77\3;
Now Ax:-*—-VCZ*§Idz-sz+J‘E e — rdzg
k. ° Vo 0 o J om z '
i : b
1 1 1 A,
= é 2 5172 Tt ) }Jr % 3%
kB (/b=b,/% + 2,7) b J b 7]

. a )
(E{.f) 7\3. K¢ (b }\j% F4.3.07?

- ” ~
~



’ ilx. +A4Ax
Now | = <£/e © / i>

! " -?'h.b
TR ok ma g c !
= k. ; . K (b A, Ly, -
S Y 3 e P T E 3G —=—-3 !
21 ,
A L - ) (4.108)
£ i1n + / 1% 4.108
N e b kiE (/b-bl/ +23 2)1/
where

w = T Y (= ) Mo @A)

.'l.
}_—. ce, (/b-bl/ 2i/k [, L = ]
=Y < f 1+ /i
. , 55 (omp/2a2) Y2
where, _
. (%-iz’(_t{(b?x) iz, ['Zfeu}\jb lI)
= e i3 Ty + KE "3 D b

In the evaluation of the above expression, the assumption is

taken that b << b

1
/b=ba/ 2i/k. b 2i/k
sothat('—'}s-—]-'-) 1:("'5']"”) i

Now the evaluation of r is possible using the standard

integration technigques which is little lengthy, thus giving

. L
§2+—) (3.+-—~)+—-—-—3‘-—- 1“"‘"2"
i .
1(1+-——) (4.109)

2i ’
where & = — and Xl and Y are same as defined above. The
1

expression for f—‘can further be simplified using some-

simple mathematical convérsions.
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Thus if rﬂcan be written as e ( e + if) where
-A b

2 . X ™ 1 S
Y:*METI<(b7‘~,)+—‘]-‘-F[2Te - —] =2 1n b,

kij J OA »J. k:i." _?_'; b b ki

..(4.110)
s Gl B ) g\
then F e 24+ 1) P Cog &) Sin
= R 4 : L
[(e Cos & -~ £ Sin &) + 4 (f Cos & + e Sin £)] (4.11)
(1) (1)

where & = 81, + Y where S&/ is the phase shift

for Vl = VSth)o Now uging different vealues of phase

shifts in the exact and Born methods, the L value upto which
the above seriesg may be summed is fixed at N and the
gammation is carried out as described in (4.59). With the
help of the tabulated values for the polyhomiais P (Cos @)
such as PO(COS e) = l,R(COs ©) = Cos © etc. the evaluation
of Fp.. in (4.72) becomes easy. From the knowledge of the

complete expression for the scattering amplitude (4.72), the

DCS may be computede

In order to obtain the total cross sectiong in the

TPHE approximation, the usual expression for TCS may be used.

ax
ot :
| T @)
Thus Gt = % m Ffi ( ) 4 0
i .
. 4n g In ¥B/ +Im Fp /
= X q=0 q=0

€
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= ? g Imy / tImy/ o+ Img / + —l- Z (2{+1) sin 6(1)
i g= q=0 g=0 = k1 L

( £Cos & + e Sin &) % (4.112)
From the expression (3.17) for Iml, it is obvioug that
-4 4 1 dp
- 20 =
(P4B”) (P 4B“+A%)

Im, / =
1 2
g=o Ak, &k A

~ -~

which may be simplified using the substitution P2+Bz = X to

1 2 2
give Im;/ = =~ (ln £ ’*“2% - gﬁ ) (4.113)
g=0 kj B B%+a
From the expression for Im, (4.87),
3 87Y, a 1 -ap
ny/ =% FTRX &k 3 f T 2 dy of 2 a2
g=0Q j:l i A (P +B’+A ) (P +B +Aj>

~

Q- +
where the substitution p% p—+7\2 = x will be conveniente.

Thus using standard integrals,

2 42
. - S
Im, / = 23 8Y; g L + 1n ——’—‘18 :
20 3Tk T - (B B2+ 4
L - 1 ]} (4.114)
[(}\32_4)2 4(?»3.2-4),

Further, making use of expression (4.88) and proceeding

similarly as in the previous cases,

ar3 1 3 3 LA
Im3 / = T I dp  ——— L X
q:.—.O i

4 . N
427 1=l j=1 (PZ+B2+Ai> (P2+Bz+k§)
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- %_ % —5 In ( -5——%"“ )  when }\l-_;,é A,

ky T AR - BTNy S

1 1 . ( )
— & when . o= oeeld, 115
ki i J BZ + "32 ».‘L -]

Substitution of the expressions (4.113), (4,114) and (4.115)
in (4.112) will give the total cross sections for the ESGH

process in the two-potential HHOB agpproximation.

Ancther study performed in the present work was with
regard to the significance of AX in the phase shift. For
this, the differential cross sections were cbtained after
suppressing the AX part in the expression for X and using
only Xye The resulting F for this case will be

2i
k.

24
ko /b=b./
l’—_‘ze(kig Yj‘}{o(b}j))ff/elln L

b

/i

~

which is much simpler compared to the I—' given by (4.108).
But in actual practice, the inclusion of AX part in the
expression for X resulted in only a negligible contribution
for energies greater than 100 V. Similar was the case
reported in two~potential eikonal approximation (Ishihara and
Chen 1975) also. Thus it was concluded thatAX can be
neglected-;for computations involving incident energies

greater than 100 &V without any significant error.

Another important scattering parameter, the total

elastic cross—section (TEC) can be calculated using

A dc

6&: 27{3‘)-&?}_ Sin © a@e S (4.116)
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Results and Discugsion 3

The differential cross sections, total crogs=~
sections and total elastic cross sections are calculated
for the ESGH process in the two~potential HHOB approximation
as discussed above for a varilety of incident energies and a
wide range of scattering angles. In figures (4.12) and
(4.13) the present TPHB DCS are shown at incident energies
100 eV and 400 eV alongwith other theoretical and experimental
data (experime%;:al data of Williams (1975) and Van Wingerden
et al {(1977), EBS results of Byron and Joachain (1977), and
HHOB (Yates 1979) results). From‘the figures, it is obviocus
that the present'results égree with experimental values
nicely over the entire angular region. Since tne present
TPHB formulation was basically an attempt to improve uporn the
HHOB method of Yates (1979), the real comparison should be
made between the results produced in both the methods i.ec.
curves A and B. It may be noted that in the present TPHB
calculations, the contribution due to third Born term is
neglected on the basis of tht assumptions drawn earlier.
However, this type of reasonable comparison between the
curves asserts that the improvements whatsoever oObtained
are due to the approximation introduced and not due to the
ijclusion or exclusion of any particular terme. Thus the
avoiding of the laboriocus third Born evaluation f£inds enough

justification.



: (2) (3) (3)
In the HHOE approximation, Re £ = fl + £
HEA 2

. (3) . (3)

and if B = 0, then only fl remains such that Re £
HEA
(B=0)=*¢ 53) (B=0)=f¢f (3) '« In the high energy
AE GES
approximation, B = T— being very small, it can be approxi-
i

mated as zero in practical situations for the sake of
simplicity. The contribution of B in the scattering amplitudes
is small (as seen in the comparison between the imaginary

terms in the GES and Born methods) when compared to the
important part played by it in saﬁing some of the integrals
from divergence problem (compariscn between GES and HHOB
integrals). Hence the significance of the B factor. Keeping
all these'points in mind, third Born term can be approximated
to ghe third GES term within a certain accuracy. Thus in

the present study the HHOB calculations were done incorporating
the third GES term. However, it was Observed that, curve A,
oenly gives better agreement with experimental values reported

in the recent paste

The main attraction of present TPHB results is that
it gives reasonably good results even at lower energies, for
the entire angular range. Since the total interaction V is
replaced by.a reduced interaction V = Vl in the TPHB approxi-
métion, the lower limit of E can élso be pulled down slightly

such that Y<x l. Hence the gpproximation should give better

B
results than in the simple HHOB approximation in the case of
lower energy of Incidence also. From the comparison between

the two figures (4.12) and (4.13) at 100 eV and 400 eV, it



can be readily observed that as expected the results
improve with higher incident energies. But the most
covetabie feature of the present TPHB results is the very
satisfactory cross sections in the large angle region.
The general experience is that mapy a theory which gives
quite good results at small angles, gives poorer fésults
at large angles. Same is the case with the HHOB approxi-
mation of Yates (1979). Hence, the improvement of the
present TPHB results over the Yates' method is most
significant in the large angle region. At all energies,

the two=potential HHOB results are far better than the

simple HHOB approximation at large angles.

In table (4.8) the present DCS in the two potential
formalation are éiveﬁ at certain sample energies 100 eV,
200 eV and 400 eVe ©Since the summation of the partial
waves as described elsewhere requires the evaluation of
the phase shifts in twO ways, comparigon of the values etc.
it takes more computer time and hence the present studies
were carried out only at certain chosen values of incident
energies, at which quite a lot of data is available for
comparison. However, the present work can be carried out
for other energies also if required, without much difficulty.
Since the motivation behind the present TPHB formulation
was the necessity to modify the HHOB approximation, the
prime interest in the present study was only comparison
between the two sets Oof results, which can be carried out

with two or tnree sets Of datae



In tables (4.9) and (4.10), the total collision
cross sections (ICS) and total elastic cross sections
(TEC) for the ESGH process calculated in the two potential
HHOB approximation using expressions (4.112) and (4.116)
are given, alongwith other data for comparison. The
present results are quite encouraging and as in the case
of DCS, the TCS and TEC regults algo improve with higher

incident energiese

49 e - He elastic scattering in TPHB 3

The success of the TPHB approximation in describing
the ESGH process as demonstrated in the previous section
is the main motivation behind the application of this
approximation to BHe processe. The study of EHe process is
computationally rather more cumbersome than the ESGH process.
Naturally, with an increasing atomic number, the interaction
potential as well as the wave function of the atom are
bound to become more and more complicated. This increasing
complexity results in studies which are centred on Righter
atoms -~ sometimes even the lightest atom, hydrogen. With
the advent of the hydrogen =~ like representations of the
alkali atoms through core approximations, the stﬁdy of such
atoms is rendered easier. But the helium atom, with no
such facility for simplification, remains a computational
hurdle in the atomic colligion theory. A comparison of the
expressions to be given in this section with their counterparts

in the previous section will give a quick idea regarding the
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increasing computational complexity as we go from H to He.
However, inspired by the results of the previous section,
a study of the more complicated EHe process using the TPHB

approximation is undertaken in this sectione.

For the EHe process, the interaction potential is
given by
1 1

/E =5,/ i /L-x,/

+ (4.117)

ol

v (r,rl,r23 = -

and V, (e ry. rz) =V (r, r;/ r2) - Vl(r). Here also,

for the‘arbitrary'central potential Vl(f)) the sgtatic
potential of Bonham and Strand (1963) is chosen, considering
the simplicity rendered by this choice as well as the
reliability of this potential as experienced in the previous

secticne.

Thus V (r, rl'rz) =V (r.rl¢r2) - Vst(r) (4.118)
~A 1
3 .{* e jr
where V. (r) ==~ 2 2. 1§ — (4.119)
St J:l r .

The procedure for the evaluation of the scattering
amplitude in the TPHB approximation can be carried out
exactly parallel to the gtudy of the ESGH procegs. Hence,

the first problem is the evaluation of F given by (4.78).

HHOB
For this purpose, the ground state wave function of He is
taken as the Hartree -~ Fock wave function given by Byron

and Joachain (1966).



¥ (rl. r2) =0 (rl) ﬂls(ré) (4.120)

1 ~Y.r -Y r
(a e * +Be 2)

v/4

2.60505, B

>

with ﬁls(r) =

where A

i
i

2.08144

]

l.41, Y., = 261

1 2

The evaluation of the first Born amplitude in (4.78) is
gimple which comprises of w0 parts resulting from the two
parts of VO(4ellS). The first part has been evaluated in

an earlier éectioﬁ whereas the evaluation of the second part
is exactly similar to its counterpart in the previous
section, but for the numerical values of certain parameters.

Hence the first Born amplitude can be derived as

g8 : 2 _ Ky Ky :
S S e S 2k D" % 3(ak 2y
g 1x> 2k 2k” "9 Tk 1k "9 Thox
3 Yy
-y B - .o (4.121)

=1 (q2+Aj2)

where Dk’ Klk and sz

Ng and Aj are defined constants and g is the momentum

are same as given in table (3.9),

transfer;

As in the case of ESCGH process in the present EHe

(2]
£i.
amplitude is given by (4.81). As a result, each term

process alsoc, U which appears in the second Bom

(imaginary, Real 1 and Real 2) in the second Born expression

will consiét of three terms each and can be written as



Im £fB = Iml + Im2 + Im

2 3 §
)
= R
Re) £B,= Re;; + Re;, + Rejq ) (4.122)
)
Re, £8,= Re,; + Re,, + Re, %
For the g -~ He scattering,
A 1 ipezx ip.x
v +P L) = 5, (e 1, e 2.2
z 2782 (0%4p 2)
( 3y - 3 - )
and V__ (g=-p -~ P = . (4.123
- 2 2 2
st 1'1 x (Aqrg/ +p22+ki )

The evaluation of Iml involves the first term in (4.81),

which is the U (2) defined by {(3.37)
£i ]
Since Im fB, = f ap U Im, is given by (3.38):
2 k- * )' l
i £i ,
3 - A
Now Im = — S0 § gp < y /T (@+p )Y >
2 k. - Z
1
- A,
Vst ( q-P -Pz‘i}
3
9 3
- -8 b= A S )
1 - A (P2+PZZ) ::,1. _}:‘:l k2k3 dKlk
1 1 a 1 4
p24p 24K, 2 T k.3 = dsz) (%P 2,k 2 ) K. 3 K.3 ]
z 1k 1k L ex. z ™ok 1k 2k”

1

x 2 7 2.2 3
A o . P
(/(q /e, + 5, +7\J.) _

which can be simplified using partial fraction method and

can be broken up into integrals come across earlier.



8 9 3
e — T b 1 a 1
Thus Im, “AX; k=1 j=1 D ‘G é ( )
Kox3 Kk Ky 2
2 2 1 a L
I {p°, K..2, N.°) + ( )
4 1x% Ny 3 x . 2
- 1k - Pox 2k
2 2 2
14 (8=, Ky ™ o ?\j ) ; (24.124)

Here Dk"Klk and sz are same as defined abovee. The

constants originating from the static potential are given

as

N, = 85.4037 Yi = 4.0832-03

A= .89 = 1.1249-

) 748945 4{2- 1.1249-01

A = 450 = 8.8296=0

3 1.4502 Y3 = 8.8296-01
K I "-‘stdpﬁ (P+P YX) T (PP?()
Qvr, m3 ] ki =i st -+ z st - z

Considering the analogy between the Vs for ESGH process and

t
EHe process (given by 4.85 and 4.123) it can be seen that

there is change only in the values of the coefficients and
the exponential parameterse. Thus the derivation of Im3

should be similar to the Im3 for ESGH process, but for the

above changess. Thus Im3 for EHe process can straightway be

written as

1

M
I

LA A R 8%, .

2 5 2
ALC) (4.125)
3 ﬁkiiljgllj ) i3

§t

where Ai and WE‘ are as defined above.

~
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Now the real part I of (4.78) is evaluated. From

(4.81)
4.%2 OOdPZ - A - A
R < .y o 3
Rej; = - I ap "{°P ” y/ v (P+PZ¥~) V (g~-P Pzz)/tp
i Z ~ -

which is same as the fRe, evaluated in section (3.4)« Thus

Re,; is given by (3.39)

8 x2 w dP_ _ .
R = fap I < P+P >
o " € LT ¥/ V (PeP )Y
i Z ~ -
\Y (g=P Y )
st T ~Pzz
2
8 x © aP 9 3 :
= J il = § 2z 7 2:Ek2Y?‘ 5 2 .2
2 I ,
: -8 =1 = _
kg P kel 3=l & (P54, %) (amp/ S4B 2] )
1 a 1 1 a 1
2 - 2 2 ¥ 3 2 - 2 2
p p
K3 ARy FPReP %K), ° Ky W ak,,  PU4P 4K,

4
il
K3 %307

This can be also brought to the integrals of known form by

the method of partial fractions. Finally,

-8 9 3 1
- 3 . § 1 d I
Rey o 2, k=l j=1 Dy 7; % 3 ( oK ) % o 5
A : - Tox” - 1k 1k
1 a 1
2 2 2 2
(82, x.. %2, A2 ) 4 ( ) T (8%,K 2,2\.2}
¢ 1k A I k.2 B *Tox" )
- 1x 2k 2k

s (4.126)
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Here Ek’ Klk' sz, Aj' Y; etc. have the same values as in

their counterparts in imaginary termse

2 ap
A fap T —— § ¢ ) 7 7
= — ~P-P Z ]
Rey , ny :{F ae I — VP + P2V (g-P-P Z)
R Z -

can be compared with similar Re in ESGH process. Thus

13
in the present case

Re.. = ~ g 5:.13 f 5 15 (Bzr }\izl A 2) (4.127)
137 2 . J
A ki izl J=l - S . 3

Thus Re, £B_ term of the F part (4.78) for the E He

1l 2 HHOB

process will be the sum of Re,., Re..  and Re given by

11 12 13
(3.39), (4.126), and (2.127).

In order to evaluate Reszzl a parallel procedure

as was used in the ESGH process may be adopted. Thus,

"27\2 ; }o ( 2 2 ) d 1
Re,, = ——3 ap ap_ (P2 4 p* ) —
21~ k32 —e0 7 2 ab p_-B

<Y/ VAP + sz 7 (q—P-PZ£) /7y >

Using the expression (3.37) for < v/ v/ y > in the above

l te::m,
-2 %2 o , . 4 1
Re21 = 5 :HD fap I ap (Pe4p <) TR
Ky -0 2 zZ  ap z
1 1 . g 5 é 4Klk
2 2 2 2 k 2 2
(PP %) (/q-p/"+P,") 47 k=l P Ky 3 gty 2y
4K 16 a 4 4
i ( gk " g X 35 &3 J
Kpd lay2)2 Kl Kl - Tk K3 B Kpd R
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RKop K13 By Ep3da, o Ky &y Bypa A B,

where Ay, B, A 82 are defl?ed in (3.37).

2%
3 (gP4ky, 202

1 9 D a g[ 4K

U
2, 2 k=l
2A ki ; dag , 2k

4K 16 ]323(.8,0) (=2

.+.
2 2 7 . . K. 3 ak
K., 3(q +K2k2) K.3 k.3 2k 1k

ik 2k

4 d

1z 2
13(5,0) -g3 3 (B,Klk)] + - (
K. 2 1k D -

d

[12(52 K2 ) o

(1. (B%,x. 2 ) + 1_(8,0) - TB,x_2) ]+
2 2k 3 3 "ok
. . K 2 “ . sz 2 - * dK

2k 1k

a 1
[ I (B3, k. _2) - I (8%, .. 2, K, 2)

2 1k = 1k
Ko K2 : 2k 2 :

1 2 2
2 : 4. T K ‘] i
- %03,ng,§mw“f Kf 1(P’2k>
lk ’ ’

Since —73-- IB(B' 0) = ©, simplification of the above
d

expression vields

D
Re,, = = =g I k
21 2. 2 k?l as _ K2k3 dKlk

2% ki

2 4

2
2 T ¥, " + ( )
[1.(8%k, 2) = ——— I_(B, X, 2) ]
2 . 1k 4 klkz 3 1k klk3 . dkzk

d d
I. (B, &2k2) ] - ) ¢ )

3
K2k2 . ) : dKlk “dK2k

2
[12(8 K,y 2 ) -

. 2
[~ I, (B K2 oK 2y
k.2 > 1k T
2k , , 12
4 A

1

I (62 &, 2,K2k2)]j (4.128)

d 1

® 2.5 2

= J g [ gp P
Now Re,, ”: dk I ap, ( +P, )
aB Pz - B
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. ) PP - AL X
AT (PP %) (/q-B/ 4Pt : ) 3 Ky
1 1 d L 4
+ o
2 2 2 2 %
PeLp X
+P +Klk2 lk3 dKZL P +Pz +K2k2 Klk3 K2k3A
4 9 3 d
i R
sziz k = 1 j=1 ap
t 1 4a 2 A 2 1 d 2 N 2)
2k 1k - 1k 2k -
: 4
e S—————————— IB(B,AJ‘) 3 e (4.129)
Klk3 K2k3 B . .
27 ‘ a 1
w -
Re,qy = = 5 ])f gp [ ap_ (P%4p 2) —
ki —00 z Z aB PZ'.B

A . A
Vo (p +Pz‘z ) Vst(q-—P-Pz‘K)

Considering the analogy between the §st for H and He(4.85)

and (4.123) Re.. can be directly written from (4.93) as

23
2 3 3 d
re. o - £ 02 NN — [ 1,0 A2 1% 200)]

i
eees(4.130)

Now Re, £B, = Re,, + Re,, + Re,, given by (4.128),(4.129)

and (2.130),

Now, with all the terms in (4.78) being evaluated.

FHHOB is known for the evaluation of the TPHB amplitude
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for E He process. Now the pértial wave part FPW of (4.72)

has to be evaluated for the same processe. For this

2 /o-b1/ +/2"R/
X, (s By 92)_ - 5 in — %2 )Jﬁxc(bhj)j(4.131)

A X is neglected assuming that it will not be mich significante

iX
. _ < o
g1 ) =gy /e 2 Find
Assuming that for large momentum transfers, b 1s small

compared to bl and, b2

’—""‘ b.b
. (o) 4i T2 4
£i 1 GF_ Y; —_—
e R N A e el Je
21
where ¢ = —— .
k.
i

Using standard integration techniques, the above expression

can be re-written as

r’“(bL) 4y g 2L « )-(3+-9)
fi . = = D 2 K A
p2F o1 K 1k 2k
|
} ‘b L pA
% (L + =) J(2+»——) g (4.132)
r 2 , 2 ! .

' 44
where ¥ = L ky % Y; K (bkj))

The constants B, ., Klk and K were defined earlier in this

k 2k
section. Writing g }(1 + ‘—CZ- ) l(z + -‘% )g2as E + iF
' £ D iy '
I (b ) = g - kK el (E + iF )

.4 : 3 ;
fi k=l g K3 .
1k Fox ot (& Koy
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where ¥ == — 2 I B (bA,) + = In 2 = — 1n b.
k. 3 °© 3 ky k
l * v - i
Writing the above expression in a convenient form
i ig
er ®)) e (e + if) (4.133)

Uging this in the scattering amplitude FPW (4.72),

(1)
F. = Z (20+1) P, (Cos ©) sin & . [e Cos & = £ sin £]

1
PWT L 4
;
i (1)
E (24 +1) P; (cos ©) sin é&~ [ £cos& + e sin &)

B

~

i
. e (4'134‘)

where ¢ = SL .+ 9

Here %il) is the Bomn phase shift for the interaction

given by (4.119). Hence

. . ) )
(1) 2 2K,7 + AL
Thus having computed the F HHOB and FPW for the E He

process, the scattering amplitude for this process in the
TPHB approximation can be calculated using (4.72). From
this DCS can be evaluated at different incident énergies and

angles.

In order to evaluate the total corss-sectiong for
this process, the imaginary part of the scattering amplitmde

(4.72) has to be evaluated for © = 0 guch that
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o 4R
G}Ot - — E Imy / +Im2 / +Im3 /
ki 3 g=0 =0 g=0
(1) .
+ — i (2l+1) sin S{ ~ (f Cosd + e Sin &) g (4.135)
k ) ’ . 4

i 7o

Evaluating the integrals occurring in (3.38), (4.124) and

(4.125), )
2 2,2 7l RN
11(8,0)/ =—-—§)Il(ﬁ,?\)/ === In ——3— >
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- In 2k
= 2
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Kox? 52 B+ Ky 2
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: 8 9 3 - 1 a 1
similarly Im, / = =—— & I D 1 é ( )
'q-_-.O ki kel j=l ‘ K2k3 ‘dklk Klkz
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1 . 82 . 512 1 , a ) 1 1
n +
5T "Kix? B+ Kyp2 Ky 3 2k. K2 Ay - K2
g2 . A2
ln——'l"' § 00(40137)
2, .,
B+ szz
and Im3 /
qz
¢ 3 3 1A g% . A2 \ \
m — 1n ; AT R
A " 2_y 2 2 2 oli 3
k; izl jsl Aj N BC + hi . -
R R 5 (e.139)
@ o B D e s A, o A, ..(a.138
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The substitution of (4.136), (4.137), and (4.138) in (4.135)

will give the TCS for E Helprécess in the TFBEB abproximation.

The total elastic cross sections for this process
alsc can be evaluated making use of the DCS values and the

expression (4.116)

Results and discussion 3

The scattering parameters DCS and TCS obtained in
the present study of the elastic scattering of electrons
by Helium étom using the two~-potential HHOB approximation
are compared with other theoretical and experimental datae.
The results are found to be encouraging as follows the
comparison. In fig.(4.14) and (4.15), the present DCS
values at 200 eV and 400 ev are compéred with other recent

data (HHOB results of Rao and Desai (1981), GES results of
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Singh and Tripathi (1980), EBS results of S8yron and
Joachain (1977), experimental data of Bromberg (1974), Jansen

et al (1976), Register et al (1980)).

i

It can be seen from the figures that the present
results agree well with other data. It may ke noted that as
in the previous section, the two-potential formulation in
HHOB approximation yields better results than the simple

HHOB approximation (Rao and Desai 1981), especially at large
anglese Thus the t&o—potential formulétion is an appropriate
remedy for the main disadvantage of the HHOB ~ gpproximation
namely over estimation in the large angle region. From

the comparisgon between the present results at 200 eV and

400 eV it is obvieous that the results improve for higher

incident energies.

In table (4.11), the present results for differential
cross sections are gi&en at few sample energies. The
calculations were carried out only at these energies because
of the lack of computer time, since the calculation for each
energy imvolves the evaluation of the Born and exact phase-~
shifts, their comparison etc. besides the lengthy evaluation
procedure for the scattering amplitude. Since the study at
few chosen energies is sufficient for the prediction of the
behaviour at other energies, the present study was confined

to only those energies with an abundance of data available.
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In table (4.12) the present TCS values are
compared with the results reported by other workerss
The present results are rather satisfactory, the trend
being the same as discussed above. Hence better results

are to be expected for higher incident energies.

In the light of the above discussion, the conclusion
can be drawn that the two-potential formulation in HHOB
(TPHB) as derived in an earlier section, improves the
basic HHOB approximation of Yates (1979) in the study of
the elastic scattering of electrons froﬁ hydrogen and

helium atoms.

4,10 Wallace type Of trajectory correction in HHOB

approximation @

In the foregoing few sections, an attempt to modify
the recent HHOB agpproximation of Yates (1979) « namely
TPHB approximation = was discussed. In the present section,
another effort is put in with a view of improving upon the
HHOB gpproximation. The chief motiyation behind such an
idea is the work reported by Wallace (1973) wherein he has
incorporated the trajectory correction in the expansion of
the Green's function of the eikonal approximation and
carried out further analysis of the perturbative seriess
As mentioned elsewhere in a previous section,the similarity

between the modes of expansion of the Green's function in

P
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the eikonal and HHOB approximations‘gives mach scope

for a similar attempt in the HHOB approximgtion alsoe.
Keeping this in mind, in the présent: study., the HHOB
analysis wasg carried out after incorporating the
correction in the Green's function, the scattering
amplitudes in the second Born aspproximation were derived
accordingly and the new expressions were used to study
the elastic scattering of electrons by hydrogen atom

(ESGH process) .

Theory

The second Born amplitude in the HHOB approximation

is given as (Yates 1979)

£ = = & far e v, {x ) I (4.139)
i -> f ~ n (o] tn o_ n '
¢
' -“i}'si‘.EO ' ) I )
where I, =/ dr e Vo, ng-go G (Eo
L ,
1 . i (ki-l_«:n) oI .
- = I q;'o e ‘ Vni(£o-£o)
ige.r '
e ="=0
I as — , e —> o (4.140)

|
where s = ; - gm‘

It is assumed that Vni is slowly varying over the distance
of a wavelength of the scattering electron i.ece. kn a>l

where a is the range oOf Vni' and that En doesg not differ

greatly from ki in either magnitude or direction.
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Let us denote =3 = G in {4.140)
S + 2S.kn

(suppressing € for the time being).

. -1 2
ieee G 7 = 57 + 28.k N (a)

Now, dropping the quadratic term in the Glauber way.

g‘l = 28k —_—> (b)
Abarbanel and Itzykson (1969) have taken

1
k, =K= 3 (ki+kf)

. . Ca1 = 284K T (c)
--l —l .2
From (a) and (c), ¢ = G:Al + 8 >(a)
g (1-%) = a
g =Gy = 28k U=l = 282k
where A = 1 = Cos g .
feee gl ae TH v A2sk ——> (o)
‘sAL

From (@) and (e),

i R
teee Gl o g™ o > (£)

26



leee G = g + gNG = g + gNg + gNgNg + = - -

1 i + 1 2) 1
le@e = = ( A 2s.k =s
o2 . n 2s.k
Zs.kn+u ZS.kn ZS.kn . n
1 1 A 52
ice. =3 = + — - 7 2 (4.141)
s +280kn ZSokn ZSokn 2Sokn

It should be noted that in the HHOB analysis (Yates 1979),
A

28k

- term is absent. There it was assumed that Eh does
n .

not differ much from 9] in either magnitude or direction
and hence the integrated expansion of (52+2§. gh)"l in

powers of s2 should be rgpidly convergént. However, in the

k. + k
present analysis, since provision is given for kn o - £
2
rather than k= k;, the present expansion (4.141) should

be logically more accurate. Since M =i-Cos % . it may be

noted that at @ = O, the additional term in the expansion

becomes zeros However, the

(4.141) i.eo Soh
prominence of A iflcreases in the intermediate angles region.

Now, further aﬁalysis of the second Born term using (4.141)
can be carried ocut as follows:
Substitution of (4.141) in

I (4.140) gives

'
1 ]

1 . ik, =k )ar .
_ =i’ "o -
In - (2ﬂ)3 ! d%b e VniFEC go)
a 2 . !
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23.5n-xe - ZS.gnvle
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25.k —i€ 2k o -©

[} []
where 6 (bo) is the Dirac delta function and-H (zo) is the

Heavy_side function defined by H (X) =1, x 2 0

= O, b4 <0
]
i ' -ilk.=~k J.r '
Hence I = ——f dr e 170 =0y (p wp)
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In performing the above g integration in cylindrical polar

1] 1] ] .
co~ordinates, ]:"n was chosen as the polar axis and L, = _}go—z-zokn.

Now the second term in the above equation is integrated

by parts twice thus giving the approximation
 }
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Here B can be oObtained using energy coenservation conditionse
The above equation embodies the central approximations in the

trajectory corrected HHOB analysis.

(2) i . ig . )
No W£ = I a P
we HEA 27k, n Lo € ° Ve FEO ‘
182 L 2
[-Ys) -3 PE i Z20
5 oag A ) A ' -t
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=0

eesl4.144)

The infinite summation over atomic states can be treated
by the simple method of defining an average excitation energy

AE

and then employing closure. Hence B = e
i

where AE is the average energy transferred to intermediate

atomic states during the course of the collision. Thus

(2) .
WE can be represented in a simpler form as
HEA
@ 1 igez, ,
WE =2 dr. e < Vil , - ==
HEa 27Ky o) » I}] f/ o) =n
1
co . ' -i B =z s A
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R .
) 2o 7t ; )
-~ -~ -— —-_— A——— ' -— -~
Sy 5y +—= V. gz ox =z
. 2k, =0
i
/ . .
73 o I/ g P (4.145)

The rest of the analysis can be carried out exactly similar
to that done in the HHOB analysise. The fourier transform

of the interaction is written using
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D 22 a
"i(PZ'i'PZ)Zo ( A iH. P +P! =) i
e e —-—-—-z—-*-Zki T )mfaéd Zg
(b -p) &
-1 b 2 H
e z © H(zo)

3

Making use of the following properties of g functions,

o0 -1 P z
I e 2 az =27s€(P),
—o0 Z

5 a% e ig-B)ep (25)° S(q-P>,

and J @pP 8(&9) \71 (P) = '\?i(q)

(2)
can be written down as

the final expression for WE
HEA
(2) } . 1 d
WwE . = 4r [ifap  ( (1+N) i v (P248%))
HEA ki . i ak
(2) A A l ‘o0
U (g—E~BX,£+BKJ--—]F)IdPI ap
£i n T -0 32
P2+P22 d 1
((1+N) + ) ——
. 2k, ap -8
(2} F.N A
U (g =P =P % ,P+P %)] (4.146)
£i “ Z_

where ]F stands for the principal value of the integral and
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&
o

(2) VoA

A ' A
U P P P = ‘ LB S B A
et (B + g %P+ P z) ¥/ Y (}E_’_+Pzz,£l Ly

- b1 A
V(£+?ZK 'Eyo ~~~£N)/ ¥, >

In arriving at the above expression the following result

was useds:

-1 ax
;odx e H (x) =A5(a) - 1 P« -‘]”é)

_p

(2)
Comparison of the trajectory corrected WE (4.146)
HEA

with the corresponding term in Yates (1979), we can see that

e ) terms differ in both cases whereas Of L
ki ki

remain same. Obviously, this should be the case since in

only Of 2) terms

the expansion (4.141), © ( %~ ) term is additional than in

i
Yates (1979) where O (Elﬁ) terms are same in both expansions.
In short, the real and imaginary parts in the second Born

approximation accounting for the tragectory correction can be

written as

(2) (2)
W Im f = (14N)Im £ (¢.147)
HEA 3 HEA
(2) (2)
WRe £ | = (LtN) Re £ (4.148)
HEA HEA
(2) (2)
where Im £ and Re £ _ represent the O (—Ef) terms
HEA HEA Ry

in the second Born of Yates (1979).

Now let us apply the(t§agectory c?rfections to the
2 2
ESGH processe. Since Im £ and Re £ are positive
HEA HEA
quantities in ESGH process and N is also positive, the

corrections will increase the values of the DCS only. In

view of the fact that the DCS obtained using the HHOB analysis
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of Yates (1979) slightly underestimates the experimental
values, the above situation is really welcome. The DCS
values at 100 eV cbtained after incorporating the trajectory
correction im HHOB are exhibited in fig.{4.16) and compared
with the HHOB results without correction and experimental

datae The values are shown at small angles only because

(1) HHOB is good for only small angles.
(2)  The correctness of the Wallace type of trajectory

correction has not been established for large angles.

It should be noted that in the work of Unnikrishnan
and Prasad (1982) incorporating the Wallace correction, +the

results are given for angles 30°Only@

On the observation of fig. (4.16) it becomes clear
that eventhough there is slight improvement . in the results
due to the incorporation of the trajectory ceorrection, the
difference in the two results is not quite large. The
present results have shifted towards the experimental points
of Williams (1975). However, since the improvement brought
is not that much as expected in the start of this work,
further computations for incident energies other than 100eV
were not carried out. However, there is enough reason to
believe that the correctien described in this section
combined with the previously discussed modification in HHOB
(viz. the two = potemntial HHOB formulation) will definitely

éive very good resultss Turning back to fig.(é.lz), in the
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small angle region, the results of the present work
were underestimating the experimental wvalues and this

underestimation may to an extent be removed by taking

(2) (2)
WE . instead of simple £ . in the two potential HHOB

HEA HEA
analysis leading to the results displayed in fig.{4.12).

More work in this direction is in progress in our research

groupes

In the foregoingvfew sectionsg, the moaified Born
approximation, the two-potential eilkonal approximation,
the two-potential HHOB approximation and the trajectory
correction to HHOB were discusseds 1In all the above cases,
the applications ef the various theories considered were
made with respect to scattering phenomena involving light
atomic targetse In the following chapter, an entirely
different class of atomic targets - the alkali atoms -~ are

taken up in the study of electron scattering from atoms.
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‘Iable 4s1la = Comparison of DCS (aozsr-l) for LSGH
procegs in the MBA using different modes
of evaluation of the integrals at 200.eV~

G Gupta and Present

Mathur (1978) study

10 0.192 oL 0.1830 01
20 0.490 00 0.5044 00
30 0.160 00 0.1623 ©CO
40 0.650 =01 0,6550 =01
50 0.310 =01 0.3110 =01
60 0:170 =01 0.1672 =01
70 0.990 =02 0.9927 =02
90 0.440 <02 0.4407 =02
100 0.320 <02 0.3219 =02
120 0200 =02 0.1883 =02
140 0.140 =02 0.1435 =02
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Table 4.2 = Various constants for the Li stom in the

Szasz Mc Ginn (1967) formulation

Core Wavefunctions

Basis {») (p) - (P)
(a1) %nl ¢ nl &1
15 4.4 0.133937 18.459
1s 2+4 0.914304 7436
25 4e4 -0.008925" 46 .89
28 2e4 ~0,029575 10,304
Yalence electron wavefunction
1s 244803 0.0083285 7812
1is 4,7071 0.0023871 20.42
28 1.738 =0.,0871464 4.578
25 1ls 0.0877919 1.1547
258 0.6615 0.9659271 0.41
25 0.35 0.0021811 0.08368
Table 4.3 = The constants for the Szasz Mc Ginn (1967) wave-
function for the ground state of Lithium atom.
i
/3' cy Ay D, .63.
1 ¢.0191° 2.48 - =0,11759 1735
2 0.01438 4.71 C.02989 1.0
3 =0.14162 4ok 0.11698 066
4 =-(0438945 2.4 0,00008 0.35
5 - - 0.02397 4.4
& - - 001745 204
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) L . 2
Tanle 4.6 = Total elastic cross sections ( ~a ) for the

ZLi process =~ comparison of different results.

B Present Walters_ $1973) Fsa’ HHOBY
eV resulcs Born Glauber

100 2.9 308 2.58 35379 3.152
200 1.4 162 140 1.614 1.577
400 088 0082 0978 haad -

a = Guha and Ghosh (1979)

b = Rao and Desai {1983)

Table 4.7 =~ Phase shift analysis for the Yukawa potential

~-h
~§/ for the wavenuaber k = 5
he

1 Born \ o Exact phase shift
Phage shift .a b

0 0.2308 00 0.2384 00 0.2379 00
1 0.1354 00 0.1383 00 0.1378 00
2 9.1739 =02 9.2820 =02 9,2809 =02
3 645710 =02 6.6315 =02  5.6296 ~02
4 4.8488 =02 4.8843 =02  4.8783 =02
5 3.6456 ~02 3.6629 ~02  3.6601 ~02
‘6 2.7766 =02 27618 =02  2.7587 =02
7 2.1348 =02 2.1254 =02  2.1298 =02
8 1.6533 =02 1.6498 =02 1.650L =02
9 1.2878 =02 102776 =02 . 1.2834 =02
10 1.0078 =02 1.0076 =02 1.0081 =02

O = Using Humerous method b= Using Runge=Kutta method
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Table 4.11 - Differential cross sections for the EHe process

in the TFHB approximation.

& 200 v 400 v
. .

10 1.2471 00 2.248 =01
20 0.5533 00 1.937 =01
30 0.2812 00 7.608 =02
40 0.1629 . 00 3,006 =02
50 0.1071 00 1.453 =02
70 0.3819 -01 4.829 =03
90 0.1886 =01 2.247 =03
110 0.1122 =01 1.326 =03

Table 4.12 = Total cross sectionsg (ag) for E He process in the

TPHBE approximation.

a2 b
B Pregent HHOB Win terg Byron and EBS
eV results et al ¥ Joachain
200  3.58 293 3.55 3.37 292
400 2.08 1.69 " 2.00 1.86 1.71

a = Rao and Desai (1981)

b = Byron and Jozchain (1977)
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