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CHAPTER - V

ELECTRON SCATTERING FROM alkali atoms

5 .1 Introduction s

So far in the thesis# discussions were confined to 
light atoms. Now we take up an altogether different class 
of atoms - the alkali atoms. The study of this class of 
atoms is important in a manyfold way. To list a fews

(1) their important applications in various fields' of 
science.

(2) ' the part played by some of the alkali atoms in MHD
(Magnetohydrodynamics) is very important in the 
present day energy crisis*

(3) the scarce data available on such atoms necessitates 
further studies*

(4) the increasing computational complexities involved 
in the study of alkali atoms thus resulting in the 
vacant areas regarding research on them.

(5) the additional provisions to be supplied for the 
study of alkali atoms due to their peculiar nature 
and behaviour*

(6) the establishment of the failure of certain widely 
used and popular methods in their study®

(7) the vast differences in the results reported on 
various analyses of the alkali atoms.
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As mentioned earlier while discussing collision 

processes involving Li atom, it is,impossible to take for 
granted that methods which are successfully applied to the 
study of lighter atoms can be equally successfully applied 
to the alkali atoms. The main reason for this conclusion

x

is the peculiar nature of the alkali atoms® in these 
atoms, because of the quasi-degeneracy of the ground and 
first excited states, there exists a strong coupling 
between these states. The large polarizability which is 
a characteristic of alkali atoms can be accounted mainly 
on this coupling because 90% of the polarizability arises 
due to the said coupling. Further, the size of the atom 
progressively increases as the atomic number of the atom 
increases. The outermost electron in the alkali atom is 
a loosely bound S-electron and hence the increased activity 
of these atoms. Naturally, when a projectile electron 
approaches a target alkali atom the situation arising will 
be much different from that in the case of a simple atom 
like H or He. The effect of the target on the incident 
electron and vice versa starts even when the projectile 
is approaching the target from a large distance. The 
target polarisation or the dislocation in the cloud charge 
also will be felt Increasingly in such cases®

It was understood since long that the difficulties 
to be encountered while studying alkali atoms are many (see 
for e.g. Massey et al 1969)® And it was very well proved 
also that methods like polarised orbital calculations are
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deemed to be failures in the study of alkali atoms* As 

demonstrated during the discussion on Li scattering/ 

absorption phenomena or removal of electrons from elastic 

to inelastic channels is all-important for alkali scattering* 

This fact was also proved by Vanderpoorten (1976) in his 

optical model (OM) calculations performed on Li scattering.

He has explicitly shown that polarisation effects are 

negligible in e - Li scattering. The OM calculations 

accounting for polarisation gave exactly same results as 

in the Glauber calculations in which the real part in the 

second term corresponding to polarisation is absent. This 

hints at the fact that polarisation is a nil-effect phenomenon 

in the case of Li scattering. Same should be the case with 

other alkali atoms also*

The Li atom being the first member of the alkali 

atoms/ the above discussed deviations from closed - shell atoms 

will be the least in its case. In his study on the alkali 

atoms. Walters (1973) has shown that the disparities are the 

least in the case of Li target whereas it goes on increasing 

progressively for Na, K etc. Further, in recent years, most 

of the high energy methods used to describe collision processes 

involving H and He could successfully be applied to Li 

scattering also. The HHOB method (Rao and Desai 1981.1983). 

eikonal Bom series Method (Byron and Joachain 1973.77), Two- 

potential eikonal approximation (Tayal et al 1980), fixed
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scatterer approximation (Guha and Ghosh 197 9), optical 
model calculations (Vander poorten 1976) etc® were some of 
the attempts to study e - Ld scattering. Reasonable success 
was achieved in all the above attempts also. Motivated by 
this# in the present study also, a few of the high energy 
methods were applied to the case of e - Li elastic scattering® 
The work done using the modified GES approximation and the 
modified Bom approximation were discussed in earlier sections 
(3.5 and 4.4) in order to retain continuity of the matter.
Iu was shown in those sections that the results were quite 
satisfactory while taking into consideration all the aspects 
of the problem. It is needless to say that in all the 
studies involving scattering from Li atoms, the results 
obtained were not as satisfactory as those obtained in the 
case of H or He targets. The additional source of error 
in the wave function is one of the factors for this failure®

In - comparison to the bulk of work reported on Li 
targets# the research done on Na targets can be termed as 
meagre. This situation is not surprising while considering 
the increased computational hazards to be met with as one 
goes over from Li to Na. The core approximation to the 
alkali atoms is of great help in this respect. When accurate 
and exact calculations are not within our reach# approximate 
evaluation has to be resorted to. In this process# part of 
the accuracy may be sacrifised. This is precisely the 
justification when even approximate methods are not attempted
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to. In this chapter# we will'discuss some of the present 
work done on e - Ha elastic scattering using different 
approximations and within the limits of the limited facilities 
such as computer ~ available.

One major problem in the case of heavy atomic 
targets is the non-availability of handy and accurate wave- 
functions. The approximation in the wavefunction creates an 
additional source of mistake in atomic collision analysis.
This is one of the reasons for the scarce data as well as 
unsatisfactory results in the case of heavier atomic targets 
compared to that of lighter ones. The wavefunction obtained 
using Slater rules has the advantage that it is comparatively 
handy. In an earlier section of this thesis# this type of 
wavefunction for Li was used. In his analysis on alkali 
atoms# Walters (197 3) has made use of the Coulson (1961) 
wavefunction for Li atom and the Szasz Me Ginn wave function 
(1967) for Na and K. In the section (4.4) of the present 
thesis# it was shown that the choice of the wavefunction 
in the method of Coulson (1961) or in that of Szasz & Me Ginn 
(1967) does not make much of a difference in the study of 
e - Li elastic scattering in the modified Born approximation. 
Comparison of the two wave functions will advocate the use 
of Coulson wavefunction only because of its compactness. The 
Szasz Me Ginn wavefunction is readily available for Na atom 
also# but the analysis will be lengthy and complicated using 
this wavefunction-. With the anticipation that the simplicity
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of the Coalson wavefunction provides enough justification 

for its choice as the target wavefunction# in the present 

study the same is tahen as the wavefunction for Ka. It 

can be derived as follows*

Using the Slater rules# the different orbitals can 

be represented as 'V e 2s ~ - - - such that

f3S - A ^lS+B^2S+C^2P^2py+^2p/^3S (5*1}

0
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The constants A, B# - - - - can be obtained from the 

following conditions of orthonormalization of the valence 

state.

(l) Til should be normalised 
I 3S

' dh ?3S = 1i • s* (5.2)
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(2) V3S s^ou^ orthogonal to the orbitals 

^1S etG*

i.e. < f3s / 0 ls > - 0
V

Hence ^2S = P 0^Q + Q 0^Q (5.3)

Where < f2S / T2S > = 1
and < tf2£/ 0 lsfe = 0

SMaking use of the. above conditions/

P = 0.2743 Q = -1.0369

/. <f2S = °-2743 *13 - 1-0i369 *23

Following the same procedure#

'f 33 = * *1* + B ^23 + F <*33 (5-4>
Now using the conditions

4 y3S 7 ? as> = 1

4¥3s/*ais> = 0
V.

4 T3S 7 T 2S > - 0

we get A + F < 0 , / 0 > = 0

B + F N< y 2S 7 ^ 3S > ~ 0
and A2 + B2 + „2F + 2SF «f2s / 03S >

+ 2AP 4 *1S 7 ^33 > = 1
s

The expressions of the form < 0 / 0 > are easily evaluated 
using (5.1). This gives finally



316
A = -1.22897 - 03
B = 8.58839 - 02
F a 1.003682

which when substituted in (5.4) gives 

Y 3S
—]0 7r —3.425 r.0.44093 e * 1 _0.62974 ^ e 1

+ 0.0432 rx2 e ~2*2rif/3 (5.5)

which is the wave function of the Na atom (in the ground 
state) using the method of Coulson. This wave function has 
been used in the following part of the present work.

Another important aspect of the description of the 
electron - atom collision is the interaction between the 
incident electron and the target* In the sodium atom with 
11 extra - nuclear electrons# this interaction becomes very- 
complicated. At this juncture# the core representation of

i

the alkali atoms (Walters 1973) becomes useful. In the study 
of Li atom, the core approximation is well-established (Rao 
and Desai 198 3, Mathur et al 1972, Guha and Ghosh 1979) . In 
the earlier sections on Li scattering# in the present work 
also, the core-approximation was successfully applied and it 
was noted that the effect of the core compared to the valence 
electron increases with incident energy and the scattering 
angle® In the core-approximation the alkali atoms look like 
the hydrogen atom with the core similar to the hydrogen 
nucleus and the ns-electron (n=2#3--- ) similar to the extra-
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nuclear electron in hydrogen. Walters (197 3) has used the 
core approximation to study 'alkali scattering. In the present 
work also, the interaction potential between the projectile 
and target Ma atom is similarly written as

V = vH + vc . (5.6)

Where V,H
-1
r. 'W is the hydrogen like inter­

action and Vc = the potential due to the core defined by

„ , | / /T c- ±VC “ 2i=l 1 _ r2 /“2 £1/. 1
(5.7)

where stands for the inner orbitals of Na defined by(5.l). 
It can be observed that is independent of target co-ordi­
nates and behaves like a static potential. W'ith the 
simplification of V as in (5.6), the interaction becomes very 
much similar to that in hydrogen, the difference being the 
term which will not introduce any further computational 
hazards because of the absence of the target co-ordinates.

The evaluation of Vc is a very lengthy but straight­
forward process using standard integration techniques. For 
each the corresponding V is calculated and the final
sum gives

V

+ c.

e
oi

r12 (1+ ) + C9
1 2

4 2
'8

0 6r,(r 2 --<2 + ^ 18 
o< 2 
4

e 2 2 <r2+

24

4
°<2

. c<' 
2 4

• « Cs *8 }
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Where Q? = -23.0101 0^ = 21.4
CQ = -109.1529O

c<2 « 14.125
G9 = 10.0063 oC4 b 6.85

With the help of the wavefunction and interaction simplified 
as (5«5) and (5.6)/ we are now ready to undertake the study 
of the elastic scattering of electrons by Na atoms (ENa 
process)•

It should be remembered that recently experimental 
measurements have appeared for the above process (Teubner 
et al ~ 1978# Srivastava and Vuskovic - 1980)« But 
unfortunately/ most of the results are for low energies of 
incidence.

Now we take up a systematic study of the ENa process 
using various methods one by one.

5«2 First Born Approximation s

This is a very basic approximation which is found 
useful later in many sophisticated methods like GES/ HHOB 
etc. Walters has already analysed the ENa process within the 
framework of the FBA. But he has used the Szasz Me Ginn 
wavefunction (1967). In the present study# we use the 
Coulson wavefunction derived earlier (5.5). By studying 
the ENa process in the FBA using core-approximation, the 
following advantages can be expected.
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(1) The comparison of the present results can be made 

with that of Walters (1973) ®

(2) Prom the above* an approximate idea about the 

correctness of the present wavefunction and core­

potential can be obtained®

(3) The first Bom results so obtained can be used in 

later sections where higher order theories are 

discussed®

(4) If the present results compare favourably with that 

of Walters#, it can be presumed that the two wave- 

functions do not give much different results®

Now’* ■ (1) i 1 *I dv2 e z / I)J V f dv-j.
2X

(5.9)

Using the expression (5.5) for If# it is convenient to write
4. — °< r.,

Y f = Gle +C2d3Td °v A2
+ °3 S

+ C* .cK2
e 4 1 + C

5
5

-°< re 5 1 + C "I,3
6 d* 4 ^ (6

where the value of Cj and are given in the table (5.1)

How, 7 f V If dvx =. Vc + t f f + — 1 — ) dv. . 
/ ^-2"% / • 1

for the term e lrl in Y^ Y (5.10),

* (l)
1 Y Y vh an = 45f

■ ^ r 
12

<*, 2 1
a-+ ^

y Y given by (5.10),Thus for the

r~f 
LO
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* V (
/ | | H dvx = - 4ft CC

- 12 
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1 << 2 *1*2

• r- 2 2
+ C'2 do< *2 2

( 1
2 -

+ C a
3 do(2 2

3 3

e 3 2 / 2 s®- - - - - - - (1 + “7—- - - - - - ) + C
*3

-K- r
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03 (5.11)

N ow f.
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'B

1 /dv e 1 ^*“2 f ?*VH ?
2^

iq.r
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(1) </dr„ r 2 -q---2- / *
0 2 2BA q ~ ‘ * "2

For one representative term of (5.11) i.e.

(1)
(1+ --p--— )# £ . . is obtained as

xr2 . BA

7 VH 7 dvi

.oC r
12

*L2

(1)
(q2+2c<12 )

f , . (one term) 
BA

’*

^l3 (q2+°^2 ) 2

Hence for /If VH'f dv1 given by (5.1l)_?

(5.12)
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16X1 C
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Cq(l) 2+2°^2)

cxf 3 / 2 2 s 2 + C6
^ vq + o< g /

(q2- + 2 »<2) j

t*2(q2+t*2)2
6 6

(5.13)

Similarly by substituting V given by (5.8) in (5.12) and
o

using Standard integrals and simplifications/

(1)

BB
2C,

(2 „ , 2 (q + )

7 (q2 t*,2)2
+ C8 t

.24 %(q2-X2a) 

(q2 + *2 )4

cxf„

+ CQ [

2 (q2 - 3°^2 )

(q2 + ^ )3

9 2-2 (q2 -3^2 ) 

(q2 +%2 )3 '

+
18
c<

24
(2 r*2l)2T r/3 / 2 2 \4 +°S ' (q + <* ) ]

8
(q2+%2)a+ <2 (q2+*2)

] j (5.14)

Now the first Born approximation to the ENa process is the 

sum of the expressions given by (5.13) and (5.14'). The DCS 

for the ENa process within the frame work of FBA can be 

easily calculated now. The results so obtained are displayed 

in fig.(5.1) at 54.4 ev at which there is data for comparison. 

In the same figure* the DCS without the core - contribution 

to the interaction (5.6) is also shown. The following 

conclusions can be drawn from the study of fig.(5.l).

(l) The present results compare favourably with those of

Walters (1973) . This indirectly shows that the choice

of the different wavefunctions in both the studies

has not affected the results much.
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(2) The effect of the core is very much for higher 

scattering angles®

(3) Even at a low energy such as 54.4 eV# the core­

contribution is highly significant* The comment of 

Walters that core-effects are negligible below 100 eV 

is questionable.

The effect of the core is expected to increase for 

large angles where the nuclear part of the interaction pre­

dominates. It should be assumed that even at lower energies 

the projectile penetrates deep into the target.

In an earlier section (4.4) the simple Coulson wave 

function and the sophisticated Szasz Me Ginn wave function 

were compared by using them to study the same process. Here 

also the comparison of the present results with that of 

Walters ,(1973) is similar. Since the Szasz Me Ginn 

wavefunction is very unwieldy and difficult to handle# in 

the rest of the present work also only the Coulson wave- 

function for Ha is taken on the basis of the above mentioned 

comparison.

However# the comparison of the First Bom DCS with 

'experimental results (Teubner et al (1978)# Srivastava and 

Vuskovic (l980)? is very discouraging. In the very small 

angle region only there is some sort of qualitative agree­

ment between the two results. Naturally# in the case of 

alkali scattering where second order effects like absorption
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are all-important/ a first order theory like FBA cannot 
be expected to hold good. Hence# the inclusion of higher 
order terms is required. With this view# we now take up 
the study of ENa process in a higher order theory.

5.3 ENa process in the GES Method *

The success of the GES method as a reasonable term-
i

wise representation of the Glauber series is well established. 
In the earlier part of the present work also# the GES analysis 
was performed for some basic scattering phenomena. In the 
present study of ENa process, it was decided to carry out 
the GES analysis because of the following reasons*

(1) In the previous section, the necessity for a higher 
order theory was felt®

(2)(2) The second term of the GES i.e. f is found to be
GES

very similar to the imaginary part of the second Born 
tern.

C 2 )(3} f takes care of the important absorption effect.
• - GES(4) In the study of Walters (1973) Glauber result was

found to be much better than the first Born-result. 
Hence, the GES results should also be good.

)5) Because of the representation of the interaction
potential and Wavefunction as (5.6) and (5.5), the 
evaluation of the GES terms should not be very much
difficult
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It should be borne in mind that the first term of

GES series is the first Born term given by (5.12). Hence,

( 2) (3)
the task is to evaluate f_„„ and f Here, we use an

approximation as follows?

It was pointed out by Mahtur et al (1972) that in 

the core-approximation of Li atom, the core part can be 

neglected in the evaluation of double scattering terms® The 

same was followed later on by many workers such as Guha and 

Ghosh (197 9), Rao and Desai (1983) etc. In the current 

study also, in the evaluation of the higher order terms, 

we neglect tire core part of the interaction enumerating the 

following reasons s

(1) The second order effects like absorption and polarisa­

tion are important in the small angle region where the 

effect of the core is small.

(2) For the low incident energies considered here, the 

penetration of the projectile into the target is 

very little. Hence, the effects due to the core of 

the atom will not be significant while considering the 

valence electron, the distortion in the cloud charge 

etc.

(3) In a previous section of the- study on Li scattering,

the same procedure was adopted with successful outcome
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(3)

(2)
Hence# we proceed with the evaluation of f and

vjriliO

f for the valence electron of the Na atom*
. GtS

(2)

GES

dP

% ki P2/q-p/2
< Tf B(q-p)/Yi> (5.15)

It will be possible to reduce some length of the calculations 

by considering the analogy with H-atom problem. For this 

purpose# it will be convenient to represent y Ijr in tke 

present case as

* r. 11
-‘X'r 

2 1
-7\C C

1 Arx + c. 7T r.
4* C.

~ r3 3 1d e ^

d0^ 3 7vr,

mm CK V**
e 4 1

,4 -o<r r d* e 5 1
■4 C4 dc*3 + Cc + c

-5 -°Cr.
d e 61 U(5.16)

6 d<*,:5 7^ r.
6 1

The interaction pertaining to the valence electron of the 

Na atom is similar to that of H atom. Thus#

B <P) B (q -p) = I - ^’-l Va-S /*£i + e1 n*-l
p "* 8

(2)
Now f

GES
j. 2 _ 2 _ 2 _ 2 2 ,.24 fy-, 4 f~ 4 f . -f- f-. 4" f/-1 2 3 4 5 6

(5.17)

(5.18)

where each expression corresponds to one term in the 
expression (5.16) for y* Tip

It should be remembered now that for H - atom,
-*r,

Y Y =c <- ar J
•1

with X=2 # C a 1/^c

■3ftHence the y y of (5.16) is similar to the above expression# 

the difference being in the values of the parameters and the
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(2)

additional differentiations. The f . for H atom was
GES

derived in an earlier section (3.24). Hence the f.. , f -
'1

can be directly written down as

. (2)

1

(2)

2 •

(2)
3

(2)
.4

.(2)
■ 5

. (2)

7!C1 k2 ^ doc ) i' ( z1 ) 2 1

7?c2 k2 C-

C_ (-

- X C4 *2 *"

* ^Cc

*C6 k2 (-

d‘

d«K

1

2 ^ ^ 2 ^ Z2 ^

d

d<*:

) U ( Z3 }

d'

d<

) f ^ZA^

3 ^ 4

~) i 1 Z5}

d«S

df
^5 ->fa‘y

whers k2 =

and f (z) = 4;*—si- in ( ).

z 1 + zA 2

It is needless to say that the cK -differentiations - >

2 d<K 
dz etc. have 3bo be converted to the corresponding z -
do<2 d d2

etc. for z — q /«< *differentiations dz d 2 
z

Thus
deC

should be replaced by

zu d d^ d°
“5“ ^ 120 dz‘ + 240 z d 2 + 120 2 d 3 
q z z

,5

+ 20 z" d 4 
z

+ z ‘ d~
d 5 

z

) and so on.
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Hence

(2)
GES

■*k2 {0l3^f2t“l) +C2^2 l S>

+ c.
d3 d3 d4| (z3) + C4—1 f (z) + C5 —g
d< 4d«<43 12' 4 dY

+c6 d<^5 j 2.
(Zg) ] (5.19)

Similar method can be followed for the evaluation of 

(3)
f also•
GES
(3) 2*k± (~z3)
GES 6 ^3k±3

dP* dP„/ _zi / ..—-2.

1,
P2 /q-<P1+p2V^

Yj./ bCPj^) B (P2) B ( q-tP^^)) / Yi >

Here again making use of the convenient representation (5.16)
* <3)

of iff W-,~ f will be constituted by six terms# each term 1 GES *
corresponding to one term in y

(3)Thus f . = f-,3 + f 3 +
GES X 2 + t,

Here also for the term of y y of the type C ( )
(3)

corresponding f will be
GES

-Kr
7\ r

4
C x , 2. 2 4 3 7\ *,• q

^ d^ ■ ) f3Ch where z -

The above derivation was arrived at earlier.
Hence f^3 = TV C^k^ (- ~~ ) f3 ep

£,3 =SSC k (---S_) £ (z )
£* <u J. 4< •!) u

* 3 _ b / d3
3 3 1 de(3 '> f 3 <Z3J
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"4 n cA k ( _ ) f (s )4 i d*<43 . 3. 4.

*C5 ki ( - aV ! ^

*c6 ki ( - —) f (zc )*3 6
6

:3(Z) = 3 ^2 | 4[
1 + z ' *

1 + z‘
+ 2A(z)

and kx = —^—2~4*a(z) is the same as defined under
3 a q . .

equation (3.16). Here also the differentiation variable has 

to be changed fromo<to z correspondingly using conversions 
given earlier.

Thus f (3) -Ak1 :1 d<K, f3(zl} + C2“~2 f3tz2)

+C

GES
3 dJ -*3(y + c

d<

d" d -.4-- s-- f ( 2 ) + C --—4 do< 3 3 4' + 5
d^

4 f3(z5}

+C6 ^ 5 f3^Z6^ 1
6 3 .. (5.20)

Where — •‘n
Using the expressions (5.19) and (5.20), the DCS for the 

ENa process in the GES approximation can be written as

d<r~ (2) (2) (3)
= f x f

d-O.
+ f x - 2 x £ x fal GESGEE GES

Results and discussion i

The DCS obtained for the ENa process as described 
above are shown in fig. (5.2) for E = 54.4 eV. The results
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are compared with first Born DCS as well as experimental

data. It can be seen that the present DCS is quite good

at small angles. This is as expected since the GES analysis

is another way of representing the Gilauber approximation

which is necessarily a small angle approximation. The

comparison of the present GES results with the Gifianber

results of Walters -in fig. (5.2) shows that the GES method-

discussed above compares with the Glauber cross-sections

reasonably well at small angles# considering the relative

ease of evaluation of the GES method compared to that of
\

Glauber method.

It should not be forgotten that in evaluating the

Glauber amplitude# Walters has used a different wave-

function than the one used here. This shows -the comparison

between the wave functions also. The present results should

not be expected to hold good at large angles for the

energies considered here. This fact is obvious from the

table (5.2) giving the individual GES terms. It can be
seen'...that at 100 eV for © >10°, f ^ > f i.e. the

GES GES
series is no longer convergent. For the energy E = 54.4 eV#

(3) (2)it can be seen that upto the © = 40°, f < f i.e. the
-GES v GES

validity of the present method is better at higher energies. 

Unfortunately# since experimental data is available only 

at small energies# we have to stretch the high energy methods 

also down to lower energies. Anyway# there is enough
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evidence to believe that the GES results, should be 

reasonably good at higher incident energies,,

The improvement of the GES results over the first 
Born results is also notable. This is also in accordance 
with our earlier anticipation that the GES results should 
be good because the Glauber results are better than their 

First Born counterparts provided the GES can satisfactorily 
represent the Glauber series. Thus we can conclude that the 
first three terms of the GES series gives satisfactory 
representation of the Glauber Series for ENa process and 
the inclusion of higher order terms has improved the 
approximation.

5.4 Inclusion of Polarisation Effect s

One major defect of the Glauber as well as the GES 
methods is the logarithmic divergence of the cross sections 
for very small angles. Another shortcoming is the absence 
of the real part in the second term corresponding to polari­
sation. In the proposition of a modified GES method in 
section (3.l) a remedy for these disadvantages was suggested

v ' ( p } 1i.e. replacement of f by the G ( 7—) terms of HHGB such
GES . Ki,

that the scattering amplitude becomes ,
(3)

f £q, + f It + fDRen f
GES

In earlier sections it was explicitly shown that
(2)f Im is almost equal to f „
GES

But the beauty of idle present
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term f 2m is that it is not divergent even at q = 0, 
because of the average excitation energy term 0. Hence# 
the net result of the replacement of the GES term by HHOB 
term is the inclusion of polarisation effects taken through 
fRe-^. As mentioned earlier# polarisation effects should not 
be significant when compared to the grossly effective absor­
ptive part. However, it would be interesting to study the 
effects of inclusion of polarisation effect.

Incorporation of HHOB terms necessitates the 
evaluation of the 0 parameter for ENa process. This was done 
as follows? as given by Byron and Joachain (1977).

W 0 k. 
x

< if/z-LV f>

Mhere <£ is the dipole polarisability of the target atom
Aand r^ = b^ + • This method of evaluation of 0 was

checked first for ELi process. . For that#'the Coulson wave- 
function (1961) was taken for ^ sh<3 the decent and accurate 
value of o< = 167 a.u was taken from Stemheiraer (1969).
This gave W = 0.0723 for ELi process. For the same process#
Vanderpoorten (1976) obtained W = 0.0745 using the same c< 
but with a better established Hartree fock wavefunction of 
Clementi (1965). This indirectly marks the correctness of 
the present method of evaluation of W or 0 as well as the 
dependability of the Coulson wavefunction. Hence# the same 
procedure was adopted for the evaluation of 0 for ENa process.



For this process

<K = 22.59 Ca°)3 s= 152»6 a.u.

Using the Coulson wavefunction (5.5) for ^ and. evaluating 

< Y / z^- / f > and substituting#

W = 0.1313 a.u.

Hence for the ENa process# P = 0.1313/k^. Now we can take 

up the evaluation of f Ira and f Re^ terms of ENa process.

4 TV3 _ a _ A

f Im = -j-— s dP < y / V (P+PZX ) v (g-P-pz X)/ f >

For the evaluation of this# the expression (5.16; for ijJ Ijr

will be very useful. Now one can consider that

■P T P t c t (2) „ T (6)
f Im = f Im + f Im + ............+ f Im , each term

corresponding to one term in (5.16). For our choice of

the interaction potential# V becomes similar to the one given
- e -°irl

in section (3.2 ). By considering one term C1(-
d<*,

•)
1 X1

%and comparing it with the ^ Y for ESGH process# it will be 
easy to derive f Im ^# f Im ^ - - - similar to the 

derivation given to arrive at the expression (3.17). Since 

all this process is very lengthy# we consider here only the 

final results namely

f Im
(1)

k. C1 
1

d
d*L <V

(2 ^ (J8 # ) -
q2+°^

- l1(P2#o)

f Im
(2)

k± C2 d---- 5 7T2 (2 \M2,0))
d^2 2 1 2 q2^2 X

2
etc. such that
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f Im for ENa process 

4 ( d .
d'

ki “d°<
N1

+ C, —^ ^2 + c3 d^3 ^ N 3 + C4 ^3

S°V
d*'4

^4 + C5 -X ^5 + C' 1

d oC
6 d^5 N6

(5.21)

Whera 1 Nl' 5)2 INg are obtained by patting

— - - °C for the <K in 
6 n

5.n = V£-5 £ 2 V®2' ‘’i2 > 2.2 1q +t><^ n

X,(B2,0)]

2 2l^iB t o(n ) has the same meaning as defined in earlier
n

section s.

For the evaluation of fRe^ also, a shortcut similar

to the above one can be used, f Re^ can also be represented
(6)

+ f Re^ , corresponding
as f Rei » f Re^ + f Re{2^ + -

to the six terms in (5.16) for ^ ^ • The derivation for-

*
f Re^ for the ESGH is given earlier wherein the ^ ^ has the

same form as the first term of (5.16)

Thus the expressions for f Re^^, f Re^2^ etc. can be 

derived in the same lines. With a view to save space, the 

lengthy derivation is not given here but only the results. 

Thus one can obtain for the various terms in f Re.

f Re
(1) 4

7Uc~ C1
d

dpd

1 [ 2 i,o2. *2) - q
2 .^ 2 2

I tr
q t^-

o)3
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f Re (2)
7\k, d °<,

2 ^2 ' cx2^ " 2^2 I2^ /0^
i 2 q "*2

etc.

Thus the final form of f Re-^ for ENa process will be

f Re1 ***
d

Ldc<

d'
Ml

4

+ C2 n 2d^
1 M2 + C3

j 4. C ■■ ■ ....- T j. C - bM3+ 4 ju-3 M4 + 5d<*4 d<*
— i + c4 M5 6 n

5 1 M6 (5.22)

where IM^# 1 ^ e’i'c* are obtained by putting °^# ^

1 2for the <* to I =— [2 I2Cfi2. * 2> - -^-2 I2O2,0)]
n , q +°<n

2 2Here also the integrals I2 (0 , cK^ ) have the same form as 

used earlier and given in appendix®

With the expressions for f Im and f Re-^ available 
now# the DCS for the ENa process can be written as

d<r
d^O.* fB X fB 

fg (f Re^ - f

+ f Im x f Im + f Re^ 

(3)
)

GES

x f Re^ + 2

(5.23)

This will give the new DCS obtained after replacing the 
second GES term by the HHOB terms thereby including the 
polarisation effect.

Results and Discussions *

As discussed earlier# the effects of polarisation 
are almost negligible for the ENa process when compared to the
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absorption effects. The table (5.3) explicitly shows this
(?)

fact. Moreover# it can be seen that f r-j _ as
GES — f im

in the earlier cases. But the advantage of taking f Im is
(2)

that it is not divergent at 9 = 0 as f because of the
GES

presence of the average excitation energy parameter, and 

the individual integrals appearing' in f Im are not divergent 

also. Hence it is possible to evaluate the total cross 

section for the ENa process from the value of f Im (© = 0) 

using the famous optical theorem.

The differential cross section obtained using (5.23) 

is also shown in fig. (5.3). It can be seen that there is 

no significant change in the DCS because of the replacement 

of. the second GES term by the Born terms.

5.5 Two Potential Bom Approximation s

It was shown-in the earlier sections that the first 

Born, GES and HHQB methods are not sufficient to represent 

the ENa process satisfactorily especially at large angles.

In this connection, we remember how the two potential Bom 

approximation improved the simple Bom approximation for large 

angle scattering. Specific examples were also cited by 

applying the two-potential HHQB approximation to the ESGH and 

EHe processes.

Moreover, in our study of the ENa process within the 

frame work of FBA, it was shown that the contribution due
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to the core part of the interaction varies very slowly 
with increasing scattering angles* This results in the 
high scattering cross-sections at large angles. Hence, 
if there is some way by which the core part of the interaction 
can be separated out from the total interaction and be given 
a better treatment, the results should improve. Hence, a 
partial wave treatment for should be a remedy. Further, 
the Bom approximation should be better for weaker interactions. 
Hence, if the total interaction V treated in FBA is replaced 
by V - where is arbitrary such that V - satisfies 
semi-classical conditions, we should get better results. With 
this idea in mind, we will now study the ENa process in the 
two-potential formulation.

We have seen earlier that the interaction potential
1 £, /'for ENa Process is V = VTT + V where VTT => - — +rl c H "

In the two potential Bom formulation discussed earlier,
we subtract an arbitrary potential V,(r ) from V (r, ,r )12 12
such that VQ(r^,r2) = V (r^r^) - V^(r ) satisfies semiclassical 
conditions. Then (rl'r2) is treated in the Bom approxi­
mation and (r ) is treated by partial wave method.

For the ENa process, we choose for the arbitrary 
potential*

V, (r ) = V (r )1 2 c 2
such that V0(rrr2) = VvV + vc(r2) ~ Vctr2) = VHCrl'r2)

.. (5.24)

Now we treat (r,, r.) in the Bom approximation and V (r„)
H X 2 C z
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in the partial wave method described earlier®

To start with, we take only the first Bom term in 

the Born approximation i.e. should be treated in FBA and
n.

V by Partial waves method® 
c

Thus we note that

(1) earlier VTT + V was treated in FBA and we found that
ri C

V contribution was very slowly varying thus resulting 
c

in higher cross sections®

(2) Now only VH is treated in FBA and this being a weaker 

interaction should give better results.

(3) Now the contribution due to is taken quantum 

mechanically through a few partial waves®

(4) This type of two potential method was earlier found 

useful and here also -there are reasons to assume that 

the results obtained should be better than those 

obtained through simple Born approximation.

To evaluate the VH Part of the interaction in the 

FBA, we can readily take the earlier result (5.13) for f 

Now the scattering amplitude in the two-potential method 

will be

(1) 
BA *

(n) 1 i '-'i

S fD + -— ? (2X+1) ,P. (Cos 43) e 
n B • kj, 1 -t

&(l> /(l)
Sin

. £

m oX

f /
2 i S.(0)

l / If (5.25)

(n) v
where f ^ is the Bom amplitude for the interaction VH®
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At. present we take only Afterwards higher terms will
be included.

{>(U and
(0)
% ' are the phase shifts for V, and Vo

respectively. Here# since V = V (r ), we have to'find the
G *5’(lJ

(5.8) as

£ c .-foT .V (r„). For this# it is convenient to write
c 2

_ r~2 1*2 
v=(h> ‘ ^ Ci *T- d

d<x\

— <*f _1 2'hr— ] +cQ[
-p< r2 2 4

2 S'" t>22 r2 2

d
dK2

- c<

— oC r 
* 2 2 d*

4^2

di>‘
.2

-1r2 , r 24 -1r2
----  ] +cj ----  5-----'8L o£3

18
4

e
<*r 4 2 pC r 4 2

•i dh‘ d^3 ]

d
d*

Now making use of (4.105)# the phase shift for the Yukawa 

type of potential in the Born approximation# the Born phase
shift for the potential V is given by

/(B) 1
*1 n

+cn(9 *22 ^2 d*2

d 2k.2 +«*: 2
) Q ( -- J.....Jr.. )d i ^ 2k±2

2k.2 + <* 2
- ) q1 ( ———2—)

2ki

24 18+C8 ^ *^3 “<*7 d
d°<# ) cj ( ..=1...4--) (c«<, dtk 2 d<<3 J 0n 2

4 4 4 , ^ 2k.

The exact phase shift (1) for the above potential can be
found out using the Numerov method for the solution of the 
second order differential equation as described earlier. The

26)



numerical values of the exact phase shifts are obtained 
this way. The summation of partial waves in (5.25) is done 

by matching the Bom and exact phase shifts etc. as 
discussed in section (4.5).

Now knowing the scattering amplitude (5.25) the DCS 

may be calculated.Theprocess may be repeated for varying 
incident energies.

Results and Discussion t

The DCS obtained as discussed above at 54.4 eV is 
shown in fig (5.4). It is compared with experimental 

results and first Bom DCS. This is done because the above 
two - potential formulation can be considered as a modifi­
cation over the first Bom approximation due to the 
following reasons

The present scattering amplitude
(1)

£ = £..+ f
B - PW

In the first Born approximation, the interaction 
potential V^, + is treated in fBA. Here# VH is treated 
in fBA and V by partial wave analysis through a two- 
potential formulation. Hence a comparison between the 
present results and first Born results will be most 

appropriate.
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From the figure it can be seen that the present TPB 

results vastly improve the first Bom DCS. The present 

results reproduce the shape of the experimental curve, even- 

though there is some quantitative difference. The present 

curve shows a dip around 105° as in the case of experimentally 

observed results, whereas the first Bom DCS does not exhibit 

such■a dip.

It can be concluded that the present two-potential 

result is definitely an improvement over simple first Bom 

results. This is what was expected also because

(1) Nov/ a weaker interaction is treated in the FB approxi­

mation .

(2) The core part of the interaction is given a better 

treatment through partial wave method.

The results at 100 eV shown in fig (5.5) also display 

same type of behaviour as at 54.4 eV. Unfortunately experi­

mental results are not available for high energies. So 

discussion lacks the crucial comparison with experiments at 

such energies and hence has to be confined to lower energies.

5*6 Two-potential formulation including higher order 

Born terms :

In the earlier section, we have seen that the two-

potential formulation involving only the first term of the 

Bom series has improved the first Bom approximation.
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Eventhough the results so obtained show nice qualitative 
agreement with experimental data/ the quantitative agreement 
is not so good*

It was discussed elsewhere that the absorption 
effects are all-important in the case of alkali scattering. 
Earlier it was also discussed that the results have improved 
by the incorporation of the absorption effect through the 
imaginary part of the second Bom term. Hence the next step 
taken in the present study is the incorporation of the 
higher order terms in the two-potential formulation described 
in the previous section.

(3)
The higher order terms f Im, f Re-, and f „ are to

GES
be determined in the Bom approximation for the part of 
interaction V_,. Now '

XI

f
(1)

f + f im + f Re 
B

(3)
f + F
GES Pw (5.27)

In the two potential formulation* the first four terms in f
are to be calculated for the potential V = - + •H r2 rl2
This is done in the earlier sections of this chapter. So 
these expressions (5.12), (5.2l), (5.22) and (5.20) can be 

directly made use of.fp^ remains same as in the previous 

section.

Here, one point is worthy of mention. In the 
evaluation of higher order Bom terms, we have taken VH 
part of the interaction because the part is taken care of
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through partial waves. In the earlier sections/ in the 
evaluation of higher order terms* VT, part was taken after

XI
completely ignoring the core potential assuming that its 
contribution will be less. Hence the present study will 
help to assess the significance of in double scattering 
terms.

Now that the scattering amplitude (5.27) is known* 
the differential cross sections can be computed for various 
incident energies.

Results and Discussion s

The DCS obtained as explained above are show at the 
energy 100 eV alongwith other data (fig.5.6). The results 
of the earlier section (i.e. TPB results including only 
first Bora term) are of special significance. Contrary to 
the expectation* the present DCS including higher order terms 
in the TPB results deviate raway from the experimental curve. 
This may be due to one of the following reasons*

(1) The Born series is not convergent at such low 
energies®

(2) The importance of the core part of the interaction.

In the present analysis/ we are not neglecting V , 
but taking it through some other way whereas in the previously 
discussed GBS method* we have completely neglected V • If we
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had Incorporated V there also, perhaps the results would 
have been much different, in the GES/HHOB method

(3)
f = f , (Core + Val.) + f Im (Val) + f Re. (Val) - f . (val) x , 1 GES.

f o \Here f = (val) + f Im (val) + f Re, (val) - f (val)B1 . 1 GES
+ f „ (core)

The comparison of the above two scattering amplitudes shows 
that earlier we had neglected the imaginary part (corresponding 
to absorption) due to and presently we are taking this 

into account through partial waves. Hence, there is enough 
reason to believe that the difference in the two sets of values 
is largely due to the incorporation of the core part in the 
higher order terms-. This in turn shows that core cannot be 
simply neglected without enough justification.

5.7 EH a Process in the static potential *

In the previous section, we have seen the effects'of 
neglecting the core part of the interaction. Unfortunately, 
the retaining of the core-part brings in lots of computational 
difficulties in the methdds discussed so far. Moreover, in 
the current discussion we have not so far come across an 
appropriate method to describe the EHa process for large 
angle scattering. Here, we resort to the partial wave 
analysis of the static potential of Na atom for the following

reasons*
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(1) The static part of the interaction is predominant 

in the large angle region.
(2) In the static potential there is no differentiation 

between the potential due to the core electrons or 
valence electron of Na atom. Hence# there is no 
question of neglecting the core effect;

(3) Partial wave analysis of the static potential for 
many atoms have been proved to yield satisfactory 
results except for small angles of scattering.

(4) Calculations are simpler with static potentials 
because of the absence of the target co-ordinates.

The potential given by Co x and Bonham (1967) was 
chosen for the static potential of Na atoms. The Cox Bonham 
(CB) potentials are meant for mainly high energies. Hence 
first of all it is necessary to try their applicability at' 
the intermediate energies of interest for us. For this 
purpose# we have already undertaken the study of the total 
cross sections for the elastic scattering of electrons by 
hydrogen atoms using the static potentials given by Cox and 
Bonham (Section 2.12). The TCS values are found to be 
comparable with other intermediate energy calculations# and 
hence it is verified that the CB potentials hold good at 
intermediate energies.

Now to go back to our discussion# we have to do the 
partial wave analysis of the ENa process using the CB Static 
potential for Na atom.
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i.e. V (Na)

st
6= - 11 s

J.=?l

, -k.r 
-/ e J
J r

Here, • "‘0.9864 11

VH 0.8281

P'
to

11 29.1004 <2 = -0.0809
X
3 3.0015 Yl =

1.3795

11 10.9701 3.2885

s ■ 1.2554 « - -0.9576
X6 9.9009 ■£ = -3.4600

The scattering amplitude is

(21+ l) El (Cos O) X Sin (5.29)

Hence the main part of, the evaluation of the above 
scattering amplitude is the determination of the phase shifts 
for the potential V Here again, to simplify the infinite 
summation over X , we resort to the method described earlier

i*e. f =
1 N2 (2X+l) Pi (Cos_n ^k .1=0 

x

Sin

+ f (1) . N ( (r- 2 (2-1+1) ft (Cos ©) o, ki 1-n 4 ^
(b)

(5.30)

through which we are considering the partial waves for
i (l)Aj- 0 to (0 • Here fg is the first Born amplitude for

V . and and ^ are the exact and Born phase shifts
st b L

respectively. The N value is obtained by matching the twoC(B)
phase shift values. The Born phase shift O^ 
static potential (5.28) of Na atom is given by

for the
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/(B)
^Ji­ ll y

^ i=l
yTj Qt (

2 -v 22k. + k,

2k.a
) (5.31)

$>,For the evaluation of the exact phase shift &<. corre sp ondingly, 
the value of V(x) in (4.97) has to be taken as

V ii £ • y i 5

A.xj Thereafter# the same procedure(x) ~ x
should be followed for the solution of the differential equation 
and evaluation of the phase shift . After obtaining the two
phase shifts i (B) 

% . and
%

, their values may be matched to
fix the value of N suitably.

The first Born amplitude 
potential (5.28) is

.(1)

:(1)
'B

for the static

1 , (r)--- / dv e VOJ_Vi'27V St- •

which can be evaluated using standard integration techniques 
(X6 yr

f^lJ « 22 s —~—
? • J Cq2+\.2 ) (5.32)

Hence# knowing all the quantities in the scattering amplitude 
(5.30)# the DCS for the ENa process in the static potential 
can be calculated as

dCT 2
--- = /f /
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Results and discussion s

The DCS for the ENa process in the partial wave method 
using the Cox Bonham static potential of Na atom is calculated 
in the method discussed above. The results at 54.4 eV are 
shown in fig (5.7). Alongwith the present results, those of 
other workers are also included in the figure for the purpose 
of a comparative study of the various results.

From the figure, it can be seen that the present 
results are reasonably good at intermediate and large angles 
when compared to the experimentally observed values. This is 
expected since*

(1) At intermediate and large angles, the coulomb type of 
term is .predominant in the interaction which is 
properly treated through static potential®

(2) in the static potential, the effects of polarisation, 
absorption etc. are not taken care of. These effects 
are most significant at small angles of scattering.
Hence the underestimation of the present results at 
small angles.

The present result at large angles is quite encouraging. 
In view of the importance of the absorption effect in alkali 
scattering, the static potential treatment given to ENa 
process is inadequate. The need is for a method which can 
describe the scattering at all angles reasonably well. Taking
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up all the above aspects# it can be ascertained that the 

partial wave analysis of an optical potential will be most 

suitable for the EHa process* This optical potential may 

be written as

Vopt
V J + V , + i V •_ + V
st pol abs ex

(5.33)

In the above study# we have taken only the first term of 

this potential. Similar studies with the optical potential 

have been carried out for ELi process by Vanderpoorten(1976). 

The evaluation of the various terms in the optical potential 

(5.33) has been discussed in the review of Byron and 

Joachain (1977). The same procedure may be extended to the 

case of ENa process. A quick glance at the mode of evaluation 

suggests that there should not be much difficulty in extending 

the calculations for ENa process. However# the same is not 

attempted here*

5.8 More about the core approximation of ENa process s

Recently singh et al (1983) have reported the results 

arrived at by them for the ENa process. They have followed 

the procedure proposed by Lai and Srivastava (1981) where 

the contribution of the static part of the interaction is 

evaluated exactly and the on-shell contribution of remaining 

part is included by using the Glauber approximation. The

scattering amplitude is thus written as

st, st _ f + f - f (5.34)
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Stwhere f and fQ are respectively the scattering amplitudes 

corresponding to the static interaction and the total inter­

action. Singh et al (1983) have taken £St to be the static 

potential of the entire atom while f is the Glauber contri- 

bution for only the valence electron. The results so obtained 

exhibit qualitatively the same shape as predicted by 

experimental measurements of Teubner et al (1978) and 

Srivastava and Vuskovic (1980).

We can study the JEN a process in a similar way using the 

HHGB approximation instead of the Glauber approximation. Thus 

the present scattering amplitude will be

,Stf - f + fHH0B ~ f

-st

St

HHQB
(5.35)

where f is the scattering amplitude for the static inter­

action obtained in the partial wave analysis# £HHGB is the high

energy Bom contribution for the valence electron and f St
HHOB

stands for the scattering amplitude obtained by treating the 

static interaction in the HHOB approximation.

St and f pHQB are described earlierThe evaluation of f

in section (5.7) and (5.4) respectively. The HHOB analysis

using the static potentials was discussed in Section (2.12)

St.Hence# the evaluation of f hhqb is also easy. Thus# one can 

obtain a scattering amplitude of the form (5.35).

In the present work# rough calculations for the ENa 

process using the above scattering amplitude were done. It
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was observed that the results agree qualitatively with the 
experimental data with a dip as shown in figures (5.4) and 
(5.5)/ but the quantitative agreement is not as good as the 
one, obtained by Singh et al (1983) • It should be borne in 
mind that in the study of Walters (1973), the Bom cross 
sections were much higher than their Glauber counterparts. 
Hence, similar type of modifications in the Glauber method 
(5.34) and the Bom approximation (5.35) may result in higher 
cross section in the latter case.

Cwvd "f
Further analysis of (5.34) reveals that being - 

approximately same, the major 'contribution to the scattering 
amplitude comes from the term f , which is the Glauber 
contribution for only the valence electron. Hence, it can 
be noticed that the core contribution is not taken fully in 
the amplitude (5.34). This partial suppression of the core 
part may be responsible for the quantitative agreement of the 
results of Singh et al (1983) with the experimental data. It 
should be remembered that in the present study of ENa process 
using the two-potential formulation (Sections 5.5 and 5.6), the 
core potential was explicitly taken care of through partial 
wave analysis.

All these comparisons point out the fact that the core 
contribution is quite significant even at the energies 54.4 eV 
and 100 eV at which most of the present work was carried out.
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that a modified Glauber approach may be a plausible'
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method in the small angle region. The partial wave 

analysis of an optical potential of the form (5.33) 

incorporating all the important effects in the case of 

electron-alkali scattering will be a much better description 

of the ENa process over the entire angular range. This is 

the general conclusion drawn from the discussions on the 

results arrived at in the present chapter using different 

modes of describing the ENa process as given in the various 

sections. Further analysis in this direction is in progress 

in our research group.
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Table 5.1 C. and. X for the target
■J J

Sodium atom

j cj A,
3

1 0.1944192 21 *4
2 0.5553425 14.125
3 0.038 09 6 3- 11.43
4 0.3965724 6.85
5 0»05if.2j.095 4 ®158
6 0.0018662 1.467

Table 5.2 ~ Individual
scattering

terms for the e - Na elastic
in the GES approximation at E = 54.4 eV

e
CD

F
GES

C2T
E .

GES
F

GES

10 0.8747 01 0.5630 01 0.2379 01
20 0.5623 01 0.2292 01 0.2439 01

30 0.3665 01 0.1729 01 0.1687 01

50 0.2223 01 0.1094 01 0.1131 01

70 0.170S 01 0.7234 00 0.8512 00

90 0.1406 01 0.5305 00 0.6828 00

110 0.1208 01 0.4234 00 0.5784 00

130 0.1075 01 0.3616 00 0.5141 00

150 0.9942 00 0,3271 00 0.4768 00
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