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CHAPTER - V

ELECTRON SCATTERING FROM ALKALI ATOMS

5.1 Introduction @

So far in the thesis, discussions were confined to
light atoms. Now we take up an altogether different class
Of atoms = the alkall atoms. The study of this class of

atoms is important in a manyfold way. TO list a fews:

(1) their important applications in various fields of
’ science.
(2) - the part played by some of the alkali atoms in MHD

(Magnetohydrodynamics) is very important in the
present day energy crisise.

(3) the scarce data available on such atoms necessitates
further studieés.

{4) the increasing computational complexities involved
in the study of alkali atomg thus resulting in the
vacant areas regarding research on them.

(5} the additional provisions to be supplied for the
gtudy of alkali atoms due to their peculiar nature
and behaviours

(6) the establishment of the failure of certain widelf
used and popular methods in their studye

(7) the vast differences in the results reported on

various analyses of the alkali atoms.
i
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As mentioned earlier while discussing collision
Processes involving Li atom, it is impossible to take for
granted that methods which are successfully applied to the
‘study of lighter atoms can be equally successfully applied
to the alkali atomse. The main reason for ﬁhis conclusion
is the peculiar nature of the alkali atoms. In these
atoms, because oOf the gquasi~degeneracy of the ground and
first excited states, there exists a strong coupling
betwéen these states. The large polarizapility which is
a characteristic of alkali atoms can be accounted mainly
on this coupling because 90% of the polarizability arises
due to the said coupling. Further, the size of the atom
Progressively increases as the atomic number of the atom
increases. The ocutermost electron in the alkali atom is
a loosely bound S~electron and hence the increased activity
of these atomse. Naturally, when a projectile electron
approaches a target alkali atom the situation arising will
be much different from that in the case of a simple atom
like H or He. The effect of the target on the incident
electron and vice versa stafts even when the projectile
is approaching the target from a large distance. The
target polarisation or the dislocation in the cloud charge

also will be felt increasingly in such casese

It was understood since long that the difficulties
to be encountered while studying alkali atoms are many (see
for eeg. Massey et al 1969). 2nd it was very well proved

also that methods like polarised orbital calculations are
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deemed to be failures in the study of alkali atoms. As
demonstrated during the discussion on Li scattering,
absorption phenomena or removal 0Of electrons from elastic

t0 inelastic channels is all-important for alkali scattering.
This fact was also proved by Vanderpoorten (1976) in his
optical model (OM) calculations performed on Li scattering.
'He has explicitly shown that polarisation effects are
negligible in e =~ Li scattering. The OM calculations
accounting for polarisation gave exactly same results as

in the Glauber calculations in which the real part in the
second term corresponding to polarisation is absente. This
hints at the fact that polarisation is a nil-effect phenomenon
in the case of Li scattering. Same should be the case with

other alkali atoms alsos

The Li atom being the first member of the alkali
atoms, the above discussed deviations from closed = shell atoms
will be the least in its case. In his study on the alkali
atoms, Walters (1973) has shown that the disparities are the
least in the case of Li target whereas it goesg on increasing
progressively for Na, K etc. Further, in recent years, mos£
of the high energy methods used to describe collision processes
involving H and He could successfully be applied to Li
scattering alsoe The HHOB method (Rao and Desai 1981,1983),
eikonal Born series Method (Byron and Joachain 1973,77), Two-

potential eikonal approximation (Tayal et al 1980), fixed
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scatterer approximation {(Guha and Ghosh 1979), optical

model calculations (Vander poorten 1976) etc. were some Of
the attempts to stuéy e - bi scattering. Reasonable success
was achieved in all the above attempts alsc. Motivated by
this, in the present study also, a few of the high energy
methods were applied to the case of e - Li elastic scatterings.
The work done using the modified GES approximation and the
modified Born approximation were discussed in earlier sections ’
(3.5 and 4.4) in order to retain continuity of the matter.
It was shown in those sections that the results were guite
satisfactory while taking into consideration all the aspects
of the probleme It is needless tc say that in all the
studies involving scattering from Li astoms, the results
obtained were not as satisfactory as those obtained in the
case of H or He targets. The additional sgource of error

in the wave function is ¢one of the factors for this falilure.

In.comparison to the bulk of work reported on Li
targets, the research done on Na targets can be termed as
meagres This situation is not surprising while considering
the increased computational hazards to be met with as one
goes over from Li to Na. The core approximation to the
alkali atoms is of great help in this respect. When accurate
and exact calculations are not within our reach., approximate
evalustion has to be resorted to. In thig process, part of
the accuracy may be sacrifised. This is precisely the

justification when even approximate methods are not attempted
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to. In this chapter, we will 'discuss some of the present
work done on e = Na elastic scattering using different
approximations and within the limits of the limited facilities -

such as computer -~ avallable.

One major problem in the case of heavy atomic
targets is the non-avallability of handy and accurate wave-
functioqs. The approximation in the wavefunction creates an
additional source of mistake in atomic collision analysise v
This is one oOf the reasons for the scarce data as well as
ungatisfactory resalis in the case of heavier atomic targets
compared to that of lighter ones. The waveﬁunctioﬁ obtaine@
using Slater rules has the advantage that it is comparatively
handyes In an earlier section of this thesis, this type of
wavefunction for Li was used. In his analysis on alkali
atoms, Walters {1973) has made use of the Coulson {1961)
wavefunction for Li atom and the Szasz Mc Ginn wave function
{1967) for Na and K. In the section (4.4) of the present
thesis, it was shown that the choiqe of the wavefunction
in the method of Coulson (1961) or in that of Szasz & Mc Ginn
(1967) does not make much of a difference in the study of
e - Li elastic scattering in the modified Born approximation.
Comparison of the two wave functions will advocate the use
of Coulson wavefunction only because of its compactness. The
Szasz Mc Ginn wavefunction is readily available for Na atom
alsoc, but the analysis will be lengthy and complicated using

thig wavefunction. With the anticipatien that the simplicity
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of the Coulson wavefunction provides enough justification
for its choice as the target wavefunction, in the present
study the same is taken as the wavefunction for Na. It

can be derived as followss

Using the Slater rules, the different orbitals can

be represented as ﬂls, 4 - = = = such that

25

Yo = 2 ¢18+8¢25+c;@2PX+D¢2py+E¢2pz+F¢BS (5.1)
where #,o = [ &%1311/2 o~1047 xy

8, = [969% 5‘”1/2rl e-3e425rl

ﬂz?}f [228W5;l/2 6-3.425 £y , Sin © Cos

ﬁz?y* [63235}1/2 ~3.425 r; ) Sin 3 sinp

gzpzz Bé%i?]l/z =3.425 r; £, Cos ©

P = [25_;‘{2 g ] 2 _-0.733 r;

The constants 4, B, = =« ~ = can be obtained from the
following conditions of orthonormalization of the valence

state,

(1) VBS should be normglised

-

iuee ! dV = l - (5'2)

1 WBS ?35
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(2) should be orthogonal to the orbitals

¥as

’ng etCe

ie€a <(’]3S/¢ls>=o
Hence Y,o =P 2.4+ Q&g (5.3)
Where < Y,o/ §oq > =1
~
>
and < Yoo B4
~

Making uge 0f the.above conditions,

0

i

P = 0.2743 Q = =1.0369

¥ ,g = 0.2743 - 1.0a369 ﬁzs

ﬁls
Following the same procedure.,

. i £ 4
¥ as= 28 g+ BY,q+ F fg (5.4)

Now using the conditions

<P/ ¥ 45> =1 and

<W35/¢1S> = 0O
> =
5 V3S / W 28 0
. > —
we get A + F < g 1s /9 38 = 0

N ~
P o< >= 0
B+ F <¥ 578 35

2 2 9 >
and A“ + B 4+ F +ZBF<I)[TZS/¢38

~

¥ 28F <Py /P> = 1
\

The expressions of the form < @ / @ > are easily evaluated

using (5.1). This gives finally
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A = =1.22897 -~ 03
B = 8.58839 - 02
F o= 1.003682

which when substituted in (5.4) gives

- - "30425 r
Y3S = 0.,44093 e lo’7r1,__o.62974 ry e 1

2 "'2021':1/3

+ 0.0432 ;7 e {(5.5)

which is the wave function of the Na atom (in the ground
state) using the method of Coulson. This wave function has

been used in the following part of the present work.

Another important aspect of the description of the
electron -~ atom collision is the interaction between the
incident electron and the target. In the sodium atom with
1l extra = nuclear electrons, this interaction becomes very
complicated. At this juncture, the core represegtation of
the alkali atoms (Walters 1973) becomes useful. In the study
of Li atom, the core approximaﬁion is well=-established (Rao
and Desai 1983, Mathur et al 1972, Guha and Ghosh 1979). In
the earlier sections on Li scattering, in the present work
also, the core~approximation was successfully applied and it
was noted that the effect of the core compared to the valence
electron increases with incident energy and the scattering
angles In the core-approximation the alkali atoms look like
the hydrogen atom with the core similar to the hydrogen

nucleus and the ns—electron (n=2,3=--) similar to the extra=-
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nuclear electron in hydrogen. Walters (1973) has used the
core approximation to study 'alkali scattering. In the present
work also, the interaction potential between the projectile

and target Na atom is similarly written as

V = VH + VC . (5.6)
-1 1 . . .
Where VH = - + ig the hydrogen like inter-

2 /E,mZ)
action and Vo = the potential due to the core defined by

where §; stands for the inner orbitals of Na defined by(5.1).
It can be Observed that V_ is independent of target co=ordi-
nates and behaves like a static potentigle. With the
simplification of V as in {(5.6), the interaction becomes very
mich similar to that in hy&rogén, the difference being the VC
term which will not introduce any further computational

hazards because of the absence of the target co-ordinates.

The evaluation of Vc is a very lengthy but straight=-
forward process using standard integration techniques. For
each ¢i, the corresponding Vci is calculated and the final

sum gives

172 2 272 4 &
V =C, e {1+ ) +C, e e+ 55— + )
e~ %2, 6r, g 24 i )
+68 (r2+;§:+ % 2 +-';——o-<T eo 5.8
4 2 4 . !
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Where 67 = =23.0101 u(l = 2le.4
Cs = =109.,1529 &2 = 14,125
Cg = 1010063 £4 = 6085

With the help of the wavefunction and interaction simplified
as (5.5) and (5.6), we are now ready to undertake the study
of the elastic scattering of electrons by Na atoms (ENa

process) «

It should be remembered that recently experimental
measurements have appeared for the above process (Teubner
et al - 1978, Srivastava and Vuskoviec - 1980). But
unfortunately, most of the results are for low energies of

incidences

Now we take up a systematic study of the ENa process

uging various methods one by one.

562 First Born Approximation 3

This is a very basic approximation which is found
useful later in many sophisticated methods like GES, HHOB
etc. Walters has already analysed the ENa process within the
framework of the FBA. But he has used the Szasz Mc Ginn
wavefunction (1967). In the present study. we use the
Coulson wavefunction derived earlier (5.5). By studying
the ENa process in the FBA usiﬁg core=approximation, the

following advantages can be expected.
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(1) The comparison of the present results can be made

with that of Walters (1973).

‘(2) From the above, an approximate idea about the
correctness of the present wavefunction and core-

potential can be Obtained.

(3) The first Born results so obtained can be used in
later sectionsg where higher order theories are

discussed.

(4) If the present results compare favourably with that
of Walters, it can be presumed that the two wave-

functions do not give much different results.

i gex *

£ 21y vy av (5.9)

Nowr 5 =

e
S &vz e

Using the expression (5.5) for ¥, it is convenient to write

* S T T | =% a? . %%
¥ ¥= Cpe +(32d°<2e +03-;-5-;<§ze
3
- X -
. o . 4T e85 o _at 61
4 52 5 4o 3 6 d% 4 (5.10)
Ay 5

where the value of Cj and.ﬁ% are given in the table (5.1).

1

Nc,w’frg*vqxav =V +fq1*3;(l+ ) av
' — Sand - -
-
For the term e ~ 41  in  §© y (5.10),
...°<r

* (1) 4R 172
f ¥ dv, = = € (34 =yl )

¥ 7 ¥ 1 < 2 W RE,

*

Thus for the § ¥ given by (5.10),
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...0<r
* v e 172 2
fy yH dle-47<§cl pr i) (1 4—)
) 1 172
-
+ C d s (14 ~2—)
2 ci<><2 o<22 o§2r2
~Xr -X r
32 2 472
d e 2 a a 2
+C (1 + ) +¢C (4 )
3 63(2 og 2 ) 0<3 T, 4 0§°<4 2 < 2 °<4r2
d3 -o%rQ ( 2 ) d4 e -6r2 ( 2 34 ¢
+ C 1+ +C 1+ g 5.11)
5d%,3 X2 . 5T, 6 do<62, ‘°<62 XL,
L e * 1
(1) 1 gk, \Y dv., =
Now fB =~ 3R J"dv2 e J ¥ H y 1 2~
iqo_;
! =2
dv, e VC(J:Z) o (5.12)
(1) o6 . r X
* £ ‘=~--2—-6fdr2r?2-—§—19-;g——2f1}1 VH‘IIdvl
o ® BA q “ 2
For one representative term of (5.11) i.c.
. 2 ) (1)
—X (l+ === ), £ . 4is obtained as
< , ey BA 2. o 2
(1) (g“+2 %% )
\* ] )
Hence for J § V Y dv, given by (5.11),
2 2 ) 2 2
(1) (q® + 257 ) . c a (q” + 297
£ = l67§§ C 2 ax
BA S l,(q'*'l) 2(q+o(2)
2
2 2 2 (P 4+ 2%,?)
52 (g + 2 o<, ) + a 4

C
4 2 9(3 2 0(2 2
6.0(4 A {g® + N )

+ C
3 ‘,(2 =< 3 20<22
d3 3(q+3)
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2
2 . ,2 4 (0. + 2 <2) ‘
+Cg g2 latraegT) . c d . 5 3 (5.13)
3 «3¢.2, 22 6 de 4 X3 {2, x2)2
asg 5(q+o<5) & 6(q+6)

Similarly by substituting VC given by (5.8) in (5.12) and

using $tandard integrals and simplifications,

2 2 .
(1) g Y -24 %, (g% =%, )
£ = =2 2C + C -

!

6 2(g® - 3%?% )

_ 4 . 18 2 L 24 1]
o( -
4 (qz + °<4§' )3 %4 (q2 +°2¥2)2 02:3 (q2+ x<? )"
- 4
. 5 ,
2
+ ol ] 3 (5.14)

(o2 +¢,<22 3 T (2 +°<2232+ °§2 (q2+o§2) _
Now the first Born approximation to the ENag process is the
sum of the expressions given by (5.13) and (5.14). The DCS
for the BENa process within the frame work of FBA(can be

easily calculated now. The results so obtained are displayed
in fige(5.1) at 54.4 ev at which there is data for comparison.
In the éame‘figure, the DCS without the core - contribution

to the interaction (5.6) is also shown. The following

conclusions can be drawn from the study of fig.(5.1).

(1) The present results compare favourably with those of
Walters (1973). This indirectly shows that the choice
of the different wavefunctions in both the studies

hag not affected the results mache
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(2) The effect of the core is very much for higher

S scattering angles.

(3) Bven at a low energy such as 54.4 eV, the core-
contribution is highly significant. The comment of
Walters that core-effects are negligible below 100 eV

is gquestionable.

The effect 0f the core is expescted to increase for
large angles where the nuclgar part of the interaction pre-
dominates. It should be assumed that even at lower energies

the projectile penetrates deep into the target.

In an earlier section (4.4) the simple Coulson wave
function and the sophisticated Szasz Mc Ginn wave function
were compared by using them to study the same process. Here
also the comparison of the present results with that of
Walters (1973) is similar. Since the Szasz Mc Ginn
wavefunction is very unwleldy and difficult to héndle. in
the rest of the present work also only the Coulson wave-
function for Na is taken on the basis of the above mentioned

comparisone

However, the comparison of the First Born DCS with
‘experimental results (Teubner et al (1978), Srivastava and
Vugkovic (1980), is véry discouraginé. In the very small
angle region oﬁly there 1s some sort of qualitative agree=-
ment between the two results. Naturally, in the case of

alkali scattering where second order effects like absorption
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are all-important, a first order theory like FBA cannot
be expected to hold good. Hence, the inclusion of higher
order terms is required. With this view, we now take up

the study of ENa process in a higher order theory.

563 ENa process in the GES Method &

The success of the GES method as atreasonable term=-
wise representation of the Glauber series is well established.
In the earlier part of the present work also, the GES analysis
was performed for some basic scattering phenoﬁenas In the

present study oOf ENa process, it was decided to carry out

the GES analysis because of the following reasonss

(1) In the previous section, the necessity for a higher

order theory was felte

(2)
(2J) The second term of the GES i.c. £ . is found to be
' GES
very similar to the imaginary part of the second Born
terme
(3) £ (2) takes care of the important absorption effect.
. GES
(4) In the study of Walters (1973) Glauber result was

found to be muich better than the first Born.result.
Hence, the GES results should also be good.

}5) Because of the representation of the interaction
potential and Wavefunction as (5.6) and (5.5), the
evaluation of the GBS terms should not be very much

difficulte
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It should be borne in mind that the first term of
GES series is the first Born term given by (5.12). Hence,

f(zl (3)

the task is to evaluate GES and £ GES® Here, we use an

approximation as follows:

It was pointed out by Mahtur et al (1972) that in
the core~approximation of Li atom, the core part can be
neglected in the evaluation of double scattering terms. The
same was followed later on by many workers such as Guha and
Ghosh (1979), Rao and Desai (1983) etc. In the current
study also, in the evaluation of the higher order terms,

we neglect the core part of the interaction‘enumerating the

following reasons 3

(1) The second order effects like absorption and polarisa-
tion are important in the small angle region where the

effect of the core is small.

(2) For the low incident energies considered here, the
penetration of the projectile into the target is
very little. Hence, the effects due to the core of
the atom will not be significant while considering the
valence electron, the distortion in the cloud chgrge

etc.

(3) In a previous section of the study on Li scattering,

the same procedure was adopted with successful outcome.
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(2)

Hence, we proceed with the evaluation of f and

GES
£ (éés for the valence electron of the Na atome.
(2) zz 4ap . X
£ = !  § B Blap)/ .5 (5 1)

cEs  Fi  Plrgps?

It will be possible to reduce some length of the calculations
by considering the analogy with Heatom problem. For thig

*
- purpose, it will be convenient to represent W ? in the

present case as

¢ < -
* 171 2 21 3 3%1
V‘Y=’7\§Cldi S+ G, ddz < ""33(-13*23
et BRALS ] "2 AT s Yt AN
- O, O =0
ad e "% at e "% @ e ~%51 (s.16)
+ €, =3 + Cg oy + Cg z g' *
aos, Ary asg Xrl d°<6 ~r,

The interaction pertaining to the valence electron of the

Na atom i1s similar to that of H atom. Thus,

B (P)B (g=p) = 4 - ‘ELy Vg-B /ery | ot gz
) © - ° (5.17)

(2)
Now £ . . = £,°+ £°+ f32 v £, 4 £2 + 52 (5.18)

GES 2
where each exXpression corresponds to one term in the

*
expression (5.16) for ¥ ?‘

It should be remembered now that for H = atom,
* -?\.r
4 e 1 .
(lTY{]zC(—dK') rl Wlthknz; C:l/;('
B S
Hence the ? ¥ of (5.16) is similar to the above expression,

the @ifference beiﬁg in the values'of the parameters and the
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additional differentiations. The £ . for H atom was
GES
derived in an earlier section (3.24). Hence the flz, f22

can be directly written down as .

(2) d
fl =7§Cl k2 (-a-;z)fz(zl)
(2) a? ;
£ 5 - = 7\"C2 k2 (-'(;;-'5 ) 2d( z, )
2
(2) _ad (2. )
3
(2) d (z )
£ =xC, k, do(43 ) f;_ 4
(2) a* 1 z.)
£75 &KCS k2 ('"'d"%z) fz‘ 5
(2) a> (z)
f6‘ =7§C6 k:2 (—*é—o-%'g—) f2716
4
Where k2 = m—-—
4 2
and fz(z) = 47\'--—~‘-?‘-—-—-§ In ¢ '3":';-?—" ).

Y+ 2z

d
It is needless to say that the K ~differentiations =
dx

d2 etcs have Bo be converted to the corresponding 2z -
dr><2 a dz p
; sy P etces for =z = q/x*
differentiations az dzz
as
Thus —5 should be replaced by
dk
- 28 a a? , a3 , a*
T(lZO&?+24OZE—§+lZOZ T35 + 202 37
qd z z Z
4 d5

+ z 35 ) and so on.
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Hence £ = -k § Z 4 C_ ——— z
GES 2 ¢ €1 dx; "2 1T da&z 2 72
a3 a3 a*

Pox g (z,) +C-do<33£ () + oy f_(zg)

+ C

£ (z) ce(5.19)
2. 7.

Similar method can be followed for the evaluation of

(3)
£ also.
GES
3
(3) 27k, (~27) ap, e, 1
£one T 3,3 = = 2
GES 6 Aky Py P, /q_(Pl+P2)/

< V{/ B(P,) B sz? B ( qn(Pl+P2)) /Yy >

Here again ma?ing use of the convenient representation (5.16)

(3
of V T4~ £ will be constituted by six terms, each term
: GES *
corresponding to one term in 711 IF
(3)
Thus £ Lo fl?’ + f23 - -+ 563_
GES
~Ar
Here also for the t £V ¥ of the type C ( =& ) -2
ere also for the term o If I}J o he type TN AT
(3)
corresponding £ | . will be
' GEgZ
4 ) o)
C =x —TyTE { - “h ) f (z) where zZ = 3
BK'ki q . .

The above deriveation was arrived at earlier.

. 3
Hence f =7 Cky (= —=— d«l ) £y (zl)
£ 3 ACK, (- <2, £. (z.)
2 = 1 dﬂ<2 3 2
N 2
3
3 k d
£ =%C {~ e } (= )
3 31 de 3 3
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3
£3. nc k (-~‘3~—3f3(zd)

4 41 22 24
4
3 d
£.° = A Cg ky ( -—-~—-—do%4 ) f3(z5)
f3——7YCk(-dg ) £.(z.)
6 - 6 1 dKS 376
. . -
- T+ 22 2 2
where £_(z) = 3% — é 4 In T 2A(z)§
3 .
Lo L + 2z . Z 3
k 4 , ,
and K; = “*§~—§'4'A(z) is the same as defined under
37<kiq

equation (3.16). Here alsc the differentiation variasble has
to be changed from«to z correspondingly using conversions

given earlier.

2
Ak d a
Thus £ (3) - 1 gcl T f3(zl) + c2---——2 f3(z2)
{ 1 d= .
GES 2
a’ (z_) G ( z) a* (z.)
+C £f_\z + C £ Z) + C £f_(=z
3 e 3 373 4 3 37 ‘2 5 395
d 3 . d % . d«%
5
d ;
o o £5(zq) .. (5.20)
< .

Where 2z, = g

Using the expressions (5.19) and (5.20), the DCS for the
ENa process in the GES'appréximation ¢can be written as
dc— (2) (2) (3)

e P o x £ + £ x £, . =~2x fB % £
1 GES GES

1 GES

Results and discussion ¢

The DCS obtained for the ENa process as described

above are shown in fig. (5.2) for E = 54.4 eV. The results
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are compared with first Born DCS as well as experimental
data. It can be seen that the present DCS is quite good
at small angles. Thig 1s as expected since the GES analysis
is another way Of representing the Glauber approximation
which is necessarily a small angle spproximation. The
comparison of the present GES results with the Glauber
results of Walters .in fig.(5.2) shows that the GES method
discussed above compares with the Glauber crosgs=—sections
reasonazbly well at small angles, considering the relative
ease of evaluation of the GES method compared to that of
A

Glauber method.

It should not be forgotten that in evaluating the
Glauber amplitude, Walters has used a different wave-
function than the one used here. This shows the comparison
between the wave functiongs also. The present results should
not be expected to hold good at large angles for the
energles considered here. This fact is obvious from the

table (5.2) giving the individual GES terms. It can be

seenithat at 100 v for © >30°, £ ¢ > £ @) 4 o e
GES GES

series is no longer convergent. For the energy E = 54.4 eV,

it cen be seen that upto the & = 400, f (3) < £ (2) ieees the

"GES _  GES
validity of the present method is better at higher energies.

Unfortunately, since experimental data is available only
at small energies, we have to stretch the high energy methods

also down to lower energilese. Anyway, there is enough
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evidence to believe that the GES results, should be

reasonably good at higher incident energies.

The improvement of the GES results over the first
Born results is also notable. This is also in accordance
with our earlier anticipation that the GES results should
be good because the Glauber results are better than their
First Bomn counterpérts provided the GES can satisfactorily
represent the Glauber series. Thus we can conclude that the
first three terms of the GES series gives satisfactory
representation of the Glauber Series for ENa process and
the inclusion of higher order terms has improved the

approximation.

5.4 Inclusion of Polarisation Effect 3

One major defect of the Glauber as well as the GES
methods is the logarithmic divergence of the cross sections
for very small angles. Another sghortcoming is the absence
of the real part in the second term corresponding to polari-
sation. In the proposition of a modified GES method in
section (3.1) a remedy for these disadvantages was suggested

(2) by the © ( ﬁh) terms of HHOB such

GES R A
that the scattering amplitude becomes |

(3)
+ £ Im + £ - £
Bl Rel GES

lece repiacef;lent of £

£ = £

In earlier sections it was explicitly shown that
f Im is almost equal to £ (2). But the beauty of the present
GES
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term £ Im is that it is not divergent even at g = 0,

because 0f the average excitation energy term B.‘ Hence,

the net result of the replacement of the GES term by HHOB
term is the inclusion of polarisation effects taken through
fRel. As mentioned earlier, polarisation effects should not
be significant when compared to thé grossly effective gbsor~
ptive part. However, it would be interesting to study the

effects of inclusion of polarisation effect.

Incorporation of HHOB terms necessitates the
evaluation of the B parameter for ENa processe. This was done

as followss as given by Byron and Joachain (1977).

, s y/2,%/ 9>

b

- K
Where « 1s the dipole polarisability of the target atom
M

and £; =By + z;X « This method of evaluation of B was
checked first for ELi process. . For that,' the Coulson wave=
function (1961) was taken for ¥ end the recent and accurate

value 0f « = 167 a.u was taken from Sternheimer (1969).

il

1

This gave W o= 0.0723 for ELLI process. For the same précess.
Vanderpoorten (1976) obtained W = 0.0745 using the same o
but with a better eétablished Hartree fock wavefunction of
Clementi (1965). This indirectly marks the correctness of
the preseht method of evaluation of W or B as well as the
dependability of the Coulson wavefunction. Hence, the same

procedure was adopted for the evaluation of £ for ENa processe.
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For this process

K= 22.59 %)% = 152.6 a.u.
Using the Coulson wavefunction (5.5) for ¥ and evaluating

<y /2% /¥ > ad substituting,
W = 0.1313 a.u.

Hence for the ENa process, B = 0.1313/ki. Now we can take

up the evaluation of £ Im and £ Re1 terms of ENa process.

47Y3 - AL e A
£ Im = % I G <§ /7 (R+P 2 ) V (g-P-p K/ ¥ >

. %,
For the evaluation of this, the expression (5.16) for vy

will be very useful. Now one can consider that

f Im = £ Im(l) + E Im(2) + seesesd F Im(6>, each term

corresponding to one term in (5.16). For our choice of

the interaction potential, V becomes similar to the one given
ol I

in section (3.2 ). By considering one term Cl(- d«d )y &4 1

; X , 1 1
and comparing it with the V W for ESGH process, it will be

easy to derive £ Im (l), £ Im (2) - « = gimilar to the

derivation given to arrive at the expression (3.17). Since
all this process is very lengthy. we consider here only the

final results namely

(1) -2 o
fEIm T =—o & ar 8% x?) - 5—5 1,(6%0))
i de o2 a”+X
4 2 ' 2
£t o —c 2 (2 1, (B22) - 4

2
— Il(B ,0))
a %

1
ky 2 d&%z w& 2

etc. such that



£ Im for ENa process

i

I

INS + C6 -g;;-‘-g N6 (5.21)

4 5 §

- {ned g Ko
Where I N ;N are obtalneq by putting 1275

¢ L
i N2 &

—~—°<6forth60< in
n

Il(Bz,<Kn2) has the same meaning as defined in earlier

sectionse.

For the evaluation of fRel also, a shortcut similar

to the above one can be used. f Rel can also be represented

(L) (2) (6)
+ 1

as f Re, = £ Rel + £ Rel -~ - = + £ Re . corresponding

1 .
H
to the six terms in (5.16) for ¥ ¥ . The derivation for
' S
£ Rel for the ESGH is given earlier wherein the W ¥ has the

same form as the first term of (5.16)

(1) (2)

Thus the expressions for £ Rel . E Rel etc. can be
derived in the same lines. With a view to save space, the
lengthy derivation is not given here but only the resultse

Thus one can Obtain for the various terms in £ Rel

4 a 1 ‘ a4
(1) 2 2 2
£ Re - c E 2 1. (B o« } = ———— I (B '0)3
1 ?Vki 1 3ol 0(12 2 ’ 1 2 2 72

1 q”+
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() 4 dz 1 2
2 2 2 2
f Re = c [(2 1_(B%, &&.) - 1.(8%,0)]
1 Ak; 2 g 2 2 2 2" T 2,2 2 :
2 2 2
etCe
Thus the final form of F Rel for ENa process will be
3
4 d d2 I + C —§*~
f Re, = % C e I + C m—— M2 3 3
1~ Rk, 17 M1t ~2 2 as
i a Y dﬁé 3
3 4 5
a d a %
Iyst C, W Iy, + Ce Py Iys *+ Cg =5 I e (5.22)
4 5 “%
- . : 1”4
where I, 1 M2 etc. are Obtained by putting 1 02. .« o 0%
L 2 < 2 gz 2
for the 9% in I@h =:&;§'[2 12(3 « %5 ) - q2+“h2 IZ(B ;0)3

Here also the integrals I (Bz, 0%2 } have the same form as

2
uged earlier and given in appendixe.

With the expressions for £ Im and £ Req available

now, the DCS for the ENa process can be written as

a¢G-
a*——-‘az fB X fB + £ Imx £ Im + £ Rel x £ Rel + 2
£, (fReyp - £ ) (5.23)

B 1
: GES

This will give the new DC3 obtained after replacing the
second GES term by the HHOB terms thereby including the

polarisation effect.

Regults and Disgcugsions @

As discussed earlier, the effects of polarisation

are almost negligible for the ENa process when compared to the
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absorption effects. The table (5.3) explicitly shows this
(2)

GES = £ 1m °°

in the earlier cases. But the advantage of taking f Im isg
(2)

that it is not divergent at & = 0 as £ because of the
GES

oresence 0f the average excitation energy parameter, and

fact. HMoreover, it can be seen that £

the individual integrals appearing in £ Im are not divergent
alsc. Hence it is possible to evaluate the total cross
section for the ENa process from the value of £ Im (& = 0)

using the famous optical theorem.

The differential cross section obtained using (5.23)
is also shown in fig. (5.3). It can be seen that there is
no signitficant change in the DCS because of the replacement

of. the second GES térm by the Born termse.

5.5 Two Potential Borm Approximation $

It was shown-in the earlier sections that the first
Born, GES and HHOB methods are not sufficlent to represent
the ENa process satisfactorily especially at large angles.
In this connection, we remember how the two potential Bom
approximation improved the simple Born approximation for large
angle scattering. Specific examples were also cited by
applying the two-potential HHOB approximation to the ESGH and

EHe processes.

Moreover, in our study of the ENa process within the

frame work of FBA, it was shown that the contribution due
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to the core part of the interaction varieg very slowly

with increasing scattering angles. This results in the

high scattering cross-sections at large angles. Hence,

if there is some way by which the core part of the interaction
can be separated out from the total interaction and be given

a better treatment, the results should improve. Hence, a
partial wave treatment for Vc should be a remedy. Further,
the Born approximation should be better for weaker interactions.
Hence, if the total interaction V treated in FBA is replaced
by V = Vl where Vl is arbitrary such that V = Vl satisfies
semi~classical conditions, we should get bettér results. With
this idea in mind, we will now study the ENa process in the

two=potential formulatione.

We have seen earlier that the interaction potential

. < 1 1
for ENa process is V = VH + Vc where VH = T, + /£l~ z, /°

In the two potential Born formulation discugsed earlier,

we subtract an arbitrary potential Vl(r?) from V (r1

such that Vo(rl,rz) =V (rrrz) - Vl(r2) satisfies semiclassical

,rz)

conditions. Then Vo (rl;rzj is treated in the Born approxi-

mation and V, (rz) is treated by partial wave method.

For the EWa process, we choose for the arbitrary

porentiali

- ,
Vl(rz) \c(rz)
Such that vo(rl,rz) = VH(rl,rl) + vc(rz) - Vc(rz) = VH(rl,rz)

ee (5.24)

Now we treat Vﬁ(rl, r2) in the Bom approximation and Vc(rz)
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in the partial wave method described earliers ) w

To start with, we take only the first Bom term in
the Born approximation i.e. VH should be treated in FBA and
VC by Partial waves methode.

Thus we note that

(1) earlier Vy + V_ was treated in FBA and we found that

VC contribution was very slowly varying thus resulting

-

in higher cross sections.

(2) Now only VH is breated in FBA and this being a weaker
interaction should give better results.

(3) Now the contribution due to V_ is taken gquantum
mechanically through a few partial waves.

(4) This type of two potential method was earlier found
useful and here also there are reasons to assume that
the results Obtained should be better than those

obtained through simple Born approximation.

To evaluate the VH rart of the interaction in the

(1)
BaA

L

FBA, we can readily take the earlier result (5.13) for £
Now the scattering amplitude in the two-potential method
will be

. 6(1) (1)
(n) 1 Xl A, Sin SL

- — 2
£f = g £+ X, i (2d+1) ‘?L(COS @) e

<y /e L /§ > (5.25)
(n)

where £ B is the Born amplitude for the interaction VH'
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(1)

At present we take only fB +« Afterwards higher terms will

be included.

%(l) 8(O)
i and 1}, ére the phase shifts for Vl and VO
respectively. Here, since Vl = Vc(rz), we have to find the
8éljzfﬁar . Vc(rz). For this, it is convenient to write
(5.8) as
- O
, 2 152 a 172 T 4
v ir) = c [z € - E——lucl &5 E—
e - - r, 1 2 2 2 2
-l -0 .4
a % a? .22 J [ 24 _T1%2 18 4
+ +C -
=
e r, d0%2 r, T 8Y %3 r, %2 d
- - ‘ - r
T2 6 a2 a5y a3 a2 -
. t T 5 2 Tax 3 = ]
r, 4 degy o Q°<4 ‘ Lo

Now making use of (4.105), the phase shift for the Yukawa
type of potential in the Born approximation, the Born phase

shift for the potential VC is given by

(3) 1 2 da 2k, 2 +o<12
64: =""3‘5‘§Cv (g =gz ? g (=25
i : 1 2k,
( 6 4 a a® : ( Zkiz Lot 2 )
+C - + Q
9" K.,2 o,  de 2 {, 2
-2 2 2 E2s : 2k4 ]
2 53 2. .2
24 18 a ., 6 a d 2k, “4 X
468( X3 &3 ax X de-dxa) %('-L~f“ﬁ (5.26)
! 4 4 4 4 4 2k,

i
- 6(1) o
The exact phase shift N for the above potential can be
found out using the Numerov method for the solution of the

second order differential equation as described earlier. The



numerical valueg of the exact phase shifts are obtained
this way. The summation of partial waves in (5.25) is done

by matching the Born and exact phase shifts etc. as

discussed in section (4.5).

Now knowing the scattering amplitude (5.25) the DCS
may be calculated.leprocess may be repeated for vé:ying

incident energiese.

Results and Discussion ¢

The DCS obtained as discussed above at 54.4 eV is
shown in fig (5.4). Tt is compared with experimental
results and first Born DCS. This is done because the above
two -~ potential formulation can be considered as a modifi-
cation over the first Born approximation due to the

following reasons

The present scattering amplitude
(1)
. .+ £

£ = £ .
B - Pw

In the first Born approximation, the interaction

potential VH + Vc is treated in f£Ba. Here, VH is treated

in £BA and VC by partial wave analyvsisg through a two-
potential formulation. Hence a comparison between the
pregent results and first Born results will be most

appropriate.
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From the figure it can be seen that the present TPB
results vastly improve the first'Born DCS. The present
results reproduce the shape of the experimental curve, sven—
though there is some quantitative difference, The present
curve shows a dip around 105° as in the case of éxperimentalw
Observed results, whereas the first Born DCS does not exhibit

such .a dip.

It can be concluded that the present two-potential
result is definitely an improvement over simple first Bormmn

results. This is what was expected also because

(1) Now a weaker interaction is treated in the FB approxi-
mation «
(2) The core part Of the interaction is given a better

treatment through partial wave method.

The results at 100 eV shown in fig (5.5) also display
same type of behaviocur as at 54.4 V. Unfortunately experi-
mental results are not available for high energies. So
discussion lacks the crucial comparison with experiments at

such energies and hence has to be confined to lower energies.

5¢6 Two-potential formulation including higher order

Borm terms 3

In the earlier section, we have seen that the two-
potential formalation involving only the first term of the

Born series has improved the first Born approximatione.
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Eventhough the results so Obtained show nice qualitative
agreement with experimental data, the quantitative agreement

is not so good.

It was discussed elsewhere that the absorption
effects are all-important in the case of alkali scattering.
Earlier it was also discussed that the resulits have improved
by the incorporation of the absorption effect through the
imaginary parf 0f the second Born term. Hence the next step
taken In the present study is the incorporation of the
higher order terms in the two=potential formulation described

in the previous sectione.

(3)
The higher order terms £ Im, £ Rel and £ . are to
GES
be determined in the Born approximation for the part of
interaction VH. Now -

(1) (3) ‘( :
f = £ 4+ £Im+ £ Re, = £ + F 5.27
B 1 GES Pu

In the two potential formulation, the first four terms in £
are tO be calculated for the potential vH = - NN N
T2 Tiz
This is done in the earlier sectiong of this chapter. So
these expressions (5.12), (5.21), (5.22) and (5.20) can be

directly made usge of.fpw remaing same as in Tthe previous

sectlion.

Here, one point is worthy of mention. In the
evaluation of Higher order Born terms, we have taken VH

part of the interaction because the VC part is taken care of
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through partial waves. In the earlier sections, in the
evaluation of higher order terms, VH part was taken after
completely ignoring the core potential VC assuming that its
contribution will be less. Hence the present study will

help to assess the significance of Vc in double scattering

termnse

Now that the scattering amplitude (5.27) is known,
the differential cross sections can be computed for variocus

incident energies.

Results and Discussion

The DC3 obtained as explained above are shown at the
energy 100 &V alongwith other data (fig.5.6). The results
of the earlier section (i.e. TPB results including only
first Born term) are of special significance. Contrary to
the expectation; the present DCS including higher order terms
in the TPB results deviate raway from the experimental curve.

This may be due to one of the following reasons:

(1) The Born series is not convergent at such low
energiess,
(2) The importance of the core part of the interaction.

In the present analysis, we are not neglecting Vc'
but taking it through some other way whereas in the previously

discussed GES method, we have completely neglected VC. If we
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had incorporated Vc there also, perhaps the results would

have been much different. In the GES/HHOB method

(3
£F = £ (Core + Valeld + £ Im (Val) + £ Re,(Val) = £ (val)
Bl : 1 GES
Here f = f (val) + £ Im (val) + £ Re, (val) -~ £ (3) (val)
Bl 1 GES
+ £ p (core)

The comparison of the above two scattering amplitudes shows
that earlier we had neglected the imaginary part (corresponding
to absorption) due to V. and presently we are taking this

into account through partial waves. Hence, there is enough
reason to believe that the difference in the two sets of values
is largely due to the incorporation of the core part in the
higher order terms. This in turn shows that core cannot be

simply neglected without enough justificatioa.

5¢7 ENa Process in the static potential 3

3

In the érevious section, we have seen the effects of
neglecting the core part of the interaction. Unfortunately,
the retaining of the core-part brings in lotsg of computational
difficulties in the methdds discussed so far. Moreover, in
the current discussion we have not so far come across an
appropriate method to describe the ENa process for large
angle scattering. Here, we resort to the partial wave
analysis of the static potential of Na atom for the following

reasonss
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(1) The static part of the interaction is predominant
in the large angle regions

(2) In the static potential there is no differentiation
ﬁetween the potential due to the core electrons or
valence electron of Na atom. Hence, there is no
cquestion 0f neglecting the core effect.

(3) Partial wave analysis of the static potential for
many atoms have been proved to yiela -gabisfactory
results except for small angles of scattering.

(4) Calculations are simpler with static potentials

because of the absence of the target co~ordinatese

The potential given by Co x and Bonham (1967) was
chosen for the static potential of Na atomse The Cox Bonham
(CB) potentials are meant for mainly high energies. Hence
first of all it is necessary to try their applicability at
the intermediate energies of interest for us. For this
purpose, we have already undertaken the study of the total
Cross sectibns for the elastic scattering of electrons by
hydrogen atoms using the static potentials given by Cox and
Bonham (Section 2.12). The TCS values are found to be
comparable with other intermediate energy calculations, and
hence it is verified that the CB potentials hold good at

intermediate energies.

Now to go back to our discussion, we have to do the
partial wave analysis of the ENa process using the CB Static

potential for Na atom.



-A.r
, ¢ (e d
liee V. (Na) = -11 2 RO (5.28)
st - J r
=1
Here,= Aj. =, 0.9864 Y, = 0.8281
A o - -
, = 29.1004 {2 = =0,0809
A - _
3 = 3.0015 f3 = 1.3795
}\ - - - .
. 10.9701 ﬁ 3.2885
2».5 = l.2554 @ = «0.9576
A6 = 9.9009 «é = =~344600

1

The scattering amplitude is

1 ig S

: Lo
f = k] i(2L+ 1) B (cos @) e Sin 9 (5.29)
Hence the main part of the evaluation of the above
scattering amplitude is the determination of the vhase shifts
for the potential Vst' Here again, to simplify the infinite

summation over X s+ we resort to the method described earlier

N 16,

I (24+1) B, {Cos ©) e Sin oy
1=0 ) , .
A

(1) 1
+ £ -
B ki

ige. f =

A e

N ¢ (B)
S (24 +1) B (Cos o) SL {5.30)
1=0 . . ,

through which we are considering the partial waves for

X,: 0 to «© « Here fB(l) is the first Born amplitude for
Vst and %’and 5&8? are the exact and Born phase shifts
respectively. The N value is Obiained by ma%ching the two
phase shift values. The Born phase shift gié for the

static potential (5.28) of Na atom is given by
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2 2
2k, +7\.
g‘B> L E g (— ) (5.31)
id= . 2k ,

For the evaluation of the exact phase shift { correspondingly,

the value of V{x) in (4.97) has to be taken as
P N A

V(x)‘ = =11 Zv yf p” « Thereafter, the same procedure
3

should be followed for the solution of the differential equation
and evaluation of the phase shift p After obtaining the two

phase shifts %iB) and SL s their values may be matched to

fix the value of N suitably.

The first Born amplitude f(l) for the static
B
potential (5.28) is
w - _ igez (r)
B = av =] VSt

which can be evaluated using standard integration technigues

ob

2 22 % (5.32)

Jv
fél) 5!
5 i (g +Aj .

Hence, knowing all the quantities in the scattering amplitude
(5.30), the DCS for the ENa process in the static potential

éan bé calculated as

ac 2
—_—=/Jf/

g -2



Results and discusgsion $

fhe DCS for the ENa process in the partial wave method
using the Cox Bonham static potential of Na atom is calculated
in the method discussed above. The results at 54.4 eV are
shown in fig (5.7). Alongwith the present results, those of

other workers are also included in the figure for the purpose

of a comparative gtudy o©f the various results.

From the figure, it can be seen that the present
results are reasonably good at intermediate and large angles
when compared to the experimentally observed values. This is

expected since?

(1) At intermediate and large angles, the coulomb type of
term is predominant in the interaction which is

properly treated through static potentials

(2) In the static potential, the effects of polarisation,
absorption etc. are not taken care of. These effects
are most significant at small-angles of scattering.
Hence the underestimation of the present results at

small anglese.

The present result at large angles is quite encouraginge.
In view of the importance of the absorptidn effect in alkali
scattering, the static pbtential treatment given to ENa '
process is inadequate. The need is for a method which can

describe the scattering at all angles reasonably well. Taking
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up all the above aspects, it can be ascertained that the
partial wave analysis of an optical potential will be moszt
suitable for the ENa process. This optical potential may

be written as

opt ot pol + i Jabs + vex (5.33)

In the above study, we have taken only the first term of

this potential. Similar studies with the optical potential
have been carried out for ELi process by Vanderpoorten (1976).
The evaluation of the various terms in the optical poténtial
(5.33) has been discussed in the review of Byron and

Joachain (1977). The same procedure may be extended to the
case of ENa process. A guick glance at the mode of evaluation
suggests tnat there should not be much difficulty in extending
the calculations for ENa process., However, the same is not

attempted here.

5.8 More about the core approximation of ENa process ¢

Recently singh et al (1983) have reported the results
arrived at by them for the ENa précess. They have followed
the procedure proposed by Lal and Srivastava (1981l) where
the contribution of the static part of the interaction is
evaluated exactly and the on-shell contribution of remaining
part is included by using the Glauber approximation. The

scattering amplitude is thus written as

f = F + £4 - f (5.34)



349

where ESt and fG are respectively the scattering amplitudes
corresponding to the static interaction and the total inter-

action. Singh et al (1983) have taken fSt to be the static

potential of the entire atom while fG is the Glauber contri-
bution for only the valence electron. The results so obtained
exhibit qualitatively the same shape as predicted by
experimental measurements of Teubner et al (1978) and

Srivastava and Vuskovic (1980).

We can study the ENa process in a similar way using the
HHCB agpproximation instead of the Glauber approximation. Thus

the present scattering amplitude will be

N

St St '
f = £+ £ - £ (5.35)
HHOB HHOB

where fSt is the scattering amplitude for the static inter-

action obtained in the partial wave analysis, fHHOB

energy Borm contribution for the valence electron and £ SEOB

stands for the scattering amplitude cbtained by treating the

is the high

static interaction in the HHOB agpproximatione.

St

The evaluztion of £ and £ are described earlier

HHOB
in section (5.7) and (5.4) respectively. The HHOB analysis
using the statié potehtials was discussed in Sectidn (2.12).
Hence, the evaluation of £ ggOB is alsoc easye« Thus, one can

obtain a scattering amplitude of the form (5.35).

In the present work, rough calculations for the ENg

process using the above scattering amplitude were done. It
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was Observed that the results agree qualitatively with the
experimental data with a dip as shown in figures (5.4) and
(5.5), but the quantitative agreement is not as good as the
one. obtained by Singh et al (1983). It should be borne in
mind that in the study of Walters (1973), the Born cross
sectiong were much higher than their Gléubef counterpartss
Hence, similar type of modifications in the Glauber method
(5.34) and the Born approximation (5.35) may result in higher

cross section in the latter cage.

st
tOw»oL‘f '
Further analysis of (5.34) reveals that fg , being -

apbroximately same, the major contribution to the scattering
amplitude comes from the term fG’ wﬁich is the Glauber
contribution for only the ﬁalence electron. Hence, it can

be noticed that the core contribution is not taken fully in

the amplitude (5.34J). This partial suppression of the core
part may be rééponsible for the gquantitative agreement of the
results of Singh et al (1983) with the experimental data. It
should be remembered that in the present study of ENa process
using the two-potential formulation (Sections 5.5 and 5.6), the
core potential was explicitly taken care of through partial

wave analysis.

All these comparisong point out the fact that the core
contribution is quite significant even at the energies 54.4 eV

and 100 eV at which most of the present work was carried out.



From the above discussions, it becomes ¢

[NERA
LAY ,

that a modified Glauber approach may be a plausiblé™. - ¥

A

method in the small angle region. The partial wave

analysis of an optical potential of the form (5.33)
incorporating all the important effects in the case Of
electron~alkali scattering will be a much better description
of the ENa process over the entire angular range. This is
the general conclusion drawn from the discussions on the
results arrived at in the present chapter using different
modes of describing the ENa process as given in the various
sections. Further analysis in this direction is in progress

in our research group.

A

.r‘ﬂ'



Table 5.1 cj and hj for the target Sodium atom

J C, A

J J
1 0,1944192 21 o4
2 0.5553425 14.125
3 0.0380063 11.43
4 0.3965724 6485
5 0.0545095 4,158
6 0.0018662 1467

Table 5«2 = Individual terms for the e - Na elastic
scattering in the GES zpproximaticn at B = 54.4 eV

(1) (2) (3)

8 F o F . F

GES GES GES
10 0.8747 O1 0.5630 01 0.2379 01
20 0.5623 01 0.2292 O1 0.2439 01
30 0.3665 01 0.1729 O1 0.1687 01
50 0.2223 O1 0,1094 01 0.1131 01
70 0.1708 01 0.7234 00 0.8512 00
90 0.1406 01 065305 00 0.6828 00
110 0.1208 0L 0.4234 00 0.5784 00
130 0.1075 01 0.3616 00 0.5141 00

150 0.9942 00 0,3271L ©O 0.4768 00
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Fig. 5.1
E = 5[&.1«- EV

® - Srivastava and
Vuskovic (1980 ).
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- _ (B} -DCS With Second Born ferm
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E=100 eV
(A) - Two-potential DCS
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Fig. 5.7
E = 544 eV

(A) Partial wave DCS
(B) First Born DCS
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