
124

REFERENCES

[1] M.A.Van Hove, W.H. Weinbergand C.M.Chan, Low Energy Electron Diffraction, 

Springer Seris in Surface Science, Vol. 6 (Springer, New York, 1986).

[2] S.Ichimura, R. Shimizu, Surf. Sci. 112, 386 (1981).

[3] AJablonski, M.F.Ebel, H.Ebel, Electron Spectro.sc.Relat.Phenom.40,125 (1986).

[4] W.R. Nelson, H. Hirayama, D.W.O. Rogers, Stanford Linear Accelerator Center 

Internal Report, No. SLAC-265UC-32 (1985).

[5] L.Reimer, B. Lodding, Scanning 6,128 (1984).

[6] F.W.Byron, C.J.Joachain, E.H.Mund, Phy. Rev. D 8, 2622 (1973).

[7] F.W.Byron, C.J.Joachain, E.H.Mund, Phy. Rev. D 11, 1662 (1975).

[8] F.WJByron, C J.Joachain, Phy. Rev. A 8, 1267 (1973).

[9] F.W.Byron, C J.Joachain, Phy. Rev. A 8, 3266 (1973).

[10] F.W.Byron, C.J.Joachain, Phy. Rev. A 9, 2559 (1974).

[11] F.W.Byron, CJ.Joachain, Phy. Rev. A 15,128 (1977).

[12] S.R.Pandya, B.P.Shah, Eur. J. Phy. D 6, 431 (1999).

[13] Karle J., Bonham R.A., J.Chem. Phys. 40, 1396 -1401 (1964)

[ 14] Riley M.E. et al., Atomic Data and Nuclear Data Tables 15, 443 (1975).

[15] S.N. Ketkar, R.A.Bonham, Phy. Rev. Lett. 55,1395 (1985).

[16] J.D.Coffman, MJFink, Phy. Rev. Lett. 55, 1392 (1985).

[17] Geiger, D. Moron-Leon, Phy. Rev. Lett. 42, 1336 (1979).

[18] Yates A. C. Phy. Rev. A 19,1550 (1979).

[19] N.S.Rao, H.S.Desai, Pramana 17, 309 (1981).

[20] N.SJRao, H.S.Desai, J. Phys. B16, 863 (1983).

[21] N.S.Rao, H.S.Desai, Ind. J. Pure and Applied Phys. 21 159 (1983).

[22] JJB.Greenwood, I.D. Williams, P.McGuinness, Phy. Rev. Lett. 75,1062 (1995).

[23] E.W.Bell et al., Phys. Re. A 49,4585 (1994).

[24] R.E.01son, C.O. Reinhold, D.R. Schultz, JPhys. B 23, L455 (1990).

[25] C.O.Reinhold et al, Phys. Rev. Lett. 66,1842 (1991).

[26] S. Hagmann et al., J.Phys. B 25 L287.

[27] J.N.Das, J. Phy. B11, L195 (1978).

[28] S.P.Khare, K.Lata, Phy. Rev. A 29, 3137 (1984).

[29] F.Salvat, R.Mayol, Comp. Phy. Commu. 62, 65 (1991).



125
[30] F.Salvat, R.Mayol, Comp, Phy. Commu. 74, 358 (1993).

[31] R.H.Dalitz, Proc. Roy. Soc. A 206, 509 (1951);

[32] P.M.Morse, H.Fesshbach (1951) Methods of theoretical Physics [Mc.Grow Hill, 

New York] Ch. 9.

[33] Hand Book of Mathematical Functions, Edited by M.Abramowitz and I. A. Stegun 

[Nat. Bur. Stand.Appl. Maths, 1965] P.22.

[34] Wallace S.J., Ann. Phy. 1V. Y. 78, 190 (1973).

[35] A.R.Swift, Phy. Rev. D. 9,1740 (1974).

[36] F.W.Byron, C.J.Joachain, J. Phy. B. 10,207 (1977).

[37] C.J.Joachain, Quantum collision theory (1983) [North-Holland Physics Publishing 

] Ch. 9, P.204.

[38] F.Salvat,J.D.Martinez,R.Mayol,J.Parellada, Phy Rev. A 36,467 (3 987).

[39] W. Buhring, Z Phy. 187, 180 (1965).

[40] J.B.Furness, I.E.Mc Carthy, J. Phy. B 6,2280 (1973).

[41] A.W.Ross, M.Fink, J. Chem. Phy. 85,11, 6810 (1986).

[42] D.W.Walker, Adv. Phys. 20, 257-323 (1971)

[43] N.F. Mott, Q.S.W. Massey, Theory of Atomic Collisions (Oxford Univ. Press, 

London, 1965)

[44] Mathews P.M., Venkatesan K., A textbook of Quantum Mechanics [TataMcGrow- 

Hill Publishing Co.Ltd., 1976] Ch. 10 p 338

[45] Buhring W„ Z Phys. 187, 180(1965)
[46] Schif L.I., Quantum Mechanics [McGrow-Hill 3rd ed., 1968] p 121

[47] Wallace S.J., Ann. Phy. N. Y. 78, 190 (1973)

[48] Abarbanel H D1, Itzykson C, Phy. Rev. Lett. 23,53 (1969).

[49] D.R.Schultz, C.O. Reinhold, Comp. Phy. Commu. 114, 342 (1998).

[50] Y.S. Chung et al., Phy. Rev. A 55,2044 (1997).

[51] Crooks G.B., Rudd M.E. Bull. Am. Phys. Soc., 17,131 (1971).

[52] Registar et al., Phys. Rev. A 21,1134 (1980).

[53] J.B. Furness, I.E. McCarthy, J.Phys. B 6,2280 (1973).

[54] Cox. H.L., Bonham R.A, J. Chem. Phys. 47,2599 (1967).

[55] R.A. Bonham, T.G. Strand, J. Chem. Phys. 39,2200 (1963).

[56] RJ.Moore Phys. Rev. JD 2,313 (1970).

[57] Yennie et al., Phys. Rev 95, 500 (1954).



126

[58] E. Clementi, C.Roetti, Atomic Data & Nuclear Data Tables 14, 177 (1974).

[59] A. Dalgarno Advance Physics 11,281 (1962).
[60] T.G.Strand, R.A.Bonham, J. Chem. Phys. 40, 1686 (1964).
[61] I. S. Gradshteyn, I. M, Ryzhik, Tables of Integrals, Serieses and Products ( New 

York: Academic).



Bur. Phys. J. D 6, 431-434 (1999) The European 
Physical Journal d

' BDP Sciences
[ © Society Italmna di Fisica
i Springer-Verlag 1999

t ■■■■........................................... ..........................
i

Elastic scattering of electrons from I

He, Ne and Ar atoms at 35 keV !
i

S.R. Pandyaa and B.P. Shaha j
1 i

Department of Physics, Faculty of Science, M.S University of Baroda, Vadodara 390002, Gujarat, India

. iReceived: 13 January 1998 / Received m final form: 31 December 1998

Abstract. The eikonal Born series (BBS) method is applied to the elastic scattering of electrons by He, Ne 
and Ar atoms at 35 keV. The differential cross-sections are compared] with the numerical results obtained 
by the partial-wave analysis. A simple analytical Dirac-Hartree-Fock-Slater (DHFS) field is used for these 
atoms. The results are also obtained by Wallace, Das and modified!Das method. An oscillatory nature 
and a strong forward peak in the cross-section are not found at 35]keV. The results axe nearer to the 
experimental data of Coffimann and M. Fmk as well as numerical results based on relativistic partial-wave 
treatment. )

i
PACS. 34.80.Bm Elastic scattering of electrons by atoms and molecules

/ !

1 Introduction

Elastic electron-atom scattering at intermediate and high 
energies is studied by combining the Born series and 
eikonal series. The results should be consistent through 
order k~2[l,2]. The eikonal approximation gives good re­
sults for small scattering angle [3], when the magnitude of 
incident wave vector kt is large.

Various corrections to the eikonal approximation are 
used for very small-angle elastic scattering of electrons 
from He, Ne and Ar atoms. A simple computational 
scheme which is no more difficult than a second Born com­
putation was described by Das [4]. Further modification in 
the Das technique was applied successfully by K. Lata [5]. 
A third-order eikonal term in the place of the third Born 
term is used to get a consistent result. Thus the Das ap­
proach is improved without any additional complexities of 
the calculations. The computational results are compared 
with the new experimental data [6]. The exact results are 
obtained by solving Dirac equation numerically with the 
code PWADIR [7].

2 Theory

Consider the non-relativistic scattering of a particle of 
mass m by a real, spherically symmetric potential V{r) 
of range a. The Glauber eikonal scattering amplitude is

/e = * [X dbbJ0(Ab)(etX°Wk - 1). (1)* Jo

a e-mail: visionSXabdq.lBbbs.net:

The real and the imaginary parts of /e are

Re/jsj = k J dbbJa(Ab) sin(Y0),
(2)

1 f°°
Im/E = k dbbJo(Ab)[cos(Xo) - I],

1 Jo
(3)

\where !

1 i y'OO'' Xo(&) = “2i0 Cr(6’^dz’ (4)

and A = 2kjsin0/2 the magnitude of the momentum 
transfer. The wave number of the incident particle |fc,| = 
k. The value of U(r) = 2mV(r)fh2. This is the reduced 
potential. In the case of superposition of Yukawa-type po­
tential l

! U{r) = -Vo^t-T- • (5)

! »

It was shown that by adding the quantity Re/B2, the 
real part of the second Born amplitude to /e, a marked 
improvement over the eikonal amplitude was obtained [1]. 
Thus ;

! /ebs — ht + R«/b2 • (6)

Especially in the weak-coupling situation the eikonal Bom 
series amplitude gives a consistent picture of the scattering 
amplitude through order k~2. In the case of potential U(r) 
we have

\x0(b) = -U0J2%Ko(Kb), (7)
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where Kq is the modified Bessel function of order zero. 
In this case the real part of the second Born amplitude is 
evaluated using Dalitz integrals [8],

- r/2 /*±
Re/B2 = -y7*7j F(Xl,XJ,t)dt, (8)

where

F(X A t)~ *?« + *?(!-*)
l n 3, > ~ r[{x2t+a*(i — t)}2 + Ak2r2} { >

and

r = \2t + \2(l-t) + t(l-t)A2, (10)

Thus the differential cross-section is obtained as

|/ebs]2 = |Re/E + Re^2p + |Ito/e|2 • (11)

We have taken care of zeros of the Bessel function. With 
the help of Euler’s transform [9] the integrals in the equa­
tion of Re/g, Im/g are evaluated. Another way of improv­
ing eikonal amplitude in potential scattering has been pro­
posed by Wallace [10]. The Wallace-eikonal correction was 
given as [11]

where

k r°°= - / dbbJa(Ab)
* Jo
x {exp ^ (y(6) + p-(6)) -lj, (12)

__ r/2
*i(6) = E t7*7’a^o((a‘+Xi)b) (13)

and Xo(b) is the eikonal phase given by equation (7). We 
rewrite equation (6) as

/ebs — /w + Re/B2 • (14)

A simpler method was suggested by Das [4] in which 
the second Born term is multiplied by a variationally de­
termined complex number to compensate for the missing 
higher-order Born terms. The scattering amplitude ob­
tained by Das as

neglected.1 Here we replace the /b3r by the equivalent term 
f-B3 [13]. Thus /md corrected up to the order k~2 is given 
by

/md = /bi + up(/b2r + fm) + iup/B2i, (17)

where

ap
/bi

/bi — /e3
(18)

Fortran 77 code PWADIR [7] gives reliable cross- 
section data for elastic scattering of electrons by free 
atoms for K.E. > 1 keV by using the static field approxi­
mation with relativistic partial-wave analysis. This code is 
used to evaluate the exact results. The generalized atomic 
units are used throughout this paper. We consider a sim­
ple analytical approximation <j>{r) for the atomic screening 
function [i.4] accounting for relativistic effects distorting 
the atomic electron cloud and the nuclear screened po­
tential. This is reliable for the large atomic number. The 
parameter^ are determined analytically from the results 
of DHFS self-consistent calculations.

The Dirac radial wave equation is used in the com­
putation of the differential scattering amplitudes for inci­
dent electrons of 35 keV. The radial equations are solved 
using the Buhring power series method [15]. The Dirac 
phase shifts are determined by solving the Dirac radial 
wave equation with a central field

I V(r) = — —<f>(r) + Fsx(r). (19)
| r

The exchange effect is included by the local exchange po­
tential of McCarthy Vex (r) [16]. The charge cloud polar­
ization is neglected. There is at present no experimental 
evidence that the charge cloud polarization plays a no­
ticeable role at the incident electron energy considered 
here [17], For high-energy particles large number of terms 
are required in the partial-wave series. Here the phase 

' shifts-b'f"order ■ l' le'sS"than a finite valuel‘MDELTA=1000 
is computed. The value of NDELTA is large enough to 
enable convergence of the partial-wave series. The accu­
racy of the [computed phase shift is controlled through the 
input parameter e = 1 x 10-8.

3 Result and discussion
/d = /bi + (ud + *&d)(/b2R + */b2i) > (15)

where /am and /b2I are denoted as real and imaginary 
parts of /b2- The parameters od, 6d are energy dependent. 
The Das technique was improved further by including the 
third Born term, the derivation of scattering amplitude [5],

/md = /bi + (<tp + «&p)(/b2 + /b3) • (16)

According to the analysis of Byron and Joachain [12] at 
large energies ap is independent of energy and converge to 
unity, whereas bp varies with energy as k~3. So the terms 
/b3i and 6p which fall faster than k~2 asymptotically aie

A systematic study of the differential cross-sections for the 
inert gas atoms He, Ne, and Ar is reported here for the 
non-relativistic potential scattering. The differential cross- 
sections for, elastic scattering of electrons from these tar­
get atoms are studied for energies in the range of 15 keV 
to 35 keV. 1We did not find any strong peak in the for­
ward direction or an oscillatory nature in differential cross- 
sections as reported by Geiger et al. [18]. Our results are 
close to the'new experimental data [6]. The results are ex­
hibited graphically in Figures 1-3. We see that, according 
to the EBS [method, the differential cross-sections for He, 
Ne, Ai atoms at very small scattering angle differ from
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Fig. 2. Electron-neon elastic differential cross-sections at 
35 keV. Different symbols have the same meaning as in fig. 1.

Fig. 3. Electron-argon elastic differential cross-sections at 
35 keV Different symbols have the same meaning as m fig. 1.

014-1---------- ,---------- ,---------- ,---------- ,---------- ,---------- ,----------
02 04 06 08

S (A'1)

Fig. 1. Differential cross-sections for the elastic scattering of 
35 keV electrons by the helium atoms. — present EBS results 
(see Eq. (11)), + + +: experimental data of Coffmann ef al
(Ref (6]),------ : numerical data (Ref [7]),------Das method
(see Eq (15)).

'H
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E = 35 KeV 
e + He

*-++ ++ +

+M-

Table 1. 
units.

jE = 35 keV. Differential cross-sections in atomic

He-atom
0 (deg.) W MD

Ar-atom
W MD

0.20 0 753 0 669 65 607 62.262
0.30 0 688 0 659 63.004 60.283

, 0.40 0 662 0 647 60 196 58.249
0 50 0 641 0 631 57 350 55.996
0 60 0.619 0.612 54 504 53 505
0 70 0 597 0 592 51.593 50.805

W. DCS .using the Wallace method (see Eq (14)). 
MD. DCS using the Modified Das method (see 
Eq. (17)).

Table 2. E = 35 keV Differential cross-sections in atomic 
units

Ne-atom
0 (deg.) W MD

0 20 10 257 8 763
0.40 8 754 8.420
0.60 8.189 8 026
0 80 7 640 7.535
100 7.046 6.968
1.20 6.420 6.357
140 5.786 5.734
1.60 5.166 5.121
1.80 4.578 4.539
2.00 4.032 3 998

W DCS using the Wallace 
method (see Eq. (14)).
MD: DCS using the Modified 
Das method (see Eq (17)).

exact results (numerical) in the range 0.2 to 0.3 A-1. The 
EBS amplitude reproduce the exact results for momentum 
transfer greater than 0.3 A-1. For He-atom (Fig. 1), dif­
ferential cross-section obtained by the numerical and Das 
methods have similar nature but they are on either side 
of the experimental data which cover all points. The EBS 
results are close to the experimental data compared to the 
numerical and Das results beyond 0.3 A-1. In the case of 
Ne-atom (Fig! 2), differential cross-sections resulting from 
EBS and Das methods are in excellent agreement with 
the partial-wave calculations These results differ from the 
experimental results. In the case of Ar-atom (Fig. 3), the 
results obtained by the numerical method are closer to the 
experimental results.

We have also reported differential cross-sections by 
Wallace and modified Das method at 35 keV. These re­
sults give nearly the same values as those given by EBS 
and Das methods, respectively. The strong forward peak 
and oscillating features in differential cross-sections are 
lacking. The results are shown in Tables 1 and 2 . The dif­
ferential cross-sections calculated by Wallace method are 
in close agreement with the EBS results and modified Das 
results
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