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CHAPTER-I

INTRODUCTION AND THEORETICAL BACKGROUND

1.1 INTRODUCTION !

The collision phenomenon plays an important role in investigation on the 

structure of matter on microscopic scale. It is well known that the knowledge of reliable 

atomic and molecular collision cross sections are in demand in the development of 

various scientific and technical fields like astrophysics, aeronomy, gas lasers, plasma 

physics, controlled thermonuclear fusion, chemical reactions, biophysics etc.

The energetic particles and electromagnetic radiation constantly bombard the 

upper atmosphere. Particularly during solar flare sun emits greatly enhanced 

electromagnetic radiation in X-ray and UV region, cosmic particles, ions and electrons. 

These produce further photoelectrons and secondary electrons. These electrons then lose 

their energy through various elastic and inelastic processes. Thus the energy spectrum of 

the electrons is a very important parameter for all atmospheric calculations. From the 

energy spectrum induced by collision process one gets idea of chemical composition, 

density and temperature of constituent elements of atmosphere. The ionic layers in the 

ionosphere of earth are mainly formed due to the ionization of the neutral constituent of 

atmosphere by solar radiation leading to production of energetic free electrons and ions. 

These energetic electrons further excite the neutral particles and ions then the particles in 

excited state decay to lower states give rise to fluorescence. Thus we need the 

knowledge of atomic and molecular collisional process for atmospheric process. For the 

study of molecular structure in molecular chemistry, a large number of parameters can be 

evaluated with the help of electron-molecule elastic differential cross sections. These 

cross sections are also useful in high-energy molecular gas lasers. In radiation therapy 

when radiation on defective cells are incident, secondary charged particles are produced 

which starts ionization of other constituent atoms in the tissue. Because of over 

exposition living tissues are also damaged. Controlling the radiation dose and time of 

exposition can minimize these damages. For this various parameters like stopping power, 

energy expanded per ion pair are required which can be evaluated by knowing collisional 

cross secfjpns. Fusion is one of the promising processes for the generation of energy. 

Hence it is required to know collisional cross sections for various processes occurring in
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fusion. Due to these manifold applications, atomic and collisions have been very 

important subjects of experimental and theoretical investigations.

In the collision process a free particle with known characteristic is incident upon 

an atomic, molecular or ionic target and after the interaction it is scattered in to a 

modified free state. During this scattering process different changes including angular 

deflection, change in kinetic and internal energies, chemical changes, gain or loss of 

electrons can be detected. Because of these changes three types of scattering can happen. 

One is the elastic scattering in which the internal structure of the system remains same. 

Second is the inelastic scattering (excitation, ionization etc.) in which incident particle 

transfer its kinetic energy to internal energy of target to excite or ionize it to some higher 

energy states. Third is known as supper elastic scattering in which incident particle gain 

some energy from the target. All these collision processes are analyzed quantum 

collision theory. The probability that a given type of collision will occur under given 

condition is usually expressed in terms of collision cross sections. An exact quantum 

mechanical formation of the atomic and molecular collision process can be easily 

developed. However an exact calculation is very difficult. Therefore numbers of 

approximate methods have been developed depending on the energy region of interest. 

The entire energy region is usually divided in to three regions low, intermediate and 

high. The region below the first excitation energy is taken as low energy region. The 

region where first Bom approximation gives reliable results is taken as high-energy 

region. The region in between these two regions is intermediate region. In present 

investigation we have studied the elastic scattering of electrons by atoms and ions within 

the high-energy region.

In a scattering experiment, a well-defined collimated homogeneous beam of 

monoenergetic particles is directed towards a scattering target from a large distance. 

After impact the particles of incident beam are scattered in all directions and their 

distribution is detected at large distance. The number of particles scattered in to detector 

per unit solid angle per unit time per unit incident flux is called the differential cross 

section for that particular direction. An integration of differential cross section over all 

solid angles yields the total cross section. Thus the total cross section is the cross 

sectional area which the target present to the direction of the bean and the differential 

cross section is the effective area which the target present to the beam for the deflection 

of the incident particle in to a particular solid angle.
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Theoretically the scattering of charged particles like electrons or positron by 

atoms, molecules or ions is considered as follows. The incident particle is represented by 

a plane wave for a short range potential. When the electric field of charged particle 

interacts with the electron charge cloud of target, multiple moments are induced. Thus 

both the incident particle and target atom are distorted. This distortion due to induced 

multiple moment is attractive in nature and give rise to polarization potential. Besides 

this other effect also take place in scattering process. The effect of inelastic scattering on 

elastic scattering can be describe by absorption potential, if the incident particle is an 

electron then we can not distinguish incident and atomic electrons. Thus exchange 

between incident and atomic electrons may occur, this effect is taken in terms of 

exchange potential. At sufficiently high energies the polarization and exchange 

interaction will become unimportant leaving only the static interaction effective.

An exact evaluation of Schrodinger equation corresponding to particular 

scattering process is a difficult task even if the interaction potential is known. This is 

because the exact wave function of target atom except hydrogen and hydrogen like ions 

are not known. How'ever even if the wave functions of the atom are known, the 

schrodinger contains infinite set of coupled integro-differential equations which can not 

be exactly solved. For heavy atoms or molecular targets the situation become more 

complicated. Hence the quantum mechanical investigation of collision process for 

microscopic particles need some approximate methods. The choice an approximation 

depends up on the tractability of the calculations and its accuracy is checked by 

comparing the results with others approximations and with available experimental 

results. Various approximate methods are applied here to different atomic and ionic 

target in the high-energy region.

1.2 BORN approximation:

For the theoretical investigation of the atomic collision problem, let us consider 

the scattering of an electron by a neutral atom of atomic number Z. We consider the 

nucleus of the atom as the origin of the coordinate system and denote the coordinate of 

incident particle and atomic electrons by r and rj (j = l,2,3....Z), respectively. The

wave function of the system satisfies the Schrodinger equation.

fH-EJ tff(r,s,r})$j) = 0 (1.2.1)

Where E is the total energy of the system and H is the Hamiltonian of the system.



4

(1.2.2)

with Ht = Ha + Ht Hamiltonian of the total system before the start of the potential.

Where Htt = -™V* is the K.E. Operator of the incident particle and H, is the

Hamiltonian of the target atom or ion with the eigen state <f>n (r_s) and eigen energy 

e„ such that

B,(r,rj)<i>t0(r,rj) = E^M(r,Lj)

1with jE0 =—if0 + g0 ; K_0 is the initial momentum vector and

(1.2.3)

(1.2.4)

(L*Lj) — Uk0(r)t0(Lj) (1.2.5)

where Uk0(r) is the initial normalized wave function of the incident particle and

$0(rj) is the initial state of the target. The interaction potential between the incident 

particle and target for incident electron is given by

1•v N

—rr mV-LA (1.2.6)

For theoretical study of any collision problem we examine the asymptotic form of the 

total wave function . Considering neutral atom, normalized wave function of initial

state is <D*0(r,tj) = and

A A

-[^ko(L)MLj) + ^dfno(^a>kf)~ (1-2.7)
» r

It is the sum of the incident plane wave along with the undisturbed target atom wave 

function and perturbation after the scattering which is in the form of a radialy out going 

spherical wave of the scattered particles with the atom in the same state
A A

(elastic scattering) or in an excited state (inelastic scattering). f„a(ko,k/) is the

scattering amplitude for the inelastic scattering from the ground state 0 to n‘h excited 

state. kf is the momentum vector of the incident particle after the scattering. In general 

scattering amplitude is complex and is related to the differential cross section through the 

relation
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I (O)--L fjk„,kf) (1.2.8)

For elastic scattering | = |A0[ = k0. Thus the differential cross section is given by 

2

/«, (0) = U(k«>kf) (1.2.8a)

And according to optical theorem total cross section is given by

<*m =^rImfm(0 = O) (1-2.9)
*0

where 0 is the scattering angle. Differential cross section (DCS) 1(6) and total cross 

section (TCS) am are the key quantities for the study of any collision problem. For the 

determination of DCS and TCS we have to solve (1.2.1). The exact solution of it is a 

formidable task. There are two approaches to solve this equation. One is differential 

equation approach, which is non-iterative and another is integral equation approach that 

is iterative. In integral equation approach the general solution of (1.2.1) is given as 

V* = «» + (1.2.10)

is the outgoing Green function for the undisturbed system and is the out going

scattered wave function. Here has the form

in momentum space

2 _ (dq exp[iq.(r-£)J f
Gt=-

(2n) ■If :----- f„(r'j)tjLj)

(1.2.11a)

(1.2.11b)
q2-k2tt-i 

where kl =k02 -2fe„ -e0).

Hence (1.210) yields

» |£-£| * .

If we take the asymptotic behavior of term ----- T coming in Green’s function, the
r-r'

asymptotic behavior of iff* 0811 b© given as
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rt~-=*« +Tf-b)h-<l>Jrj)I(-h)(1.2.13)
n r )

Comparing equation (1.2.13) with (1.2.7) yields

A A flir i3/2 - ,k ,fnJko,kf) =-----——JWb>(£,?j )v*(r!,r'j Jdr’ftdr'j (1.2. 14)

represented by

fno(k*>kf) = -(lx)Z(®kf\K,\v*) (1.2.15)

where jd>4/) = (In )~3nekrt^n(r_}).

The integral equation (1.2.10) when solved by iteration and substituted in (1.2.15) 

gives the Bom series expansion for the direct scattering amplitude given by

fn/ko,kr) = -(2n)2(^f \vint + <TtoGX,) + f<?„%,<%;+..\<&*,) (1.2.16)

fno(k*>kf ) = 1Lf Bn (1.2.17)

where f Bn • (1.2.18)
]*0

The sum of the first n terms on the right hand side of (1.2.17) yields the n‘h Bom 

approximation to scattering amplitude given by

fBn B} •

H
For elastic scattering jft^l = |ft0| = ft0 and momentum transfer vector K-k0~kf and 

|^0 - fty | = 2k0Sin9/2. If we take only first term of (1.2.16) we get first Bom 

approximation.

/*, =-W2(^/|F6tf|a>40)

= ~(\/2n)\e,E"r-{fo \VM\fo)dr (1.2.19)

In this approximation the distortion of incident particle as well as that of the target atom 

due to the presence of each other are completely ignored. Thus it is a weak interaction 

approximation and its validity increases with the increase of energy. When incident 

particle stays in the vicinity of target polarization, absorption and distortion of incident 

particle effects occurs.
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The inclusion of polarization, absorption and distortion of incident particle 

effects to first Bom is the second Born approximation.

fin = fm + f it 2»

with f„ = -(2n)2(o,kf \vintG;vlnl\0,ko).

YieMs Jm

(1.2.20)

(1.2.21)

r -i e
(1.2.22)

where \n,q) = - -e'-Mlj).
(2nfn

Performing the integration of the plane wave parts of matrix elements

- 2 f B2 ~ 2

n
Zf /=! /=[ (1.2.23)KfKlfq2 -*o +2fefl -e0)~i e/ 

with IjT, = k0 -q; K_2 -q-k_f.

The above equation involves the infinite summation and is difficult to solve. So further 

approximation is required and it is simplified by replacing e„ - e0 by mean excitation 

energy A. Then performing summation by closure relation

7--4ZJ-
2 _ -v*-m

i=i /=i
7t

,2 _ 1,2

(1.2.24)
K2KUq2-p2-ieJ

where p2 =kl~ 2A.

The second Bom term provides significant improvement to first Bom results, therefore 

inclusion of higher order Bom terms will also improve the results.

1.3 EIKONAL APPROXIMATION:

The evaluation of higher order Bom terms is quite involved. Thus to include 

higher order terms semiclassical approximation is used which practically include the 

higher order Bom terms. In this approximation the relative coordinate r of the two

particles and coordinates r_} of the target particles are decomposed in as
*

A A

r-b + zn ; r_} - bj + Zjn (1.3.1)

where b and z are the perpendicular and parallel components, respectively and unit 

vector « is chosen either along k0 or k . Using k2 = A* -2A in (1.2.11) and assuming
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e„ -eo=0 and then summing over intermediate states of the target using closure 

relation with intermediate momentum P-9~k0. Equation (1.2.11b) becomes

2<%(r,rJ;r,,r'J)=-
tdp expfi p.(r-r')]-expPk9,(r-P)Jd(r}-P})x J ^ ~ (1.3.2)

(2n? * ~ 1 3 p2-2p.k0-ie

Now linearizing the Green’s function by neglecting p2 and carrying out the integration 

using (1.3.1)

) = --j-exp/ik,,(z-z')5(b- V)9(z-t)S(r] -r_!} ) 
"0

Putting this in (1.2.10)

=^*o(£,rj)~e** )dz!db'S(b-b'Je^'V^r’,Lj)
*0 -OO

Let

v* = «v F(r)=) 

where F(r) is determined from

F(r)

F(r) = \-^)d^dFS(b-M)Vlltt(r!,rJ)¥*(rt,rJ)F(r) 

"0

(1.3.3)

(1.3.4)

(1.3.5)

(1.3.6)

Inserting F(r) from (1.3.6) in (1.3.5), the eikonal approximation to yr+ is obtained. 

^^7IexPlf—o “ 1

lo -»

V* =4>o(t,)7r^Hexp[ikQ.r~±- \dz'db'S(b-F,r_j)J (1.3.7)
f 2*1t)

f. .JL
2it

^dre'1 jj\drJff(rj)^0(rJ)Vlllt(^rJ)x

i 2
(1.3.8)

explik0.r--t- \dz’dVS(b-#)¥,,,(rj,r})]
"n

1.4 EIKONAL BORN SERIES METHOD;

Consider the non-relativistic scattering of a particle of mass m by a real, 

spherically symmetric potential V(r) of range a . The Glauber eikonal scattering 

amplitude is given by

fE = *m\db b J0(Ab)[e'*°(b)/k -1 ]=RefB+iImfB 
1 o

where RefB and ImfB are real and imaginary parts of f B.

(1.4.1)
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The magnitude of momentum transfer A = \kf - ft J - 2ft Sin 6 / 2, and eikonal phase

Zo(b) = -j]u(b,z)dz
(1.4.2)

with U(r) = 2V(r) the reduced potential, where r = (b2 + z2 )'n. 

Now Bom and eikonal multiple scattering series are as follow

~j£if Bn ~ f Bl B2 + f S3 

= f Bl(&) +

a=l

fA(A) .B(A)~
+

\C(A) D(A)1

Ik2 k J [ft2 ft3 J *4~

fE(k>&)— En ~f E\ + f E2 + f S3 +,*‘

— in+'k
where f F. =--------J E* it!

jj0(Ab)\z(k,b)]nbdb
0

= fei(A) + + i
:B(A)

k
, where Re f E2 = 0.

Here the term of order k,2 is missing in fE. Thus to include all the terms corrected up 

to the order of kf, one must include Re f B2 which also gives contribution to this order. 

A marked improvement over the eikonal amplitude fe was obtained by adding the 

quantity Re f B2. So that scattering amplitude

febs ~ fs + Be f B2 . (1.4.3)

Another way of improving eikonal amplitude in potential scattering has been 

proposed by Wallace [12]. Applying the Wallace correction to eikonal phase shift, 

scattering amplitude is given by

fw = 4}*® b J,(Ab){exp[i(^-+^-)] -1}, (1.4.4)
1 o R R

where %0(b) is the eikonal phase given by equation (1.4.2) and

Xx(b) = -~7U(r) IV<r) + rYrU<r)]dz (IA5)-KB

We rewrite equation (1.4.3) as
febs ~ fw +Be f B1. (1.4.6)
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Thus differential cross section is given by

~: = \fEBst =|Rc/£ +Re7 +|lm/*|2. (1.4.7)
aQ

1.5 das method;

The evaluation of higher order Bom term is very difficult. In 1978 Das has 

suggested a method for the consideration of higher order terms. In this method the Bom 

series is represented by Fredholm integral equation for the scattering amplitude. The 

substitution of equation (1.2.10) in (1.2.15) yields scattering amplitude for scattering 

from initial state 0 to final state/.

f/jhSo) = -(2^)2(0v(r,rJ)\Vbl(r,rJ^ko(r,rJ))

-(27t)\^kI(r}rJ)\viJrJri)G;Vittt(f^j ^(rj,rj3))

Substituting G£ from (1.2.1 lb) Fredholm integral equation is obtained

(1.5.1)

ffJkf,ko) = f?J(kf,L) + (2n)2 2 'Z\<S>v(r->r-l)Vint(r’Lj)x
(2nf ~

ViJtitt W,(£>tj )drUdrjUdr'jdqdr'

exp[+iq.(r-r,)Jfa(r,J)$n(rJ)x-
q —k* —ie

= ffj(k i, k „ ) +- (r,rj (r,ry ) e1'^ (Li)drdrJ

J ) yin,(c!tdj )vl(£>£j)d£d£3dq
q2 —kl - te

dq- t I, 1 (l7[) v~ffa( f’ o) x(4n2)2

x {-(An)2 Jd>;/(r,ry;Ffa,rr,ry; d>kn(r,r})drdrJ]

x I-(An)2 \<S>*kn(?,r!] )VtJf,r!j) vU£>r-S )dr,dr,J J

= f?(kf,k.) +
(2 *y

-Ifffr(ki,q) f„BJ(q>ko)dq 
q2-k2a-ie

(1.5.2)
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Where (kf,k0) is the First Born scattering amplitude. The evaluation of this

equation by iteration methods gives the scattering amplitude in Bom series. For elastic 

scattering equation (1.5.2) becomes.

f™(kf,ko) = f0B0\kf,ko) + 1
(2tt) n

fonikf-q) fno(<hko)dq
q2-k2-ie (1.5.3)

To solve this equation Das replaced fn0(q,ko) by trial input scattering amplitude

f^‘0n)(q,k0) and output scattering amplitude foT^iL/iko) was used to obtain

A A

differential and total cross sections. The scattering amplitude f00{kj,k0) for finite

values of k0 satisfies the limiting conditions

)/B1(*0) and
J kf~*o °

» d(k0)fm(k0) (1.5.4)

Where c and d are complex quantities which depend on k(t. The input trial scattering 

function is considered as

fLb,>(i,k») = (‘*D+ibD)f?:(i,L) (1-5.5)

Where a" and b° are energy dependent parameters. With the choice of input trial 

function the out put scattering amplitude is obtained as
A A -----«2 A A

nm° =ft: (k,,k0) + (aD +i bB)fm (kf,kj (1.5.6)

A A —R1 A A ——

Denoting f‘'(k,,kj and f„(k,,k.) by and respectively.
/rJ=/r+C»»+'*»>/« (1-5-7)

i \2

The parameters aDmd bD are obtained by minimizing the norm \fou0 
integrated over the whole angular region of the scattering angle with respect to aBand 

bD. The calculation of oDand bn with equation (1.5.5) and (1.5.6) yields

JdQSitiO fn\(fm f bir)
JdOSM f(fm f B2r) B21 J

(1.5.8)



12

j'dOSinO fBV
jdOSinO l(jm - f Inil)2 + /*„ / (1.5.9)

Thus in this method partial contribution of higher Born terms are taken in account by 

multiplying second order Bom term by energy dependent complex parameter.

1.6 HIGH ENERGY HIGHER ORDER BORN APPROXIMATION:

The high energy higher order Bom approximation procedure is adopted here to 

developed expansion of the second Bom term in powers of kf. The second term of

generalized Bom series for the scattering amplitude, which describes the collision of an 

electron with an JV-electron atom with initial and final atomic states and energies 

(y/^E,) and (y/f,Ef) respectively is given by [10]. For the evaluation of second 

Bom term, interaction between electron and atom and the Green’s function

. . , iV A
y (a o»• * *£.») *■ ■

i=i

and G„(r0 -r’0 )-
(2nf

*dWemu^> A+
....:...’e”">0 are
-|€

considered respectively.

fgf \dr-o ^,krL°VfJh)\d^ Gn(r0 - r'0 )VJr\ )e"“ * (1.6.1)

A more convenient form can be obtained by transforming the integration variables
*

(r0,r'0) to the set (r0,p); P = r0-r’0; and replacing p by r'0, then the term 

reduces in the following form

/# = -£ \drae,q-uVfJU)In (1.6.2)
n a

where

/, = -?,)(!.(£,)

The basic approximations are introduced by the transformation of variable

s = k'-k„, in /„ ,

dsel?-a
1 =

1
(1.6.3)'n~"(2xf J""0’ 'w'"u ~u'Js2 +2s.k„-ie

and assuming that kn »1 ,kH =k,, then expanding (S2 +2s.ka—e) 1 in powers of

S2, the ds integral of (1.6.3) can be obtained as
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f dse1--*
*S2 + 2S.k„ - /e

f-----+------------------- ----------/g'^"
J2M. - 2s.k„ ~/e

where Vf,# is differential operator w.r.t. r'0 and ds = dsxdsydsz. In the above ds 

integral, dsx dsy integrals can be evaluated by the use of definition of delta function and 

ds. integral can be evaluated using contour integral techniques for first and second order 

poles to obtain the closed form. Using this equation (1.6.3) can be written as

K'o -r'0 )[\+±-V)z’0 JS(b’0 )H(z’0)
2k

i
2k.

(1.6.4)

where H(z) is the Heaviside function, and s integration has been performed in 

cylindrical polar coordinates by choosing kn as die polar axis and writing

£'o = *o+*o*« •

The above integral can be further simplified by using the delta function properties, 

one obtains.

= \e~t(krk-MH(z\ )VJr0-r'0)dz'o|^0 

Now consider the integral hz

Inl = -f-Jrfr'o emM%VJr0-r'0 )V\,S(^ )z'0 H(z'0 ) 

Integrating by parts twice

= -±- jdr'0 S(b’0 )z\ H(z\ )K/<kM:°VJr0-r'0) 

After the V*,c operation, the corresponding In2 and /„, gives In

2*.
\dz\ e,(trk‘)k"t'°H(z’0)[(\ + fe'o

2ft.
0>n )V„i(r0 — r'0

where Oo, = V*, -2/fft, -ftJ.V£.0 -|*(-knf.

Further simplification of /„, consistent with the original assumption, is possible on 

noting that
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<kl-kM)im=klCos9t,-km

=K^L+0(ktdfn) =k,-kn

J*'« e-‘^H(z\ Xl+^VljVJr, -r'0 J
2k. 2k. i'„=0 (1.6.5)

where P, ~k,-kn » AEln /k,, on using the energy conservation condition, the above 

expression embodies the central approximation. The orientation of the coordinate system 

is chosen such that the z-axis is always perpendicular to q . Thus q is two-dimensional

and the position coordinates of the z+1 electron will be written as r, =ti +z, £> 

/ = 0,l...z, where £Ts a unit vector in the z - direction. Denote-X” for target 

coordinates.

For the simplification of the second Bom term (1.6.1), it is useful to take the 

Fourier form of the interaction V(r0>... rN)

V(ro,.:rN)= jdpe'e* fote~*»V(p +p,
—co

_ a i , * tp*ki+iPz'z}whereV(p + Pl £,r, ...,r J = ^-Y(e ~ J -\)
2x (p +pz)M

The general form of the Vnl (r0) in the above expression has been defined as

(1.6.6)

(1.6.7)

Km (to ) » (yB (X)\V(X)\ y,m(Xj) (1.6.8)

Now substituting (1.6.6, 1.6.5) in (1.6.1), the corresponding second Bom term can be 

written as

ftVJh
£e‘^Vfll(r0) 1,1 fV„t(to-U)^%Vni(lo

HEA Ink,
(1.6.9)

The infinite summation over the atomic states can be treated in a simple way by Byron

andJoachain, 1977.

Y/fn(^)vm(^-to) = yf(ro)Vl(ro--to) (1-6.10)
n

It is assumed that P,„ = P, « AE/kt, where AE is the average energy transferred to 

intermediate atomic states during the course of the collision. Now (1.6.9) can be written 

as
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frnu = -^fjdr0e‘tr-°^f\V(r0,....rN) Jdz\H(z\)e~ip,'l% [V (r0-?0C,rl,...rN)
n l —oO

+ S"v',“Kf-0_-0,-|”"-'V; ko/h> C-6-11)

Real and imaginary parts of the above expression can be obtained by using (1.6.7) and 

carrying out operation in (1.6.11). Then the corresponding terms through 0(kf) 

for DCS can be written as

Re\ f™, = -^-?\dp (q~P~PJ>P + Ptb (1-6.12)

Ki -mPt ~ Pi

Se2 /w=-2e1 4-pJrfp } dp,
k ) dp, Pz~Pl

(P2 + p\)Uf (q_~ P~ P,C,P + p, 0(1.6.13)

In f(„^=^-\dpU^(q-p-p,i;p + Pii)

Ki
(1.6.14)

where P is the principle value. The general form of U^1 can be given as

^fl (P_^ PzG>P_ "*"P z £) = ifP f l^CP Pz*3 >—\ •••>—N )V( P^^p'z £ •••iH.N )\Wl) '

The DCS through order (\ /k) ) for direct scattering can be obtained from the scattering 

amplitude given as

/*« =//'>/ +*‘\f£L +*e2f(„Z ftjIa (1-6.15)

where f(^f is the first Bom approximation. Yates (1979) has made an analytical study

of equations (1.6.11, 1.6.12, and 1.6.13) for elastic scattering of electrons by hydrogen 

atoms. And the following behaviors of these expressions are worth noting. The 

assumptions in HEA were made along with the small angle approximation of Glauber 

(1959). HEA concerned with short wavelength i.e ka» land for small momentum 

transfers i.e. small angles. The partial expansion of equation (1.6.2) was necessitated to 

include a plausible and accurate description of virtual excitations (target polarization). In 

the second Bom term (1.6.10) if p, —> Othe real part of order kp (1.6.12) remains, 

similarly the imaginary part (1.6.13) reduces to the second term of GES. Finally it was 

concluded by Yates that the HEA provides an accurate description for small q .
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1.7 PARTIAL WAVE ANALYSIS:

The scattering amplitude and cross section are determined by asymptotic 

behavior of stationary scattering wave function. In the case of central potential solution

ft2of Schrodinger equation [----- V2 +V{r)]yAr)=EyEr) may be separated in spherical polar
2m

coordinates and a simple connection between the radial solution and the asymptotic form 

of the stationary scattering wave function can be obtained. This procedure is called 

method of partial wave.

The Schrodinger time-independent equation for the stationary scattering wave 

function ^+>(r) can be written as

Now the Hamiltonian operator H in spherical polar coordinates can be written in terms 

of square of the orbital angular momentum L2 as

(1.7.2)

ds 1 a2

2m V dr dr h2r2'

where X2 = X2 + L2 + X2 = -n\-l-JL(Sin0-^-) + ■ ■ —A
x y z 1 Sine QO de Sin2dd(p2

such that L2Ylm(0,<p) = /(/ + \)h2Ylm(0,<p) (1.7.3)

and L2Y!m(0,<p) = mhYlm(0,<p).

Here [H,L2] = [H,L2] = 0, i£.H,L2 and i2 all commute, so there exist an eigen

function common to these three operators. Thus the scattering wave function y/^ can be 

expanded in partial waves as

<)(^2*) = S f'Clm(k)Rlm(k>r)Ylm(0,<p) (1.7.4)

1=0 m=-t

where wave function y/^ (A, r), radial function Rlm and expansion coefficient Clm are

depending on wave number k = ~——— using the expansion in the schrodinger 

equation and making the use of (1.7.3) and (1.7.2) radial equation is obtained as
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h2 l d 2d /(/+i) 
2m r2 dr dr i

]i?/(^r) + ¥(r)R, (k,r) = ER,{k,r) (1.7.5)

Using ut{k,r) = rR{(k,r) and reduced potential U-ImV/h2, the equation becomes

d2 -/(/ + l)/r2 -C/(r)]M/(*,r) = 0 
dr

Now consider the radial equation for a free particle i£. U(r) = 0
jr2

[-^T+A:2-/(/ + l)/r2]7/(A:>r) = 0 . 
dr

Changing variables to p = kr and defining fi(p) = yt/p 

l(l + \\d2 d 
"dp2 p dp
[•TT+”i-+(i= o

(1.7.6)

(1.7.7)

(1.7.8)

This is known as Bessel differential equation. Particular solution of this equation are the 

spherical Bessel function j, and spherical Neumann function n,. The general solution is 

then a linear combination of two linearly independent particular solutions. 

y, (*, r) = kr[Cjl) (k)j, (kr) + Cj2) (*)«, (kr)] (1.7.9)

where Cf ),C;(2) the pair of integration constant. But the only solution of equation (1.7.8), 

which is finite every where, is the function jt(kr). Therefore there exist eigenfunction

h2ji(kr)Ylm(0,q>) common to the free Hamiltonian H0 =~—V2 and to the operator

L2 and Lz. Now the plane wave exp (ikt.r) which represents a free particle of momentum 

p, =hk, is a solution of Schrodinger equation H0y/ = Ey/ such that E = h2k2/2m with

A = |^|. Since the eigenfunction jj(kr)Ylm(6,<p) form a complete set, the plane wave 

may be developed in the series of these functions. Choosing the z-axis along the 

direction of k, so that exp(iktjr) = exp(ikrCos0)is independent of <p. The partial wave

expansion of the plane wave is given as
00

exp (ikt.r) =exp(zfe) =^(2/ + l)ilj) {kr)Pl (Cos0) (1.7.10)
/=o

where function Pt(CosO) are the Legender polynomials.

The boundary condition must be imposed up on die radial function u,(k,r) that 

out side the range ‘a’ of the potential it is same as the free particle solution.
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u,{ktr)^k^C}l\k)j,{kr)+Cj^(k)nt{kr)l r»a (1.7.11)

Let us assume that r is so large that the term f/(r) and l(l + l)/r2 may be neglected in 

equation (1.7.6). An ‘asymptotic’ solution is then obviously of the form exp(±/£r). 

Thus the general solution of equation (1.7.6) for large r is given by

Uj(k,r) = Bf\k)e,kr + Bj2\k)e~,kr (1.7.12)

Using the fact that

jt(x)------> —Sin(x-lx/2) and n,(x)------> ~—Cos(x~lx/2) (1.7.13)
r~*o x r-*o x

We may also write equation (1.7.12) in the form (1.7.9). Thus we have

u,(k,r)----->kr{Cf\k)jt{kr)+CP(k)nj{kr)} (1.7.14)
r—*x>

Using equation (1.7.13) the boundary condition is obtained as

ut (k, r)----- >Aj (k)Sin[kr -1x12 +Si (&)] (1.7.15)
r—*30

with 4(*) = {[C/(,)(A:)]2 + [Cj2)(k)f}m and tanSt{k)~-
C?\k)
Cf\k) (1.7.16)

The quantities 8,, which are called the phase shifts, display the influence of the 

interaction. The effect of potential on spherical waves is given by S,.

Scattering amplitude:

The asymptotic form of the scattering wave function is given as

*4+)(*,r)----- >A{k)[exm^) + fik,e,q>)^^k (1.7.17)

Using equation (1.7.10) and (1.7.13) 

Vt\k,r)----->A(k)
i r-MO

ikr

1=0 kr
(1.7.18)

<» +i KJtr — lxt 2) -i(kr-ln/2)
V?\k,r)-----M(*)[££[4*(2; + I)]''Vi----------- ---------------- x

' r-*° 1=0 m=-i 2 ikr

Ylm{d,cp)8mfi + f{k,0,<p)e—] (1.7.19)
¥

Considering the partial wave expansion (1.7.4) for large r and substituting 

Rlm(k,r) = R/(k,r) = r~'u,(k,r) together with equation (1.7.15)
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2ir
-i(kr~i7z/2+S,)-.' >„(«*» (1.7.20)

Comparing the coefficients of incoming spherical waves in equation (1.7.19) and 

(1.7.20)

cim(k) = T^l^(2l + \)ini' exp(/<5 )<s (1.7.21)
kAf (k) 1 m*°

Substitute for c,m in equation (1.7.20) and matching the coefficients of the out going 

spherical waves in equation (1.7.19) and (1.7.20)

1 “ +/ f4®V/2
/(M) = —X - > ./2 Y/mSm0(2l + l)[exp{2/<?;(&)}-1]

ZlK 1=0 m=-l (21 + 1) 

i co= Sg^T7y>'..»(«X2/ + l)[exp{2,V5,TO}-l]

.'. f(k,0) = -^~Yj(2l + l)[exp{2iS,(k)} -1] /) (cos(9) (1.7.24)

The knowledge of phase shifts allows one to obtain the scattering amplitude by means of 

the above relation. The differential scattering cross section and total cross section are 

then obtained respectively as

^(k,0) = \f(k,0)\\nd <Tlolal(k) = 27r)^(k,0)sm0d0 . (1.7.25)

A similar analysis was made for the Dirac relativistic equations for elastic 

scattering of electrons is given in chapter 2.

1.8 APPROACH TO THE PRESENT INVESTIGATION:

The elastic scattering of an electron from an atom or ion is the phenomenon 

occurring in a wide range of physical context such as in astrophysical or atmospheric 

environments, fusion reactors, technical plasmas used for modifying materials such as 

semiconductors, etc. The work has similar importance in fundamental studies also.

Calculations of elastic collision cross sections are carried out at high energies 

presently is initiated from the following causes.
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[1] Elastic scattering of electrons by neutral atom is of importance in different 

experimental technique as accurate phase shifts are required to interpret the results 

of low-energy electron diffraction measurements [1].

[2] Differential cross sections are needed to analyze the effect of elastic scattering in 

quantitative Auger electron spectroscopy and X-ray photoelectron 

speetroscopy[2,3].

[3] Elastic scattering has important role in electron-photon shower theory and electron 

microscopy [4,5].

[4] Byron and Joachain [6-11] have reported considerable amount of work for the 

calculation of scattering cross sections for different atoms. High-energy range up to 

40 KeV did not studied much except few workers [13-17]. During intensive study of 

the results of various approximations for the description of electron atom scattering 

processes at high energies. Following reasons are found for the present 

investigation.

[5] Few theoretical methods were able to reproduce the scattering cross section, which 

can be compared satisfactorily with the results of the experiments.

[6] Some approximations required complicated numerical techniques for the evaluation 

of the scattering cross sections.

[7] Divergent integral problems were common in some approximations.

[8] Much more complex calculations are required for better approximation 

in e-atom / ion collision processes.

[9] Moreover approximations were found to be difficult in order to extend for the study 

of many electron system of atom or ion (Z>1).

During the study of EBS approach [8-12] and HHOB theory [19-21], which 

is applied to the actual problem in the present work it is noted that the 

approximations can remove the above problems. Keeping all the above points HEA 

approach is selected for present investigations. The HHOB approximation is 

extended to study different atoms and ions.

[10] Motivation behind this work is also due to experiment of Cofftnan-Fink. Where no 

peak at high-energy range [15-35 KeV] observed experimentally as reported by 

GML [17]. We want to evaluate the same by better approximate method. With 

reference to partial wave work we can verify all other methods at high energy by 

using Dirac relativistic wave equation.
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[11] Recently the direct investigation of elastic scattering of electrons by ions [22] has 

created new theoretical interest other than atoms,

[12] Also certain experiments require knowledge of the elastic cross section to estimate 

backgrounds for inelastic channel measurements [23],

[13] In the fast ion-atom or ion-molecule studies binary encounter peak has been 

interpreted by elastic scattering of electrons from ion [24-26].

[14] Elastic and inelastic collision cross sectional data are applied for modeling plasma 

environments as well as it has crucial role in the energy and momentum transport in 

the plasma. Thus recent research interest has been found for the present work on He 

like ions.

Keeping all above mentioned points in reference the problem of elastic scattering 

of electrons mainly from He, Ne, and Ar targets, as well as some targets of 

He iso-electronic series are studied at high energies through different approaches is 

presented in this thesis.


