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CHAPTER -II

ELECTRON SCATTERING BY He,Ne,Ar ATOMS 

2.1 INTRODUCTION:

The second chapter deals with some of the high-energy methods that find 

application in high-energy scattering. The reason for taking up this aspect here is two fold 

i.e. (i) in die present work we have dealt with high energy problems only, so that subject 

matter is independent and self consistent, (ii) the author himself started this work on the 

neutral targets and then switched over to the problems described later on. We begin with 

the out line of various theoretical methods after specifying high and low energy

The study of the electron collision with atoms, molecule or ion can not be done 

through a single theory that applies to any incident energy on any target. Specific quantum 

mechanical theories have been developed for specific domain of the energy of projectile 

electron. If the speed of incident electron is less than or nearly equal to the speed of target 

electrons then it is termed as low energy range. Thereafter the intermediate energy is near 

the excitation threshold of the target and extends up to a few times the ionization 

threshold. Then from a few times the ionization threshold upward is high energy region. 

This is up to very high energies where relativistic considerations become effective. This 

classification obviously depends very much on the target.

All the theories of collision physjps in practice are quantum mechanical and 

developed from Schrodinger equation. The different methods are different approximate 

ways to solve Schrodinger equation. These are under two categories, (i) differential 

approach, (ii) integral approach. The approximate methods described here, applied in 

high-energy range are l.Bom Approximation, 2.Eikonal Approximation, 3.Eikonal-Bom 

series 4.DAS technique, 5. Modified DAS technique and 6. Partial wave analysis. The 

high energy methods except partial wave analysis, arise from an integral equivalent of the 

Schrodinger equation i.e. Lippmann-Shrodinger equation. These theoretical methods of 

our interest are treated somewhat at length in the previous chapter. Here these methods are 

applied for actual targets i.e. He, Ne, and Ar atoms with different target potentials. The 

basic idea underlying different method is their applicability in high-energy range along 

with the way of obtaining higher accuracy in results.
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2.2 APPLICATION OF BORN APPROXIMATION

The zero order approximation i.e. y/kf (r) = (r) = ^ (r) to the solution of

Lippman-Schwinger equation gives the 1st Bom approximation. The first Bom scattering 

amplitude is given by

fm - -2n2{^)kf | U | ^0).

' = -2n2{f>kj\U\^k) (2.2.1)

The 2nd Bom approximation is then obtained by considering second order perturbation 

and making corresponding approximation in the Lippman-Swinger equation 

i.e. y/k/ (r) = y/t (r) = (r) + (/■, /■')£/{r')(j>k (r')dr', so the second Bom scattering

amplitude is obtained as

foi = ~2n2(</>k/

= -In1 (<t>k/ | U + UGU | y/0) (2.2.2)

Thus the Bom series is a perturbative expansion in powers of the potential U(r). If the 

potential is weak enough, the expansion converges to a limit and at high energies it is valid

only if ^ — «1, where a is range of potential, U0 is strength of the potential and k is
2k

wave vector depending on the incident energy. These are the conditions for Bom 

approximation.

First Born Approximation:

Let us analyze the first Bom approximation. It is a function of scattering direction 

(0,<p)m& the momentum transfer q. For elastic scattering q=\k,~kf\= 2kSin0/2;

where k„kf -> incident and scattered wave vector,

I Ki 1=1 tf \-k-> magnitude of wave vector.

The equation (2.2.1) is evaluated in the coordinate representation with 

(j>ki (r) - (2n)~m e,k, r and $k/ (r) = (2n)~3/1 ek/'r is given by

/•* —t/fe) (2.2.3)
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Considering a target with internal structure and introducing initial and final state wave 

function of the target ;

U(L) - Ujiia) = (w/ \ Electro - static potential | y/t}.

tDifferent analytical forms of U(r) are obtained for various potential fields.

e~lr
Let us first consider Yukawa potential, U{r) = -U0------

• /ei U0 f tq r 0je'?-
-Xr

AnJ r
2n <x>ir

dr ;

4n
jd<pjje ,qrCos0SinO dd—r2dr 

000 r

2 n 9r 9 n

E/n
Xz+q2 (2.2.4)

In the past, attempts have been made to determined potential field parameters. Cox and 

Bonham [54] reported parameters for a set of Yukawa potential terms, determined by least 

square fits of radial electron density function. The potential for neutral atoms with the 

expression of nuclear screening factor becomes

V(r) = 5>, expC-A, r). (2.2.5)
f ,

Now substituting V(r) in equation (2.2.3) and performing angular integrations 

fm=-^-]rSinqrV(r)dr
h q 0

r.e-’’'smqrdr
* <1 0 .

2Z ^ q ____ ft2
„ „ 2-1? 1 ]2 , 2 ,a° mn2 aQ (J t 4* (J ItlB

= 1 atomic unit of length

r,r(^+?J)
in atomic unit (2.2.6)
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Here magnitude of wave vector k is obtained in atomic unit as —— = yfc2
tr

_____ g2
=> ^2Ea „ = kau ; — = 27.2 eV= 1 Hartree, atomic unit of energy and potential should

be considered in atomic unit, so that fm evaluated in atomic unit. The scattering 

amplitude is also studied with the other analytical expression for Thomas-Fermi-Direc 

(TFD) [56] and Hartree-Fock (HF) [60] potential field for neutral atoms. These potentials 

have the following form

UrFD(r) =

UHF(r) =

2Z 
ar

2Z 
ar

■■ftHF
Bi

'Lr.e-

Sr.<

r,

•X,r , a -» Bohar radius.

-V +rY,y> e~Kr

(A2+q2)
+Sr/ 2 A,

2x2W+9 )

(2.2.7)

(2.2.8)

The more reliable parameters in screening function are determined by analytical 

fitting procedure to Dirac-Hartree-fock-Slater (DllFS) self-consistent data are given by 

F.Salvat et al [38]. These analytical functions incorporating relativistic effects are used for 

the high energy range (KeV) of the present work. Dirac Hartree Fock Slater screening 

potential is the simple of superposition of three Yukawa potential given as

U DHFS ~Sr, -v
»=i

•••/«= Z 7^7-7;
i W+9 )

(2.2.9)

(2.2.10)

Second Bom Approximation:

The Major contribution in Bom series after the first Bom term is the second Bom 

term. Let us now study the second Bom approximation for the case of Yukawa potential.

We have to evaluate the quantity fB2, which is written in momentum space as

[ V | K) ' 2 <K | U [ *,) (2.2A l)
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The evaluation of the integral appearing on the right-hand side of eq. (2.2.11), is 
performed using the more general form of Dalitz Integrals [31,32]. In the case of single 

Yukawa potential U(r) = -U0 e~ar / r equation (2.2.11) becomes

1f B2 ~(2x2)~}Uq JrfK-

(K2 - k2 - ie)(a*+1K - kf |z)(y^+1K - kf |a)2\fo2 a = p

= (2*r) UQl11(a,a;kl,k/,k)

l= (2!t2YxUl \L2(k,T,K)dt ; where Lz(k,r,A)=—
» 1

It
T(k2 -r2 - A2 + 2ikT)

••• /« = “1^0 |r(2^r-A2) ; here I*» N */ 1= * and « = P = *

For superposition of Yukawa potential; a-X,,p-XJ

dt

_ j i
•• f B2~ y J dir

2 '* %Jr[2i-*r-i2r-A2(i-/)3

Let ^ = r(A2r + ^ 0 ~/)) and B = 2kT2

i" Irn.i dt V dt V A + iB ^
J ,-r _ a “ J0r[2^r-A2r-^(i-o] i^-A > a2+b2

A + iBLet A2+B2 '■ f(Xt,Xj,t)

(2.2.12)

(2.2.13)

f 82 ~'5'iYiYi \f{XnXj,t)dt

■Re//i2 =^uo'Lr,rJ fA2A;-nJdt and
2 ”tT'"%j^2 + 52

i»7„-^o22r.r/f- 5
2~utf"JiA2+B2 dt (2.2.14)

Using Numerical integration
1 n 1

we have \f(l)dt = YJw<f(t,) ? /, -> Gaussian points, 
o <=•

w, -> Gaussian weight factors.
g-'A*’ ^ g-V

In the case ofHF potential of the form, p,—— ^”5 a = XuP = X2
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fB 2 =\UI
Y\ +2 nr2(~ dx2} 72idx22 J/(0 dt, (2.2.15)

2.3 E1KONAL BORN SERIES APPROACH ;

Semi-classical methods are useful approximation technique when de Broglie wave 

length of the incident particle is sufficiently short compared to the range of the potential 

‘a ’ (i.e. energy of incident particle is high, so that ka »1). The eikonal scattering wave 

function is derived from the Lippmann-Schwinger equation as discussed in section 1.3. In 

this section eikonal approximation is applied to the simple problem of non-relativistic 

potential scattering. Comparison of higher order terms of eikonal and Bom series leads to 

the eikonal Bom series approach [8]. The theoretical approach to such process based on a 

detail study of Bom and Eikonal multiple scattering series is given by Bayron, Joachain 

and Mund [6],

Eikonal scattering amplitude (1.4.1) and Bom scattering amplitude (1.2.18) is 

defined by the Bom series and Eikonal multiple scattering expansion as

co __ ^ _ __
fex~lLf Bn=f Bi+f B2 + f S3+<" ’ and 

W—I
00 __ — __

/*=£/&, =/fil+/£2 +/«+- (2.3.1)
n=l

The sum of the first n terms
n   .... _fBn = £/* ^/at ~ f B\ and ^ fB\ ~f at 

pi _ _
=> fB2 = f b\ +f 82 ’ similarly

fE„ = YjEj » where 1 Bn = po(^M)]*^ db =>Re/E2 « 0 and
i=! ”• 0

fBn=-2x2«/>kf\U\<fih> =>Re/B2*0 (2.3.2)

Now writing each term in the form of A and k; lmfB2(k,A) = AB2(A)/k + ... and

Imf E2(k,A)=AB2(A)/k+..„ Byron and Joachain [37] have shown that for Yukawa-type 

potential equation (2.3.2) reads as

™<i 7a(*.A)=^+o(r”) (2.3.3)
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for all nand all values of the momentum transfer. For large enough k the relations imply 

that f Bn(*»A) = Re/a„(*.A) » odd

lmfEn(k,A) = lmfBn(k,A) n even. (2.3.4)

From the analysis of first few terms (up to n=4) the equivalence of the higher orders terms 

of Bom and eikonal series also holds for an arbitrary super position of Yukawa potentials 

suggested by BJM.The agreement is good for all momentum transfer for large k. i.e. For 

superposition of Yukawa potential and large value of incident wave number each term of 

eikonal multiple scattering series gives the value of corresponding term in the Bom series. 

[7]

Restricting to the weak coupling case such that | UQ | at2k «1, where the Bom 

series converges and imposing the condition of validity of the eikonal approximation 

i.e. ka » 1 and \UQ\/k2 «1 asymptotic form of the exact scattering amplitude for 

fixed A and large k can be written as [57]

/«,(*,A) = /S1(A) +
4A) + .5(A)' +^M+o(ir3).

k
(2.3.5)

k2 k

~ f+ f B2 f S3 "*■*"•

On the other hand the relation fm = fm, (2.3.3) and (2.3.4) imply that the eikonal 

scattering amplitude is given by

/£(*,A) = /fll(A) + /
;5(A) C(A) + o(ir3).

k k2 

= /fil(A) + /£2+/i>3+*

(2.3.6)

Upon comparison of equations (2.3.5) and (2.3.6) it is clear that neither fB2 - fB\ + f m
/T/ * \

nor fE are correct to order k~2. Indeed fB2 lacks the real term of order k~2 i.e. —and
K

similarly the real term ^^—is missing in fE. It is obvious from above expression the
kl

term is present in /ex = Re/a2
k _

Thus Bom amplitude can be improved as f = fB\ +fB2 +/ei or eikonal 

amplitude can be improved by / = fB + Re fB2. We found that it is better to consider later 

correction, which includes more terms of higher order in (1/ k) than the previous one. In
i

the other way, since A{A) and C(A)xUl
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(i) U0 is sufficiently small (i.e.<l) second Bom amplitude f„2 is more accurate than fB

(ii) U0 is not sufficiently small Re f n2 + fF is better approximation.

In the present work on light (He) as well as heavy atoms (Ne, Ar ), the second case exist.

Now by adding the important missing term Re fB2 to the eikonal amplitude 

fE excellent improvement is seen. Therefore DCS is also improved. This is a much better 

approximation than fm for calculation of DCS, since the terms involving A(A), 5(A) and 

C(A) in equation (2.3.5) contribute equally in correcting the first Bom differential cross 

section. Thus the eikonal Bom series amplitude which gives consistent picture of the 

scattering amplitude through order k~2 is given by

fBBS ~ A' + ^e/fl2 (2.3.7)

Eikonal amplitude :

Consider eikonal amplitude equation (1.3.8) in cylindrical polar coordinates and 

integrating over the z variable, the scattering amplitude is given by

fE = —fd2b e‘~ - (e‘z(h) -1) Surface integral ds = d2b = bdbdq> (2.3.8)
2 niJ

where % = -— U(b,z) = ?£-V(r) (2.3.9)
2 k_i, h

dz is called eikonal phase shift function.

The cylindrical coordinate system has been chosen with r -b + zn, where n is 

perpendicular to the wave vector transfer A = k,-kf. For radial field which possess 

cylindrical symmetry equation (2.3.7) reduces to

fE=t]bdbJ0(Ab)(e‘*b’k)-\) * A = 2fcsin0/2 (2.3.10)

1 o
, In

where J0 (Ab) = — Jdtp e‘kb- is the Bessel function of integer order.
2/r 0

Now e'z(b’k) = Cos% + i Sin%
co

Re fE = k jdbbJ0(Ab)Sin{%(b,k)} and 

o
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Im/fi = k jdbbJ0(Ab) [Cos{%(b, k)} -1], (2,3.11)

o

where -ve sign out side the last integral is neglected.

~ar
For U = -U0-—,

r
%(k,b) - -'—-KQ{ab); where K0 -» modified Bessel function of order zero. (2.3.12)

#C

2 e-X,rIn the case of superposition of Yukawa type potential U = ~U0 Y y.------
ti r

Z(b,k) = ^firlKo(m (2.3.13)

* i=i

Equations in (2.3.11) arc evaluated numerically, where presence of Bessel function J0 

makes the evaluation typical. We must take care about zeros of the Bessel function. So the 

definite integral with limit 0 to oo is performed block wise according to the positions of 

Bessel’s zeroes. Thus block-wise integration
oo a b c
| | 4" | + | + •♦■ ft terms;a,b,c-- arcx-coordinates where J(x) = 0.
0 0 a b

= <*0~al +«2“°3.......

00= ^f(-l)* ak is a convergent series.
*=o

The sum of the series is given by the Euler’s transform [A. Witz] 

j = y -——, where A* is obtained from the difference table.
l—t nk+1 
*=0

Numerical integration of each block is done by the Gaussian integration

] g b 1
f/(x)a!ics]£w’j/(x,). The limit is changed ^f(y)dy -» Jf(x)dx by choosing the new

a i=l a o

variable x = ——. Initial integration up to 8-blocks are added then Euler’s transform is 
b-a

done using next 4-blocks, which gives sum of the remainder series. Finally resultant 

eikonal amplitude is obtained using equation (2.3.11) as

AHRe/l+Im/ir2 (2.3.14)
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And the differential cross-section is obtained from (2.2.14) and (2.3.11) as

-“ = |/jm!?|2 =|Re/fl +Re/J2 +|lm/£|2 
aLl

(2.3.15)

Calculation of f E3 :

Analytical evaluation of the term fB3 i.e. Re/H3,Re f Ei is difficult so f E3 is

obtained by numerical evaluation of equation (2.3.2). By expanding the quantity e'x in the 

eikonal amplitude equation (2.3.10) in powers of %, the eikonal multiple scattering series 

is defined as

where f En = Jrf26exp(/A■*)[*(*.*)]"•
2ni niJ

Jj0(Ai)[^(^,i)]" for central real potential (2.3.16)

___ f 00

■■fF.^-~yomiz{k,b)?bdb
o

(2.3.17)

Now in the case of super position of Yukawa potential U(b,z) = -E/0
r

(2.3.18)

(2.3.19)

Substitute equation (2.3.19) in equation (2.3.17)

Let y = Ab

:.b = — and db-~~
A A
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'■'/ra" 6*2]a2‘/o0') 2>,XoWf)
(2.3.20)

Integral in R.H.S. is evaluated by block wise integration, where limits are Bessel’s zeroes 

for each block.
» “|3 an

Let IE =
J A*

Yr,K0(4f) dy = J/0>) dy
0

00

h = J/(y) rfy + j/004v+... . + |/(y) #
0 24 369

x, :r2 oo
\f(y)dy+ \f{y) dy +...... + J/OO dy; where x0,x,,...are Bessel’s zeroes.

'0=0 Xl2

11 00= Z f/M^+ J/OO^

*0”°

11 *<+l
I
/=0

7 -*V+i
I ‘
1*0 r

/ /+J= X f/0’)4’+
11 *1+1

X }f{y)dy
-=8 X

4* ‘

= Sum of initial 8-blocks + Euler’s transform.

Now integral in the above equation

j/00 dy = J/OO dy is evaluated by Gaussian integration.

Let x = ~- =>y = x(b~a) + a and tfy = (b-a)dx
b-a

=> |/W dy = J/(x) dx = Z/(^)w-.
x, 0

where x, -» Gaussian points, 
w, -» Weight factor.

/(x) = ^ 1—[x(6 -a) + a]J0 (x(b -a) + a) 
A S (2.3.21)
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Proeram discrmtion:
Energy 35 KeV; k in Hartree a.u.
Potential: DHFS;
Method: EBS
Program: Hel3.c

Calculation : fEBS = fE + Re/S2
EBS given by equation (2.3.15) is evaluated for the He atom target Where Euler’s 
transform has an important roll.
Program structure:
Header file for calculation of J0,K0.

Global declaration of variables & array.

Include files for different function programs.

Function main() {
Declaration of variables 
Include target parameters

Calculation of J0,K0. Calculation of f E
Header files : R02.H. Include filerFE .F

I " 

Variables; GJ0.P.

Loop (0 = 0.05 to 40){ 

Cal. fm
Loop(biock=l to 12){

Loop (i=l to 8){ 
Transformation of limit 
Cal. K0, f(x) 
fix,) w, }

}
Difference table
Sum up to 8 initial blocks
Euler Transform [9 tol2th block block]

Euler’s Transform : Cal. fE }

Display Table: 0(deg.) fm fE

Calculation of Re f B2 
Include fUe:)REFB2_.F

XI.HE

Loop (0=0.05 tO 40){ 
Cal. fBl
Display 0 S k U0

Loop(j=l to 5){
Get arf, brf, erf

Loop(i=l to 8){ 
Cal. Rfb2_

}

Display Table:
/si»Re/B2*
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Calculation of fBBS 

Display Table:

& •> fs\ > /s> /os > fa. w.j

} End of main ().

Program : Hel3.c

/* EBS Method : £E + RefB2_ ,DCS for He DHFS potential
35 KeV k in Hartree A.U. hel3.c */

/* Calculation of fEBS = fE + RefB2_ */

tdefine PI 3.142 
tdefine Ao .529 
tinclude <math.h>
#include "rOl.h"

/* Globle declaration of array & variables */ 
int i,j;
static float iv =.l, ic =.1/2;
static float SAo=0,lpl=.0595636,lp2=l,lp3=.0595636/2; /*theta */
float h,t;
double k,del,dl,d2;
double r,bt,v,10,ar,uO,z;
static double 1[20],al[10],bl[10];
double x0,w0,x[10],w[10];
static double fbl[50],rfb2_[50],rfe[50],ife[50],fe[50];

/* Different function programs are included */
#include "fe.f " 
tinclude "Refb2_.f"

main{)f

/* Declaretion of variables */ 
double ifEBS[50],rfEBS[50],fEBS[50]; 
clrscr{);

/* Input data */
z=2.0; /* He Atom */
u0=2* z;
k=sqrt(2* 35000/(2* 13.6));/* Hartree A.U. */
for(i=0;i<=10;++i)al[i]=bl[i]=0; 
tinclude "pmt.He"

/* Calculation of fE for SAo .1 to 1 */

Fe() ;



35

/* Calculation of RefB2_ for SAo .1 to 1 */

Refb2_();
/* Out put Table heading */
printf("\nS(Ao-l) fbl{Ao) ReFB2_ (Ao) Fe(Ao) RefEBS(Ao)
ImfEBS(Ao) DCS(AoA2)");
printf ("\n\n\n"); 
/* Calculation of fEBS */
SAo=(float)0;i=l;
for{t=lpl;SAo<lp2;t +=lp3,++i){h=t; 

h=h* PI/180;
del=2* k* sin(h/2);SAo=del* 96.18/50.73; 
rfEBS[i]=rfb2_[i]+rfe[i]; 
ifEBS[i]=ife[i];
fEBS[i]=sqrt(pow(rfEBS[i],2)+pow(ifEBS[i],2)); 

printf("%.2f %.4f %e %.4f %.4e %.4f %.4f \n",SAo,
fbl[i]* Ao,rfb2_[i]* Ao,fe[i]* Ao,rfEBS[i]* Ao,ifEBS[i]* Ao,

(float)pow(fEBS[i]* Ao,2.0));
}
getch();
}□

/* Calculation of eikonal amplitude fe.f */

void Fe()
{int i0,il,jO,jl,n,b0,c0,cl,c2,c3;
double f,a,b,m,y;
double fi,sO,sOi,s,si,kO;
double si,sli,s2,s2i,tO,tOi,tl,tli,p;
double f0[20][20],f0i[20][20];
#include "GJO.P" 
i0s*l;i=0;
for(t=lpl;SAo<lp2;t +=lp3,++i0)(h=t; 

h=h* PI/180;
del=2* k* sin(h/2);dl=del;d2=dl* dl;
SAo=del* 96.18/50.73;f=(double)0; /* First Born */
fbl[i0]=(double)0; 
for(i=l;i<=2;++i)f=f+al[i]/(bl[i]* bl[i]+d2);f=u0* f;fbl[i0]=f;
printf("\n\n@ = %.4f SAo = %.2f k = %.2f uO = %.2f",(float)t

,SAo,(float)k,u0);
printf("\nfbl = %.4f (a.u.) ",fbl[i0]); 

b0=ll;
for(j=0;j<«b0;++j){ 
a=l[j];b=l[j+l]; 
m=b-a;
s0=s0i=(double)0; 
for(i=l;i<=8;++i){



36

xO=x[i];wO=w[i];
y=xO* (b-a)+a; /* Transformation */
k0= al[1]* KO(bl[1]* y/dl)+al[2]* K0(bl[2]* y/dl); 
f = m* y* JO(y)* sin((uO* kO)/k);f =k* f/d2? 
fi=m* y* JO(y)* (cos((u0* kO)/k)-1);fi=k* fi/d2; 
sO = sO+f* wO; 
sOi= sOi+fi* wO;} 

if(s0<0)s0=-s0;f 0 [ j ][0]=s0;
if(s0i<0)s0i=-s0i;fOi[j][0]=sOi;} /* oth column
n=8;cO=bO-n; 
for(j=l;j<=cO;++j)
for(i=0;i<=b0;++i) f0[i][j]=fOi[i][j] 
for(i=n;i<=bO-l;++i){

fO[i] [l]-»fO[i+l] fO]-fO[i] [0]; /* 1st column */
fOi[i][I]=f0i[i+1][0]-fOi[i][0];} 

for(j=l; j<=cOf*++j) { cl=bO-j-l; /*

/* Initialization 
(double)0;

2m & 3rd coliamn */
for(i=n;i<=cl;++i){f0[i][j+l]=fO[i+1][j]-fO[i][j] ;

fOi[i][j+1]=fOi[i+1][j]-fOi[i][j];J}
sl=sli=(double)0; /* addition of initial blocks */ 
for(i=0;i<n;++i) (p=pow(-l,i);sl =sl+p* fO[i][0];

sli=sli+p* fOi [i][0];}
/* Euler transform to remaining series */ 

s2=s2i=(double)0;c3=b0-n; 
for(j=0;j<=c3;++j) { p=pow(-l,j); 
tO =f0[n] [j]/pow(2, j4l) ; tl =p* tO; 
t0i=f0i[n][j]/pow(2,j+1);tli=p* tOi; 
s2 =s2+tl; 
s2i=s2i+tli;

}rfe(i0]=(sl+s2);ife[i0]=(sli+s2i);fe[i0]=sqrt(pow(rfe[iO],2)
+pow(ife[i0],2));

printf("\a\nRefE = %7.4e ImfE = %7.4e \nfE = %7.4e",rfe[i0],
ife[iO],fe[i0]);

)/* Table */
printf("\n\nS(Ao-1) fbl Fe ");
printf ("\n\n\n");
for(i=l,t=iv;t<=lp2;++i,t+=ic)
printf("%1.2f %7.4f %e \n",(float)t,fbl[i],fe[i]

getch();
}
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/* Calculation of real part of 2nd Born term RefB2 .f */

void Refb2__()
{
int iO;
float arl,brl;
static float arf[20],brf[20],erf[20]; 
double xl,wl,rO,rl,r2,f,s,S; 
ttinclude "xl.He"

iO=l;SAo=(float)0;
for(t=lpl;SAo<lp2,*t +=lp3,++iOJ {h=t; 

h=h* PI/180;
del=2* k* sin(h/2);dl=del;d2=dl* dl;
SAo=del* 96.18/50.73;
f=(double)0; /* First Born */
fbl[iO]=(double)0; 
for(i=l;i<=2;++i)
f=f+al[i]/(bl[i]* bl[i]+d2);f=u0* f;fbl[i0J=f; 
printf("\n\n@ = %.4f SAo = %.2f k = %.2f uO = %.2f ",

(float) t, SAo, (float) k, u0) ; 
printf("\nfbl = %.4f (a.u.) ",fbl(i0]5;
S=(double)0;
for(j=l;j<=4;++j){ arl=arf[j];brl=brf[j]; 
s=(double)0; 
for(i=l;i<=8;++i){ 

xl=x[i];wl=w[i];
r0=arl* arl* xl+(brl* brl* (l-xl)); 
r2=r0+(xl* (l-xl)* del* del); 
rl==sqrt (r2) ;
f=r0/(rl* (rO* rO+4* k* k* r2)); 
s=s+wl* f;}

S=S+s* uO* uO* crf[j]/2;
} rfb2_(iO]==S;

printf("\a\nRFB2_ = %7.4e ",rfb2_[i0]);
)

/* Table */
printf("\n\nS fbl ReFB2_ ”);
printf ("\n_\n\n");

for(i=l,t=iv;t<=lp2;++i,t+=ic)
printf("%1.2f %7.4£ %e \n",(float)t,fbl[i],rfb2_[i]);

getch();
}
□



/* Gaussian points for integration GJO.p */

x[l]=.0198550718; 
x[2]=.1016667613; 
x[3]=.2372337950; 
x[4] = .4082826788; 
x [5] ='.5917173212; 
x[6] = .7627662050; 
x[7]=.8983332387; 
x[8]=.9801449282;

w[l]=.0506142681; 
w[2]=.1111905172; 
w[3]=.1568533229; 
w[4]=.1813418917; 
w[5]=.1813418917; 
w[6]=.1568533229; 
w[7]=.1111905172; 
w[8]=.0506142681;

/* Bessel's zeroes for integration limits */
1[0)=0.000000000;1[13=2.4048255577;1 [21 =5.5200781103°; 1 [31 =8.6537279129;
1[43 =11.7915344391;1[5]=14.9309177086;
1[61=18.0710639679;1[7]=21.2116366299;
1[8]=24.3524715308;1[9]=27.4934791320;
1 [10]=30.6346064684;1[11J-33.7758202136; 
1[123=36.917098353;1[13]=40.0584257646;
1[14]=43.1997917132;1[153=46.3411883717; 
1 [16]=49.482609897;1[17]=52.6240518411;
1[18]=55.7655107550;1[19]=58.9069839261; 
1[20]=62.0484691902;□

/* Parameters for the target pmt.He */
al[l]=-.2259;al[2]=1.2259; 
bl[l]=5.5272;bl[2]=2.3992;D

/* Parameters to calculate refB2_ xl.He */

arf[l]=bl[1];brf[l]=bl[l];arf[3]=bl[2];brf[3]=bl[l] 
arf[2]=bl[1];brf[2]=bl[2];arf[4]=bl[2];brf[4]=bl[2]

erf[l]=al[l]* al[1]; erf[3]=al[2]* al[l];
erf[2]=al[1]* al[2]; erf[4]=al[2]* al[2];
□
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2.4 WALLACE CORRECTION:

Eikonai amplitude is effectively corrected by real part of the second Bom term as 

discussed in section 2.3. Another way of obtaining improvement over eikonai amplitude in 

potential scattering has been proposed by Wallace[47]. The potential experienced by the 

incident particle depend on the coordinate r of the target particles and the phase shift of 

projectile wave is the sum of phase shifts from interaction of each target particles. Wallace 

used a technique introduced by Aberbanel and Itzkson [48] to obtain the leading correction 

to the eikonai amplitude. He has incorporated the trajectory correction in the expansion of 

the Green’s function of the eikonai approximation by considering velocity of incident 

particle v by | k \{m = vcos0/2 and carried out further analysis of the perturbation series. 

The Wallace improved eikonai amplitude containing leading correction for a central 

potential is given by [35,34]

o
(2.4.1)

(2.4.2)

(2.4.3)

Now

09

.-. Re = k Jdb b J0 (Ab) Sm(%w ) and

o

Im fw =k jdbbJ0(Ab) [Cos(zw) -1], where %w =
00 Zo(b)

- ' _ o

k e '
(2.4.4)

o
excluding minus sign in the last integral.

Let us consider the case of Yukawa potential of the form U{r) = -£/0 e
r
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, Zo(b) = U0Ko(Ab) and (b) = ^U2K0(2Ab);

where K0 is the modified Bessel function of zero order.

UnFor superposition of Yukawa potential: U(r) = —-y£JY,e~*'r
f=i

_ f/„v re-*,
Zo(b) = -~-Xri J—dz

■ 2 . i r
n'e~* , 2 ,i.2 fdrNow f—-dz; r2-b2+z2
3 r dz.

'fg ^ ydr q Y a*.=2i~!T-2l-jr^T=2K'>^
b z bsr —b

xM^Y,yX2KoW\=u0Yr,K0m,)
^ / f

Now U2(r) = U2[7l^~ + r2= ¥§- y£r,rJeHZ,+Aj)r and

r r r ,J=i

2 g~V dU 2 e~* „ e"vE/M = -£/oI>,V =>
i=l i=l

/IT I 2 --V 2
=> r—=^oE?,»-r_+t/oZMi "V

1=1 i=I
dU e~a'+A')/r

Ur tj
-ui'LrjrA

-UMj)/r
2

r >.J

dU

J ~---**, g-(*t+AJ)3r

U] ~<o
=^ZJVvU2*<>m+^)}]

4 ij

=^-'Lr,7,hK«V’^+h)'i
1 ‘J

Thus Wallace corrected eikonal phase is

(2.4.5)

(2.4.6)
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(2.4.7)

We rewrite equation (2.3.7) and (2.3.14) as 

fEBS =fw+ ^e/fl2» 

fw H ^e/r + ^mfw i'/2 (2.4.8)

The differential cross-section is obtained from (2.2.14) and (2.4.4)

~T — |/ebs| +^e/flz| +|^mA,| • (2.4.9)

Equations in (2.4.4) are evaluated numerically by taking care for Bessel’s zeroes and using 

the Euler’s transform as in previous section.

Program: jwl.f
The function program evaluates Wallace amplitude through block wise integration.

/* calculation of Wallace amplitude */
void Fwl()
{int iO,il,jO,jl,n,b0,c0,cl,c2,c3;
double f,a,b,m,y,kl,xy;
double fi,sQ,sOi,s,si,kO;
double si,sli,s2,s2i,tO,tOi,tl,tli,p;
double fO[20][20],fOi[20] (20];
tinclude "GJO.P" 
i0=l;i=0;
for{t=lpl;SAo<lp2;t +=lp3,++i0)(h=t;

• h=h* PI/180,*
del=2* k* sin(h/2);dl=del;d2=dl* dl;
SAo=del* 96.18/50.73;
f=(double)0; /* First Born */
fbl(i0]=(double)0;

y / 4 —1 ■ •% * 4-4-t*f )

f=f+al[±]/(bl[i]* bl[i]+d2);f=u0* f;fbl[i0]=f; 
printf("\n\n@ = %.4f SAo = %.2f k = %.2£ uO = %.2f ",

(float)t,SAo,(float)k,u0); 
printf("\nfbl = %.4f (a.u.) ",fbl[i0]);

b0=ll;
for(j=0;j<=b0;++j){ 
a=l[j];b=l[j+13; 
m=b-a;
s0=s0i=(double)0; 
for(i=l;i<=8;++i){

x0=x[i];w0=w[i]; 
y=x0* (b-a)+a; /* Transformation */
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kO= al[1]* KO(bl[1]* y/dl)+al[2J* K0(bl[2]* y/dl); 
kl=(double)0; 
for(il=l;il<3;++il) 
for(jl=l?jl<3;++jl){
s =al[il] * al-[ jlj * bl [ jl] * KO ((bl[il]+bl[jl])*.y/dl); 
kl=kl+s;}

xy=(uO* kO/k)+(uO* uO* kl/(2* k* k* k));

f =m* y* JO(y)* sin(xy);f =k* 1162', 
fi=m* y* JO(y)* (cos(xy)-1);fi=k* fi/d2; 
sO = sO+f* wO; 
sOi= sOi+fi* wO;

}if(s0<0)sO=-sO;fO[j][0]=s0;
if(s0i<0)s0i=-s0i;f0i[j][0]=s0i;} /* Oth column */

n=8;c0=b0-n; 
f or (j =1; j <=cO; -4-+j)
for(i=0;i<=b0;++i) f0[i][j]=fOi[i][j]=(double)0; 

for(i=n;i<=bO-l;++i){f0[i][I]=f0[i+1][0]-f0[i]CO];/*lst column */
fOi[i][l]=f0i[i+l][0]-fOi[i][0];} 

for(j*l;j<=cO;++j){ cl=bO-j-l; /* 2nd,3rd column */
for(i=n;i<=cl;++i){fOfi][j+l]=fO[i+l][j]-fO[i][j];

fOi[i][j+1]=£0i[i+l][j]-fOi[i][j];}
} sl=sli=(double)0?

for(i=0;i<n;++i) {p=pow(-l,i);sl =sl+p* f0[i][0];
sli=sli+p* fOi[i][0];}

/* Euler transform to remaining series */ 
s2=s2i=(double)0;c3=b0-n; 
for(j=0;j<=c3;++j) { p=pow(-1,j); 
tO =f0[n][j]/pow(2,j+1); tl =p* tO; 
t0i=f0i[n][j]/pow(2,j+1);tli=p* tOi; 
s2 =s2+tl; 
s2i=s2i+tli; }

rfe[i0] = (sl+s2);ife[i0]=(sli+s2i);fe[iO]=sqrt(pow(rfe[iO] ,2)
+pow(ife[iO],2) ) ;

printf("\a\nRefE = %7.4e ImfE = %7.4e \nfE = %7.4e",rfe[i0],
ifefiO],fe[iO]};

}/* Table */
printf C'\n\nS(Ao-l) fbl Fwl ");
printf ("\n\n\n"); 
for(i=l,t=iv;t<=lp2;++i,t+=ic)
printf("%1.2f %7.4£ %e \n",(float)t,fbl[i],fe[i]);

getch();
}
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2.5 PAS METHOD:

To obtain reliable scattering amplitude higher order Bom terms described by 

equation (2.3.1) should be involved in the scattering amplitude. The evaluation of higher 
order more than 2nd is very difficult. J.N.Das has suggested a simpler method to include 

higher order Bom terms in the scattering amplitude in which the second Bom term is 

multiplied by variationally determined complex number to compensate for the missing 

higher order Bom terms [27]. In this method first the Bom series is represented by 

Fredholm integral equation (1.5.2) than the equation is evaluated by iteration method for 

elastic scattering (1.5.3). To solve this equation trial input function for the scattering 

amplitude is used. The input scattering function is considered as

/("% k,) = (aD + i b°)fm (q,k,), (2.5.1)

where aD and bD are energy dependent variational parameters, which are coming 

through the asymptotic form of the scattering amplitude given in (1.5.3) and satisfy the 

limiting conditions (1.5.4). With this choice of input trial function Das obtained output 

scattering amplitude as

f(oul) =fD= fm HaD + /bD)fB2. (2.5.2)

Denoting real and imaginary parts of f B2 by f B2R and f B2J, respectively the above 

equation reads

/d =/bi +(QD +‘bD)(f B2R +7b2/)

= fa\ f BZR ~ f B2l) + lf ffll f82.) (2.5.3)

The parameters aD and 6° are independent of the scattering angle, obtained by 

minimizing the norm | f(om) -fm \2 integrated over the whole angular region of the

scattering angle with respect to aD and bD. The calculation with equation (2.5.1) and 

(2.5.2) yields equation

jd0Sin0 fB\(fB\ f bir) 

\d9Sin9 [{fBX f B2r)2 +/fl2/]

fdOSinB fB~f B2l 

\d6Sin0 [(/S1 -f B2Rf + f 82/i
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The analysis carried out by Byron and Joachain [36] show that at large energies 

aD increases with energy and go to its asymptotic value of unity. On the other end at large 

energies bD decreases with energy and it varies between Ink,/k, and l/k,.

Thus in this method higher order Bom terms are included in the scattering amplitude by 

multiplying second order Bom term with complex parameter.

Calculation of aD, bD:

Denote integral of equation (2.5.4) in numerator as 

h = l^SmB fmIJ,,

= ]/«,(/», -7df)

0

Now consider half angle formula and change the variable of the integral as

Sin9 = 2Sin9 / 2Cos9 / 2

Let t = Sin012 => d6 - 2dt /Cos(9/ 2),

Sin0 = 2tCos9/2 and q = 2kSinO/2 = 2k t

h - ^}/ai(/fli _ /B2«)tdl. (2.5.6)

o
Similarly,

I2 = jd0Sin0 [(/fll - f bir) +/b2/]

= 4 J l(fm -1b2r)2 + Tbii 1dt and (2-5J)
0

/3 = jd9Sin9 fBi f B2i

= 4jf fBJB2l dt. (2.5.8) 

o
These integrals are evaluated numerically by Gaussian integration.

Finally we have

(2.5.9)
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2.6 Modified Das Method !

The Das technique was improved further by including the second Bom term 

in the input trial fiinetion [28] as

/("° = iap + +fB2) (2.5.10)

Putting this in equation (1.5.3) and proceeding as before, the derivation of direct out put 

scattering amplitude is given by

f(°U,) ~ fm = /* +(ap+ibp)(fB2 + fB3), (2.5.11)

where ap ---------------- —----—------ .

JBi J B3R

According to the analysis of Byron and Joachain [36] at large energies ap is independent 

of energy and converge to unity, whereas bp varies with energy as k~3. So the terms 

/B3l and bp which fall faster than k~2 asymptotically are neglected. Here we replace the 

f bir by the equivalent term fE3 due to equivalence of eikonal and Bom series for large 

k. Thus fm correct up to the order k~2 is given by

f MD ~ fm + aPif B2R + /£3) + lClp f B2I >

;sto

fs\

and ap reduces to

ar fs 1 ~ f B2R

(2.5.12)

.‘. ap

/bi_

/si ~/e2
(2.5.13)

Thus using better trail input scattering amplitude /</n) in the Das technique the obtained 

out put scattering amplitude f(ou>) contains Third order Bom terms also and the higher 

order terms are included through the parameter ap and bp.



Program description:

Energy 35 KeV; k in Hartree a.u. 

Potential: DHFS;

Method: Das 

Program: Hel6.e

Calculation : /(o"') =fD=fm +{aD + i b°)fB2

Das amplitude given by equation (2.5.2) is evaluated for the He atom target. 

Program structure:

Global declaration of variables & array.

Include files for different function programs.

Function main() {

Declaration of variables

Include target parameters

Calculation of/B2R,/B2/ Calculation of /,,/2,/3 Calculation of fBX,fB2

(for /,,/2 and /3) (for particular 6 )

Include flle:TFB2 .F Include file: REFB2 .F

Loop(case =1 to 3) {

Loop(I=l to 8) { 
x, = Gaussian pt.
Wj = Gaussian weight 
If (Case 1 : / = /, 

Case 2: / = /2 
Case 3 : / = J3 }

Z/(x->w< >

Cal. aD,bD

Cal. fD

Dsplay Table: 0, fm, fB2R, fB2l, fD 

} End of main ()
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/* Das Method : aD,bD by taking @ = 0 to 180

35 Kev @ = .059 to .59 hal6.o */
#define PI 3.142 
tdefine Ao .529 
tinclude <math.h>
/* Globle declaration of array & variables */ 
int i,j,i0;
static float iv = .1, ic = . l;/*Change theta*/
static float SAo=0,lpl=.0595636,Ip2=l,lp3=.0595636;
float h,t,th,arl,brl;
double k,del,dl,d2,fb,u0,z;
static double al[10],bl[10];
double xl,wl,x[10],w[10];
static float arf[20],brf[20],erf[20];
double rO,rl,r2,d2,f,fi,s,si,S,Si;
static double fbl[50],rfb2_[50],ifb2_[50];
/* Different function programms are included */ 
tinclude "tfb2_.f" 
tinclude "thfb2_.f"
main()
{

/* Declaration of variables */
int i,n;
static float SAo; 
double f,S,Il,I2,I3,I[4]?
double aD,bD,rfb2,fb2,fD[50],rfD[50],ifD[50], fd[50]; 
clrscr();
/* Input Data */
z=2.0; /* He Atom */
u0=2* z;
k=sqrt(2* 35000/(2* 13.6)); /* Hartree A.U. */ 
for(i=Q;i<=10;++i)al[i]=0; 
tinclude "pmt.He" 0
/* Calculation of fB2_ for theta 0 to 180 */

tfb2_{);
/* Calculation of Integrals 11,12,13 */ 
for(n=l;n<4;++n){
S=(double)0;for(i=l;i<9;++i) ( xl==x[i] ;wl=w[i]; /* use of switch st. */

switch(n){case 1:f=xl* fbl[i]* (fbl[i]-rfb2_[i]); /* II 1st int. */
break; /* 12 2nd int. */

case 2:f=xl* (pow(fbl [i]-rfb2_[i] ,2) +pow(ifb2_[iJ ,2)) ,* 
break;

case 3:f=xl* fbl[i]* ifb2_[i];
}S=S+f* wl;

/* 13 3rd int. */
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} I[n]=4* S; printf("\nl%d = %e",n,I[n]);
5

/* Calculation of Das parameters aD, bD */
aD=I[1]/I[2];bD=I{3]/I[2];
printf("\n\naD = %.3f bD = %.3f\n",aD,bD);

/* Calculation of fbl, fb2_ for particular @ */
thfb2_();

/* Out put Table heading */
printf C'\nS(Ao-l) fbl(Ao) RfB2_(Ao) IfB2_(Ao) RefD(Ao) 
ImfD(Ao) DCS(AoA2) \n");
printf ("\n\n");

/* Calculation of Das amplitude fD out */

for(i=l,t=lpl;SAo<=lp2;t t=lp3,++i){
del=2* k* sin{(t* PI/180)/2);SAo=del* 96.18/50.73; 
rfb2=fbl[i]+rfb2_[i];
fb2=sqrt(pow(fblti]+rfb2_[i],2)+ifb2 fi]* ifb2_[i]); 
rfD[i]=fbl[i]+aD* rfb2_[i]-bD* ifb2_Ii]; 
ifD[i]=aD* ifb2_[i]+bD* rfb2_[i]; 
fd[i]=sqrt{rfD[i]* rfD[i]+ifD[i]* ifD[i]);

printf{" %l.lf %.4f %7.4e %7.4e %.4f %.5f %.4f\n",
SAo,(float)fbl[i]* Ao,rfb2_[i]* Ao,ifb2_[i]* Ao, 
rfD[i]* Ao,ifD[i]* Ao,pow(fd[i]* Ao,2));} 

getch();
}/* Calculation of fB2_ for aD, bD tfb2_.f */
void tfb2_()
(
#include "xl.He" 
tinclude "G.P"

for(i0=l;i0<9;++i0)(t=x[iO];h=(float)t; 
k=50.73; 
del=2* k* h; 
fb=(double)0;
for(i=l;al[i]!=0;++i)fb=fb+(al[i]/(bl[i]* bl[i]+del* del)); 
fb=u0* fb;fbl[iO]=fb;
S=Si=(double)0;
for(j=l;j<5;++j){ arl=arf[j];brl=brf[j]; 
s=si=(double)0; 
for(i=l;i<=8;++i){ 

xl=x[i];wl=w[i];
r0=arl* arl* xl+(brl* brl* (1-xl)); 
r2=r0+(xl* (1-xl)* del* del); 
rl=sqrt(r2);
f=r0/(rl* (rO* rO+4* k* k* r2)); 

fi=2* k/(r0* rO+4* k* k* r2); 
si=si+wl* fi; 
s=s +wl* f;}

Si=Si+si* uO* uO* crf[j]/2;
S =S + s* uO* uO* crf[j]/2;
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}

printf("\a");ifb2_[iO]=Si;rfb2 [i0]=S;
}

}[']

/* Calculation of fB2 for particular theta */
void thfb2_{)
{
int iO;' 
float arl,brl;
static float arf[20],brf[20],crf[20]; 
double r0,rl,r2,f,fi,s,si,S,Si;
tinclude "xl.He" 
i0=1;SAo=(float)0;
for(t=lpl? SAo<=lp2;t +=lp3,++i0)(h=(float)t; 

h=h* PI/180;
del=2* k* sin(h/2);SAo=del* 96.18/50.73; 
fb=(double)0;
for(i=l;al[i]!=0;++i)fb=fb+(al[i]/(bl[i]* bl[i]+del* del)); 
fb=u0* fb;fbl[i0]=fb;
printf("\n@ = %.4f SAo = %.2f k = %.2f uO =, %.2f ",

(float)t,SAo,(float)k,u0); 
printf("\nfbl = %.4f (a.u.) ",fbl(i0]5;
S=Si=(double)0;
for(j=l;j<5;++j){ arl=arf[j];brl=brf[j]; 
s=si=(double)0; 
for(i=l;i<=8;++i){ 

xl=x[i];wl=w[i];
r0=arl* arl* xl+(brl* brl* (1-xl)); 
r2=r0+(xl* (1-xl)* del* del); 
rl=sqrt(r2);
f =r0/(rl* (rO* rO+4* k* k* r2)) ; 
fi=2* k/(r0* rO+4* k* k* r2); 
si=si+wl* fi; 
s =s +wl* f ;}

Si=Si+si* uO* uO* crf[j]/2;
S=S+s* uO* uO* crf[j]/2;

}ifb2_[iO]=Si;rfb2_[iO]=S;
fb2_[i0]=sqrt(rfb2_[i0]* rfb2_[i0]+ifb2_[iOJ* ifb2_[i0]);

printf("\a\nRFb2_= %7.4e IPb2_ = %7.4e \n",rfb2_[i0],
ifb2_[i0]);

}/* Table */
printf("\nS fbl rfb2 ifb2 Fb2_");printf ("\n~~\n\n");
for(i=l,t=iv;t<=lp2+ic;++i,t+=ic)
printf("%.If %.4f %7.5e %7.5e %7.5e \n",\

(float)t,fbl[i],rfb2_[i],ifb2_[i],fb2_[i]); 
getch{};
>0
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2.6 PARTIAL WAVE ANALYSIS ;

Problem of particle scattered by central field plays a role in different branches of 

the physics. Fully analytical solutions are not known except coulomb field, so one has to 

rely on the approximations that in the most favorable cases are only valid in limited energy 

ranges. Thus partial wave analysis is the alternative solution for any energy rage, which 

gives most accurate results for the problem.

In the beginning work we have employed PWA for small k and phase shifts were 

obtained from radial solution of Schrodinger equation by Numerov method according to 

elementary description given in chapter one.

To calculate phase shift and differential cross sections in the present work for 

different atomic target and energies cross-sections we have used FORTRAN code 

PWADIR (Partial Wave Analysis, DIRac) [30]. The Method of solution of Dirac equation 

and program description is given here.

Elastic scattering of electrons by neutral atoms in a central field V(r) such that 

rV(r) -» 0 when r goes to infinity. Where charge cloud polarization effects are neglected 

and local exchange potential is considered i.e.

V(r) = -0(r) + Vex(r);

0(r) = —24 exp(-a,r), (2.6.1)
r <=i

where 24 = 1 for neutral atoms. Expression (2.6.1) if the form of superposition of

Yukawa type potential and it is obtained from self-consistent calculations. The parameters 

(with N=3) are obtained by salvat et al [38] from Dirac-Hartree-Fock-Slater (DHFS) field. 

Considering scattering of electron in a central field V(r) Dime phase shifts are determined 

by solving the radial wave equations [44]

M=_KR_E-m±2^g and 

dr r c

J3.= EzmR+Ee, (2.6.2)
dr c r

where K = (l- j)(2 j +1) is the relativistic angular momentum quantum number, j and l

are total and orbital angular momentum quantum number respectively. E + c2 is the total 

energy, c is the speed of light in the vacuum, R(r) and Q{r) are the radial functions. In
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values of this function. The grid is dense enough to have minimum interpolation' erfofg.

which do not affect the computed phase shifts. The solution of the radial equation (2.6.2) 

is obtained by Buhring power series method [45]. The accuracy of the solution can be 

controlled by the input parameter e. The Phase shifts are determined by matching the 

outward radial solutions to the free spherical waves, so that scattering field is assumed to 

vanish outside the matching radius.

Elastic scattering amplitude of relativistic electron scattered from the atom for 

central field is defined by [42]

Where j k, |= k is the wave number of the incident electron and are the phase

shift of order l. P, (Cos0) and P/ (Cos9) are Legender and associated Legender 

polynomials respectively.

For high-energy the direct summation of the partial wave series given in above 

equation require large number of terms, in the code phase shift of order l less than a finite 

value NDELTA can be computed only. So the value of NDELTA given as input should be 

large enough to enable convergence of the partial wave series. It must be less than the 

dimension of the phase shift army [i.e. 2000]. The magnitude of truncation errors can be 

systematically reduced by using the “reduced” series method [57]. This method makes the 

Legender expansion rapidly convergent.

The outward numerical solution and asymptotic solution of radial function must 

join smoothly at some point rK This requirement leads to the following value of phase 

shift [46],

m =~£{tf + l)[exp(2/<5/+)-!] + /[exp(2/<?,_ )-l]}P, (Cos0),
/=n

CO

g(6) = ^7fi{^V(2iSl_)~exp(2iSl,)}P!l(Cos0).
(2.6.3)

tanS = kjXkrJ-fiMkrJ
kn](krj~ pn,(krm)

(2.6.4)

with
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E(E + 2c2)V/2

j, and n, are the spherical Bessel and Neumann functions respectively. 

For an unpolarized incident beam resultant scattering amplitude is

/flaM(0)=[i/i2+isi2r.
Generalized atomic unitsjT? = e = m - 1] are used in the calculations throughout. 

The unit of length is for electron is the Bohr radius a0 = 5.29177 x I0”'1 m.

The unit o energy (me4 I ft2 ) is the Hartree energy EH = 27.2114 eV.

(2.6.5)

In put data : ACJX.DAT

92

-1
1.0E-8 

1000 1 

I
30.0000E+03

ATOMIC NUMBER

MUFFIN-TIN RADIUS (-VE FOR FREE ATOM) 

INCIDENT PARTICLE (-1 FOR ELECTRON) 

EPSILON ( FOR ERROR CONTROL ).

NUMBER OF PHASE SHIFT (NDELTA ), IWR 

SCATTERING FIELD ( 1 FOR ANALYTICAL) 

K.E. OF PROJECTILE.

n

o



2.8 TABLES

Table 2.1 E =35 keV .
Differential cross-sections in atomic unit.
He-Atom Ar-Atom
0 (deg.) W MD W MD

0.20 0.753 0.669 65.607 62.262
0.30 0.688 0.659 63.004 , 60.283
0.40 0.662 0.647 60.196 58.249
0.50 0.641 0.631 57.350 55.996
0.60 0.619 0.612 54.504 53.505
0.70 0.597 0.592 51.593 50.805
W: DCS using the Wallace method (Eq. 2.4.9).
MD: DCS using the Modified Das method (Eq.2.5.12).

Table 2.2 E=35keV.
Differential cross-sections in atomic unit.
Ne Atom
9 (deg.) w MD

0.20 10.257 8.763
0.40 8.754 8.420
0.60 8.189 8.026
0.80 7.640 7.535
1.00 7.046 6.968
1.20 6.420 6.357
1.40 5.786 5.734
1.60 5.166 5.121
1.80 4.578 4.539
2.00 4.032 3.998
W: DCS using the Wallace method (Eq. 2.4.9).
MD: DCS using the Modified Das method (Eq.2.5.12)



Table-2.3
Partial wave phase-shifts 1611 for Argon at 40 keV.

1 Born8 WKBJ b numericalc

0 1.2899 1.3228 1.2861
1 0.9430 0.9550 0.9412
2 0.7739 0.7802 0.7691
3 0.6645 0.6678 0.6572
4 0.5849 0.5863 0.5760
5 0.5230 0.5232 0.5132
6 0.4728 0.4722 0.4628
7 0.4309 0.4298 0.4211
8 0.3952 0.3939 0.3860
9 0.3644 0.3629 0.3559
10 0.3375 0.3359 0.3297
11 0.3137 0.3120 0.3067
12 0.2927 0.2908 0.2864
13 0.2739 0.2718 0.2682
14 0.2571 0.2547 , 0.2518

Partial wave phase-shifts 1 Si 1 for Uranium at 40 KeV.

/ Bomb WKBJ b numericalc

0 5.7234 5.2815 5.7356
1 3.9818 4.1405 4.1707
2 3.1518 3.3489 3.2971
3 2.6261 2.7915 2.7284
4 2.2514 2.3828 2.3287
5 1.9662 2.0704 2.0302
6 1.7399 1.8233 1.7966
7 1.5549 1.6224 1.6073
8 1.4004 1.4556 1.4500
9 1.2694 1.3149 1.3166
10 1.1567 1.1946 1.2017
11 1.0589 1.0906 1.1017
12 0.9733 1.0000 1.0137
13 0.8978 0.9204 0.9358
14 0.8307 0.8500 0.8663
16 0.7173 0.7314 0.7479
18 0.6252 0.6358 0.6512
20 0.5495 0.5574 0.5711

a,b HF and TFD potential respectively; Ref. 13. 
c present work; using numerical integration, from Eq. 2.6.5



2.8 Table -2.4

Scattering factor /(0) for Argon-atom at 40 keV (a. u.). 

Method

/I (A ) numerical8 numericalc EBS c Wallace f

0 4.828 4.504
5.47 1.294 1.294 1.237 1.243

10.93 0.420 0.421 0.404 0.407
16.38 0.218 0.214 0.204 0.207
21.83 0.132 0.130 0.124 0.126
27.26 0.088 0.088 0.083 0.085
32.67 0.062 0.063 0.060 0.061
38.06 0.046 0.047 0.045 0.046
43.42 0.036 0.037 0.035 0.036
48.75 0.029 0.030 0.028 0.029
54.05 0.024 0.025 0.023 0.024

Scattering factor /(0) for Uranium-atom at 40 keV (a. u.).

Method

o-i
A(A ) numericalb numericalc EBS e Wallace f

0 12.534 16.071 . .5.47 3.101 3.142 3.127 3.112
10.93 1.145 1.181 1.127 1.131
16.30 0.613 0.632 0.557 0.570
21.83 0.393 0.403 0.282 0.263
27.26 0.278 0.282 0.119 0.125
32.67 0.209 0.210 0.118 0.139
38.06 0.164 0.162 0.130 0.148
43.42 0.133 0.130 0.128 0.138
48.75 0.109 0.106 0.117 0.120
54.05 0.091 0.089 0.102 0.101

a,b HF and TFD potential respectively; Ref. 13. 
c present work; using numerical integration, from Eq. 2.6.5. 
e,f present work; from Eq. 2.3.15 and 2.4.9 respectively.
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2.8 RESULTS AND DISCUSSION :

He. Ne andAr atoms at 35 KeV

A systematic study of the differential cross-sections for the inert gas atoms He, 

Ne, and Ar is reported here for the non-relativistic potential scattering. The differential 

cross sections for elastic scattering of electrons from these target atoms are studied for 

energies in the range of 15 keV to 35 keV. We did not find any strong peak in the forward 

direction or an oscillatory nature in differential cross sections as reported by Geiger el al 

[17]. Our results are close to the new experimental data [16]. The results are exhibited 

graphically in Fig. 2.1-2.3. We see that according to the EBS method the differential cross 

sections for He, Ne, Ar atoms at very small scattering angle differ from exact results
0 -i

(numerical) in the range 0.2 to 0.3 A . The EBS amplitude reproduce the exact results for

0

momentum transfer greater than 0.3 A . For He-atom (Fig. 2.1), differential cross-section 

obtained by the numerical and Das method has similar nature but they are on either side of 

the experimental data, which cover all points. The EBS results are close to the
0 -■

experimental data with compared to the numerical and Das results beyond 0.3 A . In the 

case of Ne atom (Fig. 2.2), differential .cross sections resulting from EBS and Das method 

are in excellent agreement with the partial wave calculations. These results differ from the 

experimental results. In the case of Ar atom (Fig.2.3), the results obtained by numerical 

method are closer to the experimental results.

We have also reported differential cross-sections by Wallace and modified Das 

method at 35 keV. These results give nearly the same values as those given by EBS and 

Das method respectively. The strong forward peak and oscillating features in differential 

cross sections are lacking. The results are shown in Tables 2.1 and 2.2. The differential 

cross-sections calculated by Wallace method are in close agreement with the EBS results 

and modified Das results.

Ar and Uat 40 KeV:

The calculations of 8i and /(0) given by various techniques are exhibited in the 

Table-2.3 and 2.4. At 40 keV 441 and 891 partial waves are required for convergent series 

in equation (2.6.3) for Ar and U atoms respectively. For large values of /, Dirac phase shift
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is a decreasing function of /. The decrease of 18 /1 with / is not rapid as compared to low 

energy projectile. The scattering factors evaluated according to equation (2.6.4); 

(2.6.5),(2.3.14) and (2.4.8) are compared with available results [13]. The compared results 

were obtained theoretically with different methods.

The EBS method has been applied for He atom at intermediate and high energy 

(100-500eV) by Byron and Joachain [8]. In the present work this method is extended to 

calculate scattering amplitude for higher atomic number atoms using DHFS potential. The 

EBS method and Wallace correction to eikonal phase for Ar atom (see Table-2.4) give 

almost four-figure accuracy. This indicates that EBS method comprises summation of 

large number of partial waves effectively. These calculations are computationally 

economic and tested for heavier atoms too. These approximations are considerably good 

for high energy and large atomic number, since at 40 keV it appears to be valid for U atom 

when 17> A >33. Calculations utilizing the approximations mentioned in section 2.3 and 

2.6 are presently being employed to compute DCS for incident electron energies at 20 

and 30 keV. As shown in figure 4 and°5 the results of EBS method are in good agreement 

with partial wave calculations as the incident electron energy increases.

In Fig. 1-3 theoretical data of the present work is compared with the experimental 

data of Coffman & Fink nature of both the graphs matches. Whereas in fig. 4-5 present 

results are compared with experimental results of GML [17]. Form fig. 4 It is very much 

clear that in the EBS results oscillatory behaviour dose not exist as shown by the 

experimental results. EBS results, close to the exact results, indicate their validity. In Fig. 

5 forward peak in the experimental results is obvious. The small peak is observed in the 

EBS results but it dose not support high experimental value about angle 3 mrad.

Fig. 6-7 refer to the heavy atoms at 20 & 30 KeV, where the present results are 

almost equal to partial wave results means accuracy of the method is very good. In other 

way the EBS method comprises summation of large number of partial waves. Thus the 

approximation is considerably good for high energies and for large atomic number.

O


