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CHAPTER - 11
ELECTRON SCATTERING BY He, Ne, Ar ATOMS
2.1 INTRODUCTION :

The second chapter deals with some of the high-energy methods that find
application in high-energy scattering. The reason for taking up this aspect here is two fold
i.e. (i) in the present work we have dealt with high energy problems only, so that subject
matter is independent and self consistent, (ii) the author himself started this work on the
neutral targets and then switched over to the problems described later on. We begin with
the out line of various theoretical methods after specifying high and low energy

The study of the electron collision with atoms, molecule or ion can not be done
through a single theory that applies to any incident energy on any target. Specific quantum
mechanical theories have been developed for specific domain of the energy of projectile
electron. If the speed of incident electron is less than or nearly equal to the speed of target
electrons then it is termed as low energy range. Thereafter the intermediate energy is near
the excitation threshold of the target and extends up to a few times the ionization
threshold. Then from a few times the ionization threshold upward is high energy region.
This is up to very high energies where relativistic considerations become effective. This
classification obviously depends very much on the target.

All the theories of collision physjcs in practice are quantum mechanical and
developed from Schrodinger equation. The different methods are different approximate
ways to solve Schrodinger equation. These are under two categories, (i) differential
approach, (ii) integral approach. The approximate methods described here, applied in
high-energy range are 1.Born Approximation, 2.Eikonal Approximation, 3.Eikonal-Born
series 4.DAS technique, 5. Modified DAS technique and 6. Partial wave analysis. The
high energy methods except partial wave analysis, arise from an integral equivalent of the
Schrodinger equation i.e. Lippmann-Shrodinger equation. These theoretical methods of
our interest are treated somewhat at length in the previous chapter. Here these methods are
applied for actual targets i.e. He, Ne, and Ar atoms with different target potentials. The
basic idea underlying different method is their applicability in high-energy range along

with the way of obtaining higher accuracy in resuits.
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2.2 APPLICATION OF BORN APPROXTMATION :

The zero order approximation i.e. y/,:: (N =yo(r)=¢, (r)to the solution of
Lippman-Schwinger equation gives the 1 Born approximation. The first Born scattering
amplitude is given by

fu =278, 1U|w5).

A

=-25%(¢, |U4,) (22.1)
The 2™ Born approximation is then obtained by considering second order perturbation
and making corresponding approximation in the Lippman-Swinger equation
ey (N =y (r) =4 (r)+ _fGé*’(r,r')U(r’);ﬁk‘ (r")dr', so the second Born scattering
amplitude is obtained as

fur=-27%{8, 1U1w).

= —27:2(¢,‘, |U +UGU | %) 2.2.2)
Thus the Born series is a perturbative expansion in powers of the potential U(r). If the

potential is weak enough, the expansion converges to a limit and at high energies it is valid

U,
only if %kﬁ << 1, where a is range of potential, U, is strength of the potential and & is

wave vector depending on the incident energy. These are the conditions for Born

approximation.

First Born Approximation :
Let us analyze the first Born approximation. It is a function of scattering direction

(6,p)and the momentum transfer g. For elastic scattering g =k, —k , |=2kSin6/2;
where k,,k  — incident and scattered wave vector,

| k; 15| k ; |= k — magnitude of wave vector.
The equation (2.2.1) is evaluated in the coordinate representation with

b (r) = (@r)>"? ™" and i, (1) = @7)32 ™" is given by

1 r 2
fn = [T U@ 5 UO=2TV ) 22.3)
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Considering a target with internal structure and introducing initial and final state wave

function of the target y/,., i /5
U@ =Ugx)= (l;! 1 | Electro - static potential | y, ) .

Different analytical forms of U(r) are obtained for various potential fields.

-Ar

Let us first consider Yukawa potential, U(r) = -U, ¢

U _ e«lr
oS == et dr ;
4 r
2r  om e-—lr
=2 a j [e'47<*Sin6 d6=—r?dr
ar 5 T oe r

I Sm(qr ) «lr rdr= Ejﬁ J’Sin(qr)e“lrdr
[} 7 0

__Us
/12+q2

' (2.2.4)

In the past, attempts have been made to determined potential field parameters. Cox and
Bonham [54] reported parameters for a set of Yukawa potential terms, determined by least
square fits of radial electron density function. The potential for neutral atoms with the

expression of nuclear screening factor becomes
Ze2
V)= ——;—Z 7, exp(=4,r). (2.2.5)

Now substituting ¥ (r) in equation (2.2.3) and performing angular integrations

Ia ____3;_}1_ IrSin qrV(r)dr
hg

2

ZZe IZ}!, "Z”qurdr

q 01
2Z h? S
1y = =1 atomic unit of length
aoqz ! 2 *" me? ¢
£ . . .
S fo =22 ) —~—— inatomic unit (2.2.6)
" Z(ﬁvfﬂz’)



25

Here magnitude of wave vector & is obtained in atomic unit as 2;:1—2[3:=k2

2

2E,, =k,, —z—- = 27.2 eV = | Hartree, atomic unit of energy and potential should
[

be considered in atomic unit, so that f,, evaluated in atomic unit. The scattering

amplitude is also studied with the other analytical expression for Thomas-Fermi-Direc

(TFD) [56] and Hartree-Fock (HF) [60] potential field for neutral atoms. These potentials
have the following form

Ly (r)=——2-—z;-27, et a — Bohar radius.
a 1
HF N 22 ~Ar ~Ar
U (1) = = Zy,e +r27, e 2.7
F] H

(2.2.8)

o fHE 27
B [Z(;; Z?s (}_2+q ) ]

The more reliable parameters in screening function are determined by analytical
fitting procedure to Dirac-Hartree-fock-Slater (DIHFS) self-consistent data are given by
F.Salvat et al [38]. These analytical functions incorporating relativistic effects are used for
the high energy range (KeV) of the present work. Dirac Hartree Fock Slater screening
potential is the simple of superposition of three Yukawa potential given as

UDHFS (r) —_ "MZYI A r (2.2.9)

=]

4
=27y 2t . 2.2.10
Tn >,:(A?+q2) (_ )

Second Born Approximation :

The Major contribution in Born series after the first Born term is the second Born

term. Let us now study the second Born approximation for the case of Yukawa potential.
We have to evaluate the quantity f 2> Which is written in momentum space as

o 1
f82=2ﬂ'2 IdK(kf!UlK>m(KlU!k‘> . (2.211)
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The evaluation of the integral appearing on the right-hand side of eq. (2.2.11), is
performed using the more general form of Dalitz Integrals [31,32]. In the case of single
Yukawa potential U(r) = -U,e™" / r equation (2.2.11) becomes

l .
K2 -k? ~ig)@*+|K —k, PYB*+|K -k, [*)

fr=@a*)7"U [ =8
=Q2r2) U2, (@, sk, .k, k)

”2

T(k* =T — A? + 2ifT)

I
=Qn?) Ud [Ly(k.T,A) dt 5 where Ly(k,T,A)=—
g

1

.-.

= shere |k =k, |=k and a=f=41 (2.2.12)
n="3 ijkr 75 e L H k| s

For superposition of Yukawa potential; a=4,, =4,

- 1.2 ! dt
T =—2UY 7, . (2.2.13)
Sr="3 °§”’!r[2;kr-z?:-x§(l-:)]

Let A=T(Ajt+A2(1-1)) and B =2kT?

. lr dt |' dt ‘J‘ A+iB

C TR - - 2(1-1) 3B T p
0 t ] 0 0

Let Afi"-lB "f('z'b;{jat)

—_ 1 i
T r =5 U Ly [f a0 d
1 0

~Ref by =—~U 27'71.[ s dt and

1
B
Im f 5, "*-U vy, = 5 2.2.14)
0

Iy

Using Numerical integration
\
we have J' f(®dt= Zw f@,) ; t, —Gaussian points.
=]
w, —> Gaussian weight factors.
~Ar ~Ayr

2 .e
In the case of HF potential of the form, }';er +72(azq) " sa=A,B=2,
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I ;U{m +21172(-3 )n( ]If(t) dt . (2.2.15)

2.3 EIKONAL BORN SERIES APPROACH :

* Semi-classical methods are useful approximation technique when de Broglie wave
length of the incident particle is sufficiently short compared to the range of the potential
‘a’ (i.e. energy of incident particle is high, so that ka >> 1). The eikonal scattering wave
function is derived from the Lippmann-Schwinger equation as discussed in section 1.3. In
this section eikonal approximation is applied to the simple problem of non-relativistic
potential scattering. Comparison of higher order terms of eikonal and Born series leads to
the eikonal Born series approach [8]. The theoretical approach to such process based on a
detail study of Born and Eikonal multiple scattering series is given by Bayron, Joachain
and Mund [6].

Eikonal scattering amplitude (1.4.1) and Born scattering amplitude (1.2.18) is
defined by the Born series and Eikonal multiple scattering expansion as

fazi?nn=?31+7nz+?33+"' ; and

n=1

fE =Z7En =?m +?£2 "‘?53 hee (2.3.1)

n=l

The sum of the first 2 terms

Son =i?5, = fo=F g and > fy =fn

g=t
=> fg = f g+ f gy » similarly

2 [ where fp =-——1 on(Ab)[z(b)]"b db =Ref,, =0 and
Jj=t

Fon="27%<¢y U > =Refpy #0 (2.3.2)
Now writing each term in the form of A and k3 Im-f a2 (ks A) = Ap, (M) k+...  and
Im?m(k,A)=Am(A)/ k+.... Byron and Joachain [37] have shown that for Yukawa-type

potential equation (2.3.2) reads as

7 o (&, N=- Apn 1 O(k™) and | g, (k, A)- Ly O™ (2.3.3)
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for all nand all values of the momentum transfer. For large enough & the relations imply

that £, (k,A)=Ref, (k,A) n odd

Im? (ks A) =1m 7 m(k,A) n even. 234
From the analysis of first few terms (up to n=4) the equivalence of the higher orders terms
of Born and eikonal series also holds for an arbitrary super position of Yukawa potentials
suggested by BJM.The agreement is good for all momentum transfer for large k. i.e. For
superposition of Yukawa potential and large value of incident wave number each term of
eikonal multiple scattering series gives the value of corresponding term m the Born series.
[7]

Restricting to the weak coupling case such that U, | a/2k << 1, where the Born
series converges and imposing the condition of validity of the eikonal approximation

ie. ka>>1 and |U,|/k? <<1 asymptotic form of the exact scattering amplitude for

fixed A and large & can be written as [57]

Foulb,A) = fr(A)+ [AS) +iB 5:‘)] + C,sz) +O(k™). : (2.3.5)

= fa(A)+F gy + [ 3 +eon
On the other hand the relation fi = /3, (2.3.3) and (2.3.4) imply that the eikonal

scattering amplitude is given by

fel,A) = fp(A)+i B(kA) + %:»A_)+ o(k™?). (2.3.6)

= fu Q)+ fgy+ gyt

Upon comparison of equations (2.3.5) and (2.3.6) it is clear that neither fg, = f5 +7 B2

2. A
nor f; are correct to order k2. Indeed fj,lacks the real term of order £ i.e. %c%-)- and
AA)
k2

A(A)

term is present in f, i =Re? 82

similarly the real term is missing in f. It is obvious from above expression the

Thus Born amplitude can be improved as f = fjy +732 + fgs or eikonal

amplitude can be improved by f = f; +Re Fas- We found that it is better to consider later

correction, which includes more terms of higher order in (1/k) than the previous one. In
{

the other way, since A(4) o« U2 and C(4) < U;
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(i) U, is sufficiently small (i.e.<I) second Born amplitude f,, is more accurate than f,

(ii) U, is not sufficiently small Re? m2 + feis better approximation,

In the present work on light (He) as well as heavy atoms (Ne, Ar ), the second case exist.
Now by adding the important missing term Re?l,2 to the eikonal amplitude

fzexcellent improvement is seen. Therefore DCS is also improved. This is a much better

approximation than f, for calculation of DCS, since the terms involving A(A), B(A) and

C(A)in equation (2.3.5) contribute equally in correcting the first Born differential cross

section. Thus the eikonal Born series amplitude which gives consistent picture of the

scattering amplitude through order k,” 2 is given by

Seas =fe + Re782 3.7

Eikonal amplitude :

Consider eikonal amplitude equation (1.3.8) in cylindrical polar coordinates and

integrating over the z variable, the scattering amplitude is given by

= 2—:‘; 4% '8 ® 1) Surface integral ds = d*b = bdbdgp (2.3.8)
where y = --2-1; [u@,2)dz; U,2) =%—'?-V(§) (2.3.9)

i

'}{ [U(®,2) dz is called eikonal phase shift function.
[}

The cylindrical coordinate system has been chosen with r=b+2, where A is

perpendicular to the wave vector transfer A=k, —k,. For radial field which possess

cylindrical symmetry equation (2.3.7) reduces to

fE =-];J'bde0(Ab)(elx(b,k) __.1) ;/ A=2ksin@/2 (2.3.10)
Lo

2r
where J,(Ab) = -5!; !dq; e3¢ is the Bessel function of integer order.
0

Now e#®®) = Cosy +1i Siny

~ Re f =k [dbb.Jo(Ab) Sin{x(b,k)} and
0
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w1 fg = k [dbb Jo(Ab)[Cos{x (b, k)} ~ 1], (2.3.11)
0

where —ve sign out side the last integral is neglected.

e“ﬂl‘

For U:"Uo N
r

U
y(k,b)= -l-c-°—K0(ab); where K, —»modified Bessel function of order zero. (2.3.12)

P

2
In the case of superposition of Yukawa type potential U = -UOZ Y,
i=1 r

U 2

2(b,k) =‘7§'Z7’1K0(/1;b) (2.3.13)
. =1

Equations in (2.3.11) are evaluated numerically, where presence of Bessel function J,

makes the evaluation typical. We must take care about zeros of the Bessel function. So the
definite integral with limit 0 to o is performed block wise according to the positions of

Bessel’s zeroes. Thus block-wise integration
=) a b c
j. = .f +J' +j' +---n terms;a,b,c--- are x-coordinates where J(x)=0.
0 0 a .}

=ao "'al +02 ""03 """

L2
= (-1)* a, isaconvergent series.
k=0

The sum of the series is given by the Euler’s transform [A.Witz]

o o & Ak
s= ZS——;—?E!A—, where A* is obtained from the difference table.
k=0

Numerical integration of each block is done by the Gaussian integration
1 8 b 1
I Sf(x)dx s—‘.Zw, f(x,). The limit is changed I SO)dy — I f(x)dx by choosing the new
0 i=! a 0

y—a

. Initial integration up to 8-blocks are added then Euler’s transform is

variable x=

done using next 4-blocks, which gives sum of the remainder series. Finally resultant
eikonal amplitude is obtained using equation (2.3.11) as

fr A Re f2+Im 2| (2.3.14)
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And the differential cross-section is obtained from (2.2.14) and (2.3.11) as

d —
'C}g”=|fm|2 =[Re 7 +Refsz]2 +]im £ (2.3.15)

Caleulation of f £ -
Analytical evaluation of the term £, i..Re f ,,,Ref ., is difficult so f,, is

obtained by numerical evaluation of equation (2.3.2). By expanding the quantity e'? in the
eikonal amplitude equation (2.3.10) in powers of x, the eikonal multiple scattering series

is defined as

fE=i7En s

n=}

— k ' . "
where 7, =-5-;1;-’;17 [d*bexp(in-b) x(k.b)]".

ntly ®
= 'k IJO (Ab) x(k,b)]" for central real potential (2.3.16)
n g
- Faa == [IoAB 2D b db @307
0

. e
Now in the case of super position of Yukawa potential U(, z) = —UOZ;f, —

1 % Uy &
x= ~—2-,;~£U<b,z)dz -7§ 7,Ko(4,b) (2.3.18)
3 3
Uy | & .
oy =~]—C-g-[2y,l(o(ﬂ,,b)] (2.3.19)
1=l
Substitute equation (2.3.19) in equation (2.3.17)
—_ U= 2 3
f s =—=5% [Jo(80) Z}’xKo(/t:b)] b db
6k 0 =1
Let y=Ab

b= ad =2
A A
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-'-7E3= ;2 Jo(J’)[ZYiKo(ﬂv )J dy

i=1
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(2.3.20)

Integral in R.H.S. is evaluated by block wise integration, where limits are Bessel’s zeroes

for each block.

=1

Let I = j—»Jo(y)[zr,Ko(z )} dy= jf(y)dy

552

Ig= If(y)dy+ jf(y)dy+ ....... + ?f(y)asz

369

ff(y)dy-}- j'f(y) Ay + e + J'f(y)dy;where Xgs Xy

Xo=0 Xyy

11 Xt

=3 froravs [rora

1=0 x, X2

=0 x =8 x,

7 Fi 11 %iay
=> If(y)dy{ [fondy+- }

= Sum of initial 8-blocks + Euler’s transform.

Now integral in the above equation

s

j fOdy= I f(») dy is evaluated by Gaussian integration.

X

Letx:y—a
b

- =S y=x(b-a)+a and dy=(b-a)dx

Xiay

jf(y) dy = If(x) de=3 F0x W,

=1

where x, — Gaussian points,
w, — Weight factor.

...are Bessel’s zeroes.

3
fx) = (—bjz—‘ﬂ[x(b —a)+alJ, (x(b—a) + a)[z . Ko(h, 3‘-(-’-’-:3)-”“—9)} 2.321)

A
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Program discription :

Energy 35 KeV; k in Hartree a.u.
Potential : DHFS;

Method : EBS

Program : Hel3.c

Calculation : fgpe = /5 +Ref 22 ~ .
EBS given by equation (2.3.15) is evaluated for the He atom target. Where Euler’s
transform has an important roll.

Program structure ;
Header file for calculation of Jy, K.

Global declaration of variables & array.
Include files for different function programs.
Function main() {

Declaration of variables

Include target parameters

Calculation of J,,, K. Calculation of f E Calculation of Re f P
Header files : RO2.H. Include file:FE_.F Include ﬁle:’REFBZ__.F
Variables; GJO.P. X1.HE

| |

Loop (6=0.05 t0 40){

Loop (& = 0.05 to 40){ Cal. fj,
i g S kU
Cal. £, Display 0
= Loop(j=1 to 5){
Loop (block=1 to 12){ Get arf, brf, crf
Loop (i=1 to 8)¢ .
Transformation of limit Loop(i=1 to 8){
Cal. K, (%) ‘;f? fszi.
Fe)w, ) } I
Difference table
Sum up to 8 initial blocks }
Euler Transform [9 to12th block block]
Euler’s Transform : Cal. f; } Display Table :

Display Table : 8(deg.)  fi Je JosRe f p,.
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Calculation of fpe

Display Table :

9’ fB!s Re-fgga fE, fggs, DCS(au)
} End of main ().

Program : Hel3.c

/* EBS Method : fE + RefB2_ ,DCS for He DHFS potential
35 ReV k in Hartree A.U. hel3.c */

/* Calculation of fEBS = fE + RefB2_ */

#define PI 3.142
#define Ao .529
#include <math.h>
#include "r0l.h"

/* Globle declaration of array & variables */

int 1i,73:

static float iv =.1, ic =.1/2;

static float SAo0=0,1pl=.0595636,1p2=1,1p3=.0595636/2; /*theta */
float h,t:;

double k,del,dl,d2; R

double r,bt,v,10,ar,ul, z;

static double 1{20},al1{10},bl1[10};

double x0,w0,x[10]1,w[10};

static double fbl[50],xfb2 [50],rfe[50],ife[50], fe{50];

/* Different function programs are included */
#$include "fe.f "
#include "Refb2_.f"

main{) {

/* Declaretion of variables */
double ifEBS[50]1,rfEBS[50]1, fEBSI[S50];
clrscr():

/* Input data */

z=2.0; /* He Atcom */
ul=2*% z;

k=sqrt (2* 35000/(2* 13.6));/* Hartree A.U. */
for{i=0;i<=10;++iyal[il=bl[i]=0;

#include "pmt.He"

/* Calculation of fE for SAo .1 to 1 */

Fe():
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/* Calculation of RefB2_ for SARo .1 to 1 */
Refb2 () ;
/* Out put Table heading ’*/
printf ("\nS{Ao-1) £bl(Ao) ReFB2_ (Ao} Fe(Ao) RefEBS (A0)

ImfEBS (Ao} DCS(A0”*2)");
printf{("\n \n\n");

/* Calculation of fEBS */

SAo=(float)0;i=1;
for(t=1pl;:SAo<klp2;t +=1p3,++i) {h=t;
h=h* PI/180;
del=2* k* sin(h/2);8ho=del* 96.18/50.73;
rfEBS[i]l=rfb2 [il+rfe[i]:;
ifEBS{il=ife[i]; ‘
fEBS[i]=sqgrt (pow (rfEBS[i],2) +pow (ifEBS[i],2));
printf("%$.2f %.4f %e¢ %.4f %.4e %.4f %.4f \n",Sho,
fbl[il* Ro,rfb2_[i]* Ao, fel[i]* Ao,rfEBS[i]* Ao,ifEBS[i]* Ao,
(float)pow {fEBS[i]l* A0,2.0)};
}
getch();
a

/* Calculation of eikonal amplitude fe.f */

void Fel()
{ .
int 4i0,11,30,31,n,b0,c0,cl,c2,c3;
double f£,a,b,m,y;

double f£i,s0,s0i,s,si,k0;

double sl1,sli,s2,s2i,t0,t04i,tl1,tli,p:
double £0[20}{201,£01{20){20];

#include "GJO.P"
10=1;4i=0;
for(t=1pl;SRAo0<ip2;t +=1p3,++i0) {h=t;
h=h* PI/180;
del=2* k* sin(h/2);dl=del;d2=dl* dl;
Sho=del* 96.18/50.73;
f={double); /* First Born */
fbl{i0l=(double)O0;
for{i=1;i<=2;++1i)
f=f+al[i]/(b1[i]l* b1l[il+d2);f=ul* £;fbl[il0]l=E;
printf("\n\n@ = %.4f SAo = %.2f k = %.2f u0 = $.2f", (float)t
:Sho, (float)k,ul);
printf{"\nfbl = %.4f (a.u.) ", £fb1[i0]):

b0=11;

for (3=0;3<=b0; ++3) {
a=1{31:b=1[3+1]1:
m=b-a;
s0=s0i=(double) 0;
for (i=1;i<=8;++1i){



x0=x[i];wl0=w[i];

y=x0* (b-a)+a; /* Transformation */

k0= al{l]* KO(bl[1]* y/dl)+al[2]* KO(bl[2]* y/dl);

£f =m* y* JO(y)* sin{(uld* k0)/k):f =k* £/d42:

fi=m* y* JO(y)* (cos{(u0* k0)/k)-1);:fi=k* £i/d2;

s0 = s0+f* w0;

s0i= sOi+fi* w0;}
if(s0<0)s0=-50;£0[j][01=50;
1f(s0i<0}s0i=~-s0i;£04i[31[0]1=s01i;} /* 0th column */

n=8;c0=b0~-n;
for (j=1;3<=c0;++j) /* Initialization */
for(i=0;i<=b0;++i} £0[i][j]1=F£0i[i][jl=(double)O;
for(i=n;i<=b0-1;++i){
£0{1i}[1]=£f0[4i+1]{0]1~£0[4110]; /* 1st column */
fOi[il[1]1=£04i[i+1)[0)1~F0i[i]110];:}
for (j=1;3<=c0;++j) { cl=b0-j-1; /* 2™ & 3rd column */
for(i=n;i<=cl;++i) (£fO[1i][j+11=£0[i+1] [J1-£O[Li]1[3];
£04[4][§+1]1=£01i [1+1] [J1-£03i[i][3]17})

sl=sli=(double)l; /* addition of initial blocks */
for (i=0;i<n;++1i) {p=pow(~1,1i);sl =sl+p* £0[i]1[0]:
sli=sli4p* FOL[1)[01;}

/* Buler transform to remaining series */
s2=g2i=(double) 0;c3=b0-n;
for{3=0;19<=c3;++3) { p=pow({-1,3):
£0-=£0[n] {j]/pow(2,3+1); tl1 =p* tO;
t0i=£0i[n] {j)/pow{2,3+1) ;t1li=p* t0i;
82 =s2+tl;
s2i=82i+t1i;
}
rfe[i0]=(sl+s2);ife[i0]=(sli+s21i);fe[i0]=sqrt{pow{rfe{il],2)
+pow{ife[10],2))?:
printf("\a\nRefE = %7.4e ImfE = %7.4e \nfk = %7.4e",rfe{il],
ife[i10], fe{iC]);
}
/* Table */
printf{"\n\nS(Ao~1} f£fbl Fe "y;
printf ("\n An\n”);

for (i=1, t=iv;t<=1p2;++i, t+=ic)
printf("$1.2f %7.4f %e \n", (float)t,fbl[i],fel[i]):

getch();
}

36
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/* Calculation of real part of 2" Born term RefB2 .f */

void Refb2 ()

{

int i0:

float arl,brl;

static float arf[20],brf[20],crf[20];
double x1,wl,r0,rl,r2,f,s,5;

#include "x1.He"

i0=1;S5A0=(float)0;
for(t=1pl;SAo<klp2;t +=1p3,++i0) {h=t;
h=h* PI/180;
del=2* k* sin(h/2);dl=del;d2=d1l* dl;
SAo=del* 96.18/50.73;
f=(double) 0; /* First Born */
fbl[i0]={double)0;
for (i=1;i<=2;++1i)
f=f+al[i]/(b1[i]* b1l[i)+d2);f=ulb* £;£fbl[i0]=F;
printf("\n\n@ = %.4f SAo = $.2f k = %.2f ul = %.2f ",
(float)t,SAo, (float)k,ul);
printf{"\nfbl = %.4f (a.u.) ",fbl{i01};
S={double) 0;
for (j=1;j<=4;++j){ ari=arfl{j];brl=brf[jl;
s={double)0;
for(i=1;i<=8;++1){
x1l=x[i};wl=wli}l;
rO=arl* arl* x1+{brl* brl* (1-x1)):
r2=r0+(x1* (1l-x1)}* del* del):
rl=sqrt(x2);
f=r0/(rl* (r0* r0+4* k* k* r2));
s=s+wl* £;}
S=3+s* u0* ul* crf{jl/2;
} rfb2 [10]=S;
printf{"\a\nRFB2_ = %7.4e ",rfb2 [i0]):;
}
/* Table */
printf ("\n\ns fbl ReFB2_ ")
printf{"\n \n\n");

for {i=1, t=iv;t<=1p2;++i, t+=ic)
printf{"%1.2f %7.4f %e \n", (float)t,fbl[i]l,rfb2_ [i]);

getch(};

}
0
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/* Gaussian points for integration GJ0.p */

x[1]=.0198550718;
x[{2]1=.1016667613;
x{31=.2372337950;
x[41=.4082826788;
x[5]=.5917173212;
x[6]=.7627662050;
x[7]=.8983332387;
x[8}=.9801449282;

w[l]=.0506142681;
w[2]=.1111905172;
w[3]=.1568533229;
w[4]=.1813418917;
w[5]=,1813418917;
w[6]=,1568533229;
w[7]1=.1111905172;
w([8]=.0506142681;

/* Bessel’'s zaeroces for integration limits */

1[0}=0.000000000;1[11=2.4048255577;
1[2]=5.5200781103;1[3]=8.6537279129;
1{41=11.7915344391;1{5]=14.9309177086;
1[6]1=18.0710639679;1[7])=21.2116366299;
1[8}=24.3524715308;1{9]=27.4934751320;
1[10])=30.6346064684;1{111=33.7758202136;
1[12]1=36.917098353:1[131=40.0584257646;
1[14]1=43.1997917132;1(15]1=46.3411883717;
1[16]1=49.482609897;1[171=52.6240518411;
1[18]=55.7655107550;1{19]1=58.9069839261;
1[20]=62.0484691902;01

/* Parameters for the target pmt.He */

al{l]=-.2259;al([2]}=1.2259;
bl[1}=5.5272;b1[2]1=2.3992;(]

/* Parameters to calculate refB2 xl1.He */

arf{l]=b1[1]):brf([1]=b1(1);arf[3]=bl[2];brf[3]=b1[1];
arf[2)=b1{1];:;brf[2]=b1(2];arf{4]=bl[2]:brf[4i=bl(2];

crf[3]=al[2]* allll;
crf[d4]=al[2]* all2]):

crflll=al{ll* allll:
crf[2]=al[l]* al(2]:
W
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24 WALLACE CORRECTION :

Eikonal amplitude is effectively corrected by real part of the second Born term as
discussed in section 2.3. Another way of obtaining improvement over eikonal amplitude in
potential scattering has been proposed by Wallace[47]. The potential experienced by the
incident particle depend on the coordinate r of the target particles and the phase shift of
projectile wave is the sum of phase shifts from interaction of each target particles. Wallace
used a technique introduced by Aberbanel and Itzkson [48] to obtain the leading correction
to the eikonal amplitude. He has incorporated the trajectory correction in the expansion of
the Green’s function of the eikonal approximation by considering velocity of incident
particle v by | k|/m=vcos@/2 and carried out further analysis of the perturbation series.
The Wallace improved eikonal amplitude containing leading correction for a central

potential is given by [35,34]

fy =% jdb bJo(Ab)x{exp[x(xO( ) x‘(b))] } 2.4.1)
where x(,(b)..-u J’U(b zZ)dz; U(r) = -—-——V( ), (2.42)

n®=-% | U(r)[vm s U(r)}iz

1°% dU(r)
= -»Z:o[U"(r)dz jU( y——"=dz (2.4.3)

Now

~

“.Refyy =k [dbbJ,(Ab) Sin(zy) and
0

) b
Imf, = kj'db bJ,(8b) [Cos(zy)—1] , where 7 = 7‘0}5 ) ";c(s ), (2.44)
excluding minus sign in the last integral.
-
Let us consider the case of Yukawa potential of the form  U(r)=-U, -



1
= Zo() =U,Ky(Ab) and z,(b) = 5U§Ko (22b);

where K is the modified Bessel function of zero order.

For superposition of Yukawa potential : U(r) = Z y.e
=1
U
by=0
Zo(®) )
—1" 2 2 2 rdr
Now _{—————dz ri=b"+z" = —=dz.
z
. L] —Ar
=2 (e A Y A _ =2K,(b4,)
r oz Jr? -

b

- 200) = X7, Ko 64N = Uy T 7, Ko 0,)

._xzr

2 2
e o U ~(4a)r
—I* =3 27.7,e " and
NG

‘2‘1’
Now U2(r)=U2[y, <

r -2.,r
U =Uo3r S = —~=—UOZ [-———-—— £
1=}
-—l r 2 2
::3 I‘———-UOZ}’, +UOZ}’,&€ a4
=l 7=1
~(£,+A Yir ) e—(zl,«l-&,)/r
:>U"'_"—UOZ7J7'1 ‘U()Z?’ﬂ'llt
HJ
~(A4+4,)r
vt oY o ~U ¥ i
dr vy
Ug @ e—(ﬁ,ht,}lr
= Zl(b) =7&ZYJ}”A’ j‘ —dz
L7 ] r

U2
=“f'2717111 [ZKO{b("{': +ﬂ'])}]
L)

U2
=-—29-Zy,yjlj Kob (4, +4,)}
L]

Thus Wallace corrected eikonal phase is
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U U?
Xy = ';Q'Z}’OKO (4.) +5,-{9;Zr, ¥, A, Ko{(4, +2,)b} . (2.4.7)
of Ly

We rewrite equation (2.3.7) and (2.3.14) as
Sess =Jw + Re._f-m&
fv ARef +Imfy |2 2438)

The differential cross-section is obtained from (2.2.14) and (2.4.4)

d —
2 — o] =[Re i +Re T +lim S @49)

Equations in (2.4.4) are evaluated numerically by taking care for Bessel’s zeroes and using

the Euler’s transform as in previous section.

Program : fwl.f
The function program evaluates Wallace amplitude through block wise integration.

/* calculation of Wallace amplitude */

void Fwl()

{

int 10,i1,40,31,n,b0,¢0,cl1,c2,c3;
double f,a,b,m,y,kl,xy;

double fi,s0,s04i,s,5i,k0;

double sl,sli,s2,s2i,t0,t0i,tl,tli,p:
double £0[20]1([20],£0i{20][20};

#include "GJ0.P"
10=1;1i=0;
for({t=1pl;SAo<lp2;t +=1p3,++il) {h=t;
* h=h* PI/180;
del=2* k* sin(h/2):;di=del;d2=dl* di;
SAo=del* 96.18/50.73;
£={double) 07 /* First Born */
fb1[i0]1=(double)0;
for (i=l;i<=2;++1)
f=f+all[i]/(b1l[i]* bl{i]+d2);£f=u0* £;fbl[i0]=f;
printf("\n\n@ = %.4f SAo = %.2f k = %.2f ul = %.2f ",
(float)t, S8ho, (float)k,ul);
printf("\nfbl = %.4f (a.u.) ", fbl[i0]);

b0=11;
for (j=0;3<=b0; ++73) {
a=1[31:b=1[j+1];
m=b-a;
s0=s0i=(double)0;
for{i=1;i<=8;++1i}){
x0=x{i];wl=wli]l;
y=x0* (b-a)+a; /* Transformation */



kO= al{l]* KO(b1{1]* y/dl)+al[2]* KO(bi[2]* y/dl};
k1= (double)0;
for{il=1;11<3;++11)

for(j1=1;91<3;++31) {
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s =allil]l* al{jl}* bl[{jll* KO({(bl[ill+bl[j1])}* y/dl);

kl=kl+s;}
xy={(ul* kO/k)+{ul0* u0* k1/(2* k* k* k)):

f =m* y* JO0(y)* sin(ry);f =k* £/d2;
fi=m* y* JO(y)* (cos(xy)-1):fi=k* fi/d2;
s0 = s0+£* w0;
s0i= sO0i+fi* wo0;
}

if(s0<0)s0=-s50;:£0[3][0]=s0:

if(s0i<0) 80i=-s0i; £01[j]1[0]=501i;} /* 0th column */

n=8;c0=b0~n; ‘

for (i=1;3<=c0;++3)
for (i=0;i<=b0;++1) £O[i][j]1=£0i([i][j]1=(double)O;

for(i=n;i<=b0~1;++i) {£0[i1[1]=Ff0{i+1]([0]1~£0[1i]1([0];/*1st column */

£Oi[i1{1)=£f04i[i+11([0]-£0L[4]1[01:}

for{i=1;j<=cO;++3) { cl=b0-3-1; /* 2nd, 3rd column */

for(i=n;i<=cl;++i) (£0[i] {j+11=F0{i+1]1[3]-£O[i1[3]:
£OLi[i} [3+1]=£04 [i+1] [J]1-£0i[1)(§]+}

sl=sli=(double)0;
for(i=0;i<n;++1i}) {p=pow(~1,1}:;sl =sl+p* £0[i][0];
sli=sli+p* £0i[4i][0};}
/* Euler transform to remaining series */
s2=s82i={double} 0;c3=b0-n;
for (j=0;j<=c3;++j) { p=pow(-1,3j);
t0 =£0[n} (j1/pow(2,3+1); tl =p* t0;
t0i=£0i[n] [j1/pow{2,j+1);tli=p* tO0i;
82 =s52+tl;
s2i=s2i+tli; }
rfe{i0l=(sl+s2);ife[i0]=(sli+s2i);fe[i0]=sqrt (pow(rfe[il],2)
+pow (ife[10],2));
printf{"\a\nRefE = %7.4e ImfE = $7.4e \nfE = %7.4e",rfelil},
ife{i0],fe[i0]};

}

/* Table */
printf ("\n\nsS(Ao-1) f£bl Fwl ")
printf{"\n \n\n"};

for (i=1, t=iv;t<=1p2;++i, t+=ic)

print£("%$1.2f %7.4f %e \n",(float)t,fbl[i],felil);
getch();
}
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2.5DAS METHOD :

To obtain reliable scattering amplitude higher order Born terms described by
equation (2.3.1) should be involved in the scattering amplitude. The evaluation of higher
order more than 2™ is very difficult. J.N.Das has suggested a simpler method to include
higher order Born terms in the scattering amplitude in which the second Born term is
multiplied by variationally determined complex number to compensate for the missing
higher order Born terms [27]. In this method first the Born series is represented by
Fredholm integral equation (1.5.2) than the equation is evaluated by iteration method for
elastic scattering (1.5.3). To solve this equation trial input function for the scattering

amplitude is used. The input scattering function is considered as

Fg, k) =(a" +ib°) fu(g: k), @2.5.1)

D and b” are energy dependent variational parameters, which are coming

where a
through the 'asymptotic form of the scattering amplitude given in (1.5.3) and satisfy the
limiting conditions (1.5.4). With this choice of input trial function Das obtained output

scattering amplitude as
O = fr = fr +(@® +ib°) f ;. 23.2)

Denoting real and imaginary parts of 7 g2 by 7 sap and 7 21> Tespectively the above

equation reads
fo=fn+@" ’*‘ibo)(?aza “'?321)
=f81 +(aD_f_32R —bD732{)+i (aD732{ +bD7823) (2.5.3)

The parameters a” and bPare independent of the scattering angle, obtained by

minimizing the norm | £ — £ |2 integrated over the whole angular region of the

scattering angle with respect to a® and bP. The calculation with equation (2.5.1) and
(2.5.2) yields equation

o= IdGSinB Forlfor = 2p)
? Idé’ Sinf [(fp '"?BZR)2+7:221]

(2.5.4)

- J'deSinH fm?szz
? Id&SinG [(f51— f 52z)° ‘*‘?2321}

(2.5.5)
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The analysis carried out by Byron and Joachain [36] show that at large energies
a® increases with energy and go to its asymptotic value of unity. On the other end at large
energies b° decreases with energy and it varies between Ink,/k, and 1/k,.

Thus in this method higher order Born terms are included in the scattering amplitude by

multiplying second order Bomn term with complex parameter.

Calculation of a®, bP:

Denote integral of equation (2.5.4) in numerator as

I = Id(?SinH Tan(Un “?m)

= J'fm (f31 = f 122)Sin6 d6
0

Now consider half angle formula and change the variable of the integral as
Sin@ =28in8/2Cos8/2
Let t=8in6/2 =d8=2dt/Cos(6/2),

Sin@ =2tCos@/2 and q=2kSin0/2=2k!

o= 4:! Far(far = f pag) tel. (2.5.6)
Similarly,
I, = [d0Sin6 [(fn =7 pon)* + F 2s]

=4;§ (o1 ~F 5or) + F ]t and 25.7)
Iy = [d6Sin fa [ pa

1
=4[ forf gyt 258
[

These integrals are evaluated numerically by Gaussian integration.

Finally we have

o=l ; bP L (2.5.9)
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2.6 Modified Das Method :

The Das technique was improved further by including the second Born term

in the input trial function [28] as

S =(a, +ib,)(fo1 + f ) (2.5.10)

Putting this in equation (1.5.3) and proceeding as before, the derivation of direct out put

scattering amplitude is given by

flom = fiup = Ja +(a,, +ibp)(782 +7B3), (2.5.11)
where ;,, = Jn 3 .
- S s
— )+ =
Un= o S = r

According to the analysis of Byron and Joachain [36] at large energies a,, is independent
of energy and converge to unity, whereas b, varies with energy as k2. So the terms
Sy and b » which fall faster than k? asymptotically are neglected. Here we replace the
f a3r DY the equivalent ten;1 ? 3 due to equivalence of eikonal and Born series for large

k. Thus f,,, correct up to the order k.2 is given by

JSup=TIn +ap(782R +7E3)+iap ?3213 (2.5.12)

and a » reduces to

ap =""""“'f£..§."""'—
fBl '—fB3R
ay=—Tn (2.5.13)
fBl _fEJ

Thus using better trail input scattering amplitude f“ in the Das technique the obtained
\
out put scattering amplitude £ contains Third order Born terms also and the higher

order terms are included through the parameter a,and b,.
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Program description :
Energy 35 KeV; k in Hartree a.u.

Potential : DHFS;
Method : Das
Program : Hel6.c
Calculation : £ = f) = f5 +(@® +ib”) f ,
Das amplitude given by equation (2.5.2) is evaluated for the He atom target.
Program structure :
Global declaration of variables & array.
Include files for different function programs.
Function main() {
Declaration of variables

Include target parameters

B |

Calculation of f B R,? gy Calculation of 1),1,,1I;  Calculation of f, i B2

(for 1,,I, and 1) (for particular 8 )
Include file:TFB2_.F Include file: REFB2_.F

l_____ Loop(case =1 to 3) {

Loop(I=1 to 8) {

x, =Gaussian pt.

w; = Gaussian weight
If{Casel: f=1

Case2: f=1I,
Case3: f=1I; }
D fGEIw}
‘:
Cal. a®,b”
{
I
Cal. fp

Dsplay Table : 0, /81> fp2rs f821: /D
} End of main ()



/* Das Method : aD,bD by taking @ = 0 to 180
35 Rev @ = .059 to .59 helé.c */

#define PI 3.142
#define Ao .529
#include <math.h>

/* Globle declaration of array & variables */
int i,3j,4i0;

static float iv = .1, ic = ,l;/*Change theta*/

static float SAo=0,1pl=.0595636,1p2=1,1p3=.0595636;
float h,t,th,ari,brl;

double k,del,dl,d2, fb,u0,z; '

static double al{10],b1[10];

double x1,wl,x[10]1,w[10];

static float arf[201,brf[20]1,crf(20];

double x0,xr1,r2,d2,f,£1i,s,s1,8,81;

static double £bl([50],rfb2 [50],ifb2 [50];

/* Different function programms are included */
#include "tfb2_.f"
$include "thfbZ .f"

main ()
{

/* Declaretion of variables */

int i,n;

static float SAoc;

double £,S8,I11,12,13,1I[4]:;

double aD,bD,rfb2,fb2,£fD[50],rfD[50]1,i£fD{[50]}, £4[501;
clrscr{):

/* Input Data */

z=2.0; /* He Atom */
ul=2+% z;

=gqrt (2* 35000/(2* 13.6)); /* Hartree A.U. */
for(i=0;i<=10;++i)al{il=0;

#include "pmt.He" .

/* Calculation of fB2_ for theta 0 to 180 */
tfb2_():

/* Calculation of Integrals I1,I2,I3 */

for (n=1;n<4;++n) {

S={double) 0;

for(i=1;i<9;++iy{ xl=x[il;wl=w[i]; /* use of switch st. */
switch(n){

case 1l:f=xl* fbl[i]* (fbl[i)-rfb2_[i]); /* I1 1st int. */
’ break; /* I2 2nd int. */
case 2:f=x1* (pow(fbl[i]-rfb2_ [1i],2)+pow(ifb2_ [i],2});
break:
case 3:f=x1* fbl[i]* ifb2_[i]; /* I3 3rd int. */

}S=8+£* wl;
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} Iln}=4* 8; printf{"\nI%d = %e",n,I[nl);
}
/* Calculation of Das parameters aD, bD */
ab=I{1]1/I[2)}:bD=I{31/1I[2]:
printf("\n\nabD = %.3f bD = %.3f\n",aD,bD};

/* Calculation of £bl, fb2_ for particular @ */
thfb2_():

/* Out put Table heading */

printf ("\nS(Ao-1) f£bl(Ao) RfB2_ {Ao) I£fB2_(A0) RefD (Ao)
ImED (Ao) DCS{(Ao™2) \n");

printf (" \n\n"};

/* Calculation of Das amplitude £D out */

for{i=1,t=1pl;S5Ro<=1p2;t +=1p3,++i){
del=2* k* sin((t* PI/180)/2);SAo=del* 96.18/50.73;
rfb2=fbl[i]+rfb2 [i];
fb2=sqrt (pow (fbl[il+rfb2_[i],2)+ifb2_[i]* ifb2_[i]);
rfD{i]=fbl[i]+aD* rfb2 [i]-bD* ifb2 [il;
ifD[i}=aD* ifb2 [i]+bD* rfb2 [i]: .
fd{i]l=sqrt (rfD[il* rfD[i)]+ifD[il* ifD[i});:

printf(" %1.1f %.4f 3%7.4e %7.4e %.4f $.5f %.4f\n",
SRo, (float)fbl[il* Ro,rfb2_[il* Ro,ifb2 [i]* Ro,
rfD[il* RAo,ifD[i}* Ao,pow(fd[il* RAo,2));}

getch():

}

/* Calculation of £B2_ for aD, bD tfb2_ .f */

void tfb2_()

{

#include "x1.He"

#include "G.P¥

for{if=1;1i0<9;++1i0) {t=x[i0]l;h=(float)t;
k=50.73;
del=2* k* h;
fb=(double} 0;
for(i=1;al[i]!=0;++i) fb=Ffb+(al{il/(b1[il* bllil+del* del));
fb=ul0* fb;fbl[i0]=fb;
S=Si=(double)0;
for (j=1:4<5;++j){ arl=arf[j);brl=brf[jl;
s=si={double)0;
for{i=1l;i<=8;++i){
x1=x[i];wl=w[i];
r0=arl* arl* x1+({brl* brl* (1-x1)}:;
r2=r0+{x1* (1-x1)* del* del):;
rl=sqrt(x2):
f=r0/ (xl* {(r0* rQ+4* k* k* r2));
fi=2* k/{x0* r0+4* k* k* r2);
si=si+wl* fi;
s=s +wl* £;}
Si=Si+si* uw0* u0* crf(jl/2;
§ =8 + s* u0* u0* crf(4l1/2;

-
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}
printf("\a”);ifb2_[i0]=8i;rfb2 [i0]=S;
}
33

/* Calculation of fB2 for particular theta */

void thfb2_ ()

{

int i0;-

float arl,brl;

static float arf[20],brf[20],crf[20];
double r0,r1,r2,f,fi,s,si,S,Si;

#include "x1.He"
i0=1;SA0={(float)0;
for(t=1pl;8Ao<=1p2;t +=1p3,++i0) {h=(float)t;

h=h* PI/180;
del=2* k* sin(h/2);:;SRo=del* 96.18/50,73;
fb=(double) 0;
for(i=1;al[i]!=0;++i)fb=Ffb+(al[i]/ (b1l[i]l* bl[i]+del* del));
fb=u0* £b;fbl[i0]=fb;
printf("\n@ = %$.4f SAo = $.2f k = %.2f ul = %.2f ",
(float)t,Sao0, (floatik,uld);
printf("\nfbl = %.4f (a.u.) ",fbl[i0]);
S$=8i=(double)0;
for(j=1;3j<5;++j){ arl=arflj]:;brl=brf[j];
s=si={double}0;
for(i=1l;i<=8;++i){
xl=x[i];wl=w{i];
rO=arl* arl* xl+(brl* brl* (1-x1)):
r2=r0+(x1* (l-x1)* del* del);
ri=sqrt(r2};
£ =r0/(rl* (r0* r0+4* k* k* r2));
fi=2% k/(r0* r0+4* k* k* r2);
si=gi+wl* fi;
s =5 +wl* f ;}
Si=8i+si* ul* ul0* crflil/2;
S=S+s* ul* u0* crfl[jl}/2;
}
ifb2 [i0]=Si;rfb2 [i0]=S;
fb2_ [i0]=sqrt(rfb2_[i0]* rfb2_ [i0]+ifb2_ [i0}* ifb2 {i0]);

printf ("\a\nRFb2_= %7.4e IFb2_ = %7.4e \n",rfb2_ [i0],
ifb2_[i0]):
}

/* Table */
printf{("\ns fbl rfb2 ifb2_ Fb2_ "):
printf{"\n \n\n") ;

for(i=1,t=iv;t<=1p2+ic;++i,t+=ic}

printf("¢.1f %.4f ¥7.5e %7.5e¢ %7.5e \n",\
{(float)t, fb1{il, rfb2_[i],ifb2_ [i],fb2_[i]);

getch{};

jIn;
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2.6 PARTIAL WAVE ANALYSIS :

Problem of particle scattered by central field plays a role in different i)ranches of
the physics. Fully analytical solutions are not known except coulomb field, so one has to
rely on the approximations that in the most favorable cases are only valid in limited energy
ranges. Thus partial wave analysis is the alternative solution for any energy rage, which
gives most accurate results for the problem.

In the beginning work we have employed PWA for small & and phase shifts were
obtained from radial solution of Schrodinger equation by Numerov method according to
elementary description given in chapter one.

To calculate phase shift and differential cross sections in the present work for

'different atomic target and energies cross-sections we have used FORTRAN code
PWADIR (Partial Wave Analysis, DIRac) [30]. The Method of solution of Dirac equation
and program description is given here.

Elastic scattering of electrons by neutral atoms in a central field V(»)such that

rV () - Owhen r goes to infinity. Where charge cloud polarization effects are neglected

and local exchange potential is considered i.e.
V(r)=-¢(r)+Vu();

Z N
#(r) = TZA’ exp(~a,r), 2.6.1)

=1
where ZA, =1 for neutral atoms. Expression (2.6.1) if the form of superposition of

Yukawa type potential and it is obtained from self-consistent calculations. The parameters
(with N=3) are obtained by salvat et al [38] from Dirac-Hartree-Fock-Slater (DHFS) field.

Considering scattering of electron in a central field V' (») Dirac phase shifts are determined
by solving the radial wave equations [44]

dR K. E-V()+2c

=R d

dr r ¢ ¢ an

Q_E-VnL K, (2.62)
dr c r

where K = (I - j)(2j+1) is the relativistic angular momentum quantum number, jand /

are total and orbital angular momentum quantumn number respectively. E + c?is the total

energy, c is the speed of light in the vacuum, R(#)and Q(r)are the radial functions. In
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the numerical procedure r¥ () is replaced by the natural cubic spline that mterpqlates the @‘\,/
o My

values of this function. The grid is dense enough to have minimum mterpolatxon errors
which do not affect the computed phase shifts. The solution of the radial equation (2.6.2)
is obtained by Buhring power series method [45]. The accuracy of the solution can be
controlled by the input parameter €. The Phase shifts are determined by matching the
outward radial solutions to the free spherical waves, so that scattering field is assumed to
vanish outside the matching radius.

Elastic scattering amplitude of relativistic electron scattered from the atom for
central field is defined by [42]
fo) = 2—2 {7 +D[exp(2i6), ) - 1]+ l[exp(2i5,_) - 1]}F(Cos0),

=0
g(6) ——**Z{CXPQI&-) exp(2i6, )} B/ (Cos). (2.63)

Where |k, |=k is the wave number of the incident electron and &,,,5,. are the phase

shift of order /. P (Cos@)and P'(Cosd) are Legender and associated Legender

polynomials respectively.

For high-energy thie direct summ'c;tion of the partial wave series given in above
equation require large number of terms. In the code phase shift of order / less than a finite
value NDELTA can be computed only. So the value of NDELTA given as input should be
large enough to enable convergence of the partial wave series. It must be less than the
dimension of the phase shift array [i.e. 2000]. The magnitude of truncation errors can be
systematically reduced by using the “reduced” series method [S7]. This method makes the
Legender expansion rapidly convergent.

The outward numerical solution and asymptotic solution of radial function must
join smoothly at some point 7, This requirement leads to the following value of phase
shift [46],

k)= Bk 264

N g = k) i (k) o0
with

R 1

PR %



J; and n, are the spherical Bessel and Neumann functions respectively.

For an unpolarized incident beam resultant scattering amplitude is

Lun @ =0 +181"1".

Generalized atomic units[/ = e = m = 1] are used in the calculations throughout.

The unit of length is for clectron is the Bohr radius a, = 5.29177x107! ' m.

The unit o energy (me” /1?) is the Hartree energy Ey =272114¢€V.

In put data : ACJX.DAT

92

-1

-1

1.0E-8

1000 1

|
30.0000E+03

ATOMIC NUMBER

MUFFIN-TIN RADIUS ( -VE FOR FREE ATOM)
INCIDENT PARTICLE (-1 FOR ELECTRON)
EPSILON ( FOR ERROR CONTROL ).
NUMBER OF PHASE SHIFT (NDELTA ), IWR
SCATTERING FIELD ( 1 FOR ANALYTICAL)
K.E. OF PROJECTILE.
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(2.6.5)



2.8 TABLES

Table 2.1 E =35%keV .
Differential cross-sections in atomic unit.

He-Atom Ar-Atom

0 (deg.) w MD W MD
0.20 0.753 0.669 65.607 62.262
0.30 0.688 0.659 63.004 160.283
0.40 0.662 0.647 60.196 58.249
0.50 0.641 0.631 57.350 55.996
0.60 0.619 0.612 - 54.504 53.505
0.70 0.597 0.592 51.593 50.805

W: DCS using the Wallace method ( Eq. 2.4.9).
MD: DCS using the Modified Das method ( Eq. 2.5.12).

Table 2.2 E =35keV .
Differential cross-sections in atomic unit.

Ne Atom

0 (deg.) w MD

0.20 10.257 8.763
0.40 8.754 8.420
0.60 8.189 8.026
0.80 7.640 7.535
1.00 7.046 6.968
1.20 6.420 6.357
1.40 5.786 5.734
1,60 5.166 5.121
1.80 4.578 4.539
2.00 4.032 3.998

W: DCS using the Wallace method (Eq. 2.4.9).
MD : DCS using the Modified Das method (Eq.2.5.12)
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Table—2.3
Partial wave phase-shifts |6 1! for Argon at 40 keV.

! Bom*® WKBJ® numerical °
0 1.2899 1.3228 1.2861
1 0.9430 0.9550 0.9412
2 0.7739 0.7802 0.7691
3 0.6645 0.6678 0.6572
4 0.5849 0.5863 0.5760
5 0.5230 0.5232 0.5132
6 0.4728 0.4722 0.4628
7 0.4309 0.4298 0.4211
8 0.3952 0.3939 0.3860
9 0.3644 0.3629 0.3559
10 0.3375 0.3359 0.3297
11 0.3137 0.3120 0.3067
12 0.2927 0.2908 0.2864
13 0.2739 0.2718 0.2682
14 0.2571 0.2547 0.2518

Partial wave phase-shifts | 5,1 for Uranium at 40 KeV.

! Born® WKBJ numerical
0 5.7234 5.2815 5.7356
1 3.9818 4.1405 41707
2 3.1518 3.3489 3.2971
3 2.6261 2.7915 2.7284
4 2.2514 2.3828 2.3287
5 1.9662 2.0704 2.0302
6 1.7399 1.8233 1.7966
7 1.5549 1.6224 1.6073
8 " 1.4004 1.4556 1.4500
9 1.2694 1.3149 1.3166
10 1.1567 1.1946 1.2017
11 1.0589 1.0906 1.1017
12 0.9733 1.0000 1.0137
13 0.8978 0.9204 0.9358
14 0.8307 0.8500 0.8663
16 0.7173 0.7314 0.7479
18 0.6252 0.6358 0.6512
20

0.5495 0.5574 0.5711

a,b HF and TFD potential respectively; Ref. 13.
c present work; using numerical integration, from Eq. 2.6.5



2.3 Table—24
Scattering factor f(0) for Argon-atom at 40 keV (a. u.).

Method

o -}
A(A ) numerical® numerical® EBS ¢ Wallace

0 4.828 4.504 - -

5.47 1.294 1.294 1.237 1.243
10.93 0.420 0.421 0.404  0.407
16.38 0.218 0.214 0.204  0.207
21.83 0.132 0.130 0.124  0.126
27.26 0.088 0.088 0.083  0.085
32.67 0.062 0.063 0.060  0.061
38.06 0.046 0.047 0.045  0.046
43.42 0.036 0.037 0.035 0.036
48.75 0.029 0.030 0.028  0.029
54.05 0.024 0.025 0.023  0.024

Scattering factor f(0) for Uranium-atom at 40 keV (a. u.).

Method

-1

0
A(A ) numerical® numerical® EBS ° Wallace

0 12.534 16.071 - -
5.47 3.101 3.142 3127 3112

10.93 1.145 1.181 1.127 1.131
16.30 0.613 0.632 0.557  0.570
21.83 0.393 0.403 0.282  0.263
27.26 0.278 0.282 0.119  0.125
32.67 0.209 0.210 0.118  0.139
38.06 0.164 0.162 0.130  0.148
43.42 0.133 0.130 0.128  0.138
48.75 0.109 0.106 0.117  0.120
54.05 0.091 0.089 0.102  0.101

a,b HF and TFD potential respectively; Ref. 13.
¢ present work; using numerical integration, from Eq. 2.6.5.
e,f present work; from Eq. 2.3.15 and 2.4.9 respectively.
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Differential Cross Sections (a.u.)
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2.8 RESULTS AND DISCUSSION :

He, Ne and Ar atoms at 35 KelV

A systematic study of the differential cross-sections for the inert gas atoms He,
Ne, and Ar is reported here for the non-relativistic potential scattering. The differential
cross sections for elastic scattering of clectrons from these target atoms are studied for
energies in the range of 15 keV to 35 keV. We did not find any strong peak in the forward
direction or an oscillatory nature in differential cross sections as reported by Geiger ef al
[17]. Our results are close to the new experimental data [16]. The results are exhibited
graphically in Fig. 2.1-2.3. We see that according to the EBS method the differential cross

sections for He, Ne, Ar atoms at very small scattering angle differ from exact results

o -t
{numerical) in the range 0.2 to 0.3 A . The EBS amplitude reproduce the exact results for

o0 ~l
momentum transfer greater than 0.3 A . For He-atom (Fig. 2.1), differential cross-section

obtained by the numerical and Das method has similar nature but they are on either side of
the experimental data, which cover all points. The EBS results are close to the

0!
experimental data with compared to the numerical and Das results beyond 0.3 A . Inthe

case of Ne atom (Fig. 2.2), differential cross sections resulting from EBS and Das method
are in excellent agreement with the partial wave calculations. These results differ from the
experimental results. In the case of Ar atom (Fig.2.3), the results obtained by numerical

method are closer to the experimental results.

We have also reported differential cross-sections by Wallace and modified Das
method at 35 keV. These results give nearly the same values as those given by EBS and
Das method respectively. The strong forward peak and oscillating features in differential
cross sections are lacking. The results are shown in Tables 2.1 and 2.2. The differential
cross-sections calculated by Wallace method are in close agreement with the EBS results

and modified Das results.

Ar and U at 40 KeV :

The calculations of & ; and f(0) given by various techniques are exhibited in the
Table-2.3 and 2.4. At 40 keV 441 and 891 partial waves are required for convergent series
in equation (2.6.3) for Ar and U atoms respectively. For large values of /, Dirac phase shift
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is a decreasing function of /. The decrease of |6 zf with / is not rapid as compared to low
energy projectile. The scattering factors evaluated according to equation (2.6.4);
(2.6.5),(2.3.14) and (2.4.8) are compared with available results [13]. The compared results

were obtained theoretically with different methods.

The EBS method has been applied for He atom at intermediate and high energy
(100-500eV) by Byron and Joachain [8]. In the present work this method is extended to
calculate scattering amplitude for higher atomic number atoms using DHFS potential, The
EBS method and Wallace correction to eikonal phase for Ar atom (see Table-2.4) give
almost four-figure accuracy. This indicates that EBS method comprises summation of
large number of partial waves effectively. These calculations are computationally
economic and tested for heavier atoms too. These approximations are considerably good
for high energy and large atomic number, since at 40 keV it appears to be valid for U atom
when 17> A >33. Calculations utilizing the approximations mentioned in section 2.3 and
2.6 are presently being employed to compute DCS for incident electron energies at 20
and 30 keV. As shown in figure 4 and’5 the results of EBS method are in good agreement

with partial wave calculations as the incident electron energy increases.

In Fig. 1-3 theoretical data of the present work is compared with the experimental
data of Coffman & Fink nature of both the graphs matches. Whereas in fig. 4-5 present
results are compared with experimental results of GML [17]. Form fig. 4 It is very much
clear that in the EBS results oscillatory behaviour dose not exist as shown by the
experimental results. EBS results, close to the exact results, indicate their validity. In Fig.
5 forward peak in the experimental results is obvious. The small peak is observed in the
EBS results but it dose not support high experimental value about angle 3 mrad.

Fig. 6-7 refer to the heavy atoms at 20 & 30 KeV, where the present results are
almost equal to partial wave results means accuracy of the method is very good. In other
way the EBS method comprises summation of large number of partial waves. Thus the

approximation is considerably good for high energies and for large atomic number.



