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THE RELAXATION TIME OF A CHARGE CARRIER DUE TO SCATTERING BETWEEN 

CHARGE CARRIERS IN A SEMICONDUCTOR SUPERLATTXCE

: We have calculated transport relaxation time for an electron; (i) due to electron-electron scattering in 

a type-I superlattice and (ii) due to electron-electron and electron-hole scattering in a type-II superlattice, 

using Fermi-golden rule. The transport relaxation time for a hole due to hole-hole and hole-electron 

scattering in type-41 superlattice is also calculated. Only electron-electron scattering takes place in a 

type-I superlattice, whereas electron-electron, hole-hole and electron-hole (hole-electron) scattering 

processes occur in a type-H superlattice. As compared to two-dimensional electron gas, both intralayer 

and interlayer interactions between charge carriers in a superlattice contribute to transport relaxation 

time. It is shown that both large momentum transfer scattering as well as small momentum transfer 

scattering processes contribute to transport relaxation time at all values of temperature and carrier 

densities. The transport relaxation time of a charge carrier in a superlattice is found larger than that in a 

three-dimensional free electron g^s. The transport relaxation time is found to decrease on increasing 

temperature, carrier density and single particle energy in sperlattice. We also find that the scattering 

processes weaken on increasing the width of layer consisting of electrons (holes). The electron-hole 

(hole-electron) scattering process shows maximum contribution to the transport relaxation time when a 

hole layer lies exactly in between two consecutive electron layers in a type - H superlattice.

4.1 Introduction

Electron-electron inelastic scattering rate plays an important role in understanding of phenomena 

such as weak localisation, mesoscopic conductance fluctuation and Aharonov-Bohm effects in 

nanostructure [1], Considerable attention has been directed to study the electron-electron relaxation 

time in low dimensional systems both theoretically and experimentally. Recent progress in haterostructure 

growth technology also initiated an interest in the electron-electron interaction in pure two-dimensional 

electron system [2-4]. Theoretically, the effect of the electron-electron interaction on the electron life 

time wasstudied by several people[5-ll]. While there was a resonable agreement between theoretical 

prediction and the experimental data for zero temperatures [2] in single quantum well systems, the 

comparision ofthe data of the experiments in double-quantum well - systems for finite temperatures 

[3,4] is more complicated. In strongly - coupled quantum wells (with well separation d-14 A) the



theory [4] which takes into account the formation of the electron bound states due to quantum tunneling 

describes the experimental data quite well. In weakly-coupled quantum wells (d-175-340 A), for 

which it is possible [3] to ignore the formation of the electron bound states, theoretical calculations 

disagree among themselves, and all of them give the inverse electron lifetime less than the experimental 

data.

The scattering rate obtained from the tunneling experiment [12], with the contribution from the 

residual impurity scattering excluded, is essentially due to electron-electron interaction. The system of 

quantum wells (QWS) coupled by tunneling exhibits a number ofinteresting properties. For example, 

the resistance of two QW's with different mobilities connected in paralled strongly depends on the 

potential profile of the QW's and has a peak when the letter is symmetric [13]. This phenomenon is 

referred to as resistance resonance (RR) and has been studied to some extent during recent years [14- 

16],

Recently, it has been demonstrated (boththeoreticaly and experimentally) [17] that in-plane 

magnetic field suppresses the RR. The magnitude of the effect depends on the coupling energy (A) 

between the wells and also on the width ofthe single-particle states (hf r), t is single particle relaxation 

time. Experimentally, it has been found that the main temperature dependence of 1/ r is likely to emerge 

from electron-electron scattering. The comparison ofthe experimental valuesof \fxm (asfunctionof 

temperature) with the well known theoretical expression for the inelastic rate in a two-dimensional 

electron gas [18] (2 DEG) confirms this assumption. Tee is contribution to r from electron-electron 

scattering. This explanation is quite acceptable when the wells are very weakly coupled and interlayer 

interactions can be neglected, the electrons are not scattered between the wells. This picture, however, 

is not valid in the opposite limit of strongly coupled wells. When % becomes smaller than any ofthe 

time scales in the problem, the staionary states of the electrons are extended over the two wells and the 

energy spectrum is modified accordingly. Therefore, the theoretical description of Y^e has to be 

reviewed and compared with the relevant experimental results.

In this chapter, we have calculated relaxation time for an electron from electron-electron 

scattering in a superlattice of type -1, for an electron due to electron-electron and electron hole 

scattering and for a hole due to hole-hole and hole-electron scattering in a type-II superlattice, using 

Fermi-golden rule. Formalism and calculations are given in section 4.2. Our computed results are
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discussed in section 4.3 and our work is summarized in section4.4.

4.2 Formalism and calculations

We use formalism for electron-electron relaxation time, which has been developed by M. 

Reizerand J. W. Wilkins [19], This formalism is based on Keldysh diagram technique for inequlibrium 

processes and it uses the advanced electron Green function.

GA(p,e) 1
G-Zp-iS’ (4.1)

where

(4.2)

where pF is the Fermi momentum, m is the electron mass and p is momentum. The electron-electron 

relaxation time as a function of temperature (T) and single particle energy (e ), for a 2 D system is 

given by [19],

ft

re_8(r, e) nvi {Inf J (2k)

x hn GA (p, e) Im GA {(p, e) + (q,«))} 

x tar^(#,<y)|F(#)|2, (4.3)

mwhere v = ~fii is the 2D electron density of states. N(m)m6. »(e) is the Bose and Fermi distribution 

functions, respectively. The retarded scalar polarization operator is defined as

10)
k (q) = -v(l+ -——); &^qv ? q<2

Hv F PF (4-4)

Equation (4.3) can be rewritten as
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h 16 J“~tW[#(®)+"(e+<y)]J
r,-i(T,G) n vJ 2n (2 nf

Jtj~jb^GA(p)1mGA{p+q)
(2*) (4.5)

The integral of two Green's functions yields 
m/y ~q~2PF . SolutionofEq.(4.5)yields[19]

V7t

2 vFq, and sets the limits for the q integral,

n 2v
T,-t(.T, G) ^ VF

f2pr dq

.2.. 2 J0® d(Q\N{m)Jrn(<o+ e)]

x Cf (4.6)

where V(q) is screened Coulomb potential, qo = °VVf and vFis the Fermi velocity. For the case of 

e= o and T is finite, Eq. (4.6) reduces to

h 2v
Jo \Jo„ a 1 Jt„(T) ml smh{h°ykT)^ q (4.7)

Whereas for the case of T = 0 and g is finite Eq (4.6) goes to

n 2v
re_e(o,e) 7r2vF2j<> (48)

In following we evaluate Eq (4.7) and (4.8) for type -I and type-II superlattices.

(A) Type-I Superlattice

The screened Coulomb potential in random phase approximation (RPA) for type-I superlattice, 

where width of an electron layer (L) is negligibly small as compared the width of unit cell along the 

direction of growth, d is given by [20]

VM) =
2m2

q^o

1

f 9 > 2 f 4 1
1+ * + — 1 coth(^))

\qa y Kqa J

(4.9)



* G Tv
where a = —Vr is the effective Bohr radius, and <=, is background dielectric constant, However, 

screened Coulomb potential in random phase approximation (RPA) for type-I superlattice, where L is 

finite and it is comparable with d, is given by

Vlu{q) =
2 ne2 a cosh(qd)Q+P } b

■ |sivh(qd)Q 4p'-& j
(4.10)

where

P = A, coth(qd) + B,, (4.11a)

Q =-A/sinh (qd), (4.11b)

(4.12)

B. " qc-/- (4.13)

o= Hee - F e and b=Fee andFee has been defined earlier by Eqs,(3.11) to (3.15) in chapter- III.

.We first evaluate Eq.(4 7) with use of (4.9). It has been argued that in electron-electron scattering 

maj or contribution comes from small momentum transfer (small q) [19] In view of that we expanded 

Eq.(4.9) for qd« 1 to obtain

2m2 1
-]l/2

Tx+Trf-Ttf* \ ’
(4.14)

where

TX=A 1 1 
a ad ’

(4.15)

Z = 1 +
4rf
3a* (4.16)

4 d3
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As is obvious from Eq. (4.7), ©-integration mainly contribute for smaller ©-values in the 
k T/range 0 < © < B A We replace V(q) by V (q) in Eq.(4.7) and then perform integration over q for

/n k 7*
q0 < q < 2Pf and over © for 0 < © <, to get

n TkFd2 Tk_£
2eBtu(T,0) 2

+(a, -a2)x- 

Tk

rijln
f A i \*pF -y

Tk^jTkr

4 Pp J 

V

-a2ln
V 4P.F /

Tk*
2 eF v2 gf;

-a, 2
ln{(2*,/Sp)

Tk

In-
(TkF /2 eF) „ f Tk

+a,
(7*F/2GF) + ^j "Us

_F
!P’

-In

-JFi

{(nr/2 <=rf-y,}|

% v l(raP/2%)+^ (4.18)

where

and kF =

a, =
16

(4.19)

a.
16

(a‘i,)!4- T^(T,!T$ +MTJT,) * (4.20)

^t = (4.21)

^2 =
(T1in)-AT1/T,f+<n/T,)

2 (4.22)
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h
Theresultson r ^ from Eq.(4.18) and from numerical integration over a> and <yinEq.(4,7) 

and (4.8) with the use of Eqs.(4.9) and (4.10) will be discussed in section 4.3.

(B) Type-II Superlattice

S creened coulomb potential in random phase approximation (RPA) for type-IE superlattice, 

where width of an electron layer (L.) and of a hole layer (Lh) is much smaller as compared to d, is given 

by [20],

VM = 4ne
<1 6*

l+2F(q)/q 1 1
—- - - - .r

a,
[l+«‘(?) + 2^)coth(910]

+g(q)
-------J75-—sinh(^,)

(4.23)

where

^ (cosher/) - cosher/') 
F<?)=

g(q) = cosh(f/4) + sinh (qdx)R(q\

(4.24)

(4.25)

and

_1_ 1 4 F{q)
ax az J qaxaz (4.26)

The screened Coulomb potential in RPA for type-II compositional superlattice, where L and 

Lh are comparable with d, is given by

V2'{q)
(2^Y Ti? Cl

---- 1----)) _e
(4.27)

Where

R= 0o , A

G ^/cosh(qdf -1 + cosh(qd))2 -1 (4.28)



with

A,
5, (sinh(gfiO)2

pr,o
(4.29)

A ~ »(Aio ^20)+ * [A20 A10],

"ae Clah (4.30)

r0 =
q sinh(c/</)

(4.31)

The P and Q are defined as

V, qat q\a„

Hhh Fee Hhk Hee Fhh +Fee Fhh)\ (4.32)

Q = —,F„ +~Fhh+■ ■, 4t ,1M,^A)

go, qi ae*ah*

2Fee Fhk + FeA Fhe F} , (4.33)

F =
cosh(^fif) -1 

sinh(f/i/) (4.34)

//e, ^ A* * ^ h’ Acare defined in chapter - III by equations (3,13) to (3.15).

The /?, is defined as

A =
4 sinh(gcf) _ ^(sinh^af))2

(4.35)

with
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We Wh

f
F„,+—rf,,* x 120 ' * x 210 

\We Wh J
(4.36)

Further,

C

€ 2+ 2Aah«-K.)+ V .(#»,-fm)qa( qah

x [sinh(gfifj) I0 + sinh(q(d-dl))x /,J+ j-~^(Fee ~Feh)+—^(Fhh-~~Fhe),

x[sinh(qd,) sinh(qd) I^sinh q(d-d:)x sinh (qd) I, ] (4.37)

where

(eosh(^f/)+/-0) 
yj(cosh(qd)+r0 )2 -1 (4.38)

A iP-y/(cosh(gc/)+r0)2 -1 (4.39)

h =
Prn

coshiqd) (cosh (qd)+r0
(4.40)

4.3 Results and Discussion

For discussion of results on x* (T, e) we divide the section in two parts. The computed u for 

type-I superlattice (rO as the function of T and e is discussed first past, whereas fortype-II 

superlattice (t*) is discussed in second part.

(A) Results on u

We computed ri as a function of T :(i) using Eq.(4.18), (ii) performing numerical integration 

over m and q in Eq.(4.7) by making use ofEq.(4.9) and (iii) performing numerical integration over co 

andq in Eq.(4.7) by making use ofEq.(4 10). In following, above mentioned three values of n are
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called tu(T), rlnm(7),and rlm(7) respectively.Computed % % and gjf

are plotted as function of x(=kB77e) inFig.4.1, for GaAs/Alx Galx As superlattice which has been 

modelled in terms offollowing values of parameters: n =7.3 x 10" cm'2, me = 0.068 me, c/=500 A, 
L = 200 A and e0= 13.1. n is the number of carrier per unit area. The results from experimental data 

[3] and from earlier calculations of xe_e for a two-dimensional gas [19] are also plotted in Fig. 4.1 for

X*/
^ is larger than yx and

% for all values of T and (ii) % > % for all values of T. tu and z,NU both are

computed for the case of width of an electron layer is negligibly small as compared to the length of the 

unit cell. However ru , unlike twm , incorporates the contributions only from electron-electron 

scattering processes which take place for smaller q (qd{{\). Comparison of rls and rWM suggest 

that it is not quite correct to say that electron-electron scattering mainly contribute for small momentum 

transfer processes. The ratio ru / t1nm has been plotted as a function of x in Fig 4.2. Figure 4.2 

suggests that large momentum transfer electron-electron scattering processes contribute more at small 

temperature ( T < 3 OK). For T > 30K contribution from large momentum transfer electron-electron 

scattering processes is nearly 25 % that of small momentum transfer electron-electron scattering processes.

Comparision of our computed
h/

'1 NM
with ft/ for two dimensional electron sheet suggest

that interlayer interaction, which is present in type-I superlattice and is absent in a 2D electron sheet, 

contributes significantly at all temperatures. However this contribution depends on length ofthe unit cell 

d'. As can be seen from Fig.4.3, contribution from interlayer interaction to electron-electron scattering 

increases on decreasing d. For d->0 (small d-values) the superlattice structure approaches to a 3D

free electron gas system, whereas for d -» oo (large d- value) the superlattice structure tends to 2D

Xtl/j almost merges with yT for 2D free

electron gas for ch 2000 A. An interesting point which merges out of Fig. 4.3 isthe stronger electron-

electron interaction in 2D free electron gas as compared to that in 3D free electron gas. Comparision

Xfe /
and /T in Fig. 4.1 suggests that increase in width of an electron layer enhances

the relaxation time for electron-electron scattering. The electron-electron scattering weakens on increasing 

width ofthe layer consisting of electron, as expected.

Figure 4.4 shows plot of ^r1NM <=, asa function of x for three values of n (=3 x 10n cm '2,5 

x 10" cm'2,7.3 x 10" cm'2). It can be inferred from the figure that electron-electron scattering relaxation 

time decreases with increasing number of electron per unit area in a superlattice. Looking at figure 4.1
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Fig. 4.1 Plot of dimensionless electron relaxation time as a function of 
x=kBT/eF. Experimental result (open circles), our results ii/xl8eF 
(dash-dot line (dash-dash line), 'fi/tiMeF (solid lme)
and results from Ref. [19] (dot-dot line).
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Fig.4.2 Plot the ratio (x
is/x

in
m) as a function of jH

c
bT/sf.
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Fig.4.3 Plot offi/xiN
M

SF as a fiurcti011 of x» for d~100A
 (dash-dash fine), 

d=200A
 (dot-dot H

ne), d=500A
 (dash-dash line) and d=1000A as 

w
ell as d=2000A

 (solid line).
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Fig.4.4 Plot of*H
/xiN

M
B

F as a function of x, for n5e=3xlOncm 
(dot-dot 

line), n
M=5xl0

11cni'2 ( 
dash-dash line) and die n,e=7xl0 

cm
 

(solid line).
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to 4.4 we notice that electron-electron relaxation time can be much larger to make significantly

contribution to mobility at Iowa- temperature (T<10K). A rough estimate of mobility due to electron-
etelectron scattering can be made using fie = —— , which can be reasonably high for T < 1 OK. It can
m

therefore be concluded that electron-electron scattering plays an important role in determining the 

transport properties of low dimesional systems such & semiconductor superlattices at small T-values, 

where electron-phonon scattering become insignificant.

Ourcomputed gf fromEq.(4.8)bymakinguseofEq.(4.9)isplottedasafunctionof

e in Fig. 4.5 .The resutls from calculation of Reizer and Wilkins are also plotted for comparison with 
our results. As is seen torn the figure, variation,* % % ™th s is v«y similar to that of ^ % 

versus T. The figure suggests that electron-electron scattering becomes faster on increasing G, Also, 

the comparison of our calculations with that of Reizer and Wilkins shows that interlayer interactions 

contribute significantly for all values of e. This contribution is larger at smaller values of e It is to be 

mentioned that in obtaining the results plotted in Figs. (4.1) to (4.5) a numerical computation of 

and % (e) has been made by performing double intergration in Eq. (4.7)h h/
rim eF ’ 7l eF

and Eq.(4.8) using Gaussian qudrature method.

(B) Results on r2

The transport relaxation time for electrons and for holes in lhAs/GaSb type -II superlattice 

have been calculated by making use ofEqs.(4.23) to (4.26) in Eq. (4.7) and then by performing double 

integration over q and co. The InAs/GaSb superlattice has been modelled in terms of following values 

of parameters: e0 (InAs) = 12.3, e0 (GaSb) = 14.4, m* =0.026me, m\=03me,d:=l(X)0A. 

Type-II Superlattice consists of electron-electron scattering, hole-hole scattering and electron-hole 

scattering, whereas type-I superlattice consists of electron-electron scattering only. The relaxation time 

of an electron is therefore contributed by electron-electron scattering and electron-hole scattering. 

Similarly the relaxation time for a hole is contributed by hole-hole scattering and by hole-electron 

scattering in a type-II superlattice. The contribution from electron-hole scattering or hole-electron 

scattering is governed by the separation (dj) between an electron layer and a hole layer in a unit cell. 

In order to see how the change in d, affects the relaxation time ofan electron (r2e) and relaxation time 
of a hole ( ru), we have computed Gp and jK2fl eF as a function of T atnse=nsh=5 x 10” 

cm 2 for four values of d} (=100 A, 300 A, 500 A and 700 A), for InAs/GaSb superlattice using
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Fig.4.5 Plot of~fi/x
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eF as a function of energy 
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DIMENSIONLESS RELAXATION TIME
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Eqs.(4 23) to (4.26) in Eq. (4.7). The n e and n^ are the number of electrons and number of holes per

unit area, respectively. We have taken gf~ (gf<. + GFh)l2, where ) is the Fermi energy of
ft/ %/

electrons (holes). Our computed /z2eGF and /z2h gf decrease on increasing d, when dx < d!2, 
for all values of d. However, they start declining on increasing d, for d,> d/2. The maximum value 
^/z2e <=F and ^/z2h is obtained when d=d/2 at all temperature. In type-H superlattice a hole 

layer lies in between two electron layers. The Fig.4.6 suggests that z2e has minimum value when the 

hole layer lies exactly in between two electron layers and it start increasing as soon as the electron 

layers shifts towards any one of the two electron layers. We thus find that electron -hole scattering 

makes a minimum contribution when a hole layer lies exactly in between two adjoing electron layers. 

Same conclusion apply to the hole-electron scattering which contributes to r2h ,

In order to see how the change in nM and n^at a fixed value ofd, affects the z2e and z2h ,we

have computed z2e and z2h as a function T at <7, = 400 A for three values of n^ (=3 x 10” cm-2,5 x

10n c m'2 & 7 x 10n cm'z) and three values of n^ (=3 x 1011 cm'2,5x10" cm'2, & 7 x 1011 cm'2) using

Eqs. (4.23) to (4.26) in Eq. (4.7). Our computed results are plotted in Fig.4.7, The figure suggests that
/

increases on increasing n^ at all temperature T-values. Similarly /x2h gf increases 

on increasing nt at all T-values. This can be attributed to the simple fact that probability of electron- 

electron scattering and that of electron-hole scattering increases on increasing ne, whereas probability 

of hole-hole and hole-electron scattering increases on increasing n^.

We have also computed z2e and z2h by making use of Eqs (4.27) to (4.40) in Eq.(4.7), in 

order to see the effect of increase in width of a layer consisting of electrons (holes). It is found that the 

effect of change in width of a layer on electron-electron, hole-hole and electron-hole scattering in a 

type-H superlattice is similar to the effect of change in a width of layer on electron-electron scattering in 

type-I superlattice.

4.4 Summary'

We have calculated rXs(T), twm(T), rm(T) for GaAs/AlxGa] x As superlattice. We find 

that % > % and yT >/T for all values oft/,. By comparing our computed z. and 

zWM , we conclude that large momentum transfer electron-electron processes make significantly large 

contribution to the relaxation time at small T-values (T < 30 K). For T>30K contribution from large
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DIMENSIONLESS RELAXATION TIME

Fig.4.7 Plot of dim
enstonaless relaxation

 tim
e as a function

 of
 Trfe/x

2heF as a function of 
T (upper curves) for n

se=3xl0
1Ian'2 (dot-dot line), n

ae=5xl0
11cm

‘2 ( dash-dash 
line) and the n^-TalO

^cm
'2 (solid K

ne).'fi/T
2eEF as a function of T

 (low
er curves) 

for n
Sh=3xlOn

cm
~2 (dot-dot line), 

n,h=5xlOn
cm

'2 ( dash-dash H
ne) and tiie 

n
3h=7xl0

11cm
2 (solid H

ne).
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momentum electron-electron scattering processes is nearly 25 % that of small momentum transfer 

electron-electron scattering processes. tim reduces to value of te_e for2DFEGfor </-»oo (very 

large value of the d), whereas it reduces to value of te_e for 3DFEG for d-± 0 (small value of d). 

rlNM is smaller than the re_e for3DFEGfor all values of T, which suggests that electron-electron 

scattering plays an important role in determining the transport relaxation time for an electron when 

effective dimension of a system reduces. Comparision between our computed xim and rIM suggests 

that increase in width of an electron layer enhances the relaxation time for electron-electron scattering. 

We also find that electron-electron scattering relaxation time decreasing on increasing number of 

electrons per unit area in a superlattice. The behaviour of our computed rWM as a function of <= is 

found very similar to its behaviour with T.

%/We computed rle and r2h for InAs/GaSb superlattice, We find that /T has maximum 

value when the hole layer lies exactly in between two electron layers and it start increasing as soon as 

the electron layers shifts towards any one of the two electron layers. Same conclusion apply to the 

hole-electron scattering which contributes to r2h. We further find that increases on increasing

n e at all temperature T-values. On increasing the width of a layer consisting of electrons (holes) rle 

( rzh) increases at all values of T and nw (nsh).
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