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THE RELAXATION TIME OF A CHARGE CARRIER DUE TO SCATTERING BETWEEN
CHARGE CARRIERS IN A SEMICONDUCTOR SUPERLATTICE

: We have calculated transport relaxation time for an electron;; (i) due to electron-electron scattering in
atype-I superlattice and (i) due to electron-electron and electron-hole scattering in a type-II superlattice,
using Fermi-golden rule. The transport relaxation time for a hole due to hole-hole and hole-electron
scattering in type-II superlattice is also calculated. Only electron-electron scattering takes placeina
type-I superlattice, whereas electron-electron, hole-hole and electron-hole (hole-electron) scattering
processes occur in a type-II superlattice, As compﬁ{gd to two-dimensional electron gas, both intralayer
and interlayer interactions between charge carriers in a superlattice contribute to transport relaxation
time. Itis shown that both large momentum transfer scattering as well as small momentum transfer
scattering processes contribute to transport relaxation time at all values of temperature and carrier
densities. The transport relaxation time of a charge carrier in a superlattice is found larger thanthatina
three-dimensional free electron gas. The transport relaxation time is found to decrease on increasing
temperature, carrier density and single particle energy in sperlattice. We also find that the scattering
processes weaken on increasing tile width of layer consisting of electrons (holes). The electron-hole
(hole-electron) scattering process shows maximum contribution to the transport relaxation time when a

hole layer lies exactly in between two consecutive electron layers in a type - I superlattice.
4.1 Introduction

Electron-electron inelastic scattering rate plays animportant role in understanding of phenomena
such as weak localisation, mesoscopic conductance fluctuation and Aharonov-Bohm effects in
nanostructure [1]. Considerable attention has been directed to study the electron-electron relaxation
time in low dimensional systems both theoreticallyand experimentally. Recent progress in haterostructure
growth technology also initiated an interest in the electron-electron interaction in pure two-dimensional
electron system [2-4] . Theoretically, the effect of the electron-electron interaction on the electron life
time was studied by several people [5-11} . While there was a resonable agreement between theoretical
prediction and the experimental data for zero temperatures [2] in single quantum well systems, the
comparision of the data of the experiments in double-quantum well - systems for finite temperatures
[3,4] is more complicated . In strongly - coupled quantum wells (with well separationd= 14 A) the
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theory [4] which takesinto account the formation of the electron bound states due to quantum tunneling
describes the experimental data quite well. In weakly-coupled quantum wells (d= 175-340 ), for
which it is possible [3] to ignore the formation of the electron bound states, theoretical calculations
disagree among themselves, and all ofthem give the inverse electron lifetime less than the experimental
data .

The scattering rate obtained from the tunneling experiment { 12], with the contribution from the
residual impurity scattering excluded, is essentially due to electron-electron interaction. The system of
quantum wells (QW'S) cbupled by tunneling exhibits a number of interesting properties. For example,
the resistance of two QW's with different mobilities connected in paralled strongly depends on the
potential profile of the QW's and has a peak when the letter is symmetric [ 13]. This phenomenon is
referred to as resistance resonance (RR) and has been studied to some extent during recent years [14-
16].

Recently, it has been demonstrated (both theoreticaly and experimentaily) [17] that in-plane
magnetic field suppresses the RR. The magnitude of the effect depends on the coupling energy (A)
between the wells and also onthe width of the single-particle states (#/7), rissingle particle relaxation
time. Experimentally, it has been found that the main temperature dependence of 1/7 islikely to emerge
from electron-electron scattering. The comparison of the experimental values of 1/7* (as function of
temperature) with the well known theoretical expression for the inelastic rate in a two-dimensional
electron gas [18] (2 D E G) confirms this assumption. ¢ is contributionto ¢ from electron-electron
scattering. This explanation is quite acceptable when the wells are very weakly coupled and interlayer
interactions can be neglected, the electrons are not scattered between the wells. This picture, however,
is not valid in the opposite limit of strongly coupled wells. When % becomes smaller than any of the
time scales in the problem, the staionary states of the electrons are extended over the two wells and the
energy spectrum is modified accordingly. Therefore, the theoretical description of %ee hasto be

reviewed and compared with the relevant experimental results.

In this chapter, we have calculated relaxation time for an electron from electron-electron
scattering in a superlattice of type - I, for an electron due to electron-electron and electron hole
scattering and for a hole due to hole-hole and hole-electron scattering in a type-II superlattice, using

Fermi-golden rule. Formalism and calculations are given in section 4.2. Qur computed results are
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discussed in section 4.3 and our work is summarized in section 4.4.
4.2 Formalism and calculations

We use formalism for electron-electron relaxation time, which has been developed by M.
Reizer and J. W. Wilkins [ 19]. This formalismis based on Keldysh diagram technique for inequlibrium
processes and it uses the advanced electron Green function .
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where p,. is the Fermi momentum, m is the electron mass and p is momentum . The electron-electron
relaxation time as a function of temperature (T) and single particle energy ( ¢ ), for a 2 D systemis

givenby [19].
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where vV = ﬁ’y is the 2D electron density of states. N (@) and #(<) is the Bose and Fermi distribution

functions, respectively. The retarded scalar polarization operator is defined as
Reoy O ‘
1 (q)" V(I+q"’p)’ B<qVy, q<2PF (4‘4)

Equation (4.3) canbe rewritten as
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The integral of two Green's functions yields [Zv q} and sets the limits for the g integral,
F
%F <g<2pr . Solutionof Eq.(4.5) yields [19]
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where V(q) is screened Coulomb potential, ¢ = %F and v, is the Fermi velocity. For the case of
e=0 and T is finite, Eq. (4.6) reduces to

B 2v w.dw mqu
Too(T) ﬂvpr sxnh(fz% L @l (4.7)

Whereas for the case of T =0 and ¢ is finite Eq (4.6) goesto
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In following we evaluate Eq (4.7) and (4.8) for type -I and type-II superlattices.
(A)  Type-1 Superlattice
The screened Coulomb potential in random phase approximation (RPA) for type-I superlattice,

where width of an electron layer (L) is negligibly small as compared the width of unit cell along the

direction of growth, d is given by [20]
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where a’ = ) is the effective Bohr radius, and &, is background dielectric constant, However,

screened Coulomb potential in random phase approximation (RPA) for type-I superlattice, where L is
finite and it is comparable with d, is given by

V. (q) = 27’ 1: a {cosh(qd)Q+ P 1} . b }’

g |sinn(gd)Q| [P -0 JP O (4.10)
where
P =A coth(gd)+B, (4.11a)
Q =-A /sinh(gd), (4.11b)
= 1+~'—‘; Hee "F;,
A 2%( ), 4.12)
B, = 4o s (4.13)

a=H_-F_and b=F_ H_andF_hasbeendefined earlier by Eqs.(3.11) to (3.15) in chapter- IIL.
.We first evaluate Eq.(4 7) with use of (4.9). It has been argued that in electron-electron scattering
major contribution comes from small momentum transfer (small ) [19] Inview of'that we expanded
Eq.(4.9) for gd<<1 to obtain

1/2

2’ 1
v, =
Ix(q) E,, li]; + };qz _ 7;(14} N (414)

where

1 1
Tx=4[;r+‘a"g}, (4.15)
L :1+§g; , (4.16)

3
Tsi= % _ 417
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As is obvious from Eq. (4.7), @ - integration mainly contribute for smaller @ -valuesin the
range 0< @ < ks % . Wereplace V{g) by V,_(q) inEq.(4.7) and then perform integration over g for

q,<q<2F; andover o for

h__ Thd| Tk a m(4ppz”}")-a In oy
0 26, |2e, t 4PF2 2 4PF2
2
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“a’{z e e
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€= hsz%m and k, = \[2zn,
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h
Theresultson " (T)- from Eq.(4.18) and from numerical integration over @ and qinEq.(4.7)
1s

and (4.8) with the use of Eqs.(4.9) and (4.10) will be discussed in section 4.3.
(B)  Type-1I Superlattice

Screened coulomb potential in random phase approximation (RPA) for type-II superlattice,
where width of an electron layer (L) and ofa hole layer (L, ) is much smaller as compared to d, is given

by [20] .

2 1+2F<q)/q{i,+i.]+g(q)

1(@)= :ﬂ; [1+Rz(q)+2R(1q)cozth(qd)]m R (4.23)
where

g = D= IT) @“24)

g(q) = cosh(gd,) + sinh(¢d,)R(q), (4.25)
and

R(g)= g[a_?a—%%% . (4.26)

The screened Coulomb potential in RPA for type-1I compositional superlattice, where L _and

L, are comparable withd, is givenby

Vz'(q)=[2”e j [£+£} (427
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Fe cosh(gd)—1

sinh(qd) (4.34)
H_,H, F ,F, &F_F, aredefined in chapter - III by equations (3.13) to (3.15).
The f, isdefined as
g = 4 sinh(gd)  B,(sinh(gd))’ 435)

P Pr,
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Further,
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where

1 [ (cosh(gd) +1,) __1]

" P| flcosh(gd)+r,)* -1 | (4.38)

1
I =
1 Py/(cosh(gd) +r,)* -1 * (4.39)
[ = 11 cosh(gd)  (cosh(qd)+r,
2 Pr, J(cosh(qd))z -1 \/(COSh(C[d) +r0)2 IR (4.40)

4.3  Results and Discussion

For discussion of results on z. (T, ¢) we divide the section in two parts. The computed 7, for
type-I superlattice ( 7, ) as the function of T and ¢ is discussed first past, whereas z. for type-II
superlattice ( ;) is discussed in second part.
(A) Results on 7,

We computed 7 as a function of T :(i) using Eq.(4.18), (i) performing numerical integration

over o and qinEq.(4.7) by making use of Eq.(4.9) and (iii) performing numerical integration over @
and q in Eq.(4.7) by making use of Eq.(4 10). In following, above mentioned three values of 7, are
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called 7, (D), 7,,,,(7),and 7, (T) respectively. Computed %ls € > %wM & and %w &

are plotted as function of x(=k, 7/ ¢) inFig.4.1, for GaAs/Al_Ga, _As superlattice which has been
modelled in terms of following values of parameters: n.=7.3x 10" cm 2, m, = 0068 m,, d=500 A,
L=200Aand €,=13.1. n, is the number of carrier per unit area. The results from experimental data
[3] and from earlier calculations of r,_, for a two-dimensional gas [19] are also plotted in Fig. 4.1 for
comparision with our results. As can be seen from the figure; (i) %h is larger than %}NM and
%W for all values of T anfi (i) %WM > %m for all values of T. 7, and r,,,, both are
computed for the case of width of an electron layer is negligibly small as compared to the length of the
unit cell . However 7, ,unlike 7,,,, , incorporates the contributions only from electron-electron
scattering processes which take place for smaller ¢ (gd{(1). Comparision of 7, and r,,,, suggest
that it is not quite correct to say that electron-electron scattering mainly contribute for small momentum
transfer processes. The ratio 7,,/ 7,,,, has been plotted as a function of xinFig4.2. Figure4.2
suggests that large momentum transfer electron-electron scattering processes contribute more at small
temperature (7 < 30K) . For T > 30K contribution from large momentum transfer electron-electron

scattering processes is nearly 25 % that of small momentum transfer electron-electron scattering processes.

Comparision of our computed %WM with %M for two dimensional electron sheet suggest
that interlayer interaction, which is present in type-I superlattice and is absent in a 2D electron sheet,
contributes significantly at all temperatures. However this contribution depends on length of the unit cell
d. As canbe seen from Fig.4.3, contribution from interlayer interaction to electron-electron scattering
increases on decreasing d. For ¢ — Q(small d-values) the superlattice structure approachesto a 3D
free electron gas system, whereas for ¢ —y oo (large d- value) the superlattice structure tends to 2D
free electron gas. As it should be, our computed %h almost merges with %w for 2D free
electron gas for d=2000 A . An interesting point which merges out of Fig. 4.3 is the stronger electron-
electron interaction in 2D free electron gas as compared to that in 3D free electron gas. Comparision
between %WM and %W inFig. 4.1 suggests that increase in width of an electron layer enhances
the relaxation time for electron-electron scattering. The electron-electron scattering weakens on increasing
width of the layer consisting of electron, as expected.

Figure 4.4 shows plot of %lw e, 352 function of x for three values of n (=3 x 10" cm %, 5

x 10" cm?, 7.3 x 10" cm?), It can be inferred from the figure that electron-electron scattering relaxation

time decreases with increasing number of electron per unit area in a superlattice . Looking at figure 4.1
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Fig.4.1 Plot of dimensionless electron relaxation time as a function of
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(dash-dot line ), fi/t;xmer (dash-dash line), B/t mer (solid line)
and results from Ref. [19] (dot-dot line).
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to 4.4 we notice that electron-electron relaxation time can be much larger to make significantly
cor;tribution to mobility at lower temperature (T<10K). A rough estimate of mobility due to electron-
electron scattering can be made using #, = %g- , which can be reasionably high for T <10K . It can
therefore be concluded that electron-electron scattering plays an important role in determining the
transport properties of low dimesional systems such 45 semiconductor superlattices at small T-values,

where electron-phonon scattering become insignificant.

Our computed %l © & from Eq.(4.8) by making use of Eq.(4.9) is plotted as a function of
¢ inFig. 4.5 .The resutls from calculation of Reizer and Wilkins are also plotted for comparision with
our results . Asis seen from the figure, variation of %1 & with ¢ is very similar to that of %1

versus T. The figure suggests that electron-electron scattering becomes faster on increasing <. Also,

w Er

the comparision of our calculations with that of Reizer and Wilkins shows that interlayer interactions
contribute significantly for all values of <. This contribution is larger at smaller values of <. Itistobe
mentioned that in obtaining the results plotted in Figs. (4.1) to (4.5) a numerical computation of
%lw & %1 & and %l (©) € has been made by performing double intergrationin Eq. (4.7)
and Eq.(4.8) using Gaussian qudrature method.

(B) Results on 7,

The transport relaxation time for electrons and for holes in InAs/GaSb type -II superlattice
have been calculated by making use 0fEqs.(4.23) to (4.26) in Eq. (4.7) and then by performing double
integration over q and ¢ . The InAs/GaSb superlattice has been modelled in terms of following values
of parameters: £, (InAs)=12.3, £,(GaSb)=14.4, m* =0.026me, m", =0.3me, d=1000A.
Type-II Superlattice consists of electron-electron scattering, hole-hole scattering and electron-hole
scattering, whereas type-1 superlattice consists of electron-electron scattering only. The relaxation time
of an electron is therefore contributed by electron-electron scattering and electron-hole scattering.
Similarly the relaxation time for a hole is contributed by hole-hole scattering and by hole-electron
scattering in a type-II superlattice. The contribution from electron-hole scattering or hole-electron
scattering is governed by the separation (d,) between an electron layer and a hole layer in a unit cell.
In orderto see how the change ind, affects the relaxation time of an electron ( 7, ) and relaxation time
of ahole (r,, ), we have computed n Ty Ep and A T,, €, 358 functionof Tatn_=n_ =5x 10"

cm 2 for four values of d, (=100 A, 300 A, 500 A and 700 A), for InAs/GaSb superlattice using
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Eqgs.(4 23)t0 (4.26) inEq. (4.7). The n_ and n, are the number of electrons and number of holes per
unit area, respectively . We have taken e,= (e, + €,)/2, where €5, (&g,) is the Fermi energy of
electrons (holes). Our computed %Ze €, and %m €, decrease onincreasing d, whend, < d/2,
for all values of d. However, they start declining on increasing d, for d,> d/2. The maximum value
%22 &, and %Zh &, is obtained when d,=d//2 at all temperature. In type-II superlattice a hole
layer lies in between two electron layers. The Fig.4.6 suggests that 7,, has minimum value when the
hole layer lies exactly in between two electron layers and it start increasing as soon as the electron
layers shifts towards ;my one of the two electron layers. We thus find that electron -hole scattering
makes a minimum contribution when a hole layer lies exactly in between two adjoing electron layers.

Same conclusion apply to the hole-electron scattering which contributesto 7., .

In order to see how the change inn_and n_at a fixed value of d affectsthe 7,, and 7,, , we
have computed 7,, and 7,, asafunction T atd, =400 A for three values of n_ (=3 x 10" ¢cm?, 5x
10" ¢m? & 7x 10" cm ?) and three values of n, (=3 x 10" cm?, 5x 10" cm?, & 7 x 10" cm?) using
Egs. (4.23)t0(4.26) in Eq. (4.7). Our computed results are plotted in Fig.4.7. The figure suggests that
both %23 €, increases on increasing n_ at all temperature T-values . Similarly %Zh €, increases
on increasing n,, at all T-values. This can be attributed to the simple fact that probability of electron-
electron scattering and that of electron-hole scattering increases on increasing n_, whereas probability

of hole-hole and hole-electron scattering increases on increasing n,

We have also computed 7,, and 7,, by making use of Eqs (4.27) to (4.40) in Eq.(4.7), in
order to see the effect of increase in width of'a layer consisting of electrons (holes). It is found that the
effect of change in width of a layer on electron-electron, hole-hole and electron-hole scatteringin a
type-11 superlattice is similar to the effect of change in a width of layer on electron-electron scattering in

type-1 superlattice.
44  Summary
We have calculated 7, (T), 7.y, (T), 7,,,(T) for GaAs/Al Ga, _As superlattice. We find

that %h > %MM and %uw > %w for all values of & . By comparing our computed 7, and

Ty » WE conclude that large momentum transfer electron-electron processes make significantly large

contribution to the relaxation time at small T-values (7 < 30K) . For T > 30K contribution from large
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momentum electron-electron scattering processes is nearly 25 % that of small momentum transfer
electron-electron scattering processes. 7,,,, reduces tovalue of 7, , for 2 DFEGfor ¢ — oo (very
large value of the d), whereas it reduces to value of z,_, for 3DFEG for 4 — 0 (small vatue of d).
T, iS smaller than the 7, for 3DFEG for all values of 7, which suggests that electron-electron
scattering plays an important role in determining the transport relaxation time for an electron when
effective dimension of a system reduces. Comparision between our computed 7,,,, and 7,,, suggests
that increase in width of an electron layer enhances the relaxation time for electron-electron scattering,
We also find that electron-electron scattering relaxation time decreasing on increasing number of
electrons per unit area in a superlattice . The behaviour of our computed 7,,,, asafunctionof ¢ is

found very similar to its behaviour with 7.

We computed 7,, and 7,, for InAs/GaSb superlattice . We find that %29 has maximum
value when the hole layer lies exactly in between two electron layers and it start increasing as soon as
the electron layers shifts towards any one of the two electron layers. Same conclusion apply to the
hole-electron scattering which contributes to r,, . We further find that %ze increases on increasing
n_ at all temperature 7-values. Onincreasing the width of a layer consisting of electrons (holes) 7,

(7,,)increases at all values of T and n_ (n,,).
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