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PLASMONS AND THEIR DAMPING IN A DOPED 

SEMICONDUCTOR SUPERLATTICE

The complex zeroes of dielectric response function of a doped GaAs superlattice are computed to 

study' the frequencies and damping rates of oscillations in coupled electron-hole plasma. The real part 

of a complex zero describes the plasma frequency, whereas imaginary part of it yields the damping rate. 

Strong scattering of charge carriers from random impurity potentials in a doped GaAs superlattice gives 

rise to a large value of damping rate which causes over-damping of plasma oscillations of coupled 

electron-hole gas below qQ, a critical value of wave vector component (q) along the plane of a layer of 

electrons (holes). The plasma oscillations which correspond to electrons gas enter into over-damped 

regime for the case of weak coupling between layers. Whereas, plasma oscillations which belong to 

hole gas go to over-damped regime of oscillations for both strong as well as weak coupling between 

layers. The damping rate shows strong q-dependenee for q < qH whereas, it weakly depends on q for 

q > qc. The damping rate exhibits a sudden change at q=qc, indicating a transition from non-diffusive 

regime (where collective excitation can be excited) to diffusive regime (over-damped oscillations).

2.1 Introduction

The electronic collective excitations in semiconductor superlattices have been the subject of 

immense theoretical and experimental research interests ever since the discovery of semi-conductor 

nanostructures [1-9]. Investigations were basically motivated by the potential usefulness of plasma 

frequency in characterisation of electronic and optical properties of a material. The collective excitation 

frequencies are given by the zeroes of the dielectric response function of a system. The frequencies at 

which dielectric response function goes to zero are complex quantities and they are functions of wave 

vector. The real part of a zero of dielectric function gives plasma frequency (ah,), whereas the imaginary 

part of it yields damping rate (a) of a plasma oscillations. A doped semiconductor superlattice (DSSL) 

exhibits a strong scattering of electrons (holes) from random impurity potentials present in it. The impurity 

scattering causes the electrons (holes) to dufiuse instead of moving ballistically [10-11], Therefore, the 

plasma oscillations in a DSSL hold different states as compared to plasma oscillations in other 

compositional superlattices [12]. The relaxation time [ r ] for single particle scattering ina DSSL has 

been found much-shorter in comparison with the r for a compositional superlattice where electrons 

(holes) are separated from ionized impurities. Small value of r leads to a strong damping rate of
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plasma oscillations, for certain wave vector values. An electron (hole) plasma mode approaches the 

pair continuum to meet the damping region at some critical values of the wave vector. The plasmons in 

a system can be said well behaved if ah » a. For m = a or <xb < a plasmons are not well behaved 

and they cannot be observed experimentally. In case of DS SL, small value of t results in a large value 

of a for electron-hole coupled plasma oscillations. The condition ah » a canonlybeacheivedfor 

higher values of in plane wave vector component (q) for a given value of out of plane wave vector 

component (kz). Similar to the case of ah, a too is function of both q and kz and it forms a band 

when it is plotted as a function of q for all possible values of kz, The study of a, therefore, appears to 

be equally important as that of mP, in case of DSSL.

In this chapter we report a calculation of zeroes of dielectric response function, e (q,k, z) for 

GaAs-DSSL. Here, z is complex frequency. The GaAs-DSSL is modelled to be periodic array of 

layers consisting of electrons and holes alternatively along z-axis in dielectric host medium of dielectric 

constant, g 0. The electrons and holes are assumed to be confined to their respective layers. The 

motion of an electron and of a hole in the x-y plane is assumed to be that of free particle with effective 

mass, m'o for an electron and m\ for hole. Harmonic oscillator wave functions are used as envelope 

functions to describe electron (hole) motion along z-axis. Calculation of e(q,k,z) involves r which 

can depend on both the wave vector and frequency. We perform calculation of t, within Born- 

approximation, using layered electron gas (LEG) model. Both (Op and a are computed as the function 

of q for -1 < cos (fad) < 1, where d is the period of superlattic along z-axis. Critical value {q) of q at 

which oh diminishes has also been computed as the function kz for both electron and hole plasma 

oscillations. qc varies from zero to a maximum value on changing cos (kd) from 1 to -1 for electron 

plasma, whereas qc shows weak kz -dependence for a hole plasma. Also, qo is much higher for hole 

plasma oscillations as compared to that for electron plasma oscillations. The chapter is organized into 

four sections. Formalism of e (q, k, z) and r is given in section 2.2 The computed results are discussed 

in section 2.3. Our work is then summarized in section 2.4

2.2 Formalism

The GaAs DSSL consists of one layer of electrons and one layer of holes in a unit cell. There 

exist electron - electron, hole-hole and electron-hole interactions which give rise to coupled electron- 

hole plasma oscillations The e(q,k,z) therefore consists of intralayer interaction terms (which involve
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electron-electron and hole-hole interactions) and interlayer interaction terms representing electron-hole 

interactions. The e (q,k,z) for intrasubband transitions in a GaAs-DSSL is given by [13]

e (q, k,z) = [l - VJP"{Ha - F.r{\- W,)}]x

[l - -F*(l- W»)}\- . (2.1)

The first term on the rhs of (2.1) is contributed by intralayer interactions, whereas second is given by 

interlayer interactions. Further, first term consists oftwo square brackets. The terms under one ofthe 

brackets are contributed by electron-electron interactions, whereas those under other brackets are 

contributed by hole-hole interactions. The V, = 2m1! q<a and Wj(q, k) (with i and j == e,h) is given by 

[13]

where Wu(q,k) = Wb(q,-k) = W n{q,k) and |R. ,| = |i?»| = 0. The matrix elements Htj(q) are defined 

as[13]

Here y/,(t) is the product of two envelope functions. The FJ^q) are given by Eq,(2.3) on replacing 

q\t -1'| by q(t-t'). We assume that only ground sub-band is filled and it produces intrasubband plasma 

oscillaitons, for both electrons and the holes. The # (q) and F (q) are evaluated using the envelope 

functions

exp(-#jFui) exp(ikd) exp(dFji) exp(-qd)
yVv(q,k) —-------------------------------------1---------------------------------------

Qxp(ikd)-exp(-qd) Qxp(-ikd)-Qxp(-qd) ’ (2.2)

fiv(q) = dt\^a dt> exp(-^|/ ^ *'|K0v«(O- (2.3)

(2,4)

where $ are the harmonic oscillator wave functions, which can be given by

$> = Nn exp(-/$z2 / (2.5)

with

N" -(fil2n4n\ri), (2.6)
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where /? is defined as

P =
47m ntj Not 

hso

1/4

(2.7)

On performing integration on equation (2.3) with the use of equations (2.4) and (2.5) we obtain

# (<?) = exp Kip?) K4^Kpfx\ip (2.8)

and

F
M exp

_1_

\P P1) (2.9)

Nd/a is the number of donors/acceptors per unit volume. The Peg and Phh are the non-interacting 

polarizabilities for two-dimensional (2D) electron and hole gases, respectively. For intrasub-band 

transitions, Pm and are given by [14],

rfjq
Pri (q’2) “ m\[(q2v2rj / 2) - z[(z+/>(</))] ’ (2.10)

where v and y (q) are Fermi velocity and single particle damping for an electron (a hole), 

respectively .The is the number of electrons (holes) per unit area. The y (q) is the inverse of v

which for electron (hole) scattering from random impurity potential, within Bom-approximation, is 

given by [15]

rM) =
Ijoidia fd2k

h J An
F(A'-Jfc)| (1-COS0)<?(€*~ 6t), (2.11)

where n^^N^ d and Q is the angle between ^ and £' The ^ and ^'are wave vector component 

in x-y plane. <= * is the single particle energy eigenvalue and V(k'-k) is screened random impurity 

potential. We solve Eq. (2.11) by taking LEG model based expression for V(k’-k) [ 14] to obtain
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rlq) =
Sftj>, Aze^hC, 

m](qa]f
1 + F(q)( 1 / qa+l / qah) + g{q) 
{l + R2 (q) + 2 R(q) coth {qd)}"2 - sinh {qd / 2)

-2

(2.12)

where

2 i i
----- -j-------- ;

qah
+

4 F{q) 
2 * * <7

g(g)=cosh(^t//2)+sinh(£/(i/2)R(g)

(2.13)

(2.14)

and

F{q)-
(cosh(^ti) -1) 

sinh(^) (2.15)

The ze represents the charge on an impurity and a, = (soh21 m’e2) is effective Bohr radius 

and C. is a constant introduced in an empirical manner to obtain right order of values of jj(0) which is 

comparable with the value of damping constant estimated from experimentally measured values of 

electron (hole) mobility in DSSL [16], We continue to discuss our results in the next section.

2.3 Results and discussion

Equation e{q,k,z)= 0 is solved for z as a function of q and kz using Eqs.(2.2) to (2.15). 

Simplification of e {q,k, z) =0 yields a IVth order equation in z, which has no real root. All four roots 

arecomplex. An analytical solution of e (#, fe, z) =0 is not possible. We solved e (q,k, z) =0 numerically 

using iterative method of finding complex zeroes of a function. For computation of our results, we 

modelledGaAs-DSSLintermsofthefollowingvaluesofparameters[13]: e» = 12.5, de = 600A,d^ 

= 500 A, dj= 100 A, n,e = nsh=1012 cm-2, me =0.07 me,m*h =0.7 me, nD=5xl012 cm'2 and nA=2xl012 

cm'2, Ce = 1.742xl0'2 and Ch = 3.9213x10^. The ds, d.a and <7. are the widths of an electron layer, a 

hole layer and an undoped layer between an electron layer and a hole layer, respectively. The d = 

d+d+2d.. Our computed m (real part of z-values at which <=(q,k,z) goes to zero) are plotted as a 

function of qd for -1 < cos (kd) < 1 in figure 2.1. The figure shows two bands of a, for coupled electron- 

hole plasma oscillations. The upper band which corresponds to electron plasma frequencies is wide,
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Fig. 2.1 The coupled electron-hole plasma frequencies as a function of 
qd.
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whereas lower band which represents the hole plasma frequencies is narrow. Also, hole plasma 

frequencies are much softer as compared to the electron plasma frequencies. The lower edge (which 

occurs at cos(kd) = -1) of electron plasma band varies approximately as (q2 - <f)m and it disappears 

at q=qc- Whereas, upper edge (which correspond to to$(kd)-\) remains nonzero for all values of q 

and it becomes almost independent of q for small ^-values. Plasma modes in lower band, which 

correspond to hole gas, disappear as (q2-q2)m at q^qc for all possible values of cos (kd) as it can be 

seen from the figure 2.1. Also, upper edge of hole plasmon band corresponds to cos (kd) = 1, 

whereas lower edge of it belongs to cos (kd) = -1. The cos (kd)= 1 also corresponds to d 0 limit

in which layers of charge carries strongly interact with each other and the DSSL behaves like a two 

component 3D isotropic free charge carrier gas. On the other hand, cos (kd)=-1 represents the case 

of finite d which can be vary large. For large value ofd, there is weak interlayer coupling and each layer 

in DSSL behaves independent of others. In weak coupling case, plasma oscillations are essentially of 

2D nature. We thus notice that electron gas gives higher plasma frequency in strong coupling limit, 

whereas hole gas yields higher plasma frequency for weak coupling case of a DSSL. The bands of both 

the electron plasma as well as hole plasma get narrower on increasing qd.

The asymptotics of our results can be obtained for the case of weak coupling between the 

layers (cos (kd) = -1). For weak coupling case (cos (kd) = -l), second term on right hand side of Eq. 

(2.1), which represents coupling between electron plasma and hole plasma oscillations, is negligibly 

small and it can be dropped. Solution of Eq.( 1) then yields.

where

(2.17)

and

(2.18)
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For small q-values, HM =FM = 1 and TM(q,x / d) = qd / 2, which gives rise to

(2.19)

where a> = (4mive1 / m* <=,)1/2 is 3D plasma frequency. The qcj is defined as

%d = y J (°) / (o B (1+ a* l djn. (2.20)

As is obvious, non -zero real part of Zj(q,n 1 d) exists for q > qCJ. The q is determined by 

Yj and m*, as can be seen from Eq.(2.12). Computation ofEq. (2.20) gives qcd=0.4294 and

qch d- 1.2934, which coincided with the values shown in figure 2.2. Our computed ^values for both 

electron and hole plasma oscillations using Eq. (2.1) are plotted as the function of cos (kd) in figure 

2.2. It can be seen from the figure that qc varies from zero (at cos (kd)= 1) to maximum value (at 

cos(kzd) = -1) for electron plasma oscillations. The qc shows a small variation on changing-cos (kd) 

from 1 to -1 for hole plasma oscillaitons. The qd is found to be roughly proportional (kd)m for 

electron plasma oscillations.

Figure 2.3 (a) shows the plot of ah(a for hole plasma oscillations) as a function oiqd for 

-1 < cos(ktd) < 1. Similar to the case of a> p for plasma oscillation, upper edge of ah band belongs to 

cos (kd) = -1, whereas lower edge of it corresponds to cos(kd) = 1. The ah forms a narrow band 

and exhibits a sudden change at q-qc. The sudden change in ah can be well understood from Eq 

(2.19) whcih clearly shows that for q < qc, both terms on right hand side are imaginary giving rise to 

purely imaginary value of zj(q,n Id) For q<qc, c& strongly depends on q, whereas for q>qe, a h 

weakly depends on q. It is to be noted that for q < qc electron (hole) system enters into a diffusive 

regime where plasma oscillations are overdamped to yield o> p = 0. The transitions from diffusive 

regime to non-diffiisive regime, which occurs at q = qc, can clearly be seen in figure 2.3(a) and form 

Eq. (2.19). It can be inferred from figure 2.3(a) and Eq. (2.19) that the value of rh in diffusive regime 

is much smaller than its value in non-diffusive regime, suggesting that the mean free path in diffusive 

regime is smaller than that in non-diffusive regime. Also, the mean free path in diffusive regime becomes 

much smaller than the width of a layer It can also be seen from figure 2.3(a) that the ah bandtendsto 

saturate as q approaches zero. The coupling between electron and hole plasma oscillations, which

25



1.5
1.4

1.2-

1 -

0.8-

■° 0.6- o
o*

Fig. 2.2 Critical q-values as a function of k*d for coupled electron-hole 
plasma oscillations. The solid curve corresponds to electron 
plasma, whereas dash-dash curve corresponds to hole plasma 
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Fig. 2.3 (a) The plot of damping rate for hole plasma oscillations as 
a function of qd for - l<cos(k*ii) <1.
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Fig.2.3 (b) Damping rate of electron plasma oscillations Is plotted as 
q function of qd for -l<cos(kzd)<l.
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appearthrough third term on the right hand sideofEq. (2.1), make a significant contribution to ah, as 

is obvious from figure 2.3 (a).

The computed ae(a for electron plasma oscillations) is plotted as a fimction of qd, for 

-1 < cos(kzd) < 1, in figure 2.3(b). Similar to ah, the ae also forms a narrow band showing upper 

edge at cos (kd) = 1 and lower edge at cos (kd)=-1. The behaviour of ae is similar to that of ah 

and ah is roughly equal to ae for q > qc . At q - q^ a sudden change can be seen in lower edge 

(which corresponds to the case of weak coupling between the layers) of ae. This can also be seen 

from Eq. (2.19). However, the upper edge of ae (which corresponds to the case of strong coupling 

between the layers does not show a sudden decrease at q = q^ suggesting that the electron plasma 

oscillations never enter into the over-damped regime and they remain well behaved at all ^-values, for 

the case of strong coupling between the layers. The electron plasma modes for the case of cos (kd) 

close to -1 enter into the over damped regime of plasma oscillations on lowering the q, as it can seen 

from figure 2.3( b) and Eq.(2.19). The a for q < qc shows stronger kz -dependence as can be seen 

from figure 2.3(b). It does happen due of stronger kz -dependence offirst term of right side ofEq,(2.19), 

which becomes imaginary for q<qc.

2.4 Summary

In conclusion, we present a calculation of complex zeroes of e (q,h, z) to study the plasma 

oscillations and their damping in GaAs-DSSL, Plasma oscillations enter into over-damped regime for 

q<qc for a given value of cos (kd). A sudden change in a at q = qc is found, which describes a 

transition from non-dfiffiisive to diffusive regime of plasma oscillations. The a -values are much larger 

in diffusive regime as compared to those in non-diffijsive regime.
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