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CHAPTER - V

SCATTERING OF ELECTRONS BY 
LITHIUM ATOMS

5.1 Introduction :

Inspired by the success of the techniques 
employed to calculate the scattering parameters the study 
of scattering of electrons by lithium (Li) ( z = 3 ) 
atom is continued in this chapter. In contrast with 
hydrogen and helium, very meagre data is available both 
in the theoretical studies, ( Mathur et al, 1971, 1972 ; 
Walters, 1973 ; Vanderpoorten , 1976, Guha and Ghosh,
1979 ; Tayal et al, 1981 ) and the experimental results. 
Most of the theoretical studies, were done by using 
Glauber frozen core approximation* for the alkali atoms. 
Walters (1973) used thes^ types of approximations for the 
study of. (_2N + 1 ) electron system of^the alkali atoms.
He reduced the ( 2N + 1 ) electron system*of the alkali 
atoms to the hydrogen atom like problem. This was 
done by splitting the total interaction ( equation 2.24 ) 
into two parts, dne corresponding to the valance 
electron and the other part due to the inner ( core ) 
electrons of the target with respect to the incident 
electron, and considering for” one electron ( valance )
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Slater ( Coulson, 1961 ) type of wave functions for the 

alkali atoms. In this chapter we would like to study the 

Born terms ( equation 2a47 ) using the Walters method 

of the interaction at the incident energies E = 20 to 

800 eV. We consider the e - Li collision processes in 

the present chapter. The plan of the investigation is 

described below :

i) Elastic scattering of electrons by the ground 

state one electron wave function of the lithium 

atom, using the Slater type of orbitals.

ii) An analytical study of higher order Born terms in 

the static field with an example of e - Li 

elastic process.

iii) An analytical study of elastic and inelastic

scattering of electrons by lithium atoms using 

Clement! C 1965 ) type of wave functions,

5.2.1 Elastic scattering of electrons bv the ground 

( 2s ) state of lithium atom ( ESGLi } :

( Rao and Etesai, 1983c )

e + Li ( 2s ) ----- > e + Li ( 2s )

.... ^5,l}

As in the processes of ESGH { Sec. 3.2.1 ) and ESGHe 

( Sec. 4.2.1 ) here also the final state wave function
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of the target lithium atom is same as the initial 
ground state function ( Guha and Ghosh , 1979; Walters 
1973 ). The .ground state wave function of the lithium 
atom corresponding to the valance electron can be given 
as

f ( r )2s A

where

<i> ( )Is

= A r^ exp ( - y^ r^ ) + B ({) ( r^ )

....(5.2)

3 1/2
« C ] exp ( - y2* rx ) (5.3)

here = 0.65 , y2 = 2.7, A and B are constants
so chosen that U ( r. ) is orthogonal to 0 ( £. )

2s "* Is A
«and also normalised. Thef normalisation constants A and

iB can be obtained by solving the following integrals.

/

f

f

( ) 

( )

* (?i> 

( )

d r^ = 1

d rx = O 

dr = 1

upon the substitution of equations ( 5.2, 5.3 ) in the 
above integrals we obtained the constants given as
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A = 0.11252 , B = - 0.16861 . Now the product of 
the initial and final state wave functions of the lithium 
atom can be obtained as

t ( r. ) $ *
i ' f <?1> [ A exp (

- B exp (

2 i .B exp ( - 2 y2 j 

- 2 A B ^ exp ( -(yj^ + ?2 ) ri )

, .2 2 . _ • *+ A r^ exp C - 2y^ )

.*•«(5»4)

B2 exp ( - 2 y2 ) + 2 A B D ( y2 ) exp ( - y3 )

2 2 * i+ A D ( y^ ) exp ( - 2 y^ ) (5.5)

[ B2 D ( y, ) ■ 01tP ( ~ Vj *1 )

exp ( - y2 r ) 2 3
------r------- " + A D ( y3 >

+ 2 A B D 2 ( y, )
G

exp ( - y3 r1 )

3 »
= - £ Bn=l n-

exp ( - y„ rx }
(5.6)
(5.7)
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t i
where A = A , B = 0*42204 , and the constants s

tand yn s can be obtained through the equation ( 5.4 ). 
Final form of the wave function product ( equation 5.7) 
is similar to that of ESEH ( Sec'. 3.3.1 ) process 
( equation 3.21 ). So the derivations of the ESEH 

process scattering amplitudes ( equations 3.22, 3.24, 
3.25, 3.27, 3.28 ) can be- easily extended to the 

present ESGLi process, as follow . The interaction 
between the incident electron and the target lithium 
atom • can be written as

V
d

+ 1
I

(5.8)

+ 1
ro

+ 1
I T3

2
ro

where rQ and r^ , r2 » are the position vectors of 
the incident and target electrons w.r.t. ‘ the target 
nuclei. Following the procedure of Walters (1973 ) this 
interaction can be written as

+ V_ ( r ) (5.9)
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"here Vc ( r0 ) is the core potential due to the two 
electrons of the Is orbital of lithium atom* This core 
potential can be obtained as ( Walters , 1973 ),

( ro ) S d E <j) *“ i
( r ) [

] (r) (5.10)
i

where N = 1 for the lithium atom. Substituting 
equation ( 5.3 ) in the above integral we will obtain 

the core contribution to equation ( 5.9 ),

= 2 / d Ei Is ( El > C + 1

I ]

(j) ( r. ) (5.11)Is x

By analogy with the integral procedure of equation 
( 4.9 ) the closed form of the above integral can 

be obtained as

V ( r ) = - 2 [ -i“ + 2,7 ] exp ( - 5.4 r ) (5.12)
c° rQ o

The total interaction to be considered in the present 

study is
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V +
"o

2 [• + 2,7 )

exp ( - 5.4 r ) (5*13)
o

Substituting the equations ( 5.7, 5.13 ) in the scatt
ering amplitudes ( equations 2.12, 2.57, 2.43 ) we 
will obtain the corresponding scattering contributions 
for the CCS ( equation , 3.2 ). Now the closed form 
of the first Born approximation for the ESGLi process 
can be obtained as

f
(1)
i—>f TT S d £o e!tP t 1 3 • £0 > / d £i

$ ( r ) [i '1
1

£i

Vc ‘ V> ( Si >

1
2 %

2
2

n=0
A,Dn(y ) / dr exp ( i q.r )
n v yn J -o - -o

/dr i [ + 1
-o

(( 4- 5.4 )) exp ( - 5,4 rQ ) ]

exp ( “ Yn rx )
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Using the first Born results of ESEH process 
( equation 3.22 ) the above integral form can be 
written in the closed form

f
(1)
i—>f

n=0 AnDn(VnH

3 / 2 2 xyn ( q + y4 )

/ 2 . 2 %( q + 2 yn )
3 / 2 , 2( <* +

( 5.4 ) y4 

3 t 2yn ( q + y4

“7)

(5.14)

+

3

where the constants
A = 8.95318 , A,o 1
Y0 = 5.4, yx

I IA s and y„ s are obtained as n 'n
= 4.7740 , ^ = 0.63640 and
= 3.4 , y^ = 1.3 , y^ = 5.4 .

Now in the derivations of second Born (equation 
2,57 ) and third GES ( equation 2.43 ) approximations 
we will neglect the core potential contribution 
( equation 5.12 ), in the interaction of e - Li elastic 
process ( equation 5.13 ) ( Guha and Ghosh , 1979 )
The imaginary and the real parts of the second Born 
approximation equations( 2.60, 2.59, 2.58 ) and third 
GES term ( equation 2.43 ) can be obtained by substi
tuting the equations ( 5.7, 5.13 ) in the corresponding
scattering amplitudes ( equation 2.60, 2.59, 2.58, 2.43).
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The closed form of all these scattering amplitudes can 
be readily obtained from the final forms of the ESEH 
process ( Sec. 3,3.1 ) for the present ESGLi process.

Im f (2)
HEA k.

2 B D n ( y ) —Vn=i n n y I 2
* n

I 2 h ( ^i2 - *n2 > - , 2 2( q + yn )

Ij/ ( P±2 , O ) ] (5.15)

Rel f (2)
HEA % k.i

3 12 B D n ( y )
n=l n ' 2

[ 2 h t h2 - vn2 ) / 2 J 2 s( q + yn )

I2' ( P^2 , O ) ] (5.16)

Re 2 f
(2)
HEA

-T2 Bn D n < Vn }
2 7i ki n=l

I3 ( ^1 ’ >
n

-3 ’ ( Pi > 0 )
/ 2 2 s( q + yn )

I2 ^ ^i2 * yn2 ) i (5.17)
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where ^ ( fi.2 , y* ), 1^ ( pJ2 , 0 ), I2 ( V* , y* ),

I2’ ( Pi2 , 0 ), I3 < Pi • Yn ) * I3' ( P± , 0 ), are 

defined differentiable integral solutions ( ESEH Sec.3.3.1)
t iAnd Bn s , yn s are constants can be obtained through 

the equations ( 5.4, 5.7 , 2*60 ).

B1 = 0.71247,

= 5.4,

B2 = 0.3799,

y2 = 3.4,

B3 = 0.05064

y3 = 1.3

In a similar way third GES term can be derived making 
use of the equations ( 3.16, 3.28 ).

(3)

Gr»r*CO
iTT2 2 C Bn' ‘ Vn ) F ( <1. Vn )

ki n=l

• ••• (o «is)

2 C D n ( y ) (
ki n=l

n ' yn 1 v 2 . 2q + Yn
2 2 0, q + yn v 2 2

[ 4 [ log ( —------— ) \ + %

yn q )

2 A { q, yn ) ] (5.19)

where the constants are obtained as = 29.73803 ,
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Cg = 2.49206, = 0.00710. And a typical function

A ( q, yn ) was defined previously ( equation 3.16 ) .

Finally the expression for TCS, and exchange scattering ' 
amplitude ( equations 3.3 , 2.36 ) can be obtained by 
substituting the equations ( 5.15, 5.5 ) in(3.3 , 3.17 )
And making use of the ESEH results ( equations 3.12, 
3.29. ), the corresponding expressions for the present 
case can be written as

.Li
a tot

3 %
m-n-r-~

ki"
2 [ B D n ( y )

l n v yn
n=l

log
n

Yn + Pi2
^i2

(5.20)

and the exchange contribution can be obtained as

9och
* \ D n ( y„ ) [

n=0
yn 2

)
3

....  (5.21)
*

Using these expressions(equations ( 5.14, 5.15, 5.16, 
5.17, 5.19 ), we have calculated the DCS and TCS at 
incident energies E = 20 to 700 eV. Exchange term 
equation (5.21) is neglected in the calculation of DCS 
( equation 3.2).
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5.2.2 Comparison of present ESGLi results with the

other data :

ESGLi scattering amplitudes ( equations 5.14, 5*15 

5.16,5.17, 5.19 ) derived in the preceding section (5.2.1) 

are employed to calculate DCS and TCS in the incident 
energy range E m 20 to 700 eV . We have used an average 
excitation energy DE = 0.0745 a.u ( Vanderpoorten,1976)
in the calculation of second Born term ( equation 2.57 ). 
These results are listed in the Tables ( 5.1, 5.2 ) and 
shown in Figs. (5.1 to 5.4 ) along with the other 

theoretical and experimental data. The. present DCS 

results are found to be in good agreement with the availa
ble data, in the angular region Q < 50°. The details

of the Tables and Figs.are as follows .

Fig. ( 5.1 ) shows, DCS for ESGLi at incident
i »

energy E = 20 eV . Solid curves a and b are the

present results, with-and without real part ( equation 

5.17 ) in the DCS calculations. Other representations

correspond to theoretical results -C-------- C C ( Close

coupling ) of Issa ( 1977 ), +— EBS of Byron and 

Joachain ( taken from the abstract book of Illrd 

National Workshop on Atomic and Molecular Physics 

Roorkee , 1981 ) and experimental data • — of Williams

( 1976 ).
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Fig, (5,2 ) shows DCS for ESGLi at incident

energies E = 100 eV ( set A ) and 200 eV ( set B ).
/ « « N

Set A shows present DCS ( solid curves a and b j

at incident energy E = 100 eV along with the comp

ared theoretical results, « — CS ( Corrected Static }

of Tayal et al ( 1981 ), + —* EBS of Byron and

Joachain ( taken from the paper of Tayal et al , 1981 ) 

and 0 — of present work ( Corresponding to Static 

results, Sec, 5,3,1 ). Set B shows DCS at incident 

E = 200 eV. All the representations in this set B are

same as given in set A.

Fig, ( 5,3 ) shows present DCS ( Solid curves
» i

a and b ( Sec, 5.2,1)) and small circles ( Sec. 
5.3,1 ) for ESGLi at. incident energy E = 400 eV.

Fig. ( 5.4 ) shows the TCS ( equation 5.20 ) at 

incident energy range E = 80 to 700 eV.

It can be observed from the Figs. ( 5.1, 5.2, 5.3 ) 
that the variation in DCS ( solid curves a and b ) 
due to real part ( equation 5.17 ) gradually decreases 

from E as 20 to 400 eV. This behaviour shows that 
the convergence of equation ( 5.17 ) is more rapid at 
higher incident energies ( 400 eV ) than at lower 
incident energies ( 100, 200 and 20 eV ). And the curve

!



213

t
b approaches the compared EBS and CS results 
( Tayal et al, 1981 ) in the angular region © < 60°

and lies in between these compared results for 
© > 60° ( Rao and Desai , 1983c ). The present

t »

DCS results ( curves a arid b ) agree well with the 

compared theoretical results in the small angle region. 

Similar to ESEH ( Sec. 3.3.2 ) process, here also it was 

difficult to make exact comparison of our DCS results 

due to the unavailability of experimental data at 

higher incident energies. A lot of similarities between 

ESEH ( Fig. 3.3 ) and the present ESGLi ( Fig. 5.2 ) 

process can be observed . These similarities are due 

to the wave functions ( equations 3.19 and 5.2 ) 

used in these two targets which are similar to each 

other . Fig. (5.4) shows the general pattern of the 

variation of TCS with respect to the incident energy.

In Table ( 5.1 ) we have listed ESGLi scatter

ing contributions ( equations 5.14, 5.16, 5.17, 5.19, 

5.15 ) to the DCS ( equation 3.2 ) at 400 eV inci

dent energy. Similar to ESEH process ( Table 3.8 ) 

here also fluctuations are observed in the real part 

equation ( 5.17 ) and the contribution of this term 

to the DCS was greater than real part equation (5.16) 

and third GES ( equation 5.19 ) term. In Table ( 5.2 )
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we have listed only DCS results at incident energies 

E = 80 to 700 eV.

In anticipation of experimental and theoretical 

results, we are expecting that the present ESGLi 

results will compare nicely at small angles and high 

incident energies.

5 .3.1 An analytical study of higher order Born terms 

in the static field :
i

( Rao and Desai, 1983b )

So far, first and second Born terms, ( equations 

2.12, 2.57 ) for elastic process of hydrogen (Secs, 

3.2.1 , 3.3.1 },helium ( Sec. 4.2.1 ) and lithium

( Sec. 5.2.1 ) atoms are studied for the direct and 

exchange interactions ( equations 2.24, 2.36 ) by con

sidering, the structure of the target atoms. These 

studies will be combursome if one goes beyond a 

certain limit of the atomic number z of the target 

atom. . In order to overcome this difficulty for complex 

system we would like to extend the HEA approximation 
( Sec. 2.3.5 ) for the fields. The analytical express

ions for the static field of various atoms can be 
obtained by the p*©neer workers ( Tietz , 1965;,' Cox and



Bonham, 1967 ; Bonham and Strand,_1963, 1964 ). In 
this Section an attempt is made to derive three Born 
terms ( equations 2.12, 2.57, 2.62 ) of HEA ( Sec. 
2.3.5 ) for the known static fields. These derived 
amplitudes can be used for any atom, as an example 
elastic scattering of electrons by the static field 
of lithium atom is considered.

Consider the non - relativistic scattering of
a spinless electron by a potential field Vgt ( rQ ) of
an z - electron atom with initial and final states and
energies given ( f E. ) and ( § , E_ ) respec-

i * x f 1
tively. The static field can be defined as

V,t < ro > = < $ Vd
'f _ > = Ai < >

,(5.22)

is the interaction between the incident electron 
and the target atom ( equation 2.24 ). The static 
potential for different atoms can be obtained ( Cox and 
Bonham, 1967 ; Tietz, 1965 ; Bonham and Strand , 1963, 
1964 ) in the analytical form. A general form of this 
c an be given as

Vst 1 ro 5 Nz 2 
i=l

exp (
R.i

Yi (5.23)
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I t
where z is the atomic number and R. s and y. s

a
are constants. For lithium atom these constants

i

( Tietz , 1965 ) can be given as

R1 = 1.2197 1!04 - 0.2197, R3 = 1.6368

R4 = 0.9508 9 ^ = - 1.6368, R6 = - 0.9508

n
= 0.8776 9 *2 = 7.9510, v3 = 2.4948

V4 = 3.9701 9

It 1.4948, y6 = ' 2.9701

Z ■ 3, iand N = 6 . 4

Similarly for various atoms, the analytical expression 

( equation 5*23 ) for the field and related constants 

can be obtained ( Tietz, ' 1965 $ Cox and Bonham, 1967 

Bonham and Stand , 1963, 1964)• The fourier transform 

of equation ( 5*23 ] can be obtained as

Vst ( r0 ) - / dp exp ( - i £ . bo ) / dp.

exp ( - i pz ZQ ) V st ( p + pz $ )

(5.24)

where

vst ( B + pz^ > z
2 %T

N
2

i=l

*i

( 2■ 2 2 . VP + Pz + )

,{5.25 )
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With these defined quantities ( equations 5.22 to 

5.25 ), first, second and third Born amplitudes for 

elastic process can be derived easily. The basic' 

approximations and the computation procedure adopted 

in the second ( equation 2.57 ) and the equation(2.62) 

Born terms are same as given in HEA ( liec. 2.3,5 ).

The first Born amplitude can be obtained in 

the closed form through the equations ( 5.22, 5.23, 

3.8 ).

(1)
f
st

2 z
N
t

i-1

R.
/ 2 2 sC q + Yi )

(5.26)

The second Born amplitude for fields can be 

obtained by substituting equation (5.22) in equation 

(2.57). The resulting expression can be obtained in

the d p integral form by using equation ( 5,24 )
/

and following the procedure given under equation
•"2( 2,57 ). Then the real and imaginary terms 0 ( k/“ )

for DCS can be obtained.

Im
HEAS

rJ d jo q - p + $ )

V ( 2 + Pt 9 )

...... (5.27)
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Re

„ 3 2 4 % 2
44 %* k.

N
/dp 2

i»J=l

Ri %

/ 2 2 2't/t I 2 2 \( p + p± + yA ) ( i 2 - E 1 + ^ + Yj )
x ' J

.... ( 5,28 )

71 k,
9 9 92 R. Rj I ( p, , u , v )

i,J=l

------  ( 5.29 )

(2)
p»’heas

« 2 2 N4 7E__ z
, 4. ,4 11 ki i,J=l

S Rj C fi I d p /

d p.

( Pz - h )

( 2 - 2 2 wvp + pz + y± ) v ! ^ 2 ^ 2 > B ~ 2 I + Pz + yj )

D
2 k. <P / d P /

d p.

^ PZ " ^

/ 2 ^ 2 xVP + Pz }

( 2 2 2W1 |, 2, 2 \ V p '+ pz + y ) ( | q - p | + pz + yj )

... .(5.30)
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zT
N
£

11 ki i,J=l
Ri RJ t X4 ' yi » yJ ^

i°k. ( *3 ^i * yi ^ “ yi X4 ^ Pi * yi * yJ ^ j ^

..«. (5.31)

The evaluation of the d p , d integrals in the
above equations ( 5*28, 5.30 ), and the closed form of 

these are given in appendix. In the forward direction 
( q i-“> 0 ), the imaginary and real parts have a finite 

value. Now the TES can be obtained using the equation 
(5.29).

A 2 ft.. R T4_2UL_ [ s ---i_J
t°t icy ( Yy - Yj )

a 2 2
'2 ' 2~x lo9 „ 2 2H + yj

+• 2 
i=J

R.---- i](fV + y«2 ) (5.32)

Similarly third Born real part can be obtained through 
the equations ( 2.62 ) and (5.22 to 5®24 ).

(3) (3) (3) / ’
Ref = f +f (5.33)

HE AS is 2 s

where
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(3)
is

N 2 2 2 2.„ 22 2 Ri r\j Rk 1 ^ q ’ yi » yJ * yk ^
ri ki i,J,k=l

■ l • i a (5 e34)

ana
(3)

f
2s

3 N ,
—4—? 2 'Ri:iR3Rk
^ ” Ki i,J,k=l

o=> d p.7<P / ~i  -- -” “ ( PZ “ pi}
/ d PZ

( pz - )

C 2 2 2 1 2 p 2 |2(p + pz + yi )( |q - £ ~ £ 1 + P.£ +Yj - Pz )

,2 ,2 ])
( P + P7 + Yy )

,(5.35)

2 1In equation (5.34) * X ( q » Yj_ 

an analytical expression for d p

, y^2 ) represents 

integrals. This

is similar to the one given by Yates (1974) ggg§| Singh 
and Tripathi (i960). Now the integrals in equation (5.35) 
can be reduced to one dimensional integral after evalua
ting the principal value integrals. This one dimensional



integral can be evaluated using the quadrature integral 
technique )(Abramowitz and Stegun , 196$- ). The DCS 

0 ( k/“~) can be obtained for fields using the follo

wing amplitude.

(1) (2) (3) (2)
F = f 4- Re f + Re f + i Im f
HEAS st HEAS HEAS HEAS

....(5.36)

Using the first ( equation 5.26 ) and second ( equations 
5.29, 5.31 ). Born amplitudes we calculated the T5S,
DCS 0 ( k/"^) for the lithium atom ( Tietz , 1965 ) at 

incident, energies 100 to 700 eV. The constants used 
in the analytical form of the field of lithium atom 
( equation 5.23 ) are same as given by Tietz (1965). The 
TES ( Rao and Desai. , 1983 fa ) and DCS are shown in 

Tables ( 5.3, 5.4, 5.5 )•.

5.3.2 Comparison of static field results of ESGLi with 

the other data :

Using the scattering amplitudes ( equations 5.26, 
5.29, 5®31 ) for the static field of lithium atom ( Tietz, 
1965 ), we have calculated the DCS and TES in the 
incident energy range E = 100 to 700 eV. The DCS (small 
circles ) results at incident energy E ** 100, 200, and
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400 eV are shown in Figs. (5.2 and 5»3 )* These 

results are found to be in good agreement with the 

compared present ( solid curves a and b ) and 

other theoretical ( EBS, CS ( Tayal et al, 1981 ) ) 

results. It can be observed from these Figs. (5.2,

5.3 ) that the present static field results for lithium
j

atom are r.< z*ii in between the DCS results ( curves 
a' and b' ) of ESGLi ( Sec. 5,2.2 ) . In Table (5.3) 

we have listed the first Born ( equation 5.26 ) and 

second Born ( equations 5,29, 5.31 ) results at incident 

energy E = 400 eV. Table ( 5.4 ) shows the present DCS 

at incident energies E = 100 to 700 eV. and TES 

results in the energy range E = 20 to 600 eV 

( Rao and Desai, 1983 d ) are listed in Table ( 5.5 ) 

along with the compared results of Guha and Ghosh 

( 1979 ). The present TES results are found to be 

slightly lower than the results of Guha and Ghosh (1979).

5.4.1 An analytical study of elastic and inelastic 

scattering of electrons by Lithium atoms :

( Desai and Rao, 1983 b )

The aim of the present section is only to obtain 

the analytical expression for DCS equation (3.2) for 

elastic and inelastic scattering of electrons by lithium
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atoms using the ground and excited state wave functions 

of lithium atom ( Clementi , 1965 ; Mathur et al, 1972 ). 

The approximations to be used in these derivation are 

same as discussed in ESGLi ( Sec. 5.2.1 ). And the first 

order exchange amplitude is derived using the Lewis 
(1956) integral technique. The present section shows 

only how easily the derived amplitudes ( ESGH Sec. 

3.2,1, ESEH Sec. 3.3.1 and ESGLi Sec. 5.2*1 ) can be 

utilized in deriving the present scattering amplitudes 

for elastic and inelastic processes of lithium atom. The 

wave functions for ground and excited states of lithium 
atom ( Clementi, 1965 ; Mathur et al, 1972 ) can be 

written as

i 2s
( )

f; 4 u

2
2 A. exp (

•X.
i*l

+

O f
2 Aj r^ exp ( - yj r^ ) ] (5*37)

J=3

and for excited state

U ( r. ) * Ar, exp ( - y* r. ) (5.38)
2p 1 1 x

»

where A = 0.22805 , y = 0.5227 . The product of

the wave functions for elastic ( final state is same as 

ground state ) and inelastic ( final state is taken as
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excited 2p state ) can be obtained in the derivative 

forms as given in ESGH ( equation 3*6 ) and ESEH 

( equation 3*19 ) processes. Following the computation 

procedure adopted in ESGH ( Sec. 3»2.1 ) process, the 

present scattering amplitudes can be derived. The 

closed form of these can be obtained as

Im
(2)

F 1 4
[ z Di F ^

8
-EEJ

J=1

D ( Yj
4

F ( Yj ) +
16
2

k=l

Fk D 2 ( yk >

F ( Yk ) ] (5*39)

Re
(2)

F 1
4

' 4 
[ 2

i ss

D. G (
l

1

yi }
8

- £ Ej
J=1

D ( Yj

F ( Yj ) +
16
2

k=l

2Fk D ' C Yk )

F ( yk J ] (5.40)

GES
(3) 1 4

[ 2

i=l
D. H ( 
l

Vi >
8

“ 2 EJ
J=1

D (Yj )
4

H t Yj ) +
16
£

k=l

„ 2 rk D ( Yk )
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H ( yk ) ] (5.41)

where s , Hj s, s and s, Yj s* s are

constants can be obtained from the product of the 
ground ( equation 5.37 ) and final state wave function 
of the lithium atom and F ( y ), G(y), H(y) are
the corresponding scattering amplitudes in ESGH process 
( equations 3.11, 3.13, 3.15, 3.16 ). Similarly the
first order exchange amplitude ( Joachain , 1975 ) can 
be obtained using the equation ( 5.37 ) and the integral 
technique of Lewis (1956). The closed form-of this can 
be given as

T
ex

6-2 £ AiJ ( - 1 )
i, J

m +n 1

(5.42)

where
2

f
1

2
f

2

m and n are the powers of the target coordinate in the
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wave function equation ( 5.37 ). The first Born 

amplitude can be obtained similar to equation { 5.14 ) 

of ESGLi ( Sec. 5.2.1 -') . All these expressions 

( equations 5.39, 5.40, 5.41 ) can be easily extended 

to the inelastic process.

Finally,the DBS equation ( 3.2 ) can be 

obtained for elastic and inelastic processes using 

the derived scattering amplitudes ( equations 5.39, 

5.40, 5.41, 5.42 ).
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Table (5.5 ) : Comparison of present TES (Using the

equation 5.32) with the other results
(in units of a02 ).

Incident energy
E eV

Present
results ( a )

20 15.6742 23.3383

30 10.4725 13.4880

50 6.2950 7.2058

60 5.2600 5.8376

70 4o4995

100 3.1520 3.3177

150 2G1060 2.1568

200 1.5770 1.5992

300 1.0514

400 0.7886

500 0.6313

600 0.5260

(a) : Guha and Ghosh (1979).
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