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CHAPTER - II

THEORETICAL APPROXIMATIONS AND APPROACH
‘ TO THE PRESENT WORK

2.1 Intrdduction :

Soon after the advent of ''Quantum mechanics'®,
collision propessesfbetween electron and atoms_were studied .
particulérlyAat intermediate and in High energx regions. -
The theoretical methods employed in the calculation of
- scattering amplitudes are reviewed by Callaway ( 1980 ),
Branssden and Mc Dowell ( 1977-78 ), Burke ‘and Williams
( 1977 ) and Moiseimsitsch ( 1977 ). These methods were
broadly classified as (1) wexpanéion methods (2) methods
based on the'consﬁructibn of optical model potentials
(3) +the Born approfimation and extensions ‘(4) the distprfed
wave methods (5) semiclassical methods and (6) many -
body theory. ’ )

Inspite of large amount of work done, still theie exist
significant differences between theoretical and experime-
ntal ‘results. Theoretiqally the problem was basi;ally
attempted from two sides

(i) nature of the interaction ( direct or static, exchange
and polarization, interactions ) (2) validity ( angular
and energy‘:egioﬁs ) of the methods for cross section

calculations,



The theoretical study of electron collisions with.
atomic systems gained considerable amoﬁnt of interest in
recent years., This is due to several reasons, Firstly,
there is an incregsing demand for eleétron col;ision
cross sections in other fields. Secondly a number of
important advances have occured on the experimental #ide
( Dalba , 1979 Blaauw et al .1980 ; Shuttle worth,
1979 3 Klewer , 1986 3 Srivastava et al 1980 and
Vuskovic and Srivastava, 1980 ). Many of these provide
very stringent tests of the theory and have stimulated
the development of new theoretical approaches. Finally the
,avail&bi&%y of increasingly more powerful computers has
made it poss;ble to perform calculations which « would

have been impossible to carry out a decade ago. .

The purpose of the present chapter is to review
few of the important theoretical approximations related
to the present study. The following sections deal with the

theory of electron collisions with atoms.

2.2 -Basic formulae for the electron collisions with atoms

.

2.,2.1 Potential scattering :  For the better understanding
of the problem, consider the non - relativadstic scattering
of a spinless particle by a potential field V ( £ ). This
will allow us to introduce in a simple way some of the

basic ideas which are required in the analysis of electron

scattering by atoms. The total energy of the system . is

L3
L3
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equal to the sum of the kinetic energy and potential
energy of the incident particle. Then the correspond-
ing time - independent Schrodinger equation in a.u.

( atomic units ) can be given as
[-=% % +v(z) 1 () = ed(z) (2.1)

where the mass of the particle has: been set equal to one,

and E is its total energy. k. and gf are the initial

1

and final momenta of the particle, with k = | k; i

= I ke | and E = k2/2 » The momentum transfer is given
by g = Ki - gf\, where q = 2 k sin /2 , © is

the scattering angle and g is the magnitude of the wave
vector transfer g . It 1s also convenient to introduce
the '! reduced potential '* by U(r) =2V () and
the strength of this is | U, | = 2| v, |-, where | v, |
is a typical strength of the potential V ( z ) . IFor a
potential vanishing faster than 1 oat farge distance

the stationary scattering wave function @(+) represent-
Ky
ing a plane wave incident in the Z - direction ( which we

choose along  k, ) and an outgoing ( + 3 spherical wave

has the asymptotic form given as

' LK. ikro
i’(+)(£)—-——-> A(k)[el“l£+f(k,@,¢)-—§: ]
_}g_i I—>co

s (2'92)



where £ ( k; ©, ¢ ) is the scattering amplitude correspon-
ding to scattering in the direction £k =( @, ¢.) , and
the coefficient A 1is independent of ¢ . A number of
methods have been used to‘found the scattering amplitude.

Few.of these' methods are outlined in the following sections.
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1

the potentials which vanish faster than r ~ at large r the

(+)
k.

above as a solution of the Schwinger equation (2.1) satis-

stationary scattering wave function ‘ﬁ has been defined

fying the boundary condition ( 2.2 ) . It can be shown

( Bransden , 1970 3 Joachain, 1979 3 Burke, 1977 ) that
y (+3 \
=i

tion - the Lippmann ~ Schwinger equation -= which directly

is also a solution of an equivalent intégral equa~-

takes in to account the boundary condition ( 2.2 ). That is

(+) - ()
§ (z)=8% (z)+Sg6, (g, zt)ulzh)
kg ko
[ (+)( ' )dg (2.3)
K ‘ ~3/2 i k..r is
where @ k~ (r) = <z | k; > = (2a) e *
=i

is a plane wave corresponding to the incident momentum gi

' - -
and the free Green's function G(:) ( £, L ) is given

by
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(+) ; i ) 3 i_lg'.( r -z )

. €—> oF (2.4)
or '
ik|z=-x| A
G(+) (z,z') = -3 &— (2:5)
© T 4m | z-z' |

By looking at the asymptotic behaviour of ( 2.3) one can
show that the scattering amplitude :f is given by the

iﬁtegral representation.

L(+)

2

£ = -2 < U .
7 § ke vl IIJ-'l‘-:i ’

. v 2
= -(2®m) <F: | v] §f+) >
Kr ks

.
1

(2m)° T, , | (2.6)

o _ : -3/2 ikeeL
where § - ( Kzl k > =(2m) e
ke

Lo}
g
it

is a plane wave corresponding to the final momentum k. ,
and Tfi is called the transition matrix element given

as

Tp, = < E.V’ lv] ¢  x- - (2.7)
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The plane waves have been '' normalised ''! here in such

a way that

¢ 1T > o= <k lk> = B(k-k) (28

Uﬁ

We shal; now give briefly a few important approximate
methods which have been proposed for the case where the
energy of the projectile electron is ' higher than the first
ionization energy of the target atom. Detailed discussions
of several of  these methods may be found in the weview
articles of Joachain and Quigg ( 1974 ), Bransden and

Mc Dowell ( 1977-78 ), Byron and Joachain ( 1977 ).

2,2,3 The Born aéproximg}ions ¢ We begin by the Born

series, which is obtained if one elects to solve the Lipp~-

mann - Schwinger equation ( 2.3 ) by perturbation theory.

Starting from the '' Unperturbed '' incident plane wave
R (+3
.§ . (£ ), we then generate for @ the Born series
k. K.
=i . =i
(+) ® '
Ty =2 ¢ (z) (2.9)
K. n=0 n
=i
with

i
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n n o
and

(+)
Kl( L 2' ) = GO ( I, _1;,) U ( 2')’

ny 2 (2.10)

we see that the Born series ( 2,9 ) is a perturbation
series in powers of the interaction potential. Substituting
the series ( 2.9 ) into the expmession ( 2.6 ) we

obtain the Born series for the scattering amplitude, namely.

£ =3 T | \ (2.11)
n=1 Bn
where
— 2
f = -22"<3% Jul§ >
Bl Ef -1
o d ig iy
=-Z~§;~3fe“ T u(gr)dg (2.12)
and
_ (+) (+)
f P *2ﬁ2<§ IUG UoconsG Ul s >
Bn K ° © K
=f =i
n> 2 (2.13)

In this last expression the potential appears n times and
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the Green's function ( n = 1 ) time. The J¥ ﬂﬁé order
_Born approximation to the scattering amplitude can be

defined as

J
fog = X, Tn (2514)
So that fBl = fBl H fB2 =_ fBl +ZfB2 etc . It is
apparent from the above equations that the Born series .
(2.11) may be pictured as a multiple -scattering series

in which the particle interacts repeatedly with the potenti-
al and propagates freely between two successive interact-
ions , W& should therefore ' expect that the - Born series will
converge if the incident particle has a sufficiently

large energy and ( or ) if the potential is wé;k enough.
Very wide application to scattering problems has been made
of the first term of the expansion ( 2.13 ) since its simpli-
city is often felt to compensate for all it may lack in
accuracy. Unfortunately its error is usually substantial,

and further terms of the series, of order higher than the

first or second gre quite difficult to compute.

2424 The.eikonél approximation : More recently, atomic

collision processes have been studied by means of the eikonal
abproximation." Originally introduced in quantumyscattering
theory by Moliewe ( 1947 ), this eikonal approximation has
been considerebly developed by Glauber ( 1959 ) whq proposed
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4 very fruitful many - body generalization of the method.

- To construct the eikonal approximation it was assumed that

the incident ~particle satisfied the ''Short wave length'!
condition ( ka > > 1 )} to gether with the !'‘high-energy"!
requirement given as

IZO!.—. “‘Jg-l— <1 - (2.15)
k

With these conditions the eikonal scattering wave function can be
obtained from ( 243 ) by a linearization of the Green's fun-
ction ( 2;4 ). The corresponding dikonal wave function can
be' given as

) - =3/2 - 3 Z o
§ (z) = (2=) exp [ i kyoz ~=5¢ S U(R, 2)d2' ]

E i 2k -
sece (2.1\6)

Having obtained this we may * now substitute this expression
in to the integral representation ( 2.6 ) of the scattering

amplitude., This yields

f o= =g Jexp (igr )U(z)ex[ -z
1 . .
S U(b,z2') az ] d (2.17)

It was shown by Joachain ( 1979 ) that the eikonal scattering

amplitude can be given as



E

ceenee (2.18)

where the quantity

x(k,b)==—3-J U(b,z)az

is called the eikoenal phase shift function. The eikonal
multiple scattering series can be obtained from ( 2.18 )
by the expansion of exp ( i x ) in powers of x . And

define the eikonal multiple scattering expression as

£ = 3 F |
E n=1 "En (2,19)
where,
.n . n
= k i 2 .
fon = 537 5T S d b exp(igb)[x (k,b) ]
eceeo (2920)

and from equations ( 2.18 to 2,20 ) we get

f et @b Saz o ¥R U(b, 2y (2e21)
E1 47 . - -’ °

it is worth noting that since we have assumed the potential

to be real the quantaties fén given by ( 2,20 ) are alt-

ernately purely real and purely imaginary.

f = §§5 J & pexp (igeb) [ exp % ix(k,b) 3 - 1]

49



41

Let us now investigate the relationship between the

terms of the Born series ( 2.11 ) and of the eikonal series
( 2,19 ) when Ka > > 1 ( where !''a'! is range of the
potential ). First of all it is clear from quations ( 2,12 )
and ( 2,21 ) that

f = f (2.,22)

Bl El

for all inteiaction potentials, all energi¥es and all momentum
transfers. We note that if the Z integration in ( 2,18 ) ‘
had been performed along the direction ki ,‘using the coordi=-
nate system, we would only have approximately gc§‘= g-I
for small g's and the welatien (2,22 ) only hold at small
angles. Since we know that the Born Series converges at
sufficiently high energies for non -~ relativistic potential
scattering it is very desirable to secure the relation (2,22) «t
all angles. Remarkable relationships between the higher
terms of the eikonal and Bo;n series have also been discovered
- recently ( Byron et al 1973 § Moore , 1970 ; Byron and
Joachain , 1973 ).

One of the ways to proceed beyond first order, perturba-
tion theory i.e. first Bérn approximation ( 2,12 ) is to‘
employ higher order Born approximation{ However calculation
of the Born series to higher orders requires a considerable
amount of work., Another promiging and yet still simple way

to improve over the first order theory is to apply Glauber



approximation . The Glauber approximation ( 1959 ) is

the generalization of the eikonal multiple scattering
expansions to many body scattering problems., It was fiﬁét
proposed to study high - energy hard on nucleus collisions{
but has also been applied in recent years to analyze atomic
CUollision processes., The formulatdon of the Glauber

scattering amplitudes. are given in the following section.,.

2.3.1 TIhe scattering of fast electrons by atoms :

Let us consider the nonrelativistic scattering of an
electron by a neutral atom of atomic number g . We éhoose
the nucleus of the atom-as the origin of the coordinate
system, and denote respectively by x and ;J (-3 = 1,2,40.2)
the coordinates of the incident particle and of the atomic
electrons. We shall also use the symbol X +to represent
all the target coordinates. We shall first consider the
direct scattering . The free ‘motion of the colliding parti-
cle before the collision is described by the direct arrang-

ement channel Hamiltonian H = Ki + hi where Ki is the

d
kinetic energy operator of the projectile and hi the
internal target Hamiltonian, such that hi l n o> = Wn l n>y.

Theg full Hamiltonian of the system is
+ Vv (2.23)

where V is the interaction between the electron and the

d

o



target in the initial ( direct ) arrangement channel,

given as

1 - (2.24)
, lz-z;|

Z
V, = =% + =
J=

And the Green's operator for the direct scattering can be

-

written as

(+)
G

-1
g = (E=-Hy +i6 ) (2.25)

The S = matrix element corresponding to Transition a -=> b
( initial to final ) is given by ( Byron and Joachain ,

T 1977 ).

<b|8]a> =5 _-21i8(E -E)
%8 (p, - Py ) Ty, - (2.26)

where we have factored out the total enérgy and momentum
conserving delta-functions and the reduced T - matrix

element on the energy - momentum shell is given by

- (+) |
To = <§ IV T, > (2427)

(+5

Here Q a is the exact scattering state - véctor satisfy

the Lippmann - Schwinger equation

DU A (2.20)



We shall '' Normalize '' the free states in such a way

that in a giv@8n arrangement channel
<§k”l Ek'> = <k”} n“lk'} n' >
= 8 n'n'' & ( k'~ k') : (2,29)

The differential cross section for a binary collision
process is given as ( in a.u. )
k AS
dg _ £
" | fpa | (2.30)

where we have introduced the scattering amplitude

2

fba = = (27 ) Tba (2.31)

Before we analyze how the eikonal methods can be used to
evaluate)the scattering amplitudey We begin by considering
the Born series, which is obtained by solving ( 2.28 ) by
iterating ( 2,25 ) and substituting in ( 2,27 ). This yields
" the T - matrix for direct scattering given as

(+) (+) (+)

Toa= S8 | Vy+ VG, V +V Gy VyG Vy+ ool >

cevee (2032)

The corresponding scattering amplitude can be given as

fba = «2 an (2433)



where
- 2 (+)
fg, = - (2m) <§blvded Vg eeees
(+)
Gg Vgl 8, > (2.34)

In this last expression the interaction Vd between the
projectile and the target appears n times and the Green's

operator C(+)
Gy (n = 1) times.

Similarly if we take into account the spins of the
incident and scattered particles, in ( 223 to 2.31 ) we

can define the exchange scattering amplitude.

- 2 ex -
Opa = - (27) T, (2.35)
where (+)
ex . +
Tba”‘,‘*ﬁpb ,[vpllila >

In the above quations the interaction Vp is tthe
potential in the "‘rearranged channel ( obtained by permu-
tation of;the coordinateS of the incident  and ejected
electrons ). pr , U : are the correséonding free wave and
full scattering wave functions respectively. By analogy with
( 2432 to 2.34 ) the Born exchange scattéring amplitude

can be given as
. oD

9%a = E

g ‘ (2.36)
n Bn ‘

1
where

Gt
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- 2 (+) o +)
9, = - (2m) <§pb[vped Vg eeseG 4 vdlma>

sss e ) (2.37)

In the above expression G(g) appears ( n - 1 ) times. A

similar equation using the rearranged Green's operator

G, = ( E=~ Hp + it ) may clearly be written down

by wusing ( 2.35 ).

2.43+2 The Glauber appr6ximation : This method is a many -

body generalization of the eikonai approximation, which we
*described in the previous section. For a direct collision
leading from an initial target state 10 > to a final state
| n > the Glauber scattering amplitude is given by

% Glauber ,{1959 ).

‘ s igb 1x gl by X) _yf
fo = za— [ d be <mi&e Ny 1}|0>

veees (2.38)

where the Glauber phase shift function is given in terms of

the Vd

the -integration being performed along a Z - axis perpendicu-

* : N
lar to g . A few important points concering the Gleuber

approath are : firstly, it may be viewed as an eikonal



approximation to a '!' frozen ‘target'' model proposed
by €hase ( 1956 ) in which closure is used with an
average excitation -energy DE = O , secondly , consider-
able insight into the properties of the Glauber method
may be gained by expanding ( 2.37 ) in powers of Vg o

namely
f. = £ F (2,39)
G n=1 Gn .

where

— n ) igtk;).

fGn”Qlﬂcxi”Hdebe <m|[x(k,x)1] 0>

/ oo se0 (2040)

and comparing the terms of ?én with those of the Born

series an « We note that fBl 5 fGl ’

terms ¥én are alternatively real or purely imaginary,

and also the

while the corresponding Born terms ?Bn are complex for
n 22 , This special feature of the Glauber amplitude
leads to several defects such as (i) the 'absence of the
important real term for elastic scattering and (ii)
identical cross séctions for . electron -~ and positron -
atom scattering. Other deficiencies of the Glauber
amplitude ( 2.40 ) include a logarithZmic divergence for
elastic scattering in the forward direction, and a poor
description of inelastic collisions.involving non-spheri-

cally symmetric states. Its major role in atomic collision

4
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theory has been to stimulate interest in eikonal methods
(‘Byron and Joachain , 1977 ). Such as the ''eikonal -
Born series '* ( EBS ) theory--( Byron and Joachain ,

1973, 1974, 1975, 1977 ).

2.3.3 The eikonal Bérn series method ( EBS ) : This method

combines the Born and Glauber series to obtain a .consistent
expansion,of the scattering amplitude in _powers of 1 .
The Glauber Térm f Gn 9Jives in cach order perturbation
theory the  leading piece of the corresponding Born ferm
( for large k ) for all g's except in second order where
the long range of the coulomb potential 1is wesponsible for
the anemalous ‘behaviour of ?62 ~all small q. In the EBS
approximation a consistent calculation of the direct scatter-
ingi amplitude through order k"2 was obtained by the
replacement of feal part of ?53 b? ?63 in the -Born
scattering amplitﬁdee In this way the EBS direct scatter-
ing amplitude
£ = f +¢& + F , (2.41)
EBS Bl B2 G3 -

in adaition, exchange -effects are taken into account by

the use of Ochkur amplitude ¢ . ( Ochkur, 1963, 1964 ).

.

The EBS method hés been applied to various ’'electron
- atom collision processes ( Byron and Joachain , 1977 ) at

intermediate and high energies, And it is an improvement



over the second Bérﬁ or Glauber approximations. It was
also analyzed that the convergence of the Born series
for the 'direct amplitude is slower at large q than in
the small q region., Thus an '! all - order -'!' treat-
ment would be clearly -desirable at large ¢q, and it
was done by the optical model ( Joachain, 1979 3
Mittleman and Waston , 1959, 1960 3 Byron and Joachain,
1974, 1977 3 Joachain and Vanderpoorten et al 1977 ;
Vanderpoorteﬁ s 1975 3 “Pyrness and Mc Carthy , 1973;
Riley and Truhlar , 1976 ) methods and taréet expansion
( Burkey and Webb, 1973 3 Callaway and Wooten , 1973,
1974, 1975 3 Callaway and Mc Dowell, Morgan, 1976 )

me thods.

After the formulation of Glauber eikonal approxi-
mation ( Glauber, 1959 ) véry less amount of work was
done for y&he calculation of DCS and integral cross
sections. This was due to the computational complexity
involved in evaluating the Glauber amplitude ( 2. 38 )
for systems more complicated than helium. Even for
s%mple system ( hydrogen ) also,it was found difficult
to get the closed form of the Glaubers scattering
amplitude.. Very few methods ( Franco, 1971 3 Thomas and
Chan, 1973 ) were propesed to evaluate the Glaubers~
amplitude with some assumptions on the atomic wave func-

tions. These methodsfjﬁﬁfjalso réquired a good deal

o e d

49
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>of‘chputational analysis for the calculation of scattering
cross sections. Recently Yates ( 1974 ) has proposed ano-
ther way for the evaluation of (2.,38) and obtained the
closed form of the three Glauber terms . for the elastic
scattering of electrons by hydrogen atoms. He made the
term_wise analysis of the !''Glauber eikonal series'!
i( GES ), and de£ivéd the expression for DCS through order
( kzz ). for <@y electron - atom collision processe#, af
intermediate and high energies. 'The basic assumptions
followed in this GES study of Yates ( 1974 ) were as
follow§.

2,3.4 Thé‘Giauber Eikona;_Series ( GES\) : Denote @i

and mf ﬁ%& the init;al and final state wave)funqtions

of the tafget atom, and § is the charge of the incident
particle, And g is.éssumed perpendicular to tﬁe incident
direction and k, is chdﬁbeﬁ as the polar axis for the
integrations. Substituting the ' Fourier® integral represe-
ntation of the interaction Vy ( 2.24 ) in the Glauber

phase shift function ( 2. 38 ) we will get the corresponding
phase shift

A K . z d -i peb i peb
X ( b b gl L 2K B B ] b )z-—-g--~ z f E e E-[l-—-e’;E —-J]
' J

=7 kg S "p"'z““‘ e B(p,L 1 ceeek) (2.42)
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where p 1s a two - dimensional vector. Again substi-
tution of ( 2,42 ) into ( 2,40 ) gives the corresponding

GES given as

(n) _ o) dp
fops ( @ k; ) = 2mk, ( ‘Q~% S _§L cenns
(mk, ) n! Py
dp N
J —2b=i =~<T |B(p ) ..
P la-pl * !

g, E_ e E ) and

Z
n -1 ’
p = I p » Now the DCS& can be given as
i=1 ~1i
kg (1) 2 (2) 2 (1) (3)
o =—p— [t + | £ | -2f¢ f ]
GES i GES GES GES GES

ceee (2.44)

where al; the terms in the last expression cah be obtained
from ( 2.43 ) for n=1, 2, and 3. It is obvious from
equations { 2.43 ) and ( 2.34 ) that
(1) _ | (2)
f = f

, and f =
GES B1 GES B2

Hhi
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( Massey - Mohr approximation , 1934 ). Using the
equation ( 243 ) Yates ( 1974 ) has obtained the closed
forms of the three GES terms for elastic scattering of
electrons by hydrogen atoms. He found some divergent
integrals in the scattering amplitude for n > 2 , and
these were cancelled exactly for # particular combinations
in the scattering amplitudes. The corresponding third
term of scattering amplitude for elastic scattering of

electrons by hydrogen atom can be given as

(3) 4 2
£ =~ (=3 ) L 2 [ 4] Log ( i~§+1? ) |

GES 8ki T 1+
2
+=%= - A1) ] (2.45)
where
A(T) = 2 (log T)" + - *tI L~—§—l— y T<L 1
n=1 n
oo > B
= - 2_]_ (= lé_T ) ’ T>1

n= n

( T= ~%— , dimensionless vector )

This expression Was obtained after the cancellation of the

divergent integrals.

A number of comments can be made regarding (2.43).

For example in the forward direction ( T —> O ),
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(1) (3) (2)
£ and f approaches finite values, whereas f
GES GES GES

diverges as log T. And in the high energy. limit ( ki> > 1)

the imaginary part of second Born term ( Moiseiwitsch and

Williams , 1959 3 Massey -~ Mohr , 1934 ) reduces to

(2)
f given as
GES
- 1 i o 1+ T2 2
Im ( for ) = [ 2(2 +. T%) log ( == )+ T°=1 ]
, B2 2k, (1 + 12)° T
(2)
R = f (2046)
GES

The main advantages in this GES approach are

i) The principal difficulty ( Coupling of b and by s )

in the Glauber phase function (‘2038 ) is evaluated by
considering the fourier form of V, , ii) All the scatt-

d
ering terms are obtained in the closed form, iii) The

calculation of the scattering cross sections are easier
than the Glauber's calculations iv) Eguation ( 2.44 ) gives
good estimation of the Glauber cross section. The discou-
raging point 1in this approach is the underestimation of

DCS when compared with other data { 8ingh and Tripathi,

1980 ) due to, the rapid convergence of the series ( 2.43 ).

After the formulation of GES, Yates ( 1979 ) has

proposed amother theoretical development for the high -



‘energy - higher order Born approximations { HEA ) for
electron - atom collision processes. The assumptions

made in HEA were similar to those of Glauber theozry.
The computation procedure in HEA was similar to that of
GES. A number of advantages were observed over GES and
some related approximations. This new theoretical study of
Yates ( 1979 ) was an extension of his earlier work

( Yates, 1973,1974 ). :This is one of the powerful approxi-
mations( Dewangan , 1975 3 Gerjuoy and Thomas , 1974 3
Glen ., 1976 j3 Gau and Macek , 1975 3 Chan and Chang, 1976 {
Golden and McGuire , 1976 ; ‘Hambo et al 1973 ; Flannery
and McChan , 1974 § Joachain and Vanderpoorten , 1973 3
Geltman, 1971 3 Stauffer and Morgan , 1975 3 Byron and
Joachain , 1973 3 Byron and Latour , 1976 3 Byron and
Joachain , 1977 3 Joachain et al 1977 3 Yates, 1973 3
Yates, 1974 3 Joachain et al 1982), for the description
of small angle scattering of electrons by atoms at inter-
mediate and high energies. The theoretical development
proposed by Yates ( 1979 ) was to obtain consistent
approximation for the IXS through order kE? , and to

obtain closed form of second and third Born Terms. The

computation procedure in HEA will be described now.

263,59 High - energy higher order Born approximations(HEA):

e e e sty e e i g et S St i s S S . e G P W S S e St WA A T i s R

Consider the three terms of the Born series from

( 2.34 ), and interaction V or vy from ( 2,24 ) and the



Greens function from ( 2.4 ) for the evaluation of the
second and third terms of Born series. A more convenient

form for
(2) (3)
f and f can be obtained by
i=>f i=—>f -
H
transforming the integration variables ( I, 0 I, ) to

the set ( Is 2 Y ) s y = Eo - Iy 3 in the matrix

elements of second and tH:ird Born terms, and replacing vy
1
by x, s ‘then the two terms reduce in the following form

(2) 1 ' i gaéo
£ o= Z [ dzx e Ve (g ) I5-(2.47)
i— n .
(3) x iger
L 2 g-“@
fi->f Ton nzn! [ d 2o © an( Eo) I o (2.48)
b4
where
t
e l k-e l‘ [} 1
_ =i =o -
Iy = Jd Eo e an ( Lo Lo ) Gn ( Lo )
Koo -
It 1 RGN [ 1 tt
. =i =0
= Jdz, e Vant ¢ 59 -5, ) G, (gl dx
k t i
1 L2 X ] t (]
=i =0
& Vn'l (ao B Eo - L ) Gn'( 20 )

The basic approximations are introduced by the trans-

!
formation of variable S =K

-k, in In ,;
t
t i {ﬁ- -k )°£ '
I, = —;-3 J dzr e * n ° Vi (z -z )
(2%) ) i o 0
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isr, :
S (2.49)
5"+ 25k - it
and assuming kna >>1, gn = gi , then expanding

(s°+28k - it )™' in powers of S, the dS integral

of equation ( 2.49 ) can be obtained as

i Ser sz
de ~7° d s T,
I = =/ o Ui+ o o e
s° 4+ 25.k - if -n =
3 S° '
iser,

e

1
where D is differential operator w.,r.t. I, and

ds = dS_ dS. dS

. y 7 . In the above dS integral, de ds

Yy
integrals can be evaluated by the use of definitions of
delta functions and the dSZ integral can be evaluated
using the c&lntour integral technigues for first and second
order poles ( Boas, 1966 ). Then the closed form of the
dS integral can be obtained., With this, equation ( 2.49 )
can be written as

1
i 1 -i(’k‘i - _1§_n )”Eo ) ?
In - 2kn f d Eo e Vni ( :_r.o - Eo )

. 2, t - ' t
[l+1Dr0 O/zxﬂ% s(go)H(zo)

2; [ I, + I, ] (2.50)
n
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where H ( Z ) is the Heaviside function, and § integra~-
tion has been performed in cylindrical polar coordinates
by choosing gn as the polar axis and wri{:;ng

1 1 ) ~
= +
o 2o Zo Kn e

The above integral can be further simplified by using

the delta function properties, o one obtains

A 1
o -i( k. =k Jek Z . .
_ =3 =n n o _
Inl - ”i € H Zo ) Vni ( Lo Lo )
t
dz,, l
1
= Q
-0
Now consider the integral Ino
( k k '
i ' R - R '
In2 - an I a 20 e Vni ( Eo fo )
D2 S(b' t H(')
r' =0 ) Zo Zo /
o

integrating by parts

- s Mz o D8 () zn i) ]

1
i (k, =k J)er '
=i =n '’ =o
e Vni ( Lo ~ o ) -
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— * T '
-° =0

Vg Lo = 2

)
1)

0 Y

again performing integration by parts in the second term

of the above expression

T
o
(k, = k_ Joz_
i - k_Jer

=1 - =¥s) !

e Vni ( Lo ~ Lo )
' 2

Jar 8 (b, )z H(Z )D ,
To
(ky - k. )-x,
1 1= & ~r - '
= n ‘ =o )
e Vg (Eg - Zo )] )
g ' 2
=s—=—[dzr & (b )z H(Z )D_
2k -0
n o
i (k. - k Jer
i - e

~i ~=n’ Zo !

€ Vg (25 = %5 )

2
After the D r' operation , the corresponding In2 and

0
Inl gives In



=0 1 i (ks - k_)e '
I =—5e— [ a2z e TF Th om0y (z )
n K e o o
H
i Zo '

[ (1+ e 0)vy (r =z )]

1
b=0

Farther simplification of In , consistent with the original

assumptions, is possible on noting that

M
a { ke = k. )akn = k, cos 8 . -k

o - k
=1  «n
1
* I L ~O° Z' 1 2?‘0 )
. n = 2k, ~£ dz, e H Zo .
]
i Z w2 .
(1+-—2klr1 lDr,) vni(_ngo-_l_fo)
o I |
py=0
* s 0. (,2.51)
“where B; = k; -k = DE /ki , on using the energy

conservation condition, the above expression embodies the

central appreximation.

The evéluation of the scattering amplitude can

be performed in cylindrical polar coordinates., The
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)

orientation of the coordinaté system is chdfsen such that
ﬁhe Z - axis is always perpendicular to g . Thus g is
two dimensional, and the position coordinates of the z + 1
electrons will be written as Si = by o Zi’? s

i = 0, 1 coevees 2, where y 1is a unit vector in the

Z - direction. Denote X for target coordinates.

For the simplification of the second and third
Born Terms ( 2,47, 2.48 ), it is useful to take the Fourier

. form of the interaction ( 2.24 ).

i pvgo =
V (-I:O 2 o s s s EZ) = f dg e hand ”idpz
- ip, 2 - A
Z 0
e v ( P+ Py pTyeeeI)
s oo (2.52)
where
- A 1 Z
V (p'{"py, T vossel )= E
- oz "1 =z 257 (p2 + pi ) J=1

i p"bJ:‘:i‘ 'i pz ZJ

{e - 1) (2.53 )

The general form of the V . ( I, ) in the above expressions

has been defined as

v (zr) =< §(x)|vix)ld_  (x)> (2.54)

nm -0
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Now substituting ( 2.52, 2,51 ) in the second and third
Born terms ( 2,47, 2.48 ), the corresponding second Born

term can be written as

@y,
f m dr €
HEA 2% k; n =0 fn -0 .

' I i in o
dz, H(z )e [v (z,=-2Y)
ni
1
iz 2 '
*oog By v (zo-x)f ] (2,55)
i o} ni o o}
| -
bl =

The infinite summation over the atomic states can be treated
in a simple way ( Woolings and Mc Dowell , 1972 3 Byron and
Joachain , 1977 ).

r v (r_ )WV (r. =2 )=V (z_)V. (r_ = )
LI B (2‘56)
It is assumed that B ™= B = DE/ki , where DE 1is the
- in i

average energy transf%ﬁed'to intermediate atomic states
during the course of the collision. Now ( 2,55 ) can be

written as

(2) . i ger
- 1 s wme 3 5
fHEA T 2mkg Jaz, e ¢ @ f v Io vver Iz )
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S dz H ( Z, ) e 19 [v(r - Z0Y 5 Iy eees I, )
R
i ZO 2 '
+'"'*2-E;-'“ D’V(IO—EO,El....I‘Z)} ‘]l@l)
=0

“eoe (2.57)

Real and imaginary parts of the above expression can be
obtained by wusing ( 2.53 ) and carrying out D° opera-
tion in ( 2.57 ). Then the corresponding terms through

0 ( ki"g ) for DCS can be written as
(2) 2 o dp
47 ™ Z
Rel f = - FJ g [
HEA ko E 4. o, - B
(2) Fal A
U (g-p -pY, B +pyy ) (2.58)
fi - = ya -
(2) 2 o dp
X ) o
Re2 f = -2 2 @rdap [ —E (p? 4 p2 )
HEA k?—“ 0B Z Ve Pz — By Z
2 . ) f
U( ) (g=-p=-pyy, p+ pz§ ) (2.59)
fi ,
(2) 3 (2) ~
In £ ==3E-fdp U  (q=-p=8y 3D+ By )
HEA i fi - - - |
oee (2.60)

where (F is the principal value. The general form of
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(2) .
8] ( eeeeel sessee ) Can be given as
fi '
(2) . -
U (x,X3 v,Y) = < 0 |V({x,Xx)
fi f

.:\;(Y’Y)Iqj‘>
1

Now the evaluation of .the third Born term is -
similar to that of second Born.term. Substitutien of the

first term of ( 2.51 ) in.( 2.48 ) the corresponding’

third Born term can be given as

(3) 1 7 : iger
F ) T o
HEA 27:1{i nn' fn 77 -

-

LI N

o ° H( Zg' ) Vv (r -2 $ - Z, v)

1
(o)
O

ceess  (2,61)

- The real parts 6f this eipression can be obtained by using
the equations ( 2,52, 2.56 ) and ihtegral representation
of the & functions(2.48). Now the real part contribu-
tion of the third Born term ( 2.48) can be given as

) (3)  (3) |

= f . f2 : (2062)

Re
HEA 1



where
(3) L8 . v (3)
1 k. . fi
i
' A
g9-p-p +B;y) (2.63)

(3) B 4 2 e dp : o ’
g AT apf Pz sy A,
.2 k2 @f E..f.» Pz = By fdp (P.f‘ - B,

N t A A
U (p-pP¥3 g-p-P +DPY=-py;
fi - - - - z
t LI ’
P+pyy ) (2.64)
, (3) . .
The general form of the U ( eeeel eosese} seeees) Can
fi '

‘be given as
5_(3) !‘ " ] — | : .
U ( X;Y S Z)= (@ l V(X,El ."'."EZ )

Tfi £

<l

]
(Y . £ oooc-.oouonl::z )

. '-‘. P ] R .-
7 (z, Ly eeeeeX, ) la@ iR (2,65)

The DCS through order4(»l/k§ ) for direct scattering can

be obtained from the scattering amplitude given as

d (1) (2) - (2) - (3) (2)
F £ + Rel f + Re2 f .+ Re f + i Im f HEA
HEA . i=—>f HEA HEA HEA

.o (2;660



(1)
. Where f is the first Born approximation.Yates (1979)
i—>f

has made an analytical study of equations ( 2.58, 2.59 ,
2,60, 2.63 and 2.64 ) for elastic scattering of electrons
by hydrogen atoms. And the following behaviour of these

~

axpressions are worthrnéting.

263:6 §ghaviour of second and third Born teggs‘in HEé;:

The assumptions in HEA were made along with the
small anéle approximation of Glauber (1959 ). HEA concer-
ned with the elacidation of character of second and
third Born terms for short wave length ( ka > > 1 ) and
for small momentum transfers ( small angles ). The parti-
-al expansion of equation ( 2.49 ) was necessit&ﬁaby[a
desire to include a plausible and reasonably accurate

description of virtual excitations ( target polarization ).
In the second Born term ( 2.57 ) if B the

1
i

i—>0

real part of order k ( 2,58 ) vanishes, and of order

-2
k3 ( 2,59 ) remains, similarly the imaginary part (2.60)

reduces to the second term of GES., It was also shown for
elastic scattering oﬂelectrons by hydrogen atoms, that
when gq —>0 for large ki the real and imaginary parts of
the second Born term appré@hes to the corresponding terms
of the simplified Born approximation ( Byron and Joachain.

1977 ). The difference between HEA and simplifed Born
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approximation is the term of  order k™2 when qg=0

i

in HEA .

In the third Born term ( 2.61 ) if B, ™ O,
both the terms ( 2,63, 2.64 ) remains. One of them (2.63)
_ approaches to the Glauber's estimation of the third
Born term like, the second term ( 2,64 ) is an additional
contribution to the third Born term apart from the
Glauber 1like term. It was also shown for hydrogen broblem

that when g = O equation ( 2.62 ) reduces to zero.

Finally it was concluded that the HEA provide an

accurate description of these terms for small q.

2.4 HBecent theoretical developments in electron -~ atom

scattering calculations :

Recently the developments in theoretical side are
not similar to that of experimental side for the calculation
of collision cross sections at intermediate and high ener-
gies., The intermediate energy electron—-atom scattering is
most difficult to treat theoretically , because the intera-
ction of an electron with an atom in this energy range can
involve all the three processes, viz; elastic scattering,
excitation and ionization in a manner that their effects on
one another cannot be ignored. Because of these difficulties

very limited number of theoretical methods are employed in
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this energy range for the study of collision cross sections.

Considerable amount of work has been reported by:Byron
and Joachain ( 1977 ) for the calctlation of scattering cross
sections for different atoms. Yates ( 1973, 1974, 1979 )
has proposed two theoretical methods for the electron - atom
scattering processes. Recently Ermolaev and Walters
( 1979, 1980 ) have developed procedure to carry out an
exact calculation of second Born approximation for the
e - H ( hydrogen ) elastic scattering and 1s - 2s transi-
tion . Kingston and Walters ( 1980 ) ha&e carried out
DWSBA calculations for e - H elastic scattering and
ls = 25 and 1s - 2p transition in the energy range 30 - 680
eV. Very recently Rao and Desai ( 1982 ) have reported
e - H collision cross sections using higher order exchange
amplitudes, Walters ( 1980 ) has also calculated the exact
plane wave second Born exchange amplitudes. The generalized
coulomb projected Born ( GCPB ) approximation ( kiorgan, 1975 )
has been recently modified by Schaub - Shaver and Stauffer,
(1980) , and used to calculate collision cross section for
e - H scattering processes. Mathur et al ( 1980), - have
used similar type of GCPB approximation to study the
inelastic scattering from the ground state of helium atom
and also to study the excitation of atomic hydrogen and
helium from the metastable excited s statés by electron

impact. Similar type of collision cross sections are reported



by Rao and Desai ( 1983«), Roy and Sil ( 1978 ) have
used Wallace's second order eikonal approximation to
calculate the cross sections for e - helium elastic
scattering including long - range polarization and non
local dynamic effects. Fon et al ( 1980 ) have extended
their earlier R - hatrix method calculation methods for
electron impact excitation of helium. Joachain and
Winters ( 1980 ) have developed an optical model appro=-
ach to the elastic scattering of electrons from the
hydrogen atom in the metastable - ( 2s ) state. Elastic
scattering of electrons and positrons by lithium atoms
are reported by Tayal et al ( 1981 ) at incident energies
10 to 200 eV. Recently Rao and Desai ( 1983Ci have
reported the elastic collision cross section for Lithium

atoms.

68
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245 gpgroaéh to the g;eseﬁt- investigations

During an intensive study of the results of
various approximations for the description of electron -
atom scattering processes , at intermediate and high

‘ energies, I found following problems, which are en@isted

below.

1) Very few theoretical methods were able to reproduce
"the scattering cross section which can be compared
satisfactorily with the results of the experiments .

2) Some approximations required complicated numfferical
techniques for the evaluation of the scattering

.- cross sections.,
3) Divergent integral problems were comman in some
, épproximations..

4) Very few of the theoretical techniques were used to
study the higher order exchange amplitudes,

5) Large variations in scattering cross sections were

observed between the experimental and theoretical

results, even for the simple systems like hydrogen .,

6) Few approximations were found to be difficult in

7
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order to extend them for the §tudy of many electron

system ( Z > 1 ).

7) Though a large amount of work is done in this field,
still there exist new results both in the theoretical
and experimental approadhes, whicﬁlare in disa(grew
ment with the results produced in these corelated

techniques.

During the study of the GES and HEA it is noted
that the combination of these aﬁproximations can avoid the
above raised unavoideable problems. After the formulation
of HEA , except wus ( Réo and Desai, 1981, 82, 83 a, b, ¢ )

no one has reported the collision cross sections data,

‘ Keeping &ll1 the above raised problems in:mind I
have selected the GES and the HEA approaches for‘the
present investigations. The HEA is extended to study
different atoms for different interactions . The extended

work of HEA is presented in this thesis.



