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CHAPTER - III

SCATTERING OF ELECTRONS BY
HYDROGEN ATOMS

3.1, Ig;trgductign :

Electron scattering from atomic hydrogen ( H ),
( 2=1) is one of the most basic problems in atomic
Physics. In this case all the states of the target
( hydrogen ) are known exactly so there can be no uncerta-
inty in the”amplitude arising from the use of bound state
wave funcﬁions. On the other hand experiments in atomic
hydrogen must be performed in a crossed - beam configura=-
‘tion. Because the tendency of atomic hydrogen to form
molecule of H2 s it was difficult to do precise experiments,
This difficulty was Tesolved in the recent years. We have

now the experimental results for ICS .

In the present studx,first we consider all types of
collisfion processes for the interaction of electron with
the hydrogen atom, at the incident energies 100 to 700 eV.
Two basic approximations ( Yates 1974, 1979 ) are used in
these studies. The exchange‘effecig are included in the
DCS calculations. Ochkur (1963) approximation is used to
calculate the exchange scattering amplitudes. The DCS's



are calculatéd through O ( kzz ) in the present

. investigations. The scattering amplitude for cs  is

given as
(1) - (2) (2) (2)
- F = f + Rel- f 4+ Re2 f + Im £
HHOB i->f ' HEA HEA HEA
(3) )
+ g + f (3.1)
och GES

The IDCS O ( kzz ) 1is approximated from (3.1) for fixed q.

k 2

do. ___f_ |F | e (3.2)
ds ks HHOB : |

In the above equation (3,1) first termAis the usual first
Born amplitude (2.,12) second, third and fourth terms are
_the real and imaginary parts of the second Born approxima=
tion ( equation 2.57 ), fifth and sixth terms are the
éxchange ( Ochkur, 1963 ) (equation 2.36) and third GES
term ( Yates, 1974 ) ( equation 2,45 ); The following
problems for e - H atom collision processes are studied

-in the present chapter.

i) Elastic scattering of electrons by the ground

state of hydrogen atom ( 1ls - 1ls )

ii) Elastic scattering of electrons by the excited

state of hydrogén atom ( 2s - 2s )
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iii) 1Inelastic scattering of electrons by hydrogen

atom ( ls - 2s )
iv) Born ekchange amplitudes in HEA .
The total collisional.cross sections are calculated using

the optical theorem ( Taylor; 1972 ). The TCS's are

obtaingd from the following expression.

Im £ (0) : "(343)

The TES's are calculated through equations (1.7) and (3.2).

3.2.1 Elastic scattering of electrons by the ground ( 1s )
state of hydrogen atom ( ESGH ). ’ ‘

e + H(1ls ) => e + H( 1s ) ' (3.4)

Inlthe elastic process equation (1l.1l) the fihal state
function of the target hydrogen atom is same as the initial
grbund state function. The ground state wave function for

the hydrogen atom can be written as

4

¢ i S ) = -;%75 exp { =1, ) = Aexp{ -1, ) (3.5)

The product of the wave functions for initial 1s and - final

1ls states can be written as
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* 2
P . (x,) ? : (x;) = A expﬁf -2r, )

2 n exp ( =yr, )
-A D (y) -—-—;i;-4L“'

n i n «
_a2a e lom )l (3
j any T, . y=2

For the convenience for the study of the scattering
processes, the product of the wave functions was written
in the derivative form. g? ( v ) stands for the differen-
tiation wer.t vy and n stands for the order of the
corresponding difgerent;ation. At the end of calculations
the values for A ( = 1:"'1 J, vy { =2 ) and n=1 gre
substituted.

The interaction equation (2.24) between e - H atom
can be written as

where R "and x, are the position vepfbrs of the incident |
electron and target hydrogen w.r.t the tafget nuclei.
Substituting equations (3.6, 3.7) in the equations (2.12,
2,57, 2,36, 2,43 ) we will obtain the corresponding scatt-
ering amplitudes for the DCS equation (3.2). ALL these

contributions to the IDCS can be obtained as follows,
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(1)
f

= < i
i = T 2m J d I, exp (i gz, v (x )

fi °

1 .
= - Szffdzr, dz; exp (i g.T, ) Vd

* . T
Wf(rl)lpi(rl)
A? 2n 2 + 2 2)
(% v,

2 .
) ] ) \
(C+4a)
This expression is the first Born approximation for
hydrogen atom. Now the imaginary and real parts of the

second Born épproximation are obtained as

(2) 4,3 (2) . |
Im £ = 2B U. (q-p=BY¥sp+87Y)
" HEa ky [ £1 ‘g BTRYIETH

4 3

—%;- S dp < y : ( ){ V(g-p- Bs¥ 5 3, )

/

Vip+edsndly (5)> (39

. Using the equation (2,53) for V ( =-=—-= )'s in the above

_ matrix element, it reduces to
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R S | L o
= W fdp[dry [exp (1(g=-p)eby - iB;2;)-1]

[ exp ( 1 p.b; + iB32; )-1]

‘ * 2 2., 2 2
v, (ry ) 9 ) (=, )/C g - Rl +87)(p" +87)

]

A dp
Tk oLy 2y

(lg-pl+82) (p° +8;

ar,
J 5 e (oymy )

[exp (1 (g=-pleb; - iB;Z, )=-1]

[ exp ( 1 p.b, + 1p,;2, )-1] (3.10)

The typi0a11solutign of the dr, integral is

1

47
(Q° + yz)

dgl
S = N exp (-'Y?l )exp (1 Qex; ) =
Using this the above d£1 integral can be 9valuated very
. easily.

. 2 | a
_4AJ Q(V)f :

g (lg=-p 1 +85)(p°+85)
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o
[ Lﬁ?"%'gx“l - ( lq -p l + Bf +v%)

q +vy)

‘ -1
- (p?+ Bf +y )]
” .
k 2 o 2 2.
1 Clg=-pl +83 )07 +83)

[ ( q + 2Y )

-2
Yy % qi + YE;-

-1
(p°+ ﬁf +v ) ]

dp

2
sA D(y), B
Ky (lg-p | +82) ¢

2 2

N mp—

(PP +p+y ) (&yww+w>

This integrand is obtained by using the partial fraction
technique. Few int?grand terms are céncelled with the
opposifé same type of teims after partial fraction, After
the evaluation of the two dimensional dp integral ( given
in the gppepdix ) the closed form of the imaginéry contri-

bution can be given as

}.
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Qlf”)s -4A29<Y) Lof21(8%,y)
HEA ks ¥ A
2 o -
- ——2-3—-2- Il( 5? , 0) ] (3.11)
(¢" +y7) :

where Il(Bi ’ y2) is a function of Bi ,‘q2‘and Y2 , and

, ) .
Il ( B? , O ) is a function of only B? and q2 « These

are given as

2 2
I (B0 ¥ )= = log
2 ) 1
(¢ + B3UE + & +v2) + 285 (d = ¥°)

(B2 +y)E-F-¥)

5 ,
2
E .= ( q2 + y2 ) + 4q Bf

and

1{(3?.0)= Il(ﬁf Y )

i
o

_ _ [ ,
In the forward direction ( q =0 ) the TCS expression
is obtained from equations (3.3) and (3.11). -

Ho gy ~ (82+v%) ..
c = = =5 D (y) -%5 log [ -1-g~f—f ] (3.12)



The TCS results are shown in the table (3.4).

The dr, evaluation of the real part of order
k;l ( equation 2,58 ) is exactly same as imaginary part.
Using the above results of imaginary part, the real part

0 ( k;l ) is given.as

(2) 4 A 2 . o de
Rel f HEA = 7y .‘D (y )6).f dp .fw (p, - By )
L 1 : 2
S 2 2 2 2
Y ( lg -p |+ pi-) (p” + pZ +y°)

. 2
1 q

B (p2+p§>< “ +y )

After, performing the dp &and dp, integrals ( given in
appendix ), the closed form of -this scattering amplitude

can be obtained as

2

Rel f )

2) 4AQD(y)"—"i*-"-"[2l(62 Y
2 P
HEA Ky v 2 i

2 ' :
- = L2, 01  (3.13)

(a6 + vy
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where

3 B
2 2. . = 2 2 i
I, By » ¥) ==—F11-Son(y” - q) (~%~ - =
2
2
26?_( Yo - o)

(yo+q7) (By + Y )

2 (y> 2)
Sgn(y2 -q) = ‘T~§—~:—§T = + 1 Yy > q
y = -1 y<gq

L (5,0 = L, 62, v |0

Now the integrals in the {eal part of the second Born
term of O ( k;z ) equation (2.,59) are same as real part
of 0 ( k'l ) « Here the /integrand is simpler than the
real part of 0 (k] 1) pecause of the cencellation of
( p + pz ) term with the same type of denom:nator tetm; 5This
corresponding form of the real part after the drl integra-

tion. is g;ven“as

(2) 2 A2 t ad de
Re2 f = =#—=D(y)D{YJS dp~ :
Ne HEA nky Y @f £ -'vrw_, (py = B4)
4 ‘1 : [ S__\ + 2Y2) -
(lg- é’j + p% ) Y 2(q® +y)

2

2 _—
(lg -pl +‘pz £ y2) = (p°+ P% £y ]

cesesal3,14)
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Following the same procedure for dp and dgz integrals

as discussed above, the closed form of this real part can

" be obtained as

(2) 5,2 v I (B , 0)
Re2 f = — D( )D 1 +
© HEA ﬂki Y [ q2 + y2
I (ﬁ' ’ Y)
3 . ) - 12 (ﬁ? H Y2) ] (3@15)
Yy
where
13(ﬁi;v)=~ﬂ3(l-%~tan”l%;)
t
I (By » O = I3 (By » ¥) |yg

t
D is differential operator w.r.t Bi .

The third GES term equation (2.45) given by
Yates (1974) is reformulated in a convgenient form for
the purpose of the present study. This term was given
with a differential operator acting on a dimensionless
vector T ( = g/y ). In the present study we have introduced
the D ( y ) operator using the partial differentiation
technique, instead of the T differentiation. The

modified form the equation (2.45) is obtained as

, -1
= - LZ A (v (P +yD) [ 4 Elog (9 _* Y, g +

@ 4,2 2 2 2
, 7
GES l6ki va



82

2 0
TuzA(qu)? ly=2

5 4 2 “ - -
= -+ A D(y)F(a, V) (3.16)
: 16 kb . i -)
i
where _
. : - 2 2 - 2,20
.2, o _
A(q,v;)=2.(log-$-)+-2L+2'1L2_£.Ll,-;!-<1
. n= n —
. P (_2 2)n )
z—nzl -—J——éﬂ—" -%-“)—l
= n

Finally for the consistent picture of IS O ( ki )

we have included the first term‘of_the exchange amplitude
equation (2336) using the Ochkur approximation ( Joachain ,
1975 ). This exchange contribution is obtained as

gaéh = - ki f dr, exv(i,gorl)!p (rl)w ()
o2 Y
= 2EA 5 (y)(d+y)
by . |
o, _
- ?-%(q2+4) | : (3.17)
x5 4

3¢42.2 Comparison of present ESGH results with the other
f 'Agté : "
Using the scattering amplitudes ( equations 3.8, 3.1l,

H



3.13, 3.15, 3.16, 3,17 ) derived under the assumptions

of HEA ( Sec. 2.3.5 ) and GES ( Sec. 2.3.4 ), I have
performed detailed calculations (' ICS , TCS ) for the
ESGH process { Sec. 3.2.1 ) in the energy range -100 -
700 é?; I used an average excitation ene%gy DE = 0.465 a.u
( Byron and Joachain, 1977 . ) in the calculation of second.
Born term ( equafions 3.11, 3,13, 3.15 ). dur‘ HHOB ICS
and TCS are presented in the Tables { 3.1, 3.2 ) and

( 3.4 ) as well as in the form of _giaphs shown in
Figs. ( 3.1, 3.2 ) along with the other theoretical and
experimental data. As it was expected thé present results
are found to be in good agreement with the compared data
in the angular range © £ 50 . The details of our compari—\

sons with the present [ICS and TCS are as follows.

Fig, ( 341 ) shows the present DCS ( Solid curves a,
albng with the receﬁt theoretical and experimental data
at‘incident 9nergy' E = 100 eV, The solid curves a and
are obtained by using the resulfs\ given in Table ( 3.1 )
with and without real part O ( kiz ) in the DCS ( equation
3.2 ) calculation. These two curves are compared with
the recent experimental data, O - Van Winge;den et al ,
(1977) and theoretical results, +.A—— EBS ( eikonal Born
series ) of Byron and Joachain ( 1981 ), © — UEBS
( Un;taiised eikonal Born series ) of Byron et al\,'(1982)
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and @ — EOM ( Elicit Optical Model ) of Mc @arthy
et al , (1981)., It can be QbserQedy from the figure that
curve a "approaches the compared theoretical results in
the absence of real part O ( k;2 ) ( i.,e. curve b ).
But curve b is away from the compared experimental data,
which shows the importance of real part O ( kzz ) in the
small angle_;egion,; The present ICS .curve a 1is found
to be in good agreement with the compared data at scatter-
ing angles © ¢ 30° , and satisfactory in the angular
range between 30 and 60°, -

t

Fig. ( 3.2 ) shows the present .ICS ‘( Solid curve 3
without exchange ( equati@n 3.17 ) in ( equation 3.1 ))at
incident energies 100 ( set A ), 200 ( set B ) and 400
( set C ) eV in the angular range © £ 60° . This figure
represents three sets of results. In set A, the present
DCS are compared with the recegt theoretical results ,
A '—CCS0PM ( Coupled- Channel Second Order Potential
Model ) of Bransden et al ,'£1982), and the experimental
;esulis, 0 — Van Wingerden et al , (1977) ( renormalised
results of" Lloyd et al, 1974 ) and @ — Williams (1975)
at incident energy E = 100 eV ., Similar type comparisons
are shown in set B and set C at incident energies

E = 200 and 400 eV respectively. With respect to the

experimental data the present results are better than the

W~
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compared theoretical results . Again in the absence of
exchange ( equation 3.17 ) and real part ( equation 3.14 )
contributions to the IDCS ( eqﬁation 3.2 ) the present
results fall considerably under the compared experimental
and theoretical results ( not shown in the Fig. 3.2 ).
This can be noted from a careful comparison of Fig.( 3.1 )
aﬁd Fig. (3.2) at 100 eV,

Eigs.i(q,l) and (3.2) show the important of exchange
and::eal part,,oi(,kzz‘) to obtain agreement with the
recent . experimental data. Even with the Ochkur,(1963)
exchange first order cgr:ection,:the_present  DCS results
(.curve a ) are found slightly lower than the regént
e xperimental - results, These p:esént ICS results can be
imprpvedbby the inclgsion,_of”ﬁ;gpqr.o:der exchange corre=
ction , ( Solid curve C in Fig, 3.2 shows these results ‘
which will be‘discussed later ) to the direct scattering

amplitude ( equatién 3.1 ) of HHOB .

Our ‘HHQB results for ESGH process are listed in
fTables 613.2 and 3.4~) in the energy range - 100 to 700 eV.
Table (3.1) sh;wg‘all the scattering amplitudes i.e. first
Born ( eqﬁation 3.8 ) real parts of second Born ( equations
3.13 , 3;;5 ) and third GES ( equation 3.16 ) and First
order exchange ( equation 3.17 ), and the imaginary part

of the second Born ( equation 3.11 ), in the angular range



e ¢ 120°, and at incident energies 100, 200, and 400 eV.
The ICS ( equation 3.2 ) calculated using all these scatt-
ering amplitudes withouf and with Ochkur excbange term

( equation 3.17 ) are also listed. Table ( 3.2 ) shows only
.DCS withqut exchange correction,in the angular 1region

6 & 60° and at incident energies 100 to 700 eV. Table

( 3.4 ) shows thevbresent‘ TCS ( equation 3.12 ) at the
incident energies 100 to 700 eV., along with the compared
theoretical and experimental data. The present [ICS and
ICS are found to be in good agreement with the compared
reéults. And this agreement was better'at higher incident

energies than at 100 eV,

From Table ( 3.1 ) it can be observed that the real
part {( equation 3.15 ), O ( kgz ) behaves entirely diffe-
rent than the remaining terms., This term is fluctuating
in the entire scattering angular region. This is due to
the presence of oscillating terms in equation ( 3.1 ). 1In
real part (‘eguation 3;13 ), 0 ( k;l ) also slight fluctua=-
tions are observed, but these are comparatively negligible
than in equatiod_( 3.15 ). More qr‘legg edqatiqn (3.15) is
behaving like third GES term equation (3.16). These
points will be discussed, in the last chapter.

So far we considered the  ESGH process. The DCS and

TCS results for this process are very encouraging for the
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further study of the collisional processes. This gave us a
scope to study the scattering of electrons frém the meta-
stable 2s state of hydrogen atom ( Rao and Desai, 1983a). )
-This type of elastic process pla?s an important role in the
plasma and astrpphysics; In the recent past, very few appro-
ximations were applied for this process ( Joachain et al,
1977a,b 3 Joachaip and Wihters, 1980 3 Pundir ef al, 1982 ).

In this work we made an attempt for the study of this process,

which is described in the following sectign.

3.3.1 Elastic scattering of electrons by the excited (2s)

state of hydrogen atom ( ESEH ) :

('Rao and Desai, 1983a ).

S + H(28) —> & + H (28) (3.18)

The approximation methods applied for ESGH study discussed

in the above sections can be applied to this scattering

process ( equation 1.3 ), in which the target hydrogen‘atom

is initially in an excited 2s state ( equation 3.18 ). |
The scattering amplitudes in ESGH ( equations 3.8, 3.11, 3.13,
3.15, 3.16 , 3.17 ) can be extended to this present ESEH‘

study . Here it is assumed that the target electron is
initially in the 2s excited state of hydrogen atom. The

wave function corresponding to this state is

Vo, () = ooy (2-m)ew (- /2)



= (B+A Ty ) exp ( - ri )2 ) (3.19)

where ‘ . e
B = 0.,19947, A = «0,099736.
The final state _of hydrogen atom is assumed as initial 2s

state. The product of the initial and final wave functions

can be obtained as

; * , *
Votmd v tn) =y tnd v tn)

S ‘
= (B+Azx, ) exp (-1, )

( B2 + 2ABr, + A?ri ) exp(-r,)
eeees( 3420 )

where Bg_, 2AB and A? are constants that can be
obtained from the normalisation coefficients of the 2s
wave function of target hydrogen ( equation 3.19 ). The
product of the wave functions ( equation 3.20) can be
written with the differential operator D" (.y ){equation
3.6 ).

=[-82DY(y)exp ( -y r, ) +2AB D?(y)

exp ( =y, ) - 2° ps (y )exp (- v rl)]-%z
= -nil LB, D" (y)exp (-y rl)/rl]lY=l (3.21)
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' _ ,
where B s are constants given in equation ( 3.20 ).

The differences between the wave function products of

hydrogen 1s and 29"( equations 3;6'and 3.,21 ) are the
multiple coefficients and the order of n. The nature
of the differentiable function eéuation (3.21) in the
present case is similar to‘that of equation (3.6) in

ESGH process .

The interaction Vd is same as given in the ESGH
process., Substitution of the equations (3.7 and 3.2l)Ain
the scéttering aﬁplitudesv equations ( 2,12, 2,57, 2.36,
2,43 )_wel obtain the corresponding contributions to the

DCS equation (3.2). These scattering amplitudes are

given as

_ (1) 1 o ' 1 1
£ = = === [[dr_ dr (2, ) [ = == +— 1
i=>f 21 7 T=o =1 wi e R T 1

y : ( ri') exp ( 1 g.;o )

1 2 2 2 4
= - §%fwﬁf ( B+ 2 ABr, + A rlk) [ - -%:- +
- Jexp ( & g.go) exp (=y rl) dr, dr,
. !Eo"sl ) : .

o : 2,2
= 16n [ B2 -2 0% (y)+ 4202 y)] i§52D

-y AgTHYR)”
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2 ) 2 2 :
=3 A D" (y)I (‘;;’2";2]!" (3.22)
n=o = v (q° + y%) y=1
where Ab = 2, A1 = 2 and A2 = 0,5, D ° represents

the case without differentiation. The closed form of
‘ , :

the first Born term ( equation 3.22) in the ESEH process

is similar to that of ( equation 3.8 ) in ESGH process.

Now the imaginary part of the second Born term can
be obtained by analogy of the results of the ESGH pzocess
( equations 3.9, 3.10, 3.11 ). The imaginary part in the

present process is

m o 43 B p?(y) S 2
m T e e— . D Yy ) o
- " HEA Kin=1 P (lg - p I2+B§) v
4 2
2 _ a
(P apZ s y2 ) (@ +y)p° + )
rooo(3023)

The two dimensional p -integral procedure is given in
the appendix. The closed form of the equation ( 3.23 ) can
be obtained as

(2) L
T oen- ~ %
- HEA in

1 2 2
Im B Dn(y)—ﬂz[QIl(Bi‘,v,)-

1 ‘n Yy

f MW
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2
e 18], 0) ] (3.24)
(q© + ¥°) (
where Il‘( B? , y?_) is a function of Bi , q2 and y2
]
and Il ( B?_,_O ) is only function of q2 and ﬁi . The

integral form of these functions is given as

. T i " d
I, (8,v¥) = —p—B— ~

iR 2 2 2 2
o ( lS“ B |+ By ) (p™ + By +Y )

and

v, 2 2 2 ~
;1 f'ﬁi y O ) = Ii ( Bi s Y ) "y=0

The solutions of these integrals are given in the ESGH
process (,uﬁder_qquation_3.ll )e Now the coefficients
in the scattering amplitude ( equation 3.24 ) are

= 0.59, B 0.0398 .

B, = 0.159 , B 3 =

1 2

Now following the same procedure, we will obtain
the real part ( equation 2,58 ) of the second Born term
using the :egul%s of equation (3.13) and the product of
the wave function ( equation 3.21 ). This real part

contribution to the IDCS can be given as
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. | 0
(‘2) 3 1 o Z
4 n
Rel £ = 7= I B D" (y)Ple / =57
HEA K3 np=1 P | e Pz By
1 2
- [ 2 -

3 : 5 3
y2’(|9~2l+P§) (p'*pz"fy)

2

g —— 3.25
2‘+p22)(q2+y2) I )

(p

The evaluation of the principal value intggralz dpZ ié
same as d;scussed in the ESGH process, The closed form
of this -( equation 3.25 ) is similar to that of the real
part ( equation 3:13 ). |

(2 1 3 “ ' 2 2
Rel f == £ B DI 2 , -
© HEA ™3 p=1 D (v) ‘iﬁ L2 LF s v
@ ' 2 '
W I (B, 0)] (3.26)
(& +y) CINE

' The constants 3;‘$" in this amplitude are same as in
imaginary ;amplitude ( equation 3.24 ), Here also

Ié ( B? ’ 92 ) is function of _q2 ,_ﬁ? , and y? , and

Ié "93 » 0 ) is function of e _and ,pf . The integral
répiesentation of these functions are giVenubelow and the
sqlptiqns of these are given previously ( under equation

3.13 ).
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L 65, v) = Q1L — ———————
(p~Bg) Clg=-p | +p2)(p" +p; +v¥9)

1, (82,0 = 1 (8,
: y=0

By a carefull analysis and cqmparison of the derived
scattering amplitudes ( equations 3.8, 3.22, 3.11, 3.24 ,
3413 and 3.26 ) in the ESGH and ESEH processes, we can
qbtain-the real part ( equation 2.59 ) in the closed form

through the equations (3.21, (3.14) is given as

k|

(2) 3 I.(B., O)
Re2 f = 12 PN Bn D n( y ) D'[ -'-—"3*-2-‘-:!':‘-*2—-
HEA 2 %k n=1 ( 9 +vy7)

I:(B,y v) 2 2

P2 L1, (82, YD)

Y .

eecooooo(3.27)

where the constants B ns. and the closed form of the
functions in the above equation are given previously. The

integral form of the function I, (ﬁi , Y) is

dpz

1.8, ,y) =@ fa [
3 . P
* @ - (pz-ﬁi)(p2+p§+v2)



and I (B, ,0) = 13(6i,‘y)}}’,;0

The analysis of the GES term ( equation 2.45 ) in
this ESEH process is similar to that of the ESBH |
(equation 3.16 ). The. third GES term ( eqﬁation 3,16 )
wasvgiven for a typicé%’wave function of the type
e exp ( -y ry )," . By the substitution of y = 2

we got the' amplitude. corresponding to ESGH process.

The reformulated equation (3.16) can be used '.cv¢ to obtain
the GéS in the present case, The closed fé;m_gf‘th;s
which can be obtained théough the equations ( 2.45, 3.16 ,
3420 ), is given as ‘ |

£ (3) . - Y,4' x g B.' D‘n ( ’ ) . ( )
; GES AR 16 kz- n=l ’ n Y X .q! Y
) b §
- - - g C D" (y)F(aqy) |
16 ki n=l S y=1

[ NN RN (3028)

where F ( g, y ) is a function of q and y which was
given in the ESGH process ( equétion 3,16 )« And the

constants Cin(s are qbfaineq as C1 = 0.0398 ,

€, = 0.0398 and Cy = 0.00995 .
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In the final Stgge_of this ESEH process we derive
the ekpression*for the. first order exchange scattering
amplitude ph:ough the Ochkur , (1?63) approximation. This
exchange sqattering‘amplitude can be obtained easily
from the equation (3.17) . Now substituting the product
of the wave function ( equation 3.20 ) ig ihe integral form
of equation (3.17) we w;ll obtain this exchange contri-

bution as follows.

g = -_-35» Jdzx; exp (i Q.gl ) ( B 4+ 2 ABr,
och ki o

2 2
+4& 1] ) exp(=-yrz )

2 ! n i u
=--—Efn__§_05 D (Y)e"p(lg‘al)
i

2 ' B
= e —? Bn Dn ( Y ) f exp ( i g.?'l )
1 «
exp (=yzr; ) d T,

By analogy of the expression ( equation 3.17 ) we can

write the solution of the above integral as



96

2 1 ‘ 2 2 ~2
= - 182 5 B D" (y)ly(a +y ) ]
k. - n=0
1
2 : B -2
2 2
g = -=% T A D®(y)[y(qd+y ) ]
och. - ki n=0 " ’ y=1

eevsss (3.29)

t :
where A, § are constants defined in equation (3.22).

3.3.2 Comparison of present ESEH results with the other

theoretical results :

Similar to ESGH process, we have calculated I[ICS,

TCS wusing 'the HHOB scattering contributions equations
( 3.22, 3.24, 3.26, 3.28, 3.29 ) at incident energies
lOO‘to 700 eV énd in‘thg‘gngglar range - @ 3"1200 .« We
used an average excitgtion)enerQ§ DE = b.Q5556 a.u i
( Joachain et al , 1977b ) in the calculation of the Second
Born~termv( equations 3,24, 3,26, 3.27 ). The present
ESEH results ( DCS, TCS ) argvlisted in the Tables (3.8,
'3.9 and 344 ). And the DCS at incident energies

E = 200 and 400 eV are shown graphically along with
thglothe; theoretica; results, Uhfprtunétély so far no
experimental - data was available. for comparison. \As it
wasnméntiqned_verytless aﬁfention was paid by our pgiﬁeer

workers to study this type of ESEH process. A large
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deviation of DCS  was obéerved from one approximation
to another approximation in this process. As in the
case of ESGH here also we observed that the present
DCS agrees well with compared EBS results in the
angular range © X 50° , which 4is a direct checking

of our calculations.

Fig. (3.3 ) shows the two sets of results with
the present DCS ( solid curves a and b ) along with
the recent theoretical results. The meaning of curves
a and b was same as given in Fig. (3.1). In set A
the present ICS at incident energy E = 200 eV are
compared with the theoretical results, + —— EBS results
of Joachain‘gt.ii{ (1977b ), & — simplified second
Born approximation of Joachain et al, (1977a), 0 ——TPE
( Two - potential eikonal ) approximation results of
Pundir et al, ( 1982 ). In set B the present ICS at
incident energy E = 400 eV are compared with , seeeeces
static approximation rTesults of Joachain et al, (1977b),
¢ ™ OM ( Optical Model ) results of Joachain et al,
( 1980 ). The rest of the representations in this

set B are same as in set A .

It was observed from the Fig. (3.3) that the effect
of rest part ( equation 3,27 ) is very less at 400 eV than
at 200 eV in the apgular region © £ 25°,  This was
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also observed in ESGH‘ process ( not given specifically,
but. can be identified from Table 3.1 ). And the
egchange contribution to DCS{;isfalmgst negligible
over the entire angular regipn‘(ySpecificaily given '

by kRagﬂané;‘pesai;,l983a ) in this Esgﬁ process, In
anticipatiqn‘of_expeiimenta; ~data in the near fﬁture_
and accoxrding to our ESGH analysis, we are expecting
that the present DCS will give good comparison in the

angular range © ¢ 50° ,

The description of the Table ( 3.8 ) was " same as
Table ( 3.1 ). This Table ( 3.8 ) shows all the scatter-
ing amplitudes ( equations 3,26, 3.27, 3,28, 3.29, 3.24)
in the ESEH prégess.at, incident energies E = 200
and 400 eV'. In the Table ( 3.9 ) we have listed the
DCS ( without exchange ) in the energy region ’

E'2 100 - 700 eV, over the angular range © £ 60° . .

In this table qt‘ each angle © , and energy E, .?wo_

DCS  results aré‘ given, corresponding to the inclusion
of real part ( equation 3,27 ) of O ( k;z ) ( higher
DCS ) and exclusion of this real part“(Jequation 3,27 )

( lower DCS ) in the s ( equation 3.2 ) calculation.
Table ( 3.4 ) shows the present ESEH , TCS in the

energy range 100 to 700 eV. The ratios of .ESSH, 1CS to
the TCS of ESGH process are also listed in this Table (3.4).
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From the Table ( 3.8 ) it was observed that the
exchange contribution ( equation 3.29 ) to the [ICS
(leqﬁation 3.2 ) is negligible over the entire angular
range. And Table ( 3.9 ) shows that the effect of real
part ( equation 3.27 ) in the ODCS is more as @ incre-
ases ( for a particular‘incidentﬂenergy ), and is less
as incident energy ipcreases ( for a particulai scatter-
ing angle © ) . Thesevvapiétions reveal the poor
convergence of ( equation 3,27 ) at \iarge moment transfer
(aq)( figéd_ ky ) and good convergence at higher incident
energies ( . fixed © ) respectively. This was the reason
for the considerable sepaxatioanbServeq betweeh*«the
curves a and b ( Figs. 3.1 and 3.3 ) . .The ratios of
TCS's for ESEH and ESGH . are observed ranging nearly
from 20 to 18 at_incident-energies HiOO to 700 eV _respecti~-
vely ( fhisﬂ;ype_qf observation was noteg previously by

Pundir et al , 1982 ).

~ The results obtained in ESGH _and ESEH are very

incident energies E = 100 to 700 eV. The f;rst order

encouraging in the angular region -©@ & 60° and at

exchange effects to the DCS are found more in ESGH than
in ESEH process.  The ESGH results can be’impréved
further 'py‘thq inclusion of higﬁér order exchange terms

( Sec..2,3.1 ). We will deal ‘this point in the last sec=-

tion of this chapter, With the success of‘these elastic
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processes, we would like to extend the present approxi-

mations to the inelastic scattering process.

3.4,1 Inelastic scattering of electrons by hvdrogen
atom ( ISH ) :

( Desai and Rao, 1983a )
- ‘ — *
e + H(1ls) —> e + H ( 2s8) (3.30)

Most of the experimental evidences on this process refer
to the excitation of the 2s and 2p states. TCS have
been measured by looking at radiatioﬁ emitted from atoms
following excitation, béth for the 2p state ( Long et al,
1968 ) and the 2s state ( Kaupilla et al, 1970). Very
recently absolute angular distributions of scattered
electrons have been measured by Williams and Willis
(1975). Since the 2s and 2p states are degenerate
Williams and Willis were able to determine only the sum
of the 2s and 2p differential cross sections by looking

at the energy loss spectra, ’

The theoretical picture is complicateé than for
ESGH ( Sec. 3.2.1 ) process , due to the uSsymmetry of
the initiai and final wave functions. The results obtained
in the HHOB approximation ( Sec. 2.3.4 ) can be valid:

for the inelastic processgs



In this ISH process ( equation 1.2 ) the final
state of the target atom ( H fg(z;) ), equation (3.19 )
‘is‘differentgthan the initial state ( H (1s) ), equation-
(3.5), And the momentum transfer é to the target dure

ing this collission process is

.
It

ks - ke
2 o 2
‘Sl = l,si-‘-l-‘fl
2 22l |
q = ki +kg= 2k kecos® (3.31)

here k, # kg and the.value of k. can be calculated
using the energy conservation. This final momentuéwof the

. scattered electron can be.given as

4 /2 o

(3.32)

2 1
ke = (ki - 3/4 )

The initial and final wave functions ( equations 3.5 and

3.19 ) of the hydrogen are given as

v n) = "izyz exo (=1 )  (3.39)
. ! l . -x A ) ’ ;v,..
¥ o ( rlY? = f;?;‘;;iy? (2 - rl) exp ( -= 1, /2)

sowoe (3.34)
and the product of these wave functions can be written in

differentiation form
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% 2 ' n
(zp)= = 2[4, D" (y)

.. 7 25( )y Ls

exp (- y r,)/1; ]!yleS (3.35)

where the constants _A; $ can be obtained from the
equations ( 3.33, 3.34 ). Substituting the equations
(3.7) and (3.35) in the scattering amplitudes ( equations
2.12, 2,57, 2.36, 2,43 ) we can obtain the corresponding

scattering amplitudes for ISH processes follows.

The first Born inelastic amplitude can be derived
through the equations (3.35) and (3.22).
(1) 1
f

2 )
= ¥ aDp"(y)[ Loz
i=>f =0 D y

where Ab = 5,65685 , Al

imaginary part of second Born for ISH can be obtained

= 2,92843 are constants. The

from the equations (3.,24) and (3.35).

(2) 2 3 '
1 n -} -
Im f = e z B. D ( )2 ) 5 [ Hy ( dy Bs » Y)]
HEA ks p=1 P = ot 1
00-00.0(3.37)
where Bl = 0.45016 , B, = 0.22508 , and Hl(q’Bi’y)

is a differentiable function, similar to that of
corresponding square bracket terms in equations(3.1l),
(3.24). In the similar way the remaining scattering
amplitudes which can be obtained from equations (3,26,

3.27, 3,28 ) and (3.35) are given as
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Rel f (2? = =L '% B DM ( § ) [ H (q‘ﬁ v)]
HEA . "X p=3 D g2 2
Cees (3.38)
Re2 £ (2) ; ;;l;E % B D Ry ) p [ Hy (q.B 'y) ]
HEA 2n ki n=1 1
ces (3.39)
and
(3) L 2 . .
E 5 z cn D ‘(Y ) ‘ F(aq, v ) ] (3.40)

GES 16 k; n=l

Here the square bracket functions are similar to that of
the respective scattering amplitudes in ESGH and ESEH
( Secs. 3.2.1 , 3.3.1 ) processes . And the constants
in ( equation 3.,40) _are obtained 35,»Ci.= 0.56973 ,

C, = 0.28487 . First order exchange term can be derived
easily for the present ISH process, using the ESGH,
ESEH expressions ( equations 3.17, 3.29 ).

3.442 Comparison of éresent ISH results with the other

theoretical results -

Similar to ESGH and ESEH processes, here also
we have calculated DCS at incident energies E = 100
to 700 eV, -over the_ angular ;egiqn e < 120°, “HHOB
scattering amplitudes equations (3.36, 3.37, 3.38, 3.39,

3.40 ) are used in these calculations. In order to study

-



the sensitivity of DCS and real part ( équation 3,39)
with reépect to the choice of the excitation enexrgy DE ,
we have performed the detailed calculation of DCSf énd
second Born term ( equations 3.37, 3.38, 3.39 ) at two
different excitation energie§ , DE = 0.375 a.u and
DE = 0.250 a,u ( Byron and Latour, 1976 ). And these
results are presented in the Tables ( 3.5 to 3.7~).' In
Table ( 3.7 ) & we have given recent theoretical
results along with’ the present IDCS ., And the results
at incident energies E = 100 to 300 eV are shown in
Figs. (3.4 to 3.6 ). Satisfactory agreement was observed
when the present results were compared with other

results .

P

‘Fig. ( 3.4 ) shov"v,s two sets of results with the
p:esént"ncsﬁ ( solid curves. a{ and sb' ) along with
the recent theoretical results. Set A ( Fig. 3.4A ) shows
the present DCS ( calculated using DE = 0,375 ) at
incident- energy E¥= 100 eV, over the angular range
e ,S,,309 . Thesg,resulté are compared with the recent
theoretical results, 4 -—— CCSOPM ( Coupled - Channel
Second Order Potential Model ) of Bransden et al ( 1982 ),
~==-=—mw==_ ‘== of Unnikrishnan and Prasad ( 1982 ) and
9‘-74 results of Glouber ( 1959 ). Set B ( Fig. 3.4? )
shows‘the present DCS at incident energy E = 200 eV.
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The compared results are same as in Fig.(3.4A). The
DCS results are found in good agreement at incident

energy .E = 200 eV than at 100 eV.

Fig. ( 3.5 ) shows the present imaginary part
( equation 3.37, with DE = 0.375 ) ( solid curve )
at incident energy E = 100 eV. This imaginary part
wé%ncompared‘with that of Byron and Latour»(l976) (solid
circles )._,Thisvcomparison was é direct checking of

our calculatichs.

Fig. ( 3.6 ) shéws two sets of results with the
present: ICS ( solid curve a' ) and the experimental

| results. Set A shows_presentiDCS at incident energy

E = 200 eV, ap@ the’experimental'data o — of Williams
(1975) ( for n=2 ). Set B shows same comﬁarison as

set A, at incident energy E = 300 eV. These comparisons
are made only t§ show that the present DCS are within

the limits of experimental data.

In Table ( 3.5 ) we have listed the ISH amplitudes
( equations 3.37, 3.38, 3.39, 3440 ) calculated 'with
DE =.0.375 -and4 DE' = 0.250 , these amplitudes are
given ( denoted ‘without and with prime respectively )
at incident energies E = 100 and 400 eV. Table ( 3.6 )

shows the present ICS in the incident energy range E = 100
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to 700 eV. It was noted from the Tables (3.5 and 3.6)

that considerable variation was observed in the scatt-
ering amplitudes for a difference of 0.125 in the excitation
enérgy, over the angular range © < 60°, Real parts

( equations 3,38, 3.39 ) are more effective than imagi-
nary part ( equation 3,37 ) for this difference. of
excitation energy. QorreSpoqdingly'Avar;atioﬁ was,observed
in the DCS . In Table ( 3.7 ) we have éomp;red our ICS
at incident energies E = 100 and 200 eV, with the recent
theoretical results ( Bransden et al, 1982 S Kingston et al,
1976 ). Satisfactory agreement was noted in thesé

comparisons,

-Finally it was noted from the Figs. ( 3.4 to 3.6 )
and Tables ( 3.5 to 3.7 ), that the present results are
satisfactory, and within the limits of theoretical and
experimental comparisons . And the choice of excitation
energy was important in the ISH process . Second Born
term was very sensiﬁive for the excitation energy. The
variation of ICS ( for DE = 0.375 asu , DE = 0.250 a.u)
wgs‘negligible at higher incident energies thén atllower
incident energies.

After this ISH process we would like to study the
exact DCS with higher order e#qhange terms. This idea
was introduced in fhe sSec. (343,2) for the improVement of

ESGH process results (Se€,23.2.2 ).
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3.5.1 Born exchange amplitudes for ESGH _brocess :
( Desai and Rao, 1982 ) ’

e(r; )+H(r; ) —> H(zxy)+e (1)
ceeee(3.41)

Until now we have restricted our attention to collisions
[ ISH (Sec. 3.4.1), ESEH (Sec. 3.3,1), ESGH (Sec.3.2.1)]
in Whicb_all‘of ﬁhe particles ‘involvéd are distinct. '
Since the majority of interesting experiments do not
satisfy this condition - electron -‘gtoﬁ collisions involve-
several identical electrons, nucleon‘- nucleous collisions
involve sévera; ‘identical'nuéleoug and so on. There were
' seﬁeral ways to set up a scattering theory of identical
particles (_Héep, 1965 ). The actual scattering states,
prope;ly symmetrized for the identical particles can be
obtaihed from thoée of ﬁhe,distinguishgble @asQ( Chapter II )
by wusing the appropriate gymmetriiing projection operators.
This in turn wi;l’mean that the scgttering amplitudés for
identical particles ( identified by F ) can be expressed
as sum or différences of,certain.ipelated amplitudes for
distinct particles. _Thus, it follows that all of the
abproximétiqns’(ACbapter\li_) for distinct particles can
be immediately applied to the identical particle problem.
As _an example thg‘{gxactwspgttexing. amplitude for ESGH

process ( Sec. 3.2.1 ) can be given as
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— ' od :r ex '
F(P <— P)= ¢ (P&——P ) =~g ( P ¢—p)
S ba ba
L o . eere(3.42)
Here first term of right side is the direct amplitude
( eéuatipn 2.33, and Sec. 2.3.1 ) for the incident»elect;on
- treated as distinct from that in the target atom ( ESGH,‘
Sec. 3.2.1 ) to scatter elastically with momentum P’ » and
the second term is the exchange amplitude ( equation 2.36 )

( approximated as ¢ in [ Sec. 3.2.1 ) for the process

och
in which the target electron is ejected with momentum P',
while the incident electron is captured. Since the elec=-
trons are indistinguishable in reality, these two processes
cannot be apart, and since the electrons are Fermiowuws,
the appropriate observed émpli;ude is the difference of

the two amplitudes ( equation 3.42 ).

. The exchange scattering gmpliyude ( sequation 2,36 )
was ab@roximated~throhgh,the first order term ( equation
3.17 ) using bchkur (1963) approximation, for the consis-
tent expansion of the ICS ( equation 3.2), O ( kzz ) in
atomic hydrogen { Sec. 3.2.1 ). - This approximate exchange
amplitude may not given ( Byron énd Joachain , 1977 )

leading contribution of the exchange amplitude.

In the present study we made an attempt ‘to derive

the second term of the exchange aﬁplitude ( equation 2,36 )
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using the HEA ( Sec. 2.3,5 ) and Ochkur (1963 ) approxi-
mations for the ESGH process ( Sec. 3.2.1 ).

The second Born approximation ( equation 2.57 ) for

the direct scattering process was given as

f;i - s d, e (1gr ) <P IV (g, )
ﬁ:wdzo' H(z )exp (=18 2 )

iz

[vg(z, -2 Y s T eees I ) F E_E?

v d o o 1. z
T ,
.0..(3043)'

Now the second Bprn exchange amplitude can be obtained
from the equation (2.37) as
- ’ 2 (+) '
g = =-(2n) ¢ @ lv ¢ v |8, > (3.44)

B2 _ pb p d d ‘

Taking the permutation of the electron and target wave
functions in the final channel, we will obtain ( equation
3.44 ) in HEA ( Sec. 2.3.5 ). Now the second Born

e xchange amplitude‘bf 0 ( k;l )‘( equation 3.44 ) for
hydrogen afom can be obtained from ( eqﬁation x3.43‘),

given as
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(2) - . ‘
5 [ odr, exp (ikjer

g sy m, )V, (z . x)
HEA  27°k o ‘oo’ 'p " =0’ =l

=]
f f"’ ' Ll i '
_% dZgH(Z Jexp (-1iB,.2 )V,

|
( o ~ zb 9, z )

J dzjexp (- ikeer, ~Yy; 1) (3.45)

where y =y, =1, andV . ( I, I ) is the 1nterac§10n
between the inciden@ electron and target hydrogen in the
rearranged channel. This interaction can be obtained
taking the permutation of V ( equation 3.7 ) in the

initial channel .

Ve lzyszp) = - + (3.46)

substituting the fourier form of the interactions for

?
v 0 ( I, » I ) and V 4 ( I, - %, Y, I, )} through

equations ( 2.52, 2.53 ) in ( 3.45 ) , it will reduce to

(2) ; y ‘
i ]
g = =i f dr exp ( i k,sr =y 1T )
HEA 2a k. '..f it} -1 =0 e O

J dak[exp (1K )=-11

exp (= 1 Kox; )

2 ﬂ? KQ




- ‘ o0 ' 1
J d I; exp (- iKeeZy = v Ty )-f; dzZ H( Zlo)

|
rexp ( = 1 By Zo )

v

1 - ' 't . ‘ ! v
S— _}:'?‘(" 5 f d pz exp -1 ( d pz ZO + pz Z )

t

[ap' exp (ip b )lexp ¢ iBuz;)=-11 (3.47)

B 1

L
(where P = p + p, ‘§ ) .

1
After the evaluation of dZ  integral ( given in Sec,
2.3;5 ) the real and imaginary parts of the equation

(3.,47) can be separated as

{
(2)  _ 1f o dP;
R = - — dr
C e TRy P Gro

exp ( i gi.éo - Yo To )'f d 5 exp ( - 1 5.21 )

[ exp ( iKer)-11 ':J?’ Jdzx

- o ‘ e " '
exp (=4 keexy = vy Ty ) J dp exp (=1 peb, )

[exp ( i g:§1 + i pé zZ, ) = 1] '§~—l“}2 ]
’ (p + Pz )

eecee(3448)
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HEA 8 n

(p + Bi

".... (3.49)

Thé pé variable in real part ( equation 3.48 ) is
replécéd by B; in the imaginary part ( equation 3.49 )
( See equations 2,58, 2.60 ). %irst we consider tﬁe
integral evaluation of imaginary part, because these
results can be easily extended to ‘real part integrals,
.From equations ( 3.48 ) and ( 3.49 ) the imaginary part
equation (3.49) can be written as

(2)

Im ¢ = =
HEA 8 0 k

S dr, exp (i kioZy = Yo T4 )

ak d B'
S S -

S dr, exp(=-i keeZy = ¥V3T)

(p' + Bi)

[exp ( =1 (K=P)u I =Ly ) =1

i
e

1
o
~
.

I
+
H;

1
-
—

I

i

)
—
p -

+

exp -{

exp (=i (K oz, +B .z, ) )] (3.50)
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= S5 ; J dr exp (1 kie Ty = Yo T, W ~E§~
1
J e J dr,exp ( -1k )
2 5 I 6XP L =1 Xpe Ty = V1 Ty
(p. + By )
[A-B-C+ D] (3.51)

where A, B, C and D aré the respective exponential
terms in equation (3.50) . Now consider the integrals

with the first term-( A ) -of equation (3.51).

8 1 k. 2 5. Y KZ J dr, exp (- Yo %o )
i (p + By ) *

| o | | ‘
exp (1 (K=PB +k; Joz ) Jdyexp ( -y 1)

exp ( - i (K- g'+ gf Yo él )
_ 81, ; ak
(p +8;)

1

- .. 0 2 o A22
2 ' X

(vgr LE=R+k | ) (34 lk-p'+ k| )
Substituting , Q@ = K-S and § = B -k, in the

above integral
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(@48 (2 + ) (F+la+rg 1)

in the large incident energy region ( Ochkur, 1963 )

this integral can be written as

81 ‘ dp
"Ry, T 2
dQ
/ 5 2 . 2 2
(1+Q) (1+]Q + gl )

using the integral techniques ( Gradshteyn _and Ryzhik,
19653, Joachain , 1975 ) for the evaluation of d Q ,

we will obtain this as

1

, d
16 i ‘ I £
= 2 < 2 9 ' 2
ki (g + 4 ) (p +85) (12 =k | )
16 i ?
= — 5 J
nk, ( 9 +4) °
1 1 t
% T p dp di
0 12 2

Pa
+ 3? + k] - 2 kB, )
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t
The integral procedure for dp ( given in appendix )
is similar to that of I, ( Biz , ¥° ) integral in the
ESGH process ( Sec. 3.2.1 ) and denoting the final

closed form of +the above as El

32

2 , B.
2 2 i
(a+4) (k -28;)

El

]

Similarly , the closed form of the integrals with the
other terms ( B, C, D ) in equations ( 3,50, 3,51 ) can

be obtained.

' 4 1 2 2
2 nk; (k =28 ) 10

-Il(uz,vi)]

= —8 . pl ' 1 1
E D [
2 | 1/2
(v k= B, ) )
tog ( —1 LK By )
Bi ;
1 k; = B4
- - log —~——§———l- ) ]
ki ( ky = 2 By ) i .

o
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1 ' 1
E, = = D( v )
4 3 2 2
n K7 ( k8 - 2 ki,Bi +y'< )
1/2
(y 2+ (k-8 0%)
log ( , — ) 1
Yi
where y = 2, @ = ﬁiz + y2 3 v? = ky = By )2, y'=1
i
. 1 (2) 2
C.oIme o= Bl SB)-Ey+E, (3.52)

. 2
The integral form of Il ( 512 y Y ), I ( u2 , v2 ), and

the solutions of these integrals are similar to those given
in ESEH ( Sec. 3.3.1 ) and ESGH ( Sec. 3.2.1 ) processes.
The TCS ( equation 3.3 ) corresponding to the exchange ‘
amplitude ( equation 3.52 ) can be obtained in the forward
direction { g =0 ).

¢ " = 22 m g 2) (0) (3.53)

tot i HEA

This exchange correction ( equation 3.53 ) is included
to the direct TCS ( equation 3.12 ). These results are
given in the Table (3.4).

The real part exchange amplitude ( equation 3.48 )
can be expressed in a similar way of imaginary part

( equations 3.50, 3.,51 ).
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Lo
=

(2) 1 | > dpt |
Re g = - S Pz ; -
HEA 8 7° ky @-m(p,-_ﬁ ),fd.’:‘o =
z i
d K '

S d p! ,
f— s 2B p o

l (p'2+p'2)\h -
Z v

[ A-B~-~C+ D] (3.54)

Here A, B, C and D_'rebresent the first, second, third
ané fqurth;t exponential terms in the square bracket of
Aequation (3.50) with g‘ = g' + pé ? « The computation
of the integrals dr -, dr;, and dK is similar to
that of imaginary part ( equation 3.,50) . Consider the
integrals ( equation 3.,54) with a typical term A.

- ad t -
8 n° k == (o) R = Zo
2 1 (p + Pz ) :

cexp ( =y ) exp (i § - g' + k; ) . )

o7 1
Jaryexp ( =y, r; ) exp (=i (K =P +kedorz;)

Using the old results of the integrals ( d I, »dxr; , dK )

e
‘given under equation (3.51) , we can ;éth this as
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-32 il v s oo dpz

= » [ p dp ¢ s o )
‘Eki(q2+4:} ° =~ (py =By

1
l2 |2 o l2 ! 2
(p +p; ) +(py=1k) )

o o d
-32 1 t P
- - GO
nk, (o +4) (Pz - B;) (k= 2p, k)

1 1
[ == ) 7 |

. 1
P+ Py p +(pz~ k)

dpz

+32

(pz = By )(p; -~ a;)

dp'(‘?fw =
. OO

= 2 S p
2k§%(q2+4) °

1 1
[ ) - \2 . 5
P +Dpg p +(py= k )
+16 NadR | t Nad % -
- —t30 S p dap @1 dp,
kK; 5 (g +4)" (B, ~a, ) o -~ o«
i 1
[ - d ]
pz = B; Pz =
1 1
7 - —7—; 5 )
p_ *Pp p + (py =B )
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/The closed form of the above integrals can be obtained
by expanding the square bracket terms, and making

2 2 i .
use of the ‘13 ( By » ¥ ) and I, (,51 » Y ) solutions
given in appendix ). Similar type of computation can
be done for B, C and D terms in equation (3.54) . The
final closed form of the equation (3.54) after the compu=
tation can be obtained as

(2) )

1
Re = : D
Ywea T g -aa DY)

[ L, F ﬁiz v Y ) - 1, (,ai ¥ ) q -

Dt (y )t

[ I, fyf s kg = ay ) = I ( v, ky = By ) ]

seces - (3+55)

. . 2 .
t
k .
where a2 =_%(.; +.71_;‘ y;g 1
k.
al a-#— 3 y = 2

The integral representations of I, ( al2 , y2 ) ‘
i W
I, (y 4 ki =a) in ( equation 3.55 ) and the correspon-

ding Solutions are given in the appendix .
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The first Born exchange amplitude can be obtained

from ( equation 2.37 ).

= —_— ' -
= - 5 ‘f dr, exp ((ik; oz =-7x ) Vg 0T Vy

Qi

Bl

Jdzr, exp (=ike oz -1;)

T + T2

1

where T2 is the approximated. first order term wusing the
Ochkur , (1963) approximation for the electrostatic
interaction term of V, or v ( equations 3.7, 3.46 ).

And term T corresponding to the nuclear interaction

1
d *
can be obtained as

term of V The final closed form of these two terms

= 32 5 . (3.56)
B1 ~ T 3 2, 2
(k°+1) Kk (d +4)

(o))
i

Now the exact scattering amplitude ( equation 3.42 )
can be formulated using the direct ( equations 3.8, 3.11 ,
3.13, 3,15, 3.16 ) and exchange ( equations 3.52, 3.55,
3.56 ) scattering contributions to the DCS for ESGH

process ( Sec. 3.2,1 )
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(1) (2) (2) (3)
Pd = £ + Rel f + Re2 f + f o+
i~Sf . HEA HEA GES
(2) ‘
+ Im f (3.57)
- HEA
- (2) (2)
FE = gg; *+ BRe g + Im g (3.58)
HEA HEA
EF = Fy & Fg
2
EDCS = | EF | : (3.59)

These cross sections are calculated at incident energies

100 to 700 eV , given in Table (3.2).

3.5.2 Comparison of present ESGH ( included higher
order exchange amplitudes ) results with the

other data :

N Using the exchange scattering amplitudes ( equations
3.51 , 3.55 , 3.56 ) and direct scattering amplltudes

( equations 3.8, 3.11 , 3,13, 3. 15, 3.16 ) we have calcy~
lated EICS ( equation 3.59 ), TCS ( with exchange term,
‘equation 3,53 ) and, TES ( with exchange ) in tﬁe energy
range E = 100 to 700 eV. These results axe tabuiated in
the Tables (3,2), (3.4) . EICS ( equation 3.59 ) results

at incident energies E = 109,-260 and 400 eV are shown in

Fig. (3.2) along with the rTecent theoretical and experimental
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data. Considerable exchange correction was observed
to the direct ICS ( using , equation 357 ), TCS

( equation 3,12 ) and - TES ( no exchange ) . ‘Present
results ( with the inclusion of second order exchange
amplitude ( equation 3.58 ) to that of ESGH process
direct amplitude, ( equation 3,57 ) are found in good

agreement with the recent experimental data.

Fig. (3.2) shows the present EDCS ( equation 3.59 )
( solid curve C ) . This figure shows three sets of
results ( Set A, Set B and Set C ) at incident ehergieé
100, 200 and 400 eV respectively., The notations used
for the compared data ( theoretical and experimental )
are same as given earlier ( - Fig. 3.2 ) . It can be obser-
ved from the figures (3.1, 3.2) that the present EICS
results ( curve C ) agree very nicely with the recent
measurea values ( Williams , 1975 3 Van’Winger den et al,
1977 ) than the earlier ICS calculations ( curves a’ or a),
and these exchange corrections to the direct scattering
amplitude equation (3.57) are smaller at higher incident
energies ( Set B, Set C ) than at lower iﬁcident energy

( Set A ).

]
Fig., (3.7) shows the area under the closed curves C

( obtained by EDCS { equation 3.59 ) X 2 # sin © ) and

u'



d’ ( obtained by- DCS ( equation 3.2 ) X 2 ®mwsin © )
‘correSponQing to the second order ( equation 3,58 ) and
first order ( equation 3.17 ) exchange corrections to the
direct scattering amplitude ( equation 3.57 ) at incident
energy 'E = 100 eV. It can be’_ﬁoted frém this figure -
that a good amount of exchange correction obtained by the
second order exchange term ( equation 3,58 ) than the first

order exchange term ( equation 3.17 ) to the TES.

We have displayed our present results in the
Tables( 3.3 , 3.4 and 3.2 ). Table (3,3) shows exchange
scattering amplitudes ( equations 3.56, 3,55 , 3,52 )
in the ;ncident energy range E = 100, 200, 400 and 600 eV.
It can be observed from the Tables(3.3 ) and (3.1) that
the absolute value of exchange real part (equation 3.55 )
was less than the direci real part ( equation 3.13 ) at
6 < 20° and greater at © > 20° , but the exchange
imaginary contribution ( equation 3.52 ) w;s always less
than that of direct imagénary ( equation 3.11 ) over the
entire éngplar region. fable (3.2) shows the DCS in the
incident emergy range E = 100 to 700 eV. At each scatt-
ering angle © and incident energy E, tTwo IXCS results
resulfs are given corresponding to without ( lower results)
ahd with ( higher results ) exchange terms ( equations 3.56,

3.55, 3,52 ) to the direct scattering amplitude (equation



3.57 )? It can be observed from this table that the
present exchange correc%ions are small, at © 2 50°

( fixed energy ) and at E > 600 eV ( fixed angle)
Table (3.4) shows the TCS ( with exchange correction)
and TES { with exchange ) in the incident energy range
E = 100 to 700 eV, These results are found to be in
good agreement with the compared theoretical and experi-

mental data.

Finally it was observed from the Tables (3.2, 3.3,
3.4) and Fig. (3.2) that the higher order exchange
amplitudes ( equations 3.52, 3.55, 3.56) are more impor=-
tant than first order Ochkur exchange amplitude (equa-
tion 3.17 ) to the direct scattering amplitude. And
the present results -are found to be better than the

ESGH ( Secs.3.2.1 , 3.2,2 ) process results.

12
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thaviqur of the exchangé amp.‘gitudes ( equs. 3,56, 3.55,

le -

3,52 ) from E = 100 to 600 eV.

E ¢ a.B“l Re\g (2) Im g(2)
HEA HEA
§  =0.23709 ~0.12999 0.09967
10 -0.21653 -0,12235 0,08732
20 =0,15477 - -0,09964 0.05274
30 ~0.09463 ~0,07819 0.02374,
40 -0.05114 ~0.06378 0.00713
Joo 50  =0.02336 -0.05567  =0.00048
60  =0,00630 -0,05158 ~0,00335
80  0,01078 -0,04893 ~0,00399
120 0.02105 ~0.04903 ~0,00235
5  =0,12457 -0.04518 0,04242
10 =0,10591 -0.,03957 0.,03322
20 '-0,06114 ~0.026263 0,01350
30 -0.03037 ~0,01760. 0.00299
40  -0,01424 ~0.01361 ~0,00060
200 50  -0.00621 -0.01204 -0,00142
60  =0.00209 ~0,01151 -0,00138
80  0.00142 -0,01141 =0.00091
120 0,003190 ~0,01169 -0+00036

esssContd.

i3

0

7 .



Table - 3.3 ,Contd.... )

E =) EBl Re 9(2? | In g(z)
HEA HEA
5 =0,06041  =0,01576 0.01698
. 10 -0.04486 -0.01212 0.01086
20 -0,01853 ~0.00608 0.00218
30 -0,00114 «0,00370 ~0,00023
40 --0,00288 0400299 ~0,00057
400 50 =0,00177 -0,00280 ~0,00049
60  =0,00041 -0,00277 -0,00036
80  0,00018 -0,00282 ~0,00019
120  00,00044 ~0.00289 - ~0.00066
5 =0,03841 -0,00834 0.00958
10 -0,02526 ~0,00573 0,00511
20 -0.00817 =0.00242 0,00049
30 =0,002723 -0,00149 ~0,00029
40 -0,00102 - -0,00128 -0,00024
600 50 =0,00040 ~0,00124 -0.00021
60  -0,00014 -0.00124 -0,00015
80  0,00005 -0.00126 -0,00007
120 ~0.00129 -0.00003

0.,00014
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