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5.1  Introduction

A We now turn to inelastic gollisions of fast
electrons by atoms and molecules, At the outset; we mgst
clarify that though the term '%nelgsﬁic’ collision  means
both excitation (or de~excitation in spperelastic pfocésses)
as well as ionlzation of the target atom, we are concerned
here with the electronic excitation of the target (atom),
initially in the ground«state..Additionélly‘in,the‘.cqse
of molecular targets thé inelastic pfbcesses involve, in
_general, any one or more of rotational, vibrational,éﬁ and
~ electronic excitations and dissociation etc. Since we are
dealing with fast electrons, the rotational and vibrational
excitations are ingnored. Most of our sﬁudy‘is‘ceﬁ%red

around the atomic and molecular hydrogen.

The process of inelastic scattering
involves both, transfer of energy ané momentum, Another
polnt of interest is the Subseqdent*radiation‘emitted by
the target as it returns (usually) to . the ground state.
For example, corresponding to 2p state eficitation of
the H-atom the prompt Lyman- q ‘radiation is studied
(Long et al 1968) and fbr %herslvstéte excitafiéﬁ,'the
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Lyman- ¢ radiation induced by an¢ applied electric

field is observed (Kaupilla et al 1970);see also Williums,
(1976). In exciting the n = 2 state of atomic hydrogen,
electrons suffering 10.2 ev energy loss are scattered
‘along with 10.2 ev photons. These processes are important
in the energy-loss by particles in a medium, The theoretical
treatment differs from that of glastic scattering, in terms
. of basic approximations, their sﬁpcésses and .feilures.,
This chapter naturally divides into the discussidn on
atomic and molecular targets': part A oflthis chapter deals
with the atomic targets followed by part B, which deals

with the molecular targets,
| Part A ‘ k
5.2 The First Born Approximation .

Consider the hydrogen atom initially 'in the
ground state [i> being exéited to a final state |[£)
by an impinging fast electron. The first Born T-matrix is

1g.r
T o= (2m)70 d;c_eﬂa Ag(x) (5.1)

For the process leading to the final state 28,

-3/2 '
é 3/2)r o

Ayg.(r) = C, (r+3%) (5.2)
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= 22
c, =% : (5.3)

Here, the use is made of them function of the 23

state of hydrogen atom,

=1/2)r,

lﬁ'aé%), = 1. (2 - ry) e (5.4)
4y2n
The first Born amplitude for the transition 1S e=— 25

due to electron impact, is,

fB‘] (1S =— 28) = = —-—8-[2‘9— (5.5)

@® + 3{')3
Notably, the first Born inelastic £ amplitude, is negative,
unlike that in the elastic case., The final momentum
k.f(in a.u,) defined through,
4k

§+w = 3l o+ W (5.6)

‘glves the momentum transfer,

q = (ki + k%. - 2k;kpo cos 9)1/2

(5.7)

The first Born amplitude, being proportional to q"'6,
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falls off much rapidly at large momentum transfers,
compared to the first Born elastic scattering amplitude,
ean. (3.8). The first Born inelastic amplitude fails to
describe the wide angle scattering even at high energles,
The reason as can be seen from eqn. (5.1), is that the
nucleus-electron interaction is ineffective in the present
first Born approximation, because of the orthogonality of
J]i> and |[£>. This is an additional drawback of the
first Born treatment in the present case, the other
drawbacks being similar to those of elastic scattering
discussed in the article no, (3.2). Clearly, the higher
order amplitudé must be dominating in the small as well

as large angle ¢ lnelastic scattering.

To calculate the first Born exchange amplitude
for 15 =3 25 +transition, the required T~-matrix is
obtained in the potential V_ written below, after permuting

, D
the target and the incident electrons.

1 1
v = - Aw—— 5.8
S P P B (5-8)

Here, the first term, corresponding to the electron-

electron interaction is more important, hence,
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| ' ~3 ,  “lEpen 1
oy = (2w <e IF; (x) | -zl I
1k, .
i1t g, (r) > ' . (5.9),

The general result for excitation from the ground state

to any excited state 'n?',

och 2 4 .
Tpo = i-g Tpyo (Born) ;2o (5.10)
T

where the corresponding direct matrix element of the

d
n,0 (Born).

The eqn. (5.10) is obtained in the Ochkur (1963) approximation,

first Born epproximation is‘représedted by T

The exchangé amplitude of 15 —> 2S5 transition is

7@;{tﬁ§ngbelow

och 8ye , 2 :
g (18 = 28) = = ! (5.11)
K (a+ D

Born -

Unlike elastic scattering, the exchange amplitude of

eqn. (5.11) 1is of the same sign as that of the corresponding
direct amplitude, The effect of exchange is to reduce the
inelastic DCS, Fﬁrther for elastic scattering at relatively
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lower energies around 100 ev, the exchange contribution
from the first order amplitude is quite significant,
esgeciglly at € = 0, While, in contrast with that, the
exchange amplitude of inelastic scattering, e.g. eqn. |
(5.11) rates poor in that, it falls off like k;'. This
is because gq_; =k; - k; and hence q_, = 3/8 k?
at high energies. This behaviour suggests that for
inelastic scattering, at small g, higher orders of the

exchange Born amplitudes must be considered,

'Now, for the 1S —> 2p excitation,
W
we must consider three magneticfsubstates with

m=3*1, 0, so that

,15/2 ~3/2r
hopo (1) = m— Flz- e

(L+geg+gm G

And,

1 ;3/2 r

(% 435/2r+ @+ 2k 1)) (5.13)
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A slightly different procedure may be adopted for getting
the direct first Born ampliﬁude to make use of the fact

|

that only m = 0 contributes here. Quoting the final

result, ‘ 0

42Ve i

g, (18— 2p) = =
a(o® + %)3

(5414)

It can be seen that for 15 —3» 2p transition, the
forward peak in the amplitude will be quite stronger, but
will fall off much faster than the elastic first Born
amplitude at large q. The transitions such as 1S -3 2p,
which arelopﬁically allowed, dominate the total cross-

sections at high energies,

Simple first Born calculations are 1Aadequate
to describe 6orrectly the angular distribution of elec;rons
scattered inelastically from an atom, This émply speaks
for the need of higher order theories, which we now

discuss.

5.3 The Glauber and the EBS approaches to the
Inelastic Scatterggg

. The excitation of hydrogeﬁ atom from 1S

[

to 23 state is only next to 1S =3 %15; problem, in
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order of difficulty. Let us review some pioneering work
done in this area, Burke et al (1963) employed the close=-
coupling formalism . to this process. The interest in

the Glauber theory appeared in the early sevgn?ies,‘in‘.
view of the fact that i1t accounts fér~al; possible |
channels, unlike the close-coupling approach, Byron (1971),
. {see also Ghosh and Sil 1970) explored the Glauber formui-
lation %o study +the electron impact excitation of
hydrogen and helium. This was perhaps the first work.
where an important drawback of thé Glauber formuiation

for 1inelastlc scattering was discussed., In the Glauber
theory, the momentum transfer g is taken as perpendi=-
cular to incident vector gi. Now, for inelastid collisions,
4 = k; - kp is never zero physically, and in fact

at @ =0, g, Ky and k. ere collinear ! Hence, the
assumption of ‘g' berpendicular to gi is ggainst

simple kinematics and quite undesirable, Byron‘(1971)

and later Gau and Macek (1974, 1975) used numerical

evaluation to avoid this situéti@n.

The Glauber amplitudes for the collisions
of charged particles with hydrogen atoms were first
derived in the closed form by Thomes and Gerjuoy (1971).

Quoting thelr result for electrons,
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F(1S —> 28) =

ik 2
;;2 ;';6 ( ;-% )1.-in [[(1+in) [(1-in)

!

N ‘
X in (2in{1 + _1_-1_{132}3‘1 (1 =« in, 1 = iny 1; *hz/qz)

' | 2
+ 4in(1 - 1)? (B/e®) P (2 - in, 2 - in, 25 =M /%)

I

+ (1-12 (2 - 12 (X /g*)
X o, (3 =1n, 3= in; 35 =A% /@) A =3/2° (5.15)

where n = 1/ki=in a.u. (see also GerJjuoy and Thomas,
1974) SF 3 is a hypergeometric function. An ‘1ntéresting
result of this work is that for 18 —> 2p exciltation,
the amplitude vanishes for the magnetic j}ﬁﬁé‘ga—{ém m =0,
The reason for this can be traced back to the two
dimensional nature of the Glauber amplitude. In general,
for a transifion nim-3 n'l'm', the Glauber amplitude

will be zero, whenever,
1 + 1t + |m] + |m'| = 0dd integer (5.16)

This constitutes an important drawback of the Glauber
theory. Apart from this, the inelastic Glauber amplitude
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(5.15) differs from the Galuber elastic amplitude in that,
the question of sihgularity does not arise, as q # O, The
second order term of inelastic Glauber amplitude, on the
other hand, retains the absence of a real part. Finally,
the Glauber approximation works relatively better*E%;_
small angles and for S5 ——p» S transitiong, while 1% is
poor in describing largey angle scattering. where it highly
underestimates, The Glauber approximation virtually

breaks down for nonspherical final states. At .thié stage,
one may recall the term by tgrm analysis of the Glauber
amplitude by Yates (1974). This approach , the GES formu-
;ation has not found much headway in the inelastic collisions.
' Singh and Tripathi (1980) have used the GES method to
describe the élastic as well as inelastic scattering of
fast electrons by He-atoms, Byron and Latour (1976) employed
the EBS to analyse 25 and 2p excitation of atomic
hydrogen by electrons. These authors find that the polari-
zation effect, generated.by the real part of the inelastic
second Born term, is not as large as that in the elastic
scattering. One of the reasons for this is thatqg# 0 at

6 = 0. In fact upto about 30 angle of scattering,

the EBS and the Glauber results are in agreement, As
already stated, the EBS -approach seeks to .evaluate -

the direct scattering amplitude in the form,
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Teps = fpy * Tp T fa3 (5.17)

And for elastic scattering, the exchange amplitude can be
incorporated through O(kzz), The consistency of O(k{z)
does not hold for inelastic scattering. It ié?/i thus |
cleer that, apart from a dependence on k , oné has to
also consider the dependence on g, in 1writing eqn,
(5.17). In short, the DCS derived from the EBS

T ——

-amplitude would not be strictly’fO(kzz)wv nov,
f L ; .

| The well-known method of evaluating the
second Born amplitude of egqn. (5.17) makes use of the
Dalitz integrals, Al#ernatively, folléﬁing the HHOB of
Yates (1979) the seéond Born amplitude for inelastic
scattering can also be,evaluated along the lines of our
discussion in the ¢ chapterXB. Rao and Desal (i983) have
studied 15 =——> 25 process in this way,but the results
are good only at small angles., The previous reéults_ for
elastic scattering (chapter 3) can be easily extended to

18 =2 25 excitation.

i

Further, for the present case one would
like to calculate the modified Glauber amplitude as is
done for elastic scattering (Gien, 1976) ie. by
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construciing an amplitude,-

1

e - N SR SR (5.18)

This one and similar other approaches have enjoyed a
great success in the elastic scatterings. However, it is

not known if eqn. (5.18) 1is applied to study the 15 —> 25

(or 2p) excitation, Presently,fwwfén - advantage of
the modified Glauber amplitude is lost, since the inélastic
Gla uber amplitude is not singular and further, the real
part‘of 'fBZ is now not so dominent. All the same, an
essential ingradient of eqn. (5,18) lies in the higher
order terms of fG, which can play an effective role in-
the large-angle scattering. Uptill now, the theories
described are 'plane-wave' approximations, i.e. no aocount

is taken of the projectile distortion.

5.4 The Distorted Wave Methods

The T-matrix of the Born séries for the
direct inelastic scattering, for transition i--» £,

is,

Tey = < £, Ko | V(1 + GV + GVGV + ..o )4, k5> (5.19)
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- whé:e, the symbol G 1is for an appropriate Green's
function, Here the 1initial and the final states of the
projectile electron are represented‘by the plane waves,
However, as an electron approaches (recegds from ) a
target it experiences the field of the target even at a
distance, so that it differs from a plane wave. Thus;
actually fhg matrix element of eqn. (5:19) must be
evaluated with ‘'distorted' waves, Let us see how, the
first Born approximation can be modified with this 2 idea,
The modified first Born approximation was proposed

by Juncker (1975) and has been further explored by Gupta
and Mathur (1978 a, b, 1979). In this meth&d the
distortion in the projectile, represented by“a coul@mb
wave, is produced by assuming anjﬂleffecttve charge '6' -
on the taﬁget nucleus. The expression of the distorted

wave looks like,
F(r) =l(1 - lay) exp (ik;.r + T a5_/2)

‘This will yield plane waves if a = 0, Gupta and Mathur
-¢1978b) have applied this procedurte to 15— 25
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and the exdhange is also included, Target polarizationlis
not considered, The agreement with data is not quite good
except below 30 . It may be noted that the DCS of n = 2
state excitation of hydrogen are obtained as a sum of 25
and 2p state cross-sections, At small angles, the 2p.
cross=sections in the first Born treatment are very large,
so that all theories yleld almosf equally good results
below 20 = 30° angles, Nearly 93 % of the integrated
cross-section for n = 2 state is contributed by

15 = 2p ‘fransition.

A rigorous distorted wave calculation for
n =2 state of hydrogen is by Baluja et al (1978) which
is quite similar to that of Galhoun e al (1976, 1977).
Among the methods using high‘energy approximétions
in a distorted wave fheory, mention must be made of the
elkonal DWBA (distorted wave Born approximation) of
Chen et al (1972). The validity of this method is 'limited
to small angles only. In the next section, we describe

a new high energy DWBA method,

2.5 A New High~Energy DWRBA Method
Consider the inelastic electron-atom

scattering, The hamiltonians in the channels 1!
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and 'f' are Hi and He =0 that,

X, = E_ X (5.23a)

where, BEg (E) is total initial (final) energy of the
system, The initial and final asympotic states are given

respectively by Xa and Xb s With,

- ik, . '
X, = ( 2n) 5/2e§1'£ Wa(rj,) ‘ (5.24)

where, ¥, 1is the initial state of the target.

Basically, we wish to evaluate the T-matrix eigment,
iae (). (~)

where, V,; (V,) is the interaction between the target
and the projectile in the initial (final) channel, |
Suppose that the interaction is splitted up into two

parts,

v, = Ui + Wi ( 50 263.)
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We assume that the corresponding state vectors, given

below are known.

(+) ie -1
) = Xa + (E = Hi - Ui +1e ) Ui Xa (5.27a)
p) = x o+ (- Hy - U, =€) U, Xy, (5.270)

"

Starting from the integral representations. (5.25) of the

T-matrix, one can show (Gellmann and Goldberger, 1953)

that,

(- (
T o= <X [Vp - Wyl ¢;+) >+ < T ) Iwi! ¢a+)' > (5.28)

[
s

Suppose now that the potentials Ui;and Uy depend
only on the coordinate of the continuum elecfron,
hence they cannot induce any transition. For inelastic

scattering,

T = < g&) |wfi ¢é+) > =< () ]wimé*) > (5.29)

ba

The treatment upto here is exact, The question now

is how to determine the distorted waves ¢(a"') and ¢.g").
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It is required to evaluate the Green's operators,

- lim 1

G.. = e s 0+ (5030)
& - H + ie)
It can be shown that,
¥ o g s aal®) o
o) = x + 26{ v x, | (5.31a)
o) = x, + 26\ U, x, (5.31D)

Now, even if ¢(+) and ¢(‘) are known, the

T-matrix of eqn. (5.29) is tremendously difficult, as

1t contains the exact wave functions W( +) and w

We then resort to the first Born approximation“b&
setting, ' ‘

R N S N
Thus,, the Distorted wave'first Born transition matrix

element is,

R O R P A I o

(5.33)
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This is our starting point.

Choosing the many body Green's operator, with Spgctral

resolution and K - representation,

exp (iK.(z - £')) {n><nl A
K-k Foie miae o a (3.3

Thus,

¢(+) = {1 -. 1 T ff d.g'

(em)® -n
— . exp (iK.(zx - "))
bR ey
R K™ =k, = i€

x | n>¢n 1] @™2 iz oo
U, Crr) e Vo & (5.35)
And a similar equation for ¢£h)s
Now, from equ. (5.35), consider the following

part of the Green's function,
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exp (ik.(z - z'))

+ -3
¢ ==(2m)"° J &K (5.36)
= K° -k - i€ ‘
n
Here, we introduce,
p =k -k, R =r-r! (5.37)
Now, taking gn along z-axis,
+ -3
G = =(2m) exp (1 k.. R)
exp (1 p . R) . |
J dp —» - (5.38)
Further, expanding the denominator,
1 = 1.
p° + 2k, p, - i€ 2k p, - 1€
2
(1 - E 16 * sees ) (5039)
2kyp, =

(The symbols p and p, should not be confused with
any Fourier transform variables). Thus the Green's function-
is linearized and in the high energy, smalle-angle appro-

ximation (chapter 3) wé expect that the first two terms are
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are sufficient to describe the distorted waves eqn.

(5:31 a,b), Further, we need,

R =B + Z (5.40)

Now, we can show that by retaining the first two terms ’

in eqn. (5.39)

' ‘ ikZ -
+ i n 1
G = = e 8 (B) H(Z) +
7, ™
vy (Ze -8 (B) H(2)) (5.41)

Here, H(Z) 1is the Heavyside function, Now,; we
replace R -—> ' ‘and go back to the eqn. (5.35), ‘So
that the outgoing distorted waves are given by,

# - e akr
a e .

1L 1
1 -
{ Tk
~ig, z!
g ( »fm dz' e ﬁn} H(z') |n>< n]
n‘ -00
(1 o+ B Ve (U (e 20X R (5.62)

i
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In arriving at this final form,- T
* ° The property of ©&(B) is used.
* The parameter @, = k; -k, 1is defined.

* The assumption k; * k  is used (Yates, 1979)

Now to derive the form of the incoming distorted
waves ¢( ) s Ve have to s’cart from, -

- - ik .R exp (ip.R)
¢" = -(27) 3 o=n S ap = (5.43)

2
p + 2knpz + ie

We follow the previously described procedure, The
incoming distorted waves look like,

p{") = (2m)=3/2 o ek (-&
-1, L : )
E(fmdz‘ e in'? H(z') X | n"»< n' |
n' - : (
(1- %f;; v2) Uz - 2'N] §, @) (5. b

where, as done previously,

Brar = Ko = ke 3 ke = k, 1is assumed.
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* Up(r) 1is the distorting potential in the final

channel,

* the rest of the comments following eqn. (5.42)
apply.

The expressions for the distorted waves are simplified

by defining the average -excitation energies through the

relations,

CBepr 2 By = Wo/kg (5.45b)

with W1 and ﬁz as the mean excitation energies in
the 1nit1a; and the final states respectively of’the

target atom. We thus obtain,

‘ - ik, .
g = (emPRSRE [ %{_5 az"
e"iﬁ1 2 H(z,) X (1 + 'jz-lg{_i_ vi' ) TMA*“”,
Ui (z - 29} WQ(X) . - (5.46)

And an analogous expression of ¢£'). If the average
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excitation energies vanish, eqn. (5,46) reduces to the
elkonal expression plus terms from the second term.of the
Green's function expansion, eqn. (5. 39). Flnally the
distorted wave first Born direct scattering amplitude

in the present high energy approxlmation is,

‘DW1

£

e = - o < AU SR 5

We discuss next the application of the present theory

to the excitation of"atomid’hydrogep by electrons.

5.6 Application to Electron-Impect (1S === 28)

Excitation of Atomic Hydrogen

DW1
To evaluate the amplitude £, , for

1S =3 25 we need, the distorting potentials Ui
and Up. A.simple choice is that of static potentials,

i.eo"
) = - (ryn) SE L (s

Un(r) = <t§283v}1§25>

| L
S cGeReiep (5.19)
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Thus, in the present case, we have

. L

e = ~3x 4 ace” T [+ I
a 16 z! ot 5 }
JFare T BN (1- -zi—ﬁ-f- v, )

Uplr = 20) < Tog W51 Ty >
- Z"‘

x {1 - -Ei-i- ;f: dz" e 2 H(z")

(1 + %E‘;‘: Vgn ) X Ui(E - .?.")] ) “’ (.5.50)

Now, the orthogonality gives,
9

< LWy ¥yg > - hog @ | (5.51)

Let us write the complete amplitude as

oW1 | ~

£, = £5, (15— 25) - (5.53)
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is the plane wave first Born amplitude, The terms fz,

f, and f4 are due to the cross terms of 'the products

ii the eqn. (5.50). The calculations of £, end f5 ere
comparable\to the second Born calculatlons, with the
'potential! acting twice, Tﬁe calculations in the last
term £, involve the 'poteg#ial’acting thrice and are

comparable to the third Born term.

Notably, here the part of the interastion
W; responsible for tran81tion, is treated 1n the first
order and the projectile distortion is considered through
the. secondggpder of pertubation. Potapov (1973) has shown
that the high energy limit of the DWBA is the second
Born approximation. This fact is confirmed here.

Procgding for 15 — 25 galoulations
we have from egns, (5.50)}through,(5,53),

r

I, = " ZRE, f r e Ay (1)

o'« ) ..j_ﬁ zt
J dz' e T H(z'")
e 00 '

X (1 B v2,) Uz - 2" ‘ (5.54)



279

Also,
- ig.r ,
fS = = kf J ar e AzS (xr)
00 : iB Z' i 2 R
J dz'e 2 H(z") X (1 - 22 ¥v°,)
- 2kf z!

Now q is made two-dimensional faqrid"‘”we use the Fourier
representat:.on oi‘ Uz.’ U‘f and Agb’ in the variable
P=p+ 'p_z, .In the follmving the: (everhead) 'bar!

represents the corresponding Fourier transform,

&
' G 2
( + (3 *‘1‘ -2 98
fes ¥R = (0 FTETECS AL
1 Tz - 1 i
. 1 |
W}.?\ =.3/2 (5.56)
i (E+ﬁ)'=-—lg(l--5%—)
LT an” 2
1 - S
- . . )\ = 2z S (5057)
ST A
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- A 3 8 .13 1 8
U + = - —— L -y Wi - = ——3')
g (P pp) 2 ( 7ok, B o\ 8 oAy
X 1 a xg "a 1 (5058)

2 2 2
P +pz+7\3“

By taking the Fouriler transforms, the priority of
intiegrat—ion in eqns. (5.54) and (5.55) changes and the
continuum electron coordinates are integrated first,
Now, we use the properties of delta functions and the
folicwing result, - ‘

-1 ' |
f°° axe H(zx) = 28 (@) -1 (i-) (5.59)

-00

The symbol T‘P denétes the principal value. Hénct:\e, -

co

. g3 R
£, = 'ﬁf- [if dg(-‘if-ﬁ-—*gg- (pz+ﬁ‘2))

ky OBy
Fps (@-2-8) Ty (2 + ) -3
2s \ 8= R=E37 Y4 \RB T B -3
: 2:-2
, dp - dp, (1 + - ——
W E-‘f..l z 2k, OBy ),Pz" B.q

L (a-2-2) T (e+p)) (5.60
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The term f2 splits up into real and imaginary parts,
each of them having a term through 0(kz1) as well as
0(k;%). It is found that in the imaginary.part, the

term 0(k12) is quite negligible, Hence we write, the
imaginary part through the order k;1 only. Further, the
term 0(k;2) in the real part here, corresponds to Re 2
of the HHOB discussed in the chapter 3, As B, = O
this term will resemble the real part of the second order
Wallace amplitude (see also Byron et al 1982), Now, the
evaluation of fz 1is quite analogous to that .of f,
and all the comments of the Lgst pa?agraph apply to f3
also, The final expression of the high energy W Born
amplitude for 15 —3 25 transition is written below. ’

- Let,
ni = 3% + ,hi' (5.61)
ng =‘ 6% + ,#g (5.62)
ng = ﬁg ‘+ ki (5.63)
n“‘z = Bg + 7\% {(5.64) -
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Hence,

Dl

£ = f5, (18 — 25)

HE ‘ ,
P52 -
TP ¢
(o n sl o) - 3

i T ki

2 2 .2
- }\2 14_ (ql’ )\l b ] hz ))}
.2 N 2
+ (= -8 )1 -3l i
5‘? 3 A 4N, "% nZ
3 _iC
-8y x FL 2
c
1 2 .2 ¢y i)
-—= I, (q Ae )+
x4 Mo P enks g
(158 = 25 I, (3, A7 4 25 )

(5.65)



The integrals I,» Iz and I, are given in the appendix,
Before closing this section, let us estimate the difficulty
of evaluating the term £,, Consider from egn. (5.50),
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only 1st term of £,. To give only an outline, we drop the

constants etc,

ig.r oo +ig z!'
ET1 J ar e J dz' e %
1t - -0

H(z') U;(_z; -2z X Ay (¥) CJDfcn dz" -

~igyz' ' .
e © H(z") Uy(r - 2")

. Here, after the Fourier. transformation of 'Ui, Up and
Azs s We are required to evaluate the following kind

1

of integrals,
dp , , d}g" ’

f

00

—
ey

‘ 1
p X
o (@PFuf N )T AR T TR

e

in

where a, b and ¢ are functionsof 'p'.

The -last integral could not be handled -

, [
(lg - 2I° + 87 + N (2° + 2°) (Ip' - 2I®

+m2

)
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confidently, hence f& is not evéluaéed at present, The
term f& may be approximated by a plane wave third order

Glauber term,

5.7 Inclusion of the Electron Exchange

Considering the 18‘-—-9 2S ‘transition, we
attempt to obtain the higher order exchange amplitude in
the high energy éistorted ﬁave method, The transition
matrix is obtained after properly permutingAthe incident
electron coordinate  r and the (initial) target electron

co-ordinate r, . Thus, ve need the exchange amplitude,

o,

g —an? < g puy) B > (5.66)
HE '

where P stands for the permutation of r and Ly
Comparing this with (5,50) the exchange amplitude splits
up into four terms, i.e.

DwW1

g = .t +* g + .6
HE €4 &> 83 84 (5.67)

The second order amplitude ‘g, is
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gy .r = ikpery

g = - mii [/ oz azq e
| os () g (x) X (V- 1y)
X | .Gfodz' e-?ﬁlz' H(z;) Uy(z - _z_')) + o(kiz)] (5.68)
oo _ V
Further, g, = Im g, +”ﬁé‘g2 ‘ o | (5.69)

First we discuss the evaluation of the imaginary
‘part of (5.69) and we call it 854+ Thus after taking

the Fourier transforms of potentials,

81 Cy JIJJ dap & or dr,
-l,r + ik .r - iP.r
X (2-r) e & i T=

-1,r, - ik.. r. ~iK.r
i§'£1 [ )
e -a

X (g = T(0)) Ty (R) (5.70)
in which

i

C. =
2 gyse ;3}51
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In the egn. (5.70) a = 1 for the H-atom shows the nuclear
term in the exchange integral. The most dominent contri-
bution comes from the electron-electron term of the

direct potential V, In writing eqn. (5.70) we have used,

a eweawe

- & (5.71)
LI_‘_ - .1.:1' 2“2 KZ

1 1 ! exp (iK.(r - .1'.'.1))

This leads to the first and.the most dominent term of 821
The next two terms are the contributions of the (direct)
electron-proton interection and of Uj(K).

Let us further white,

goq = 6,2 ffff | dp K dK- dr 1‘*(1;'_1 (2 - r)

("3i-) . = X e
2
| —l r
wiR ol 5 171
X e (-3
0. 1 r1
K.z,

X (1-3) ———t— _, (5.72)
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vhere; 1, =1, 1, = 1/2 and }"3 =2 5

For the electron-electron term from (5.72), we use,

. ~i(k, - K).r 2451
J ar, e L 1T x &
4w « y
= . 5.7T3
y 2 \Je
Ik, ‘&f?* 19 oo

and & similar result for r = integral. Thus, in the first
term of (5,72), two out of the four integrals are solved,

Turning now to the E—integrafl, we have

J i‘% 1
K (I -E-R 1%l ke - K7+ 1D
u o) gy C (5.78)
'1:% on | ‘gq'z + n2) | .

with n = 3/2, and g' = g“‘-'- Be

The last result follows from the Ochkur .
approximati}on to higher order terms in the K~-integral.

Finally, the p-integral,
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(0% + 5 + A2) (la - 2I° + 8] + 1)
=1, (@ pf el gl e (5.75)

1

Thus, the first term of 824 of eqn. (5.72) finds an

expression as,

iVJ8 (- ) Y@ - 0 )
€214 8 kikéf on 6":5
2 2 .2 2 ‘
I,‘ ’ (94 Bl + )\39 ﬁl + ‘n ) ‘ (5076)

The next term on our list of evaluation is the nuclear
contribution to "Boqs With a = 1,‘in’ the eqn. (5.72).

The nuclear term, would look like

bare = Cp JIIT cpogardp, (2-%)

Wl gl
- - D e @ o Mk -K-B.r
( al ) T X e
2 o
. -1,r
-iKoer i 171
aaf 0 g . e (
X e , (= =)
; all ‘ra
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1 3 3 \2
= 2 - )(" n )
C,y ((m 2+ [ | I,

]

‘ 2 .2 2
(1 - Egg') X Iy (Qozﬁi + Nzs. By + 12) | “(5.77)

In the recent literature there has been a lot of discussion
about the contribution of the nuclear term to the exchange
integrals, It has been often shown that the said contri-
‘bution is.zero, under certain assumptions (see e.g. Mishra
and Pradhan, 1982)., In the ﬁresent‘cése, however, it would
appear that the term 8212 showing a nuclear contribution
is 0(kI5) as. against the electron-electron term gy,,
which is 0(k§3), see eqn, (5.76), But a basic insight is
required into the gvaluation of the nﬁclear term. In .the
egn. (5.77),, the r,-integral mst vanish if we invoke
the ergument that the wave functions of the bound electron
and the cogtiﬁ%m electron must be orthogonal, In other
words, the sum of all terms in the exchange Born series,
which do not depend on the electron-electron interaction

must. add up to zero., (Shakeshaft, 1978).

An interesting‘cdnsequence of the derivation of
the term gé11, is that, there has been no need of the
assumption that the momentum transfer g must be two

dimensional and perpendicular, to gi, This is so, because
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the explicit form g = k; - ke occurs only in the K-
integral, Now going back to the main track of our discussion,
we have evaluated the dominent term of the imaginary part

of the second order exchange amplitude g, of eqn. (5.67).
It is denoted by gp44. ALl the previous discussion applied
to the amplitude g3 of eqn. (5.6‘7);{‘\@\9 “have to only worry
about the dominent term 8344 Which is similar to 8o91°

Thus, (g?_ﬁ * g3¢4) is the main contribution of the
imaginary Qart of the second order exchange amplitude
(g‘2 + g3) in the present ﬁigh energy DWBA, Now, for the
real part of the breaent second order exchange amplitudes,
we have to go back %o egns, (5.68) and (5.69) and write
for the real part of 8o

v+) .
8rp = 02 'ﬁp J dp J ‘dpzf dK

: ik, .r - Lr
Jfadap, (2ar) e 75 72

-1p.r - 1K JEE
X e (=1 %)
: K b Rl
2 4
P *tpP, -3

X (1 + )l T(R) (5.78
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Now, we denote by gy,qs the part of gy, containing

the electron-electron interaction. Hence,

12,0 I 1
- W . d m'
g221 02 f N ?’E _.‘go pz . pz - sl

- o 8 5
U;(p *+ p,) (Z,flzgg )(=- 7ﬁ;?(f 3T, )

(a . . y
; x 1 — —
K2 UL 13)(:_1;.1 -k - B 1)

(5.79)

Thus, the term 8oo4 Will contain, apart from the numerical
constants and derivatives, the integral I,. The derivation
of all other terms of g,, 1s not shown here as it
involves more or less similar procedure. This completes

the evaluation of ggg* y, eumitting 8 Finally, the

DCS with exchange,

X DW1 . [DW1 g [DW1: Dy
ao 1 DW1 o
'd'u‘:'“i:‘f‘ﬂ’ +3HE1*%4"E =gy 1)

 (5.80)
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We finish with an important remark that, while most of the
DWBA calculations of the other workers end up with numerical
procedures for integration, our method does not need any
such procedure and all the final integrals are done -

analytically.

' ﬁow, we exhibit the resu;té of our '
calculationst‘The DCs @f electron-impaét 1S w25
excitation in the inelastic e-H scattering obtalned from
the egn. (5.80) are shown in Tables 5.1 and 5.2 for fhe
incident energles 50 and 100 ev, In these tables We show
the values of the plane-wave first Born appraximation
(f’.B‘l')" the two terms Re 1 and Re 2 of the real part of
the present DWBA amplitudes, the imaginary part of the
present amplitude (Imf) and the DCS including the exchange.
Table 5.3 -shows a comparison of the.p;ane wave first
Born DCS, the DCS calculated by Calhoun et al {1976) énd
those of our DWBA method, all &t 100 ev. In the graphical
plots of figs. (5.1) to (5.4), we have exhibited the

following results, -

1. The DCS in the plane wave first Born approximation.

24 The DCS of the distorted wave approximation of
Calhoun et al (1977).

3 The ICS obtained in the present high energy distorted
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Table 5.3

The DCS (aﬁ sr™Y) of 15 — 25 excitation in

inelastic e-H scattering at 100 ev

295

Scattering i First : Calhoun : Present’
angle H Born s et al H
(deg) : : :
0 8.9 - 01 8.8 - 01 9,0 = 01
5 7.1 = 01 6.8 = 01 7,1 =01
10 4,5 = 01 3.8 = 01 4,3 = 01
20 1.3 - 01 8.9 -02 1.1 =01
30 2.4 - 02 1.6 - 02 2,8 - 02 -
4o | 4,0 - 03 5.1 = 03 6.4 - 03
60 8.0 - 05 1.9 - 03 1.7 - 03
% - 6.6 = Ok 5.6 - Ob
120 - 3.1 = 0b 2.9 - Ok

*
including exchange,

without polarization,
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R

, o S
wave Born approximation| (Joshipura and ?esai,‘l982),uy?.
A comparison with some of the recent works has been made

later in this chapter.

An examination of the results presented in these
tebles and'graphs stimulétes the following ;pteresting

points of discussion:

1. A éeneral observation about the DCS of\\felastic
scattering is that the DCS towards the forward direction
are found to 1ncrease with energy. This must be &ue\to
two reasons; the # inelastip CS (eqn. 5.80)'contain‘a
front factor kf/ki. This is effectively less than 1 \M
towards lower energieé. And secondly the minimum momenigm
transfer Qdn = ki - kf is also énergy dependent,
approaching zero only at high energies, This behaviour .
is in contrast with the forward elastic DCS,

24 The results exhibited are the DCS. o6f 18 —> 28

excitation, for which, Williams (1981)— ' hes obtained

the experimental DCS separately, but these data are at loﬁ
A

energles, upto 54.4 ev, Presently, the comparison of our

also .

results with experiments is not done., Please set
section (5.9). ?\

)

3. Also not shown are the DCS without exchange} It
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is fourd tha% the inclusion of the exchange‘peduces the
cross-sections and the effect is appreciable near the
forward direction. But compared t6 the elastic e-H
scattering the exchangeiis less effective, even at

100 ev. The comments on the first order exchange term

are already made,

. o

4, The present DWBA is a high energy apbroximatibn,

so oné'may not expect it to be good at a low energy

of about 50 ev. However, we show our 50 ev results in

fig. 5.1 The behaviour of the DCS at 50 ev is quite
remarkable, In the region of 35 to 50° a dip=-hbump
structure is obgerved. This is also observed ?y Buckley
and Walters (1975);'see also Kingston and Walters (1980).
However, the DCS of the DW approximation of Calhoun

et al (1976, 1977) are rather flat in this angular region,
There 1is a remarkable disparity in different theorles as

regards this behaviour,

5 The distortion effect reduces the . DCS near forward
direction, The amount of distortion in the forward direction
differs among the different theories., In this regard our
theory closely agrees with the work of Calhoun et al (1976,
1977). The forward DCS obtained by these authors are
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slightly less than the Born value, The earllier eikonal
DWBA theory of Chen et al (1972) produced a considerable
distortion of the plane waves in the forward direction.
Our forward DWBA cross-sections are quite close to the
first Born values, as seen from the graphs and tables.

The distortion decreases with energy.

6¢ 100 ev is the most suitable energy for

the comparison of various theories. At this energy, the
effects of the inelastic process are still observable.
The effects of the exchange and the projectile distortion
are also appreciable, Finally our high energy DWBA method
can be expected to be reasonably good at 100 ev, if not
below. At this energy, we find (fig. 5.2) that our ICS
coinside with the first Born value below 5°, @bove which
the present DCS fall below the Born value, due to the
distortion., Calhoun's theory prbduces séme what more
distortion here. Above 30 s the first Born DCS rapidly
fall off compared to the present DCS, We could not compare
our results with some of the latest calculations,for want
of tabulated resulté. It is diéficult to read off the
values from the published graphs. Now, at large angles, the
DCS of Calhoun's work are higher than the present results.

The first Born DCS fall off very rapidly. All these comments
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equally apply to the resul;s at 200 ev,

Te Above. 200 ev, the forward DCS are a little
higher than the corresponding lower-energy results, as
already mentioned. But as g 'increases, the cross—-sections
fall off in a nose~dive fashlon., Thus, the forward and the
backward DCS differ by a factor of 105 or more. The DCS
above 400 ev, therefore, may not be of interest except
near the forward direction. Now,.before making some basic
improvements in the present theory, let us observe once
again that the term O(k[2) in the present DWBA emplitude
does not behave smoothly at lower-energies, This arises
from the second term of eqn. (5.39). If we choose to
retain only the first term of that expansion, the resultant
amplitude will be of order k;1. In fig, 5,1 drawn for
50 ev, we have shown curve D for the DCS without Re 2,
The dip=-bump structure disappears and the fall of the DCS
is smooth., At the same time, the distortion in the

forward direction is also inadequately produced,

5.8 Modifications over the Present DWBA

To any distorted wave method, the

following questions must be posed.

T1e Is distortion included in both the initial
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and the final states 7

2, If the answer to the question (1) is yes,
is the distorting potential in the initial and the final

state the same or dlfferent 7

3 : Are the distorting potentials obtained
from the target eigenfunctions directly or ifi an

-

approximate éroaedﬁre (e.g, Thomas-Fermi) employed 7
4, Is exchange included in calculations ?

5. Are there any specific assumptions

concerning the orthogonality ?

6. Is there any attempt to consider higher

orders of the projectile distortion ?

7. Is there any attempt to consider the
target distortion i.e. polarization effect ? If so,
is 1t included in both the initial and the final states ?

8. Finally, to what extent is the analytical

evaluation possible 7

. The answer to these questions can
éharacterize different distorted. wave approaches, For

our high energy DW method, discussed in the sections
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(5.5, 5.6 and 5.7), the answer to (1) is yes, Further
the distorting potentlals U; and Uy are different in
the initial and the final channels here, although many

authors have chosen Ui in both the channels, ?he latter

choice is not theoretically satisfactory. RN

‘The answer to (3) is that both U; \and Ug
are obtained from the exact wave functions. The dhe\ﬁions

AN .
(4) and (5) are related, So far as we exclude the ex\c{xange,

the orthogonality of the initial and the finel distorted
waves is obvious, But in the exchange calculations, the‘l
orthogonality plays a tricky role. This is ‘discussed .
prévicusly in connection with the ‘contribution of the ‘
nuclear term to the exchange amplitude. Now, questiqn (8),
ps already stated many of the‘WSrks quoted in this

chapter end up with numerical prbcedures in the final
analysis. In the presedt DWBA method, a completg anélytical_

evaluation of all the final expressions is possfhle.
y

Consider now the question of the hié&er
orders of projectile~distortion. Let us recall thaQ\&he

T-matrix element,

v =< gl Ll gl | (580
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takes into account to the first-order, that part (Wi) of
the interaction which produces transition. Thus, egn. (5.81)
is essentially a first Born approximation. Bﬁt in arriving
at this, the lnteraction is splitted up into two parts

and the 'static' part U; (or Uf) is.used to calculate

the distorted waves, The distorted waves may ﬁe calculated
to all orders of perturbation in Ui (and Uf) hut we have
achieved a good agreement with other theories‘by keeping
the leading terms of the distorted waves (see eqns. {5.42),
(5.46)). The higher orders of the ‘projectile distonfion

are less important compared to other aspects such anthe
‘target distortion and the absorption effects, These \\
gspects are .treated in an exact second Born approximaﬁ;yn.
As we have mnmentioned already, the DW expression (S.Bf)
has some elements of the seccﬁd Born term and may .be

supplemented with that part of the second¥ Born term
which it lacks (Buckley and Walters, 1975, Winters 1978).

A Dbasic improvement over eqn. (5.81) would

be to consider the distorted wave second Born approximatlon

\ \

(DWSBA) given formally by, CAN

\

= < ¢g') | e 6 Wy | ¢f;')\>' (5.82)

TDWZ
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The evaluation of this expression is made difficult by the
presence of distorted waves, In the case of our high energy
oW méthod, this amounts to 6alculating third Born like
terms, These calculations may be simplified by negleoﬁing
distortion in the second order. (Buckley and Walters, 1975).
Notably, the plane-~wave part of eqn; (5.81) will ‘still
differ from the usual second Born term fy, (iﬂ«¥> f}. This

is so because, even with plane waves,

< x,i-)l W, G'f wi‘l XS)> = < x;—)
| (;r -Up) G (V- ﬁi) | xf:) =< x.i”) | ve* :v.ix?%
Y4 xf;) j Ufc;+ v x:)> - < xf;) ‘l VG(+)U;_! x:‘)>
< xg-) | u6" oy | XS) > (5.89)

Of which the last term will vanish and the first term

is the usual fp, (i=—> ). Dewangan and Welters (1977)
emphasized that distorted ﬁaves must be used, and they

“ suégested an approximation; Winters (1978) on tﬁé other v
" hand, used a local potential, generated by the plane

wave second Born emplitude,
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The effect of distortion in the second Bora
term has been exactly evaluated by Kingston and Walters

(1980) for the elastic as well as inelastic e-H scattering.

A simple way of including the target
distortion in the distorted wave first Born approximation

~is the method of polarized orbitals, introduced by Temkin

and Lamkin (1961); All tﬁoge methods which are based on
the DWBA and the polarized-orbital method have been called
DWPO methods, in the recent literaturem The inclusion of
the polarized orbitals can improve the DWBA results near

the forward direction.

Temkin and Lamkin (1961) take the wave

function of the electron-hydrogen atom system as,

’

¥ o= (g (r) + B (&5 Z)) Fol®)  (5.84)

where, Fo(z) 1is the continuum wave function.of the
incident electron. ¢°(£, Ed) represents the change in the
eigen function of the 'iS hydrogen atom, perﬁurbed by the
presence of the continuum electron fixed at r. The term
¢o(£¢,r1) is evaluated by expandiné the term 1/(r = g“)iof
the potential, in the multipole expansion and retaining
only the dipéle term, This procedure ylields (see e.é. Mott
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and Massey, 1965),

>

1 €(r,r,)  =r : A L
Jolzozy) = - = —z e ey FrY) cos 0y (5.85)

where,

3(1‘,:‘1) = 0, r X 'y

1, T > r .  (5.86)

i

'

'8,' 18 the angle between‘;_'_, and Iy.

This method of including tfxe polari;zation of the target
(in the initial state) has beén successfully employed by
Gupta and Matiiu:’r‘ (:!978 a, b)‘; We now ;gqorporate the
polarized or:gé::als in our DWBA formilation, The present
amplitude fHE does not include the target pelarization
i.e, the tergx #(r, ‘ri) of eqn. (5.84), Hence, we rqui.rhe

now the amplitude,

2 - -
, = = 47 ¢ gl=) (+
so that, the total scattering amplitude is,
DW1
DWp ‘ :
£ = fyy * £ (5.88)

pol
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To obtain now 'fpol',‘we proceed as follows,
2060 L, | g8 > - X
- 4% ¢b i Wi l ¢p°1 > = "‘ g'n ff d.!.‘. d?-‘l

' +1if, 3z’
(Hf—f- 2 az e T2 Kz

-0

ig.r
e

X (1= B V50 ) Uplz - 2)

| —"

R e (- F e =) oz, £y

jz - £1l
ig.z"
X (1 + -kL ? 4zt e Bl ’H(zﬂ)
: 1 -
(1 B Vo) Uy (2= 2) - (5.89)

where, we have substituted for the distorted waves

&

from eqn.'(5.h6). Further, consider the first term of
eqns. (5.89). Expending 4/ | re-ry | ana retaining
only the dipole term, we get the Iy integral ln the
eqn. (5.89). The resulting exbression is a typical p

dependent long-range polarization potential
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1":2 ’ Lt -lI'4 lrk
r) = %= (={1-e¢ = )
) =- g (Ba-e z GE-
- “lr 6 ,,.\m - *
-8 (1. z Uny, (5.90)
4 m=0 *

| d

1= 3/20

’
)

For further integration it is convenient to write,

i

4 ir k ir «© 1r k
e r:ali " ks ik_‘l (3.9

Now, we go back to fpol’ which we write in a way

similer to egn. (5.52),

(5.92)

fpol = f1p * f2p + f3p * fhp
wherdas in (5.53), we have -
"Vz ' "'igc-r_ .
f1p = S S dr e g(r) (5.93)

as the most dominent term of the poiarization aéplitude

fpol' The next two terms are mutually similar in form,
both of them involving the distorted waves, The last term
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is igaored, Now, the terms £, and £5, can be
evaluated by using the Fourier techniques, Accordingly,
let the symbol g(r) represent the Fou%ier transform h
of - g(r). Then by anai@gy with £, of eqn. (5.60),
the term £ takes thg shape,

2p «
4%5 - ( -
f2p == ki (¢ SJapg(g=-p- B ) Uy (p + By)
: 2 2
@ S Sl
1 ' | —t -
p T roa ~a{ | dp, (1 + = T o )
1 - . L .
5 & (g -p=p) 0 (p+p,)) (5.94)

The procedure of further evaluation is very much .

like that of the previous calculations,

Now, the complete polarization term can also
be calculated under the electron—exchaﬂge. But as pointed
out by Gupta and Mathur (197%-3&, b) the labour is not worth
doing,‘so ﬁe neglect the exchange-pol;rization tefms; Thus,
the ICS of electron=impact 15 - 28 excitation of
hydrogen, in present exchange DWPO method, are obtalned

from the following experession, /
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DWP DW1 DWp w1
2+ 2 |2 =gy 1%

(5.95)

5.9 .Comgarison and Discussion of the 1S —= 2S Results

Now we exhibit the DCS results of our present
DVBA method including the exchange and polarization, as
calculated ffém eqﬁ. (5.95). Tables 5.4 to 5.6 show the’
comparison of the present DCS with recegtly published data, .
At 100 ev (féble‘5.5) the first Born DCS are also given.
Further in the figs. 5.5 to 5.8, we give the graphical
plots of the present DWPO resﬁlts along with the data at
54,4, 100, 200, 300 and 460 e&. The comparisons are made
with the following 3

1. The DWSBA of Kingston and Walters (1980),
denoted by DWSBA ¢KW) in the tables, graphs and in the

discussion, has been mentioned previously, in sec., (5.8).

2e 'The second order eikonél calcuiation has been>
done in the éngular range ba - 300 by Unnikrishnan and
Prasad‘(198gj. These results sre denoted by SOEA (UP),
everywhere; o

The separate ICS of H(2s) excitation have
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Table 5.6

DCS of 18 —— 25 excitation 200 ev

Scattering :  SOEA ; DWSBA : Present
angle s (up) : (xw) s
(deg) : : :
: : H

0 1.9 + 00 1.3 + 00 . 2.1+ 00

20 1.9 = 02 2.2 -02 3,302

40 B 1.1 =035 9.4 -0k

60 - 3.4 - 04 2.8 =~ Ok

90 L= 8.0 - 05 18,0 - 05

120 - ‘L&.O - 05 L".O - 05
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been obtained recently by Williems (1981), but these

measurements are upto 54.4 ev. Now the discussion follows,

1. " First of all, at léw energies, e.g. 54.4 ev,
the overall behaviour of the present DCS (fig., 5.5) is
similar to that withnutrfpolar;zation,(see fige 5.1)
except that here the péiérlzation enhances the DCS near
. forward direction. At \54.{& ev (fig. 5.5) in our results &
{EIEMEEBEQEE}ardund 30 followed by a bump arcund 35 .
This is also observed by Buckley and Walters (1975), at

' 54,4 ev. In the DWSBA (KW) this structure is flattened.
' Thus, we conclude that at lower energies a higher order
calculation 1is required. Previogsly also we noted that
_thefmiﬁéiﬁenergy theqries are not successful below 100 ev,
Furthef'the S54.4 ev results of SOEA (UP) are slightly
above ours in the forward direction, It must be noted that
SOEA (UP) does not include any polarization effect, which
would increase the DCS slightly further near the
forward direction. In the region of 5 - 30 ,our results
‘are higher than the others and lie close to the DWSBA (KW)
only beyond 600. None of the theorles is in accord for all
angles, with the separate ﬁ(zs) measurement of Willivms
(1981) at 54.4 ev, SOEA (UP) is good for small.angles;

DWSBA {KW) more or less underestimates at all angles,
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while the present results are overestimating. This
overestimation at a low energy-is frequently found with
many high energy theories., The dip-bump part gf the DCS
‘curve is not evident in the experimental points; however, |
the angular interval of 10° in the measurements 1s not
small enough to reveal any such behaviour, The experi-
mental results show a dip-bump around 80 end %0, a
behaviour not supported by any theory. (see\aléb table
EROR

f—

2, ‘ The forward DCS/in different theories do
not show the same behaviour, In the present case, the
forward DCS show a gentle rise with respect to energy.

The reason is discussed previously, in sec. 5.7,

3. our 100 ev forward DCS lie close to

SOEA (UP) but above DWSBA (KW); both of the latter results
lie below the present as well as the first Born result
upto about 30° , beyond which the first Born result Tends
to fall off. The“DWSéA (KW) is higher than the present
result beycgd 500, The difference between these twg
results is narrower at 100 ev thanhat'54;# ev but the
shape of the DCS curves differé. At 200 ev the agreement
is better., The DWSBA is higher than the present result |
between7§§i and 85 , |
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4, At 300 ev and above the cross-sections are
significant only within the forward cone of about 300.
Hence, we have not shown the large angle results, Thé
effect of polarization decreases with energy, Thg
agreement between the present theory and the DWSBA (KW)
is generally good except near the forward direction.
Above 400 ev no special features of the cross-sections

are revealed so we have not shown any further results,

5, Our calculations have omitted the third
order amplitude (£, of egn. 5‘5411 the inclusion of
which can bring a closer agreement with the other

theories,

5.10 1S == 2p Excitation in e-H Collisions

We have studied the excitation to H(2S) by
electron impact, in the various theorétical treatments,
Now, the cross-sections of n = 2 excitation are given by
the sum of the 25 and 2p state cross-sections, with the
latter averaged over 21 + 1 (1 = 1) magnetic substates.
The 2§ state splits ué into three mégnetic substates
my = O, and = 13 it is found that the first Born amplitude,
exists only for m = 0, the Glauber (Thomas and Gerjuoy,

1971) amplitude as well as the second order elkonal or
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the Wallace amplitude (Unnikrishnan and Prasad, 1982}
exists only for m = + 1. Already in section 5.2 we
have emphasized the use of the first Born approximation
at small angles in the 15 —> 2p transition. The first
Born DCS are so overwhelmingly large at smali angles
that the effects like exchange, polérization aﬂd
projectile distortion are not much significant for ihis

casey

Further, as noted by Chen et al (1972), the
distortion effects in the 2po and 2p+1 substates are
opposite and hence the net distortion is dquite small,

However there are no recent studies in this regard.

Here, in the table 5,7 the first Born DCS
at 100, 200 and 300 ev energy are exhibited for small
angles, where the strong forward peaks are apparent. Also
in that table these are compared at1100 ev with the recent
higher order calculations, viz, DWSBA (KW) and SQEA(UP);
One éan see a close agreement at small angles, The
distorted wave part of the caléﬁlat;on'in the 18 =5 2p
case differs slightly from the previous (ﬁ3;_ep 23) one;
Presently, the term A,5 of eqn. (5.56) is replaced by
AZp s glven in eqn, (5.13). Let us recall that our
distorted wave approach is similar to the Glauber
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DCS of 1S = 2p transition 100 ev
0 '+ First : %WSRA : %OE?
Bor : KW s UpP
(deg) z Dgsn : - :
H }H H B
0 100 98,6 - 91.5
5 1,25 24" 23
10 05 4s6 3498
15 1.3 1.0 -~
18— 2p
0 : ' Pirst :  First Born -
:  Born ¢ ICS
(deg) : . DCS : 300 ev
: 200 ev : ,
0 210 310
12 08
10 1.7 0.9
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(3

formulation, so that, the substate m =0 'does not
contribute, However, the m = O contribution will come
from the first term of our DWBA theory, vwhich is the
plane wave first Born term, The effects of exchange and
polarization are not dominent in the 15 —> 2§
calculations. A general trend of the 15 —) 25 Crossm-
sections is that near. ther forward direction these are
much larger than the 2S croSs-secfions, but beyond 60°
the two are nearly equal., We have not shown here the

15 —» 2p cross-section of the present theory, Calcula-
tions on the higher states in the atomic hydrogen are rare.
For n = 3 excitation in e-H collisions, the distorted wave
calculations are done by Syms et al (1975).‘Exciusive

. distorted wave calculations have been made for excitation
of Helium; see Buckley and Walters (1975), Scott and
McDowell (1975rwii~? 1976), Baluja and McDowell (1979) etc.
The 25 —> 3S excitation in e-Li scattering was studied
‘by Vanderpoorten and Winters (1977). It is interesting to

. note that the ground state of Li atom is similar to
H(éS), under the inert core approximation, so that, the
present DWBA method can be certainly extended to the

28 ——> 33 process in e+tLl scattering. Further, it must
fbé mentioned that the total inelastic cross-sections

(0,

inel ) have been obtained by Inokuti (1974b) for
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several atomic targets beyond H and He, Lastly there are

also some attempts to study electron impact excitation in
the other atoms (Z > QL With this, we conclude the paft

A of the fifth chapter, ‘

PART B

5,11 Electronic Excitation in Electron-Molecule

Collisions

We now devote some attention to inelaé%ic
scattering of fast electrons by molecules, in which
electronic states are excitadgzggigﬁiggilittle has °
been done in this field. The target of our 1nvestigaﬁion

is the H2 molecule,

First of all a few words about the electronic
states of the Hy molecule. The ground state of H, is
denoted hw'x1 %; and is made up of two 1S hydrogen atoms
properly combined, Here, the term X correspondé to the
component (along the nuclear axis) oflthe total electronic
orbital angular momentum being zero. The right upper +
sign indicates the symmetry of the molecular wave function
with respect to reflection. in any plane passing through

the nuclear axis. Further, ﬁ an electronic state of a
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homonuclear diatomic molecule will be symmetric or anti-
symmetric relative to the exchange of the twq nuclei, These
two alternatiires are denoted res;%éctively by the :suffi‘.xes
tg! (for gerade) and 'u' (for ﬁnggréde). The 1eg§‘t 'upper
14t or '3' npear oz ” i.,ndj'igat»és the singlet \aa;\ triplits
State:a The first exclted state of Hpy l.es B Z;'\j\ is a
tripldtg state, with two 15 electrons having an ident‘i\:\g:al
spin., One of thé first ’ériﬁmphs ’of the modern quantum \%?hgory
was to predict that this triplet state wquld/be dissociabive.
Given below are the low-laying excited states of Hy,

with separated atom limit indicated at the right hand

side (Massey et al '1969). ' ~

Electronic state Separated-aton~limit

\
1 ¥ » 2
X : . (0 1)
3 + - !
b L (o 1870y 1)
1 + '
3 .
B, a (0"g 1B O 25)
3 + , '
a Z
g (o 18 0y 25)
1 + :
E' = ‘
o ,,(O'g jS 9; 23)
1 - \ ‘
c b
u (Gé 15 L ZP)
1 + ’ O
c e ‘(Ofg 15 =, 2p)
cc om, (0, 15 x_ 2p)



Now, we outline the work done in étudying the
electron~-impact excitation of these states. Apart from
the pioneering work of Massey (1932) and Roscofie (1941),

the Born-Ochkur calculations{“}were made by Khare and

¥

Moiseiwitch (1965, 1966)  With the use of the molecular
wavefunctions, the calculations are quite difficult bgyond
the first o:def.'The Born=-Ochkur-Rudge type of calculations
were done by Cartwright and Kuppermann (1967), Chung éﬂd
Lin (1972, 1974) andC Chung, Lin and Lee (1975). A close-
coupling result is by Chung and Lin (1978). A sophisticsted

2 pesis

version of the distorted wave method called the L
method has been used by Rescigno et al (1975, 1976, 1979).
Most of these methods are confined to energies below

50 ev, in particular around 10 to 20 ev, corresponding.

to the excitation energies of various states of\HZ.lA most
recent piece 6f work comes from Lee-Mu Tao ét %% (1982)
(see’' also Fliflet andfiﬁﬁaﬁf? 1980) . Further, exégrimental
results if any, are réfe. Menﬁion must ﬁe made ofi§eiger's
(1964) experiments at very high energies, and the ﬁégent
measufement of Srivastava and Jansen (1977) on B! ;\
traﬁsition by 20 - 60 ev electrons, No cross-sections,

. \
to our knowledge, are reported in the range 100 = 1000 ev,:

Now, we spell out our aim in taking up thg

\

3
\
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present study. As noted previously, most of the theoretical,
methods developed for eiectron—atom scattgring have been
successfully extended té molecular targets. In fact, ;br
elastic scattering, we have used the accurately evaluated
atomic scattering amplitudes to obtain the cross-sections
of the electron-molecule scattering, v;a independent atom
model, It is not known whether this model has ever been
.extended to~1neiastic scattering involving electronic
excitation by fast electrons, excépt the:electron diffra=-
ction studies (Massey et al 1969)., Presently our
purpose is to employ the IAM to obtain the inelastic e=H,
cross-sections by starting from oﬁr previously derived

inelastic e~H scattering amplitudes,

5.12 Independenﬁ Atom Model for Inelastic Electron

Molecule Collisions

The simple IAM in this case 1s quite similar.
‘to that discussed in the fourth chapter, on elastic
scattering. Considering the é~H2 system, we assume that
each atom scatters the incident electron, freely and
independently, and further, only one of the two atoms is
excited id%he process, Though the final expression is
similar ﬁo that of elastic scattering it is deri;ed in(;:

different manner.,
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Assume that in the inelastic process one of
the two target electrons, denoted by suffix '1' is involved
and the other one, given by suffix 'C', forms an inert core.
The antisymmetric wave function of the molecule can be
written as a product of one~electron wave functions, so
we write the initial and the final state wave functibns

of the target as follows (Méssey et al 1969).

¥ = fj-g- By (r) & By(rep)) Fo (2 (5.968)
T =L ) 2o () § () (5.960)

where A and B denctegthe two nuclei, The + sign here
denotes respectively the symmetric or antisémmetric wave
function of'eléctron 1 with respect to intercﬁange of
nuclet A and B, The atomic orbitals are denoted \b;y B, -

etc., Also,
Ewm = & = R . \(5-97)

Now, the first Born approximation of this case is

i.
Myo=-L [ wa, v (e
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with

Ay VY > = ST am ax

¥ —i
- ﬁ\ |z - Bf2]

_ 1 . e Sy ¥
' i£+&/{21 !2..21’ !?—'Ec’ .

=3 [ oaz, (B(r) £ Bi(rp)

r=-2>r !

X '-—-—‘----- (B (rq) £ Be(ry5 ) 5.99)
Here, the coordinates r, L,, R/2 refer to the

molecular midpoint and orthonormality is used\\ Thus,

from the last equation dropping the terms of o\<erla‘p
integrals,

. ig.R/2
3y = - ;12 (e (S oz, o (ris)

ig. -1a.R/2
e A By (rq))t e o

ig

' .r - \
J ‘?5.13 ¢; (X(r“B) e - 1B ¢1(r1§)_{ (\,5. ?00)
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Herein lies the central assumption of the independent atom
model, viz, that in writing (5.100) the overlaplof atomic
orbitals is neglected, Now the + sign holds for the
identical or opposite nmuclear symmetry in the initial and
the final states. The egn. (5;100) can also be written

in terms of the atomic‘sca%tering ampiitudes as

%1 = 2f§1 x (cos (g.R/2))

or

2 f§1" x (i sin (g.R/2)) (5. 101)

where fa denotes the ccrresponding atomic amplitude .

The factor cos (g_.R /2) or i sin (g.R/2 ) -arises according .
as the nuclear symmetry is unchanged or changed. The
relation like (5,101) holds true for higher order Born

terms also. The final result is obtained by squaring the
amplitude and a\i:éragin'g over all 6rientation§ of R, as

done previously. We have the averaged e-H, inelastic DCS,
I(e) = 21,0)(1¢ M ) (5.102)

I a(Q) denotes the corresponding atomic inelastic DCS.
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The atoms are not 'free' smem so the
valance bond correction is requlred\ 0 be applied both
in the initial and final state orbitzig. For thg ground
state of H, this is given by taking f%\a 1.2005 ‘and in the
final state, since the internuclear sepa?étiog actually
increases, the valance-distortion may be neglected, at
least for H,. The second important aspect 1s the inclusion

of electron exchange.

‘ Consider 'the electron-impact transi%ion from
the ground (singlet} state to an excited singlet st\ake.
The electron-exchange in this case must be in the tniplet
(see also Jhanwar 1980) ° W‘ Further the probabil\ty of
a target electron of spin say | 04 being clpse to a
nucleus A .or B 1is 1/2, Hence, the scattering amplitude

for any@om, including exchange must be,
£y = £y (2) - g g (2) (5.103)

where, £3(Z) and gH(Z) are the direct and the \exchange
‘amplitudes for inelastic scattering from the target H-atom

-z

represented by orbital e . Thus, the average in\e\.‘&astic

e—H2 DCS with exchange are,

i(e) ,}.1:»2 | £42) = 3 g(2) I?

x (1 S24R, (5. 104)
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But if the excitation leads to the final triplet state,
then the exchange must occur in the singlet and hence

\
the -final expression is, .

I(e) -2 | o (Z) v gy (2) 12

ke
x (1 2B, 25.105)

Now,an additional c&mplication, not encountered in‘%pe case
of elastic scattering, arises here due to vibrationa§\
aspect, The ground state of -+ H, may be taken as the g%Qund
vibrational state also., But the final elecﬁgpnic state

may be accompanied by a final vibrational state v'. Hence
we have to consider the probability of the vibrational
transition O ~—> V, This probability is é%;ressed in
terms of the Frank-Condon factors {(Allison and balgarnc,
1970) . Another related fact is that in the final tate,

the internuclear ' (equilibrium) separation increaqss.

This fact is not considered in the basic expression}\
(5.102). One more difference between this and the I}m\
formula of the elastic scattering will arise in the\
kinematical calculation of momentum transfe; Qe Here,

we have tc\xs‘e, '

/‘I H
2 P ! D .
2K = 3 v By ‘ (5. 106)
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Where Efi is the energy of the vertical exéitation of
an electronic state of the molecule. Because of this, the
present 'q; will slightly differ from the corresponding
value of the atomic transition. Let us also remark in
passing that if the final state is a triplet one, thg
scattering cannot occur withut exchange and we must use

eqn. (5.105).

A comparison of the diffraction factors for
elastic and inelaétic soattefing pra#es to be crucial,
Whenever the huclear syﬁmetry éhanges, the diffraction
factor is 1-(sin R)/qR. This factor is quite small in
the forward direction though not zero, Thus, if the nuclear
symmetry changes, the forward inelastic DCS are expected
to be rather small, Finally the expression of Bthe DCS is
to be multiplied by (28 + 1)/2, vhere S = 0 for. the
singlet-singlet and 1 for the singlet-~triplet transitions.

Apart from all these special comments high-
«iighting the characteristic fgatufes of the electronic
excitations in the diatomic molecules, the usyai corrections
to the IAM can be made here also, Notable of them are the
multiple scattering and the effect of nuclear vibrations.'
These effects are quite insignificant in the e-H, system,
it is even more so for tne(excite& states of the molecule.

The requirements of a ’good’ IAM spelled out in the
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beginning of section (4.6) of the previous chapter, are
wellfﬁgfiin the case of e-H, system»at 1ntermédigte to high
emergies, In the treatment of elfastic scattering of
electrons by H, molecules, the model breaks down below

160‘ev. This might also be the case presently.

5.13 Applications the IAM to Inelastic e-H,
Scattering

Consider first the excitation of H, molecules
from the ground state to the singlet 8! gi state, the
lowest stable excited state of H,. Here, since the nucleer

symmetry changes, we have to use the dliffraction factor

(1= -5—1—%—93‘— ). We take R = 1,4'a_, which is not a very

good choice. To consider the valance-hond correction we

take the.orbitals in the ground state as exp~(-zr), with

z = 1,2005, Further, thé’exchange is also 1nc6rporated,

using eqn.'(5.104),we have obtained the averaged DCS for the

transition X1 Z;'-~9 B ﬁ; with 60 ev electrons
and compared with measured values.of Srivastava and Jansen
(1977) for V' = 2 wvibrational band of the final state.
For the same state, the DCS summed over ' all final
vibrational states are calculatéd by Fliflet and Mckoy
(1980). Our results with IAM at 60 ev (not-shcwn) aéé

much lower than both of theée cited results, primarily due
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to the failure Bf the model at that low energy. Thus, the
IAM must be used above, say 100 ev, At these high energies,
no data are yet avallable. Hence, we have compared the

ICS of the B Eu state (or 'B'-state) with those of the

2’ Z;"(or 'a'-state), both of which are extremely
neighbouring stable states (Massey et al 1969). The DCS

of the tramsition X' 3§ —> & I, are calculated
f}om, -

o) = 2 | 242) + dey (@ I

(1+ S50 (5.107)

The DCS of the 'B' and the 12" states, are shown for 100,
200 and 400 ev in figs. (5.10), (5.11) and (5.12) at
scatteriﬁg angles between 10 aﬂA?hOo. Also in(the‘table
5.8 ﬁe have cbmpared the DCS of these two states near the
forward direction at 100, 200 and 400 ev, The diffractione
-factor, (1 - §3§§95 ), at different angles for 100 ev,

is exhibited in the table 5.9, The most significant

feature to be noticed is a drop of the DCS for the B-state
as against the peak for the a=state in the forward direction.
Further, 'as seen from the ICS curves (figs. 5.10 to, 5.12) |
the difference between the DCS of these two states decreases
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Table 5,9

The diffraction factor ( 1 - LW

at 100 ev (R = 1.4 a, )
0 o 0.01
2.5 | 0,014 -
5 ) 0.03.
10 | 0.06 .
20 0.26 .
<40 0.78 .
& 1,14 .
80 1,21
100 ; :1010
120 1.01

140 1.08
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in the angular range 300-50° and again it 1ncreases‘at
large angles, but still remains smaller than that near the
forward direction. This behaviour,continues practically a%b
all energies, The drop of DCS near the forward direction
in the case of b3 Z; (dissoclative) state is noticed by
| Fliflet and Mckoy (1980) betwéen 12 and 60 ev, But such a

. behaviour 15 not observed by them for B! Z;= state,
That the diffraction pattern is ‘'inverted' for transitions
lgéding‘to’u—symmetry states, has been confirmed by Swick
and Karle (1§61) fof the excitation of Br, molecules by
fast electrons, However, there are. no recent studies in this

regard,

. Finally,using the,H(2p) ¢ross-sections in
the IAM, we can study the excitations to several other »
electronic states of H,, Notably, the H(?p) cross=sections
in the forward direction are higher, butfit will not be so
for transition based on 15 = 2§ and résulﬁing’intc a
final u-symmetry state of HE? ‘

5.14 Chapter Summary, Further Prospects

The fifth chapter covering}a study of the
inelastic collisions of fast electrons, by atoms and
~ molecules, was divided into two main partsj part A
dealing with atomic targets, thle part B with molecular
targets. In the part A, we have first‘reviewed the



345

fundamental espects of the inelastic. scattering of fast
electrons by atomic hydrogen. This t;mg the distorted wave
methods have been at -the centré of our attention, Many of
the distorted wave theories eéd up with a numerical
procedure to obtain the cross-sectioﬂs, énd further there
is a great disparity in their outcome. Henqe,.we have |
developed presénfly a new‘high energy distorted wave
(first) Born approxiﬁation for elastic collisions of ‘
electrons>with atoms, based on the assumptions and
evaluation methods of the Glauber approximation. The
energy parameter 8 "of this theory distinguishesvit‘from
the Glauber theory. Further, the present method employs

a Green's functlon expansion, retain;ég two terms, to
obtain distorted waveé. The present high energy DWBA is
fully illustrated for H(2S) excitation, Here are the
distinct features of our basic theory.

*  The distorting potentials in the initial and the

final channel are appropriately chosen,
*  The exchange 1s also accounted for
* No resort whatsocever is taken to numerical procedures,

* At a relatively low energy of 54,4 ev, the present
method yields a -dip-bump structure in the ICS curve, as

observed with some of the other theories,

The present theory is then corrected by
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including the polarized orbitals of Temkin and Lamkin. (1961).
This method does not include the taréet polarization in

the final state. The DCS aée caléulated for 54,4 - LOO ev
and comparisons with‘availableAdata are made. At 54.4 ev
experimental results for 15 =~ 28 ‘process are now avai-
laﬁle but an accord is reached with no other theory except
that of Kinéstén (1976). The present DWBA method is
reliable at and above 100 ev, though gt 54,4 ev, it behavés
1ike that of'Buékley}and Walters (1975). At all energies,
the varilous theories‘compared here, are found to yield the
forwerd DCS at variance with each other and further, the
energy-dependégce oﬁ this quantity aiéo varigs. Tﬁe DCS ‘
at high energies are found to fall off very rapidly.

The-cross—sections of 18 —» 2p process in

e-H scattering are dominated by the first~Born approximetion

-in the forward direction, and -are much higher than the

15 e 25 cross-sections, The present DWBA theory can be

. applied to 1S =—> 2p case also, although the results in

thls case are not shown here,

In the part B of the present chapter, we have
dealt with electronic excitation in‘equ collisions, We
have given some of ;he basic concepts of electronic states
of molecules, in particular Hoo The purpose of the presenf
chapter was two-fold viz, to develop a distorted ﬁavé

theory for inelastic electron-atom collisions and to apply
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it %o the inelastic electron-molecule scattering via

independent atom model. Accordingly in the part A we

discussed a new DWBA theory. Thé next ﬁhing required is

an IAM for électronic excitation of molecules, This is

~ discussed in sec. (5.12). The importanﬁ differences between

the IAM formulations of the elastic end inelAStic cases

are brought forth, Now our calculations-of H(éS) excitation

can be employed via IAM to describe the inelastic e~H2

scattering leading to four distinct final states, differing
+ 3 s+

in symmetry and spin. They are given as, B1 zu , a s

E' ;  end I For the first of these states, experi-
mental and theoretical data exist between 10 and 60 ev.
Some calculations have'glso been reporfed for the oﬁher
states, but not for energies between 100 and 1000 ev. The
present bCS are obtained in this range of energy. We have
tried to compare the present IAM results with the avallable
data of 60 ev, but without success, the reason belng the
breakdown of the IAM. The IAM calculations indicate that
although the two states B Z; and @ Zg are quite
nelghbouring, the DCS for theilr excitation are very much
different. The ICS for the excitation of a state with

u-symmetry are mu&h lower, eSpecially near the forward

factor, table 5.9, The ICS of a3 Zg excitation are
sharply peaked, in the forward direction., The difference in
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the DCS of these states is small in the range of
intermediate angles, but a difference of an ofder of
magnitude Gi;more is found, in the other régions. The
behaviour of the B-state DCS near the forward direction, -
caused by the change of symmetry, is in accord with the
observations of Swick and Karle (1961). No other recent

feferences aré available for this kind of work.

Finally, as we converge to the end of this
chepter, let us conclude by giving indications of further
prospecigﬁg of work in the inelastic electron-atom=-

molecule collisions,

Te There is still a disparity among various

theories as regards the DCS of the H(25) excitation below
100 ev. This calls for an accurate distorted wave second
Born approximation. This is also true for the 'sensitive!

near-threshold region, which we have not attempted.

2. There is a great scope for theorietical
as well as experimental work for electron impact
excitation of the higher states of atomic hydrogen

.8 N =3,

3 We have remarked in sections (5.5) through
(5.9) that the distorted wave first Born amplitude contains
elements of the second and third Born terms also.'Hence,

such an- amplitude can be used to assess the importance of
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the third Bo?n term, This idea, together with the second
order distorting potentials has been very recently explored
Madison et al (1983)., The DWBA‘mefhod of the present chapter
can be extended by employing the second order potentials and/

or second Born formulation.,

4, The present theory can be applied t0 25 e 38
excitation in the edli scattering. There is also a wide

- scope .of work on excitation of other atoms, molecules and
ions, b& electron impact. We have not touched the more
difficult problems of ionization by electron impact, which
do need a lot of study. | S

5. The electronic excitation of molecules is
gaining attention now; see e.g. Lee~-Mu Tao et al (1982)

for a yery»recent reference. The dissociation of molecules
by incident electrpns'has been hardly studied beyond ﬁz.

All these aspecE§ﬂcon§titute nearly vacant area, wpere, a
lot of prospecﬁs }fof further work may be foun@. Obviously,
the 1ist of 'knowns' is smaller than that of the 'unknowns',

so we stop here to come to the last chapter of the thesis.



