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5.1 Introduction

We now turn to inelastic collisions of fast 
electrons by atoms and molecules. At the outset, we must 

clarify that though the“term * inelastic* collision' means 
both excitation (or de-excitation in superelastic processes) 

as well as ionization of the target atom, we are concerned 
here with the,electronic excitation of the target (atom), 

initially in the ground- state,. Additionally.in ;the, case 
of molecular targets the inelastic processes involve, In 

general, any one or more of rotational, vibrational An and 
electronic excitations and dissociation etc. Since we are 
dealing with fast electrons, the rotational and vibrational 
excitations are ingnored. Most of our study is centred 
around the atomic and molecular hydrogen.

The process of inelastic scattering 
involves both, transfer- of energy and momentum. Another 
point of interest is the subsequent' radiation* emitted by 
the target as it returns (usually) to the ground state.
For example, corresponding to 2p state excitation of 

the H-atom the prompt Lyman- a radiation is studied 
(Lonjg et al 1968) and for the 2S state excitation, the
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Lyman- a radiation induced by an^f applied electric
field is observed (Kaupilla et al 1970):;see also Williams,
(1976). In exciting the n = 2 state of atomic hydrogen,
electrons suffering 10.2 ev energy loss are scattered
along -with 10.2 ev photons. These processes are important
in the energy-loss by particles in a medium. The theoretical
treatment differs from that of elastic scattering, in terms
of basic approximations, their successes and failures.
This chapter naturally divides into the discussion oh
atomic and molecular targets : part A of this chapter deals
with the atomic targets followed by part B, which deals
with the molecular targets.

j Part A . " ■ ‘ ,
5.2 The First Born Approximation

Consider the hydrogen atom initially in the 
ground state |i> being excited to a final state jf > 
by an Impinging fast electron. The first Born-T-matrlx is

(5.1)

For the process leading to the final state 2S,

(5.2)
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with,

Here, the use is made of the [wave* function of the 2S 

state of hydrogen atom,

. t (-1/2) r1Ur ) - — (2 - ri) e 1 (5.4)
1 4f2% 1

The first Born amplitude for the transition 1S —— 2S 

due to eledtron impact, is,

fBl <1S — 2S> = - T-g^STs <5-5)

(q. + p
Notably, the first Born inelastic / amplitude, is negative, 

unlike that in the elastic case. The final momentum 

kf(in a.u.) defined through,

lkt * wo ■ 7 4 * wn <5-6>

gives the momentum transfer,

q - (k| + k| - Zkjkf cos ©)1^2 (5.7)

-6The first Born amplitude, being proportional to q ,

_ ma
(5.3)
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falls off much rapidly at large momentum transfers, 

compared to the first Born elastic scattering amplitude, 

eqn. (3.8). The first Born inelastic amplitude fails to 

describe the wide angle scattering even at high energies.

The reason as can be seen from eqn, (5.1), is that the 

nucleus-electron interaction is ineffective in the present 

first Born approximation, because of the orthogonality of 

|i> and jf >, This is an additional drawback of the 

first Born treatment in the present case, the other 

drawbacks being similar to those of elastic scattering 

discussed in the article no, (3.2). Clearly, the higher 

order amplitude must be dominating in the small as well 

as large angle 0 inelastic scattering.

To calculate the first Born exchange amplitude 

for 1S —»• 2S transition, the required T-matrix is 

obtained in the potential V written below, after permuting
J.

tile target and the incident electrons.

VP
(5.8)

Here, the first term, corresponding to the electron- 

electron interaction is more important, hence,
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(git)-3 < e Ik.
(r)

ik. .r e -x - *i <ri> > (5.9).

The general result for excitation from the ground state 

to any excited state 'n*,

och _2 d
T » Tn,o v2 n,o. Ki

(Born) n?i Q (5.10)

•where the corresponding direct matrix element of the 
first Born approximation is represented by T*<0 (Born).

The eqn. (5.10) is obtained in the Ochkur (1965) approximation

The exchange amplitude of 1S ---- » 2S transition is

■written (below

och
g
Born

2S) 1 h(?T (5.11)

Unlike elastic scattering! the exchange amplitude of 
eqn. (5.11) is of the same sign as that of the corresponding 

direct amplitude. The effect of exchange is to reduce the 

inelastic DCS. Further for elastic scattering at relatively
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lower energies around 100 ev, the exchange contribution 

from the first order amplitude is quite significant, 

especially at 0=0. While, in contrast,with that, the 

exchange amplitude of inelastic scattering, e.g. eqn. 
(5*11) rates poor in that, it falls off like k^. This 

is because qmin = - kf and hence qfflin = 3/8

at high energies. This behaviour suggests that for 

inelastic scattering, at small q, higher orders of the 

exchange Born amplitudes must be considered.

Now, for the 1S —^ 2p excitation, 

we must consider three magnetic! substates with 

m = +1, 0, so that

A2po (r)
-3/2r

e

( "T + aF '*' § + §1 (5.12)

And,

I27 b A -3/2 r 
A2p+1 (r) " p F < - e

( * 3/2r,+ § + || r)) (5.13)
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A slightly different procedure may be adopted for getting 
the direct first Born amplitude to make use of the fact 
that only m = 0 contributes here. Quoting the final 
result, '

izf2 ifBi (1S—* 2p> = "—:----r (5.1*0
q(qZ +

It can be seen that for 1S —> 2p transition, the 
forward peak in the amplitude will be quite stronger, but 
will fall off much faster than the elastic first Born 
amplitude at large q. The transitions such as 1S —» 2p, 
which are optically allowed, dominate the total cross- 
sections at high energies.

Simple first Born calculations are inadequate 
to describe correctly the angular distribution of electrons 
scattered inelastically from an atom. This amply speaks 
for the need of higher order theories, which we now 
discuss.

5.3 The Glauber and the EBS approaches to the 
Inelastic Scattering

The excitation of hydrogen atom from 1S 
to 2S state is only next to 1S —4 j 1S ' problem, in
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order of difficulty. Let us review some pioneering work 

done in this area. Burke et al (1963) employed the close­

coupling formalism . to this process. The Interest in 

the Glauber theory appeared in the early seventies,, in 

view of the fact that it,accounts for all possible 

channels, unlike the close-coupling approach. Byron (1971), 

(see also Ghosh- and Sil 1970) explored the Glauber formu­

lation to study the electron impact excitation of 

hydrogen and helium. This was perhaps the first work, 

where an important drawback of the Glauber formulation 

for inelastic scattering was discussed. In the Glauber 

theory, the momentum transfer £ is taken as perpendi­

cular to incident vector k^. Now, fqr Inelastic collisions, 

£ ~ - kf is never zero physically, and in fact

at 9 » 0, £ , k^ and kf are collinear I Hence, the 

assumption of £ perpendicular to kj, is against 

simple kinematics and quite undesirable. Byron (1971) 

and later Gau and Macek (1974,, 1975) used numerical 

evaluation to avoid this situation.

The Glauber amplitudes for the collisions 

of charged particles with hydrogen atoms were first 

derived in the closed form by Thomas and Gerjuoy (1971). 

Quoting their result for electrons,
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F(1S —> 2S) - 5FTT6 ( T? >1-ln T(1+in) Rl-in)
JM K q

\

X in (2int'l + tr!')2F1 (1 “ in» 1 “ in» 1»

+ 4in( 1 - in)2 (X2/q2) ^(2 - in, 2 - in, 2; -k2/q2)
i

+ (1 - in)2 (2 - .in)2 < * /q4 )

X jF, (3 - in, 3 - in; 3; -X2 /q2)). 4 = 3/2 (5.15)

where n * 1/k^ in a.u. ,(see also Gerjuoy and Thomas,
1974) ^ in a hypergeometric function. An interesting

Jresult of this work is that for 1S -—> 2p excitation, 
the amplitude vanishes for the magnetic j substate m * 0. 
The reason for this can be traced back to the two 
dimensional nature of the Glauber amplitude. In general, 
for a transition nlm-^n’l’m*, the Glauber amplitude 
will be zero, whenever,

1 + 1* + |m| + |m*j - odd integer (5.16)

This constitutes an important drawback of the Glauber 
theory. Apart from this, the inelastic Glauber amplitude



262

(5.15) differs from,the Galuber elastic amplitude in that, 

the question of singularity does not arise, as q f 0. The 
second order term of inelastic Glauber amplitude, on the 
other hand, retains the absence of a real part. Finally, 
the Glauber approximation works relatively better -for; 
small angles and for S —S transitions, while it is 
poor in describing large? angle scattering, where it highly 
underestimates. The Glauber approximation virtually 
breaks down for nonspherical final states. At , this stage, 
one may recall the term by term analysis of the Glauber 
amplitude by Yates (1974). This approach; the GES formu­

lation has not found much headway in the inelastic collisions, 
Singh and Tripathi (1980) have used the GES method to 

describe the elastic as well as inelastic scattering of 
fast electrons by He-atoms, Byron and Latour (1976) employed 
the EBS to analyse 2S and 2p excitation of atomic 
hydrogen by electrons. These authors find that the polari­
zation effect, generated by the real part of the inelastic 
second Born term, is not aq large as that in the elastic 
scattering. One of the reasons for this is thatq^ 0 at

o9 = 0. In fact upto about 30 angle of scattering, 
the EBS and the Glauber results are in agreement. As 
already stated, the EBS approach seeks to evaluate ■ 
the direct scattering amplitude in the form,
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fdEBS fB1 * fB2 * fG3 (5.17)

And for elastic scattering, the exchange amplitude can he
mmOIncorporated through 0(k^ ). The consistency of 0(1^ )

does not hold for inelastic scattering. It is^ thus
clear that, apart from a dependence on k , one has to

1
also consider the dependence on q, in writing eqn,
(5.17). In short, the DCS derived from the EBS

* *—■amplitude would not he strictly 0(k^ ) now.

The well-known method of evaluating the 
second Born amplitude of eqn. (5.17) makes use of the 
Dalitz integrals. Alternatively, following the HHOB of 
Yates (1979) the second Born amplitude for inelastic 
scattering can also he evaluated along the lines of our 
discussion in the $ chapter 3. Rao and Desai (1983) have 
studied 1S —> 2S process in this way,hut the results 
are good only at small angles. The previous results, for 
elastic scattering (chapter 3) can he easily extended to 
13 —> 2S excitation.

Further, for the present case one would 
like to calculate the modified Glauber amplitude as is 
done for elastic scattering (Gien, 1976) ie. hy



264

constructing an amplltudef

f^ - £Q v- £q2 + fB2 (5.18)

This one and similar other approaches have enjoyed a

great success in the elastic scatterings. However* It Is

not known if eqn. (5.18) is applied to study the is«—» 2S
(or 2p) excitation. Presently,/ an . advantage of

the modified Glauber amplitude is lost, since the inelastic
Glauber amplitude is not singular and further, the real

part of . fg2 is now not so domlnent. All the same, an

essential ingradient of eqn, (5.18) lies in the higher
Gorder terms of f , which can play an effective role in 

the large-angle scattering. Uptill now, the theories 

described are 'plane-wave* approximations, i.e, no account 

is taken of the projectile distortion.

5.4 The Distorted Wave Methods

The T-matrix of the Born series for the 

direct inelastic scattering, for transition i-**> f, 

is,

Tfl - < f, kf | V( 1 + GV + GVGV + .... )ji, k^ (5.19)
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where, the symbol G is for an appropriate Green’s 
function. Here the initial and the final states of the 
projectile electron are represented by the plane waves. 
However, as an electron approaches (rece^ds from ) a 
target it experiences the field of the target even at a 
distance, so that it differs from a plane wave. Thus,
actually the matrix element of eqn, (5,19) must be

1 \

evaluated with ’distorted’ waves. Let us see how, the 
first Born approximation can be modified with this e idea. 
The modified first Born approximation was proposed 
by Juncker (1975) and has been further explored by Gupta 
and Mathur (1978 a, b, 1979). In this method the 
distortion in the projectile, represented by a couldmb 
wave, is produced by assuming an, Leffective charge *&’ 
on the target nucleus. The expression of the distorted 
wave looks like,

F(r) = fo - ia^) exp (ik^.r + % a^/2)

X 1F^ (iait 1, ikt r - ik^ r) (5.20)

This will yield plane waves if a * 0, Gupta and Mathur 
(-1978b) have applied this procedure to IS —2S
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and the exchange is also included. Target polarization is 
not considered. The agreement with data is not quite good

Oexcept below 30 . It may be noted that the DCS of n = 2
state excitation of hydrogen are obtained as a sum of 2S
and 2p state cross-sections. At small angles, the 2p
cross-sections in the first Born treatment are very large,
so that all theories yield almost equally good results 

0 0
below 20 - 30 angles. Mearly 93 % of the integrated
cross-section for n = 2 state is contributed by 
1S —V 2p transition.

A rigorous distorted wave calculation for 
n ■ 2 state of hydrogen is by Baluja et al (1978) which 
is quite similar to that of Calhoun e& al (1976, 1977). 
Among the methods using high energy approximations 
in a distorted wave theory, mention must be made of the 
elkonal DWBA (distorted wave Born approximation) of 
Chen et al (1972) ♦ The validity of this method is "limited 
to small angles only. In the next section, we describe 
a new high energy DWBA method.

5.5 A New High-Energy DWBA Method

Consider the inelastic electron-atom 
scattering. The hamiltonians in the channels *i*
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and '£* are and Hf so that,

%Xa “ Ea Xa

HfXb “ Eb-Xb

(5.23a)

(5.23b)

where, E& (Efe) is total" initial (final) energy of the 
system. The initial and final asympotic states are given 
respectively by X& and X^ , with,

Xa * ( 2«)-^ e^'- ?a<ri) (5.24)

where, fa is the initial state of the target. 
Basically, we wish to evaluate the T-matrix element,

(5.25)

where, Vi (Vf) is the interaction between the target 
and the projectile in the initial (final) channel. 
Suppose that the interaction is splitted up into two 
parts,
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Vf » U£ + wf (5.26b)

We assume that the corresponding state vectors, given 

below are known,

(+) *

0 = Xa+ (E“Hi-ui+lfi) UiXa (5.27a)
\

0(**) = Xb + (E - Hf - Uf -ie )~1 Uf Xb (5.27b)

Starting from the integral representations. (5.25) of the 

T-matrix, one can show (Gellmann and Goldberger, 1953) 

that,

(+) (-) (+)
1 = <Xb |Tf "Wll 0a > + < tb I*!I 0a > (5.88)

Suppose now that the potentials and U£ depend 

only on the coordinate of the continuum electron, 

hence they cannot induce any transition. For inelastic 

scattering,,

Tba “ < ^ iwf I ti+) > lWil<i'l+) > (5.29)

The treatment upto here is exact. The question now

is how to determine the distorted waves 0and •a D
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It Is required to evaluate the Green’s operators,

lim , 1G~ =. e —» o+ JL
ie)

(5 • 3o)
(B - H +

It can be shown that, * -

4+)

* Xa + 2 g!+^
a o Ui Xa (5.31a)

« X, + 2g£")
b o Uf Xb . (5.31b)

Now, even if 0^ and 0<-O
>°b are known, the

T-matrix of eqn, (5.29) is tremendously difficult, as 
it contains the exact wave functions and Tjr^“^

We then resort to the first Born approximation by 

setting,

fi+) = 0<+) , = ^(-) (5.32)

Thus,, the Distorted wave first Born transition matrix 

element is,

IDW1 . < jz^-> iw±| ffW > . < flW |wf| f»W >

(5.33)
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This is our starting point.

Choosing the many body Green*s operator, with spectral 

resolution and K - representation,

+ _ oo
Gn (r,.r‘, x, x») ® - (2%) 2

“ n=0

exp (iK.(r - r')) , .
/ —rvz., t:-" xjnXnl (5.34)

. KT - k£ + 16

Thus,

0 2
n

:— exp (iK.(r
i ! dK • —=
' 1 “ K - r* .

// dr*

, - £’))

X n ><n 1] (2it)-3/2
\JlOZ"'? ^

ik7.r 
e “ (5.35)

And a similar equation for 0^“^ *

Now, from equ. (5.35), consider the following 

part of the Green's function,
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G+ ® — (2x) ^ / dK ..g>.......""g1exp (iK.(r - r’))

- vc - i e n
(5.36)

Here, we Introduce,

K - k„, R = r - r*Sm 5Sj^' mm mm mm (5.37)

Now, taking kQ along z-axls,

G* . -(2x)"3 exp (i R)

exp (i £ . R)
/ d£ -*jr

P + 2knPz - 16
(5.38)

Further, expanding the denominator,

P + 2kn Pz * ie
1

2 Vz - 16

(1 (5.39)

(The symbols p and pz should not be confused with 

any Fourier transform variables). Thus the Green*s function 

is linearized and in the high energy, small-angle appro­
ximation (chapter 3) we expect that the first two terms are
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are sufficient to describe the distorted waves eqn.
(5*31 a,b), Further, we need,

R = B + Z (5.AO)

Now, we can show that by retaining the first two terms 
in eqn. (5.39)

i
e

ik Z n 6(B) H(Z) +
4k!

n

p ikn.R
VJ (Z:e “n 7 6 (B) H(Z)) (5.41)

Here, H(Z) is the Heavyside function. Now* we 

replace R —^ r* and go back to the eqn* (5.35), so 

that the outgoing distorted waves are given by,

ik. .r 
e ”*■

CD -iP-tnZ’
£ ( / dz* e H(z’) |n>< n l
n -oo

d + Hj- (U£ (r - z’))]x fa(x) (5.42)
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In arriving at this final form,-

* The property of 6(B) is used.

* The parameter Pin " ki - kn is defined.

* The assumption *1 4 kn is used (Yates, 1979)

Now to derive the form of the incoming distorted 
waves 0^ , we have to start from,

. G — »(211)-3 f dfi
exp (i£,R) 

+ 2knPz + ie

We follow the previously described procedure. The 

incoming distorted waves look like,

0^ = (2%)
■3/2 ik^ • r

0 k.

00 -ip. .s'
E ( / dz» e m H(z') X J n*>< n* j 

n* -00

(1 ’ % Vr ) uf<£ - S'))} <x)

where, as done previously,

Pfat *» kn, - kf j kf & kn is assumed.

(5.43)

(5.44)



275

* Uf(r) is the distorting potential In tfae final 

channel.

* the rest of the comments following eqn. (5.42) 

apply.

The expressions for the distorted waves are simplified 

by defining the average excitation energies through the 

relations,

Pin £ *1 “ V*! (5.45a)

Pfn' & Pg o w2/kf (5.45b)

mm «■»

with ¥<j and Wg as the mean excitation energies in 

the initial and the final states respectively of the 

target atom. We thus obtain,

e1-1 - 0 + F- / dz'

i —oo

e tPl H(z') X (1 + ||1 ) j

VS - 5')] (5.46)

And an analogous expression of 0^. If the average
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excitation energies vanish, eqn. (5.46) reduces to the 
eikonal expression plus terms from the second term of the 
Green's function expansion, eqn, (5.39)• Finally the 
distorted -wave first Born direct scattering amplitude 
in the present high energy approximation is,

4x2 < |WJ > (5.47)

We discuss next the application of the present theory 
to the excitation of atomic hydrogen by electrons.

5.6 Application to Electron-Impact (1S -■ 2S)
Excitation of Atomic Hydrogen

DW1
To evaluate the amplitude fHE , for

1S —2S we need, the distorting potentials
and Uf. A simple choice is that of static potentials,
i.e.,

Ut(r) » - (1 + 1/r) e"’21’ (5.48)

Uf(r) “ < »2S 1 T 1 fgs >
*

2/1 . 3 , r , r v -r83 ” (jr + + “) e (5.49)

' DW1 
%E
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Thus, in the present case, we'have

DW1
fHE

l£.r
dr e

-GD

r® i%Z’ i2» 2
f dz* e a H(z») X (1 - Vz,

Uf<S - *’)] < ♦» I*! I tifl >

X [1 - Tr / dz« e ^ H(z»)
I —00

(1 + §£• v|. ) x ut(r - z-)]

Now, the orthogonality gives,
$

■ < $2S i Wi ^ ^1S > * A2S (r)

Let us write the complete amplitude as

DW1 !
fHE f1 * f2 * H f f4 

where,

f 1

(.5.50)

(5,51)

(5.52)

fB1 <1S 2S) (5.53)
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is the plane wave first Born amplitude. The terms fg» 
and f^ are due to the cross terms of the products 

in the eqn. (5.50). The calculations of f2 and f^ are 
comparable to the second Born calculations, with the 
•potential* acting twice. The calculations in the last 
term involve the 'potential*acting thrice and are 
comparable to the third Born term.

Notably, here the part of the interaction 
responsible for transition, is treated in the first 

order and the projectile distortion is considered through 
the second ||rder of pertubation. Potapov (1973) has shown 
that the high energy limit of the DWBA is the second 
Born approximation. This fact is confirmed here.

Proceeding for IS —> 2S p^aleolations 

we have from ,eqns, (5,50) through (5,53),

. , i£.r
f2 " - J <*£■ '• ~ A2S <r>

oo . —i */ dz* e H(z')
-oo

x <1 + aj 7z- > - r) (5.54)
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Also |

f = 3
-i

Zn K
s

ia.r
dr e Agg (r)

oo iBrtz*/ da» e 2 H(z*) X (1
—oo

iz*
2*f

(5.55)

Now q is made two-dimensional and 'we use the Fourier 
representation of U^, and Agg, in the variable 
P =» 2 + J2Z* In ‘*;ile following the- ;„(overhead) 'bar* 
represents the corresponding Fourier transform,

©

S2S (B + £? ' 5X2 p2 . p2 + X2 " 3

2 S ' *1 = 3/<2
p + pz t *1

(£ + V

2 • >£+ pz + X2
(5.57)
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uf (p + pz) 1“T
2%

- 3 91 ~ 1
%

X 1 (5.58)

By taking the Fourier transforms, the priority of 
integration in eqns. (5.54) and (5.55) changes and the 
continuum electron coordinates are integrated first.
How, we use the properties of delta functions and the 
following result.

00 —1(ZX *•/ & e H(x) = % 6 (a) - i TP (~ ) (5.59)
-oo a

The symbol TP denotes the principal value. Hence,

f2 ■ Ttf t1 5 dE + 3^ <P2 + <f>)

a2S (£ ■*£*"%) ui (E 4 - it

IP /. *£ 7 dpz (1 + ££ ) —1—z 2k 0Pl % P-1-00

Ags (£ - £ - £z) Ui(£* Ez)} (5.60)
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The term f2 splits up into real and imaginary parts,
each of them having, a term through 0(k^ ) as well as
0(k^2). It is found that in the imaginary part, the
term 0(k^2) is quite negligible. Hence we write, the

—1imaginary part through the order k^ only. Further, the 
term 0(k^ ) in the real part here, corresponds to Ee 2 
of the HHOB discussed in the chapter 3. As p^ —>■ 0 
this, term will resemble the real part of the second order 
Wallace amplitude (see also Byron et al 1982). Now, the 
evaluation of f^ is quite analogous to that .of f2 
and all the comments of the last paragraph apply to fj 
also. The final expression of the high energy DW Born 
amplitude for 1S —2S transition is written below.

Let,

nf = p2 + X2 (5.61)

n22 Pi + Kt (5.62)

n2 * p| + X2 (5.63)

n|. = p| + X2 (5.64)
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(5.65)

oa
 ro

l
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The integrals 1^, 1^ and are given in the appendix. 
Before closing this section, let us estimate the difficulty 
of evaluating the term f4. Consider, from eqn. (5.50), 

only 1st term of f^. To give only an outline, we drop the 

constants etc.

1 . ■ ‘Knr. J dr e J dz* e 6Tf " -oo

CDH(z') Uf(r - z») X Agg (r) / dz« ■

-ip a»»e 2 HCz”) U.j.(r - z”)

Here, after theFourier. transformation of U^, Uf and 
A2S * we are recluired to evaluate the following kind 
of integrals.,

d£

Ma - eI2 + pf + xf / 3b'____________
(p2 + n2)(|j' - jjs + m2)

oo</ ((q.2+p2+pf +■ ),2 \2 XF In

where a, h and c are functionfof ’p*.

The last integral could not he handled
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confidently, hence f^ is not evaluated at present. The 
term f^ may he approximated hy a plane wave third order 
Glauber term.

5.7 Inclusion of the Electron Exchange

Considering the 1S —» 2S transition, we 
attempt to obtain the higher order exchange amplitude in 
the high energy distorted wave method. The transition 
matrix is obtained after properly permuting the incident 
electron coordinate r and the (initial) target electron 
co-ordinate x\j . Thus, we need the exchange amplitude,

gDW1' = -4/ < 0^ Jw. j > (5.66)
HE

where P stands for the permutation of r and r^. 
Comparing this with (5,50) the exchange amplitude splits

' * 1

up into four terms, i.e.

DW1
®HE ’ g1 + s2 + g3 + *4 (5.67)

The second order amplitude g2 its
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&2 £// dr dr1 e ‘ik^.r - ik^.r^j

lss(r) fls (r^ X (V - Ut)

00 -ipT2 'X / dz» e . H(z*) U^r 
-oo

Further, g2 83 Im g2 + Re g2

z*) + 0 (kj2)] (5.68)

(5.69)

First we discuss the evaluation of the imaginary 
part of (5.69) and we call it g2^» Thus after taking 
the Fourier transforms of potentials,

g21 = C2 ^11 d£ dK dr dr1

-l,r + ik4.r - iP,r X (2 -r) e • “

-l.r - ik^. r* -iK.rX e 1 1 1 X e
iK.r1 ~.X ( is--2--~ ' - Ci(K)) Ut(P)

K
in which

8f32 Tt5^

(5.70)
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In the eqn. (5.70) a = 1 for the H-atom shows the nuclear 

term in the exchange integral. The most dominent contri­

bution comes from the electron-electron term of the 

direct potential ¥. In writing eqn. (5,70) we have, used.

1 dK
exp (iK.(r - r^))

K
(5.71)

This leads to the first and. the most dominent term of %1, 

The next two terms are the contributions of the (direct) 

electron-proton Interaction and of U^K).

Let us further write,

S21 ° C-2 MM dK d£ dT.j (2 - r)

31 ' 
2

e
“V
r ■ X e

+i(k^ - K - P).r

f-1 e lir1-ik~.r x e -r 1
1

iK.r
1v / @ kA \ ..*..g. - a 0 * *J

+ - ■*£-•) -g—tz )dA3 K + >3

X (1 - -gf-) —.-.*.. ■ u
3 p + p“ + Ag

(5.72)
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where j 1,, * 1, 12“ 1/2 and A3 = 2 ,

For the electron-electron term from (5.72), we use,

-l(kf - ^.r. e
/ dr., e 1 1 X -

-l.r. 1 1

4%

l - K p +1: (5.73)

and a similar result for r - integral* Thus, in the first 

term of (5.72) * two out of the four, integrals are solved. 

Turning now to the K-integral, we have

s *F (|kt - K - F |2+t l|)( l kf - K j14 + if)

»2
S WNM

kf
A „( on / — p > 2

(q' + n )
(5.74)

with n = 3/2, and £’ * g - £.

The last result follows from the Ochkur .

approximation to higher order terms in the K-integral.

Finally, the jo-integral,
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/ dp,
(p2 + pj + x|)(la - e! + H a >

I1 (4* pf + p| + a2). (5.75)

Thus, the first term of g21 of eqn. (5.72) finds an 

expression as,

ifP t 3 \ ft 3 . >,
g211 a :..r;j isH1 - 8?c '

6 k^k .p

I-j ’ Pi + ^3* Pi + 11 ) (5.76)

The next term on,our list of evaluation is the nuclear 

contribution to witIa a “ 1* 'in the eqn. (5.72). 

The nuclear term, would look like

g2l2 = C2 IISS dp dK dr dr^ (2 - r.)

JL)51 ' ■
*2.0

•r.
i(,ki -

X e 1
2

■ikf .r^
<“• 8 v e 1 

31-, '■ v.

x(-?)(v-^)(7r|fT^)



289

(1 - ^ ) X ^ (q, pf + + l|) (5.77)
3

In the recent literature there has been5 a lot of discussion 
about the contribution of the nuclear term to the exchange 
integrals. It has been often shown that the said contri­
bution is, zero, under certain assumptions (see e.g. Mishra 
and Pradhan, 1982). In the present case, however, it would 
appear that the term g212 a nuclear contribution
is O(k^) as against the electron-electron term g2l1 
which is O(k^), see eqn, (5.76). But a basic insight is 

required into the evaluation of the nuclear term.. In .the 
eqn. (5.77),, the r^-integral must vanish if we invoke 
the argument that the wave functions of the bound electron 
and the contin^m electron must be orthogonal. In other 

words, the sum of all terms in the exchange Born series, 
which do not depend on the electron-electron interaction 
must.add up to zero. (Shakeshaft, 1978).

An interesting consequence of the derivation of 
the term §211* *s that, there has been no need of the 
assumption that the momentum transfer £ must be two 
dimensional and perpendicular, to k^. This is so, because
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the explicit form £ * k^ - kf occurs only in the K- 
integral. Now going back to the main track of our discussion, 
we have evaluated the dominent term of the imaginary part 
of the second order exchange amplitude g2 of eqn. (5.67).
It is denoted by g2l1. 'tiie Previous discussion applied 
to the amplitude of eqn. (5.67)f | We have to only worry 
about the dominent term, g^^, which is similar to SgH*

Thus, (g21ij + is the main contribution of the
imaginary part of the second order exchange amplitude 
(g2 + gj) in the present high energy DWBA. Now, for the 
real part of the present second order exchange amplitudes, 
we have to go back to eqns, (5.68) and (5.69) and write 
for the real part of g2, -

X e
iP.r - iK.r J-£*£i
— — — — / e___ :__ Ut(K))

1~' %(£), (5.78)
pz - h
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Now, we denote by g22<|, the part of g22 containing 

the, electron-electron interaction. Hence,

g221 c21P;
00 n

dpz , pz -
-00

Via* ^ (2*,Tq ><- >

16'7T ----- ------  ----- 1------------------------  -----=- )
(Ik* - Kj + ipUk^. - K -,P» + 1“)

(5.79)

Thus, the term g221 will contain, apart from the numerical 

constants and derivatives, the integral The derivation 
of all other terms of g22 is not shown here as it 

involves more or less similar procedure. This completes 

the evaluation of gHE ,( emmitting g^. Finally, the

DCS with exchange,

dCT
dw

DW1 i i DW 1 
fHE %E 2 )

(5.80)
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We finish with an important remark that, while most of the 
DWBA calculations of the other workers end up with numerical 
procedures for integration, our method does not need any „ 
such procedure and all the final integrals are done 
analytically.

Now, we exhibit the results of our
calculations. The DCS of electron-impact 1S--- >* 2S
excitation in the inelastic e-H scattering obtained from 
the eqn. (5.80) are shown in Tables 5.1 and 5,2, for the 
incident energies 50 and 100 ev. In these tables we show 
the values of the plane-wave first Born approximation 
(%1;) § the two terms Re 1 and Re 2 of the real part of 
the present DWBA amplitudes, the imaginary part of the 
present amplitude (Imf) and the DCS including the exchange. 
Table 5.3 shows a comparison of the plane wave first 
Born DCS, the DCS calculated by Calhoun et al (1976) and 
those of our DWBA method, all at 100 ev. In the graphical 
plots of figs. (5.1) to (5.4), we have exhibited the 
following results,

1. The DCS in the plane wave first Born approximation.
2. The DCS of the distorted wave approximation of 

Calhoun et al (1977).
The DCS obtained in the pres ait high energy distorted3



Ta
bl
e 
5.
1

DW
BA
 re

su
lt
s 
(1
S 
——

 2S
) 
at
 5
0 
ev

293

* 0)GOd3
sio in r* $ sCM CMCQ H ON CM ■41 m CM t- o O Oo © 03 m CM. o. o O o o o Op • • • • • • • • • •o o O o o o o o O o
•H

■ -
- .

CM m IS vo in ON c-ON in in CM 03 in <fr CM CM CMCM CM **“ o O' O o o o O O• • * • • • • • • •' © O O o o o o o o o ocd 1 i 1 1 I 1

■ in in <1- ONON vo r- tn in vo in ints o o o o o o o
© o o o o o o o o o• • • , • • • • • • • •ai 01 01 o o o o o o o o

. VO IS IS IS ON r- vo KN CM 31 in s CM in IS 03 IS VO inH in CM O o o O o O o om - • • • • • • • . • •o o o o * o o o o o oi T 1 1 i i T

KNON vo CM 'tf- in in XT VOKN CM 00 in o «r" vo CM <T“ OON CO in KN CM o o o OfQ # • • • • • • • • •O o o o o o o Q o o1 1 i 1 1 i 1 T 1 T

0 (d
eg
)

o or- 20 30 3 8 8 80 8 oCM
■ t— r- ^w

it
ho
ut
 p
ol
ar
iz
at
io
n



rc C
D

0>BO

/-.oss

•HI

ocr>
«O

<?

o
*—r-•o» 0.

02
9

0.
00

64
0.

00
27

0.
00

17
0.

00
07

6 4?
ooo
.oj

83000*0

CM

01. &

IA
•

O
o•
°

IA
O•
O -0

.0
28

,-0
.0

16 I*V*o

60*0-

-4VO
OO•
% -0

.0
05 oo•

01

T"

0)&

«* •• •• •«

lAVO
-•

<?

IACM
O
•O1

0.
02

6 IACM
Oo.
• .o 0.

00
36 IAOo

.; Q 0.
00

28 CM
OO
.o

VO
<s-oo

- p. "0
.0

01
3

H

. I

•- o

o
•o

00IAo
•01 -0

.0
57 rALAO

•o; l

o• 'ot

CO
IA
O.
O’• |

o-
CM
O.
01 -0

.0
2

-0
.0

17

r—m
<H

vb
CTv

-<?

-4
t—

•
O1 -0
.3

76 vo

<? -0
.0

67 IA
O_.
Cj> -6

.0
14

-0
.0

04
-0

.0
01

7
-0

.0
00

91

e (d
eg

)

O o 20 otA 3 50 s 80 oo oCM
r-

Ta
bl

e 
5.

2
D

W
B

A
 re

su
lts

 (IS
 —

—
 2S ̂

at
.10

0 e
v



295

Table 5.3

The DCS (a^ Sr**1) of 1S ~ 2S excitation in

inelastic e-H scattering at 100 ev

Scattering
angle(deg)

•: First
: Born
••
••
••

••• Calhoun
s et al••••
2

2 ^ 
s Present

0 8.9 - 01 8.8 - 01 9.0 - 01

5 7.1 - 01 6.8 - 01 7,1 -01

10 4.5 - 01 3.8 — 01 4.3 - 01

20 1.3 - 01 8.9 - 02 1.1 - 01

30 2.4 - 02 1*6 - 02 2.8 - 02

40 , to01o. 5.1 - 03 6.4 - 03
60 8.0 - 05 1.9 - 03 1.7 - 03

90 - 6.6 - 04 5.6 - 04

120 - . i o 2.9 — 04

*including exchange, without polarization.
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wave Born approximation! (Joshipura and Desai, 1982)^

A comparison with some of the recent works has been made 

later in this chapter.

An examination of the results presented in these 

tables and‘graphs stimulates the following interesting 

points of discussions

1. A general observation about the DCS of ^inelastic

scattering is that the DCS towards the forward direction 
are found to increase with energy. This must be <kie\to 

two reasons$ the 0 inelastic 'DCS (eqn, 5.80) contain 'h 

frontfactor k^/k^. This is effectively less than 1
\

towards lower energies. And secondly the minimum momentum 

transfer £m^n «* k^ * k^ is also energy dependent, 

approaching zero only at high energies. This behaviour , 

is in contrast with the forward elastic DCS,

2. The results exhibited are the DCS of 1S —-> 2S
excitation, for which, Williams (1981)—-> 1 has obtained

the experimental ECS separately, but these data are at low 
energies, upto 54.4 ev. Presently, the comparison of our 

results with experiments is not done. Please seq\aiso 

section (5.9).

3. Also not shown are the DCS without exchanged It
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Is found that the inclusion of the exchange,reduces the 
cross-sections and the effect is appreciable near the 
forward direction. But compared to the elastic e-H 
scattering the exchange is less effective, even at 
100 ev. The comments on the first order exchange term 
are already made. , .

4. The present DWBA is a high energy approximation, 
so one may not expect it to he good at a low energy 
of about 50 ev. However, we show our 50 ev results in 
fig. 5.1 • The behaviour of the DCS at 50 ev is quite

o
remarkable; In the region of 35 to 50 a dip-bump 
structure is observed. This is also observed by Buckley 
and Walters (1975); see also Kingston and Walters (1980). 

However, the DCS of the DW approximation of Calhoun 
et al (1976, 1977) are rather flat in this angular region. 
There is a remarkable disparity in different theories as 
regards this behaviour,

5. The distortion effect reduces the DCS near forward 
direction. The amount of distortion in the forward direction 
differs among the different theories. In this regard our 
theory closely agrees with the work of Calhoun et al (1976, 
1977). The forward DCS obtained by these authors are
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slightly less than the Born value. The earlier eikonal 

DWBA theory of Chen et al (1972) produced a considerable 

distortion of the plane -waves in the forward direction.

Our forward DWBA cross-sections are quite close to the 

first Born values, as seen from the graphs and tables.

The distortion decreases with energy.

6, 100 ev is the most suitable energy for

the comparison of various theories. At this energy, the

effects of the inelastic process are still observable.

The effects of the exchange and the projectile distortion

are also appreciable. Finally our high energy DWBA method

can be expected to be reasonably good at 100 ev, if not
below. At this energy, we find (fig. 5.2) that our DCS

0

coinside with the first Born value below 5 , above which 

the present DCS fall below the Born value, due to the 

distortion. Calhoun's theory produces some what more 
distortion here. Above 30°, the first Born DCS rapidly 

fall off compared to the present DCS. We could not compare
t i i *

our results with some of the latest calculations,for want 

of tabulated results. It is difficult to read off the 

values from the published graphs. Now, at large angles, the 

DCS of Calhoun's work are higher than the present results.

The first Born DCS fall off very rapidly. All these comments
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equally apply to the results at 200 ev.

7. Above 200 ev, the forward ECS are a little
higher than the corresponding lower-energy results, as 
already mentioned. But as q increases, the cross-sections 
fall off in a nose-dive fashion. Thus, the forward and the 
backward ECS differ by a factor of 10 or more. The DCS 
above 400 ev, therefore, may not be of interest except 
near the forward direction. Now, , before making some basic 
improvements in the present theory, let us observe once 
again that the term 0(k^ ) in the present DWBA amplitude 
does not behave smoothly at lower-energies. This arises 
from the second term of eqn. (5.39). If we choose to 
retain only the first term of that expansion, the resultant 
amplitude will be of order k^1. In fig. 5.1 drawn for 

50 ev, we have shown curve D for the DCS without Re 2,
The dip-bump structure disappears and the fall of the DCS 
is smooth. At the same time, the distortion in the 
forward direction is also inadequately produced,

5.8 Modifications over the Present DWBA

To any distorted wave method, the 
following questions must be posed.

1. Is distortion included in both the initial
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and the final states ?
2. If the answer to the question (1) Is yes, 
is the distorting potential in the initial and the final 
state the same or different ?

3. Are the distorting potentials obtained 
from the target eigenfunctions directly or i£ an 
approximate proctedure (e.g. Thomas-Fermi) employed ?

4. Is exchange included in calculations ?

5. Are there any specific assumptions 
concerning the orthogonality ?

6. Is there any attempt to consider higher 
orders of the projectile distortion ?

7. Is there any attempt to consider the
, 3

target distortion i.e. polarization effect ? If so, 
is it included in both the initial and the final states ?

8. Finally, to what extent is the analytical 
evaluation possible ?

' The answer to these questions can
>characterize different distorted, wave approaches. For 
our high energy DW method, discussed in the sections
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(5.5, 5.6 and 5.7), the answer to (1) is yes. Further 
the distorting potentials and are different in
the initial and $he final channels here, although many
authors have chosen in both the channels. The latter

\

choice is not theoretically satisfactory. \v

\The answer to (3) is that both Yqnd Uf 
are obtained from the exact wave functions. The questions 
(4) and (5) are related. So far as we exclude the exchange,
the orthogonality of the initial and the final distorted

Wwaves is obvious. But in the exchange calculations, the \ 
orthogonality plays a tricky role. This is discussed 
previously in connection with the contribution of the 
nuclear term to the exchange amplitude. Now, question (8),
As already stated many of the works quoted in this 
chapter end up with numerical procedures in the final 
analysis. In the present DWBA method, a complete analytical 
evaluation of all the final expressions is possible.

V\,
Consider now the question of the higher 

orders of projectile-distortion. Let us recall thatXthe
\

T-matrlx element,
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takes into account to the first-order, that part <wp of 
the interaction which produces transition. Thus, eqn. (5.81) 
is essentially a first Born approximation. But in arriving 
at this, the Interaction is splitted up into two parts 
and the -static' part UA (or Uf) Is used to calculate 
the distorted waves. The distorted waves may he calculated 
to all orders of perturbation in U, (end Uf) but »e have
achieved a good agreement with other theories\^>y keeping

\ \the leading terms-of the distorted waves (see eqns, (5.42),
\

i \ '

(5.46)). The higher orders of the projectile distortion 
are Less Important compared to other aspects such as,the 
target distortion and the absorption effects, fhese \ 

aspects are .treated in an exact second Born approximation. 
As we have mentioned already, the DW expression (5.81) 
has some elements of the second Born term and may .he 
supplemented with that part of the second^ Born term 
which it lacks (Buckley and Walters, 1975» Winters 1978).

A basic improvement over eqn.\ (5.81) would
, \he to consider the distorted wave second Born approximation

\ \

(DWSBA) given formally by, . \\

T,DW2 4r> W ~ G W, (5.82)
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The evaluation of this expression is made difficult by the 

presence of distorted waves. In the case of our high energy 

DW method, this amounts to calculating third Born like 

terms. These calculations may. be simplified by neglecting 

distortion in the second order. (Buckley and Walters, 1975). 

Notably, the, plane-wave part of eqn, (5.81) v;lll still 

differ from the usual second Born term f,,0 (£ ■—> f). This
DC.

is so because, even with plane waves,

<
(*). (*“)b 1 w£g. wil XQ > ® <
a

4* . x^ * 1 vg+; v. 1 xa+^
(¥ - Uf) G (V - Ut) 1 Xa * <

, <-) , + 1 (+)s / (-) , (+5 , (t)Xb IVG Utixa- < Xb i UfG V j Xa > - <

, w I *< xb 1 ufG % 1 xa > (5.83)

Of which the last term will vanish and the first term

is the usual fg2 (i-----* f). Dewangan and Walters (1977)

emphasized that distorted waves must be used, and they 

suggested an approximation. Winters (1978) on the other 

hand, used a local potential, generated by the plane 

wave second Born amplitude.
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The effect of distortion in the second Born 
term has been exactly evaluated by Kingston and Walters 
(1980) for the elastic as well as inelastic e-H scattaring.

A simple way of including the target 
distortion in the distorted wave first Born approximation 
is the method of polarized orbitals, introduced by Temkin 
and Lamkin (1961). All those methods which are based on 

the DWBA and the polarized-orbital method have been called 
DWPO methods, in the recent literature. The inclusion of 
the polarized orbitals can improve the DWBA results near 
the forward direction,

Temkin and Lamkin (1961) take the wave 
function of the electron-hydrogen atom system as,,

f “ (%S (r1J + K » £l > > Fo(£> (5.84)

where, FQ(r) is the continuum wave function of the 
incident electron. 0o(r, r^) represents the change in the 

eigen function of the 1S hydrogen atom, perturbed by the 

presence of the continuum electron fixed at r. The term 
0O(£^ r^) is evaluated by expanding the term i/j(r - r^)| of 

the potential, in the multipole expansion and retaining 
only the dipole term. This procedure yields (see e.g. Mott



309

and Massey, 1965),
, !»

1 e(r,r,) -r, - ?0o^£»£i) * - ...... e 1 (rt + £ ri> cos ©1 (5.85)

where, , 1 ■
. * 

i > ° , ,
e (r, r«j) - 0, r < r%

'/ , *

= 1, r > r,, (5.86)

is the angle between r and r^.

This method of including the polarization of the target
(in the initial state) has been successfully employed by
Gupta and Mathur (1978 a, b). We now incorporate the
polarized orbitals in our DWBA formulation. The present DW1 ' '
amplitude fHS does not include the target polarization
i.e. the term 0(r, r^) of eqn. (5.84). Hence, we require

now the amplitude,

fpol ■ “ 4*a 4 ^ 1 W1 1 4ol > <5-87)

so that, the total scattering amplitude is,

fDWp D¥ 1
TiE Xpol (5.88)
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To obtain now 'we Proceed as follows.

4 *S< i4-> I | 0<;.) > - -I ^ dr dr,

ia.r . cd +ip_ z*e (1 + / dz* e H(z»)Kf —00

X (1 - ||1 V?, ) Uf(r - z*)) 
£

f <r,K - F + . 0o(E>I £ - Ev

i oo ij3-,z"X (1 + it* / dz« e x H(z«) Ki -co

<1 ♦ iq- vl» ) ui <2: - £")) (5.89)

where, we have substituted for the distorted waves 
from eqn, (5.46), Further, consider the first term of 
eqns, (5.89). Expanding 1/1 £ - £-j I and retaining 

only the dipole term, we get the r^ integral in the 
eqn. (5.89). The resulting expression is a typical r“^ 

dependent long-range polarization potential
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g(r)

6!3
-lr 6 

(1 - e S 
m=o

1 - 3/2.

(5.90)

For further Integration it is convenient to write,
' i

4
2k=o

(5.91)

Now, we go back to fpo:L, which we write in a way 
similar to eqn. (5.52),

•^pol “ ^lp + ^2p + ^3p + ^4p (5.92)

whereas in (5.53), we have

f Ip
-J2
3

-i£.r/ dr e g(r) (5.93)

as the most dominent term of the polarization amplitude 
fpol* The next two terms are mutually similar in fprm,

both of them involving the distorted waves. The last term
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is ignored. Nov/, the terms f2p f^p can be
evaluated by using the Fourier techniques. Accordingly, 
let the symbol g(r) represent the Fourier transform 
of g(r). Then by analogy with f2 of eqn. (5.60), 
the term f2p takes the shape,

f2p " - ^ n f « <S - £ - ll > + ll>

-4T /■ * _J £>

4^- s <fl - £'“ Pz) °1 (a+ Ez» (5.94)

The procedure of further evaluation is very much
. ’ ’ i

like that of the previous calculations.

Nov/, the complete polarization term can also 
be calculated under the electron-exchange. But as pointed 
out by Gupta and Mathur (1978a, b) the labour is not worth 
doing, so we neglect the exchange-polarization terms. Thus, 
the DCS of electron-impact 1S — ^ 2S excitation of 
hydrogen, in present exchange DWPO method, are obtained 
from the following experession# f



313

DWP DW1 „ 15
f + %e i + %

DWP DW1 „f * %E l ^

(5.95)

5.9 Comparison and Discussion of the 1S —— 2S Results

Now we exhibit the DCS results of our present 
DWBA method including the exchange and polarization, as 
calculated from eqn, (5.95). Tables 5.4 to 5.6 show the 

comparison of the present DCS with recently published data. 
At 100 ev (table 5.5) the first Born DCS are also given. 

Further in the figs. 5.5 to 5.8, we give the graphical 

plots of the present DWPO results along with the data at 
54.4, 100, 200, 300 and 400 ev. The comparisons are made 

with the following s

1. The DWSBA of Kingston and V/alters (1980), 
denoted by DWSBA <{KW) in the tables, graphs and in the 

discussion, has been mentioned previously, in sec, (5.8).

2. The second order eikonal calculation has been 
done in the angular range 0 - 30 by Unnikrishnan and 
Prasad (1982), These results are denoted by SOEA (UP),

' 1

everywhere..
The separate DCS of H(2s) excitation have
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Table 5.0

DCS of 1S --- 2S excitation ev
;

!Scattering : SOEA ♦S DWSBA
••
! Presentangle s (UP) S (KW) ••(deg) :

••
a•
••

••:

0 1.9 + 00 1.3 + 00 2.1 + 00

10 2.7 “01 o01

i>-•
CM
 ̂ 4.1-01

20 1.9 - 02 2.2 - 02 3.3 - 02

40 ’ - ' 1.1 - 03 9.4 - 04

60 3.4 - 04 2.8 - 04

90 8.0 - 05 8.0 - 05
\ . ,

120 _ • 4.0 - 05 4.0 - 05
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been obtained recently by Williams (1981), but these 

measurements are upto 54.4 ev. Wow the discussion follows,

1, First of all, at low energies, e.g. 54.4 ev,

the overall behaviour of the present DCS (fig, 5.5) is 

similar to that without(—polarization (see fig. 5.1)
i . '

except that here the polarization enhances the DCS near
\

forward direction. At 54.4 ev (fig. 5.5) in our results £»
-------------- ______ - 0 ■ I oi dip appears: around 30 followed by a bump around 35 . 

This is also observed by Buckley and Walters (1975), at 

54.4 ev. In the DWSBA (KW) this structure is flattened. 

Thus,, we conclude that at lower energies a higher order 

calculation is required. Previously also we noted that 

the high?energy theories are not successful below 100 ev. 
Further the 54.4 ev results of SQEA (UP) are slightly 

above ours in the forward direction. It must be noted that 
SOEA (UP) does not include any polarization effect, which 

would increase the DCS slightly further near the
, O O

forward direction. In the region of 5 - 30 ,our results 

are higher than the others and lie close to the DWSBA (KW)
_ o

only beyond 60 . Wone of the theories is in accord for all 

angles, with the separate H(2S) measurement of Williams 

(1981) at 54.4 ev, SOEA (UP) is good for small, angles, 

DWSBA (KW) more or less underestimates at all angles,
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while the present results are overestimating. This
overestimation at a low energy is frequently found with
many high energy theories. The dip-hump part of the DCS
curve is not evident in the experimental points} however,
the angular interval of 10° in the measurements is not

small enough to reveal any such behaviour. The experi-
, 0 o

mental results show a dip-bump around 80 and 90 , a 
behaviour not supported by any theory! (see also table 

5.4).

2. The forward DCSjin different theories do 

not show the same behaviour. In the present case, the 
forward DCS show a gentle rise with respect to energy.
The reason is discussed previously, in sec, 5.7„

3. our 100 ev forward DCS lie close to
SOEA (UP) but above DWSBA (KW),; both of the latter results 
lie below the present as well as the first Born result

oupto about 30 , beyond which the first Born result tends 
to fall off. The' DWSBA (KW) is higher than the present

o
result beyond 50 . The difference between these two 
results Is narrower at 100 ev than at 54,4 ev but the 
shape of the DCS curves differs. At 200 ev the agreement 
is better. The DWSBA is higher than the present result

—, o
between 50 | and 85 .
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4. At 300 ev and above the cross-sections are
0significant only -within the forward cone of about 30 .

Hence, we have not shown the large angle results. The 
effect of polarization decreases with energy. The 
agreement between the present theory and the DWSBA (KW) 
is generally good except near the forward direction.
Above 400 ev no special features of the cross-sections 
are revealed so we have not shown any further results.

5. Our calculations have omitted the third 
order amplitude (f^ of eqn. 5.54)^ the inclusion of 
which can bring a closer agreement wife the other 
theories.

5.10 is ----- 2p Excitation in e-H Collisions

We have studied the excitation to H(2S) by 
electron impact, in the various theoretical treatments.
Now, the cross-sections of n e 2 excitation are given by 
the sum of the 2S and 2p state cross-sections, with the 
latter averaged over 21 + 1 , (1 » 1) magnetic substates.
The 2p state splits up into three magnetic substates
m,j = 0, and + 1j it is found that the first Born amplitude,
exists only for m = 0, the Glauber (Thomas and Gerjuoy,
1971) amplitude as well as the second order eikonal or
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the Wallace amplitude (Unnikrishnan and Prasad, 1982) 
exists only for m = + 1, Already in section 5.2 we 
have emphasized the use of the first Born approximation 
at small angles in the 1S —> 2p transition. The first 
Born DCS are so overwhelmingly large at small angles 
that the effects like exchange, polarization and 
projectile distortion are not much significant for this 

case,'
Further, as noted by Chen ,et al (.1972), the 

distortion effects in the 2pQ and 2p+<J substates are 
opposite and hence the net distortion is quite small.
However there are no recent studies in this regard.

Here, in the table 5.7 the first Born DCS 
at-100, 200 and 300 ev energy are exhibited for small 
angles, where the strong forward peaks are apparent. Also 
in that table these are compared at 100 ev with the recent 
higher order calculations, viz, DWSBA (KW) and SOEA(UP).
One can see a close agreement at small angles. The 
distorted wave part of the calculation in the IS —> 2p
case differs slightly from the previous (1S__^ 2S) one.
Presently, the term A2S of eqn. (5.56) is replaced by 
A2p , given in eqn. (5.13). Let us recall that our 
distorted wave approach is similar to the Glauber
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Tabid 5.7

DCS of IS -----  2p transition 100 ev

0
(deg)

.*
•

*
•

:
•
♦

*
•

First
Born
DCS

• DWSRA
: (Ktf)
•

i

t SOEA
: (UP)
•
•

•
•

0 100 98.6 91.5

5 ’..25 24” 23

10 05 '• 4*6 3.98

1.5 - 1.3 ’ . 1.0
c

i

1S ----- 2p

0
(deg)

•

: ’ First
: Born
S - DCS 
i 200 ev

•

: First Born <-
t DCS
: 300 ev '
•

0 210 310

5 08

10 1.7 0.9
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formulation, so that, the substate m = 0 does not 

contribute. However, the m = 0 contribution will come 

from the first term of our DWBA theory, which is the 

plane wave first Born term. The effects of exchange and 

polarization are not dominent in the 1S —» 2p 

calculations. A general trend of the 1S —> 2p cross- 

sections is that near the forward direction these are
O

much larger than the 2S cross-sections, but beyond 60 

the two are nearly equal. We have not shown here the 

1S —> 2p cross-section of the present theory. Calcula­

tions on the higher states in the atomic hydrogen are rare. 

For n = 3 excitation in e-H collisions, the distorted wave 

calculations are done by Syms et al (1975)• Exclusive 

distorted wave calculations have been made for excitation 

of Heliumj see Buckley and Waiters (1975), Scott' and 
McDowell (1975 ! 1976), Baluja and McDowell (1979) etc

The 2S -—-> 3S excitation in e-Li scattering was studied 

by Vanderpoorten and Winters (1977). It is interesting to 

note that the ground state of Li atom is similar to 

H(2S), under the inert core approximation, so that, the 

present DWBA method can be certainly extended to the 
2S “-** 3S process in e+Li scattering. Further, it must 

be mentioned that the total inelastic cross-sections 

(<Tinei ) have been obtained by Inokuti (1974b) for
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several atomic targets beyond. H and He, Lastly there are 
also some attempts to study electron impact excitation in 

the other atoms (z > 3), With this, we conclude the part 
A of the fifth chapter.

PART B

5.11 Electronic Excitation in Electron-Molecule 
Collisions

We now devote some attention to Inelastic 
scattering of fast electrons by molecules, in which 
electronic states are excited^ precious little has 
been done in this field. The target of our investigation 
is the H2 molecule.

First of all a few words about the electronic 
states of the H2 molecule. The ground state of H2 is 
denoted by X S and is made up of two 1S hydrogen atoms 
properly combined. Here, the term 2 corresponds to the 
component (along the nuclear axis) of the total electronic 
orbital angular momentum being zero. The right upper + 
sign indicates the symmetry of the molecular wave function 
with respect to reflection.in any plane passing through 
the nuclear axis. Further, ^ an electronic state of a
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homonuclear diatomic molecule ■will be symmetric or anti­

symmetric relative to the exchange of. the two nuclei. These 

two alternatives are denoted respectively by the suffixes 

*g* (for gerade) and ’u* (for ungerade). The left upper
*" ' \ g,

' 1f or *3* near 2 indicates the singlet or triplets

state. The first excited state of H2» i.e. b £+ \ is a
& • ** 

triplet** state, with two 1S electrons having an identical
\k

spin. One of the first triumphs of the modern quantum theory 
w,as to predict that this triplet state woulcjjbe dissociative. 

Given below are the low-laying excited states of H^, 

with separated atom limit indicated at the right hand 

side (Massey et al 1969).

Electronic state

X1 £+
g

S eparated-atom-limlt
\

(0^ IS)2

b3 2+
u (<rs isf ^u 1S)^

B1 - 2+
U (0-g 1S 2S) ,

a^ 2+
g , . (trg 1S 2S)

E1 . 2+
g • cag is 2S)

C1 £u ■ («■« is V 2p) '

C1 >« 1S 2p)

is ,2p)
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Now, we outline the work done in studying the 

electron-impact excitation of these states. Apart from 
the pioneering work of Massey (1932) and Roscope (1941), 

the Born-Ochkur calculations| j were made by Khare and 
Moiseiwitch (1965, 1966) With the use of the molecular 
wavefimctions, the calculations are quite difficult beyond 

the first order. The Born-Ochkur-Rudge type of calculations 
were done by Cartwright and Kuppermann (1967), Chung and 
Lin (1972, 1974) andC Chung, Lin and Lee (1975). A close­

coupling result is by Chung and Lin (1978). A sophisticated
2version of the distorted wave method called the L basis 

method has been used by Rescigno et al (1975, 1976, 1979). 

Most of these methods are confined to energies below 
50 ev, in particular around 10 to 20 ev, corresponding 

to the excitation energies of various states of Hg. A most 
recent piece of work comes from Lee-Mu Tao et ail (1982)
(see'also Fliflet and McKoy 1980)* Further, experimental
results if any, are rare. Mention must be made of ^eiger’s

\\(1964) experiments at very high energies, and the ri&cent 
measurement of Srivastava arid Jansen (1977) on B1 
transition by 20 - 60 ev electrons. No cross-section^, 

to our knowledge, are reported in the range 100 - 1000 ev,'

Now,, we spell out our aim in taking up tb
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present study. As noted previously,, most of the theoretical 

methods developed for electron-atom scattering have heen 

successfully extended to molecular targets.' In fact, for 

elastic scattering, we. have used the accurately evaluated 

atomic scattering amplitudes to obtain the cross-sections 

of the electron-molecule scattering, via independent atom 

model. It is not known whether this model has ever been 

extended to inelastic scattering involving electronic 

excitation by fast electrons, except the electron diffra­

ction studies (Massey et al 1969), Presently our 

purpose is to employ the IAM to obtain the inelastic e-H2 

cross-sections by starting from our previously derived 

inelastic e-H scattering amplitudes.

5.12 Independent Atom Model for Inelastic Electron 

Molecule Collisions

The simple IAM in this case is quite similar 

to that discussed in the fourth chapter, on elastic 

scattering. Considering the e-H2 system, we assume that 

each atom scatters the incident electron, freely and 

independently, and further, only one of the two atoms is 
excited in\che process. Though the final expression is 
similar to that of elastic scattering it is derived in^aT 

different manner.
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Assume that in the inelastic process one of
the two target electrons, denoted by suffix M* is Involved 
and the other one, given by suffix ’C’, forms an inert core. 
The antisymmetric wave function of the molecule can be 
written as a product of one-electron wave functions, so 
we write the initial and the final’ state wave functions 
of the target as follows (Massey et al 1969).

where A and B denote the two nuclei. The + sign here 
denotes respectively the symmetric or antisymmetric wave
function of electron 1 with respect to interchange of

v \

nuclei A and B. The atomic orbitals are denoted by 0.\ *»

*i <riA> V(rc> (5.96a)

<r1A> 1 *t (r1B» % <rc> (5.96b)

etc. Also,

(5.97)

Now, the first Born approximation of this case is
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with

Off IT I 'fi > - ff a*! ^ |£ ^H/si

1 4. ^ i 1 ' \ ]Jr -l£+-/2l ^ '

• £ / a&i tS^t^iA3 -

X|Th7f <*f <rtt> t *1<*1B » -5.99)

Here, the coordinates r, r^t E/2 refer to the 

molecular midpoint and orthonormality is used^ Thus, 
from the last equation dropping the terms of overlap 

integrals,

LB1
j- %.r / 2
Le

a
C/ ^lA <r1A )

%.r1& * “%*S/2» U 0t (r1A))i e

/ d£1B 0f CriB) e
%•£1B <¥rU)fl (5.100)
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Herein lies the central assumption of the independent atom 

model, viz. that in writing (5.100) the overlap of atomic 

orbitals is neglected. Now the + sign holds for the 

identical or opposite nuclear symmetry in the initial and 

the final states. The eqn. (5.100) can also be written 

in terms of the atomic scattering amplitudes as

f^1 = 2 f^ x (cos (£.E/2))

s 1
or

2 fj^ x (i sin (a.R/2)) (5.101)

where f^ denotes the corresponding, atomic amplitude .

The factor cos (&.R /2) or i sin (&.R/2 ) arises according 

as the nuclear symmetry is unchanged or changed. The 

relation like (5.101) holds true for higher order Born 
terms also. The fjinal result is obtained by squaring the 

amplitude and averaging over all orientations of R, as 

done previously. We have the averaged e-H2 inelastic DCS,

1(9) - 2 Ia(9)(l + ) (5.102)

Ia(0) denotes the corresponding atomic inelastic DCS. ,
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The atoms are not ’freeTscatterers ,so ‘tlie 
valance bond correction is required ^to be applied,both 

in the initial and final state orbitals. For the ground 

state of H2 this is given by taking ,2^® 1.2005 and in the 

final state, since the internuclear separation actually 

increases, the valance-distortion may be neglected, at 

least for H2. The second important aspect is the inclusion 

of electron exchange.

Consider the electron-impact transition from

the ground (slnglat) state to an edited singlet s'tate.
The electron-exchange in this case -must be in the triplet 
(see also Jhanwar 19B0JI, Further the probahtl^r of

a target electron of spin say a being close to a ^ 
nucleus A or B is 1/2. Hence, the scattering amplitude 

for anyefcom, including exchange must be,

fA = f„ CZ) - l gH (Z) (5,103)

i Vwhere, fH(Z) and gH(Z) are the direct and the exchange

et\\.
amplitudes for inelastic scattering from the target H-atom

••Zrrepresented by orbital e . 

e-H2 ECS with exchange are,

Thus, the average inelastic

!(©) “p'2 I %<Z) g^Z) |!

x (1 + ) (5.104)
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But if the excitation leads to the final triplet state*
vthen the exchange must occur in the singlet and hence
\

the final expression is,

1(0) =y2 | fy (Z) + t; gjj (Z) J
K/ - ■

X
f - ' Sin gR v( 1 i —cgr*- > (5.105)

Now,an additional complication, not encountered in ^he case 

of elastic scattering, arises here, due to vibrational
\

aspect. The ground state of H2 may be taken as the ground

vibrational state also. But the final electronic state
/

may be accompanied by a final vibrational state v*. Hence 

we have to consider the probability of the vibrational

transition 0 v/ This probability is expressed in

terms of the Frank-Condon factors (Allison and Balgarno, 
1970), Another related fact is that in the flnal\rtate, 

the internuclear » (equilibrium) separation increases. 

This fact is not considered in the basic expression,’. 
(5.102). One more difference between this and the lW\

formula of the elastic scattering will arise in the K\
kinematical calculation of momentum transfer q. Here, 
we- have td|ise,

1 , 2 2 ki 1 ,,2 
f2 k: + I ; E.fi (5.106)
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where Efi is the energy of the vertical excitation of 

an electronic state of the molecule. Because of this, the 

present *q* will slightly differ from the corresponding 

value of the atomic transition. Let us also remark in 

passing that if the final state is a triplet one, the 

scattering cannot occur without exchange and we must use 

eqn. (5.105).,

A comparison of the diffraction factors for 

elastic and inelastic scattering proves to be crucial. 

Whenever the nuclear symmetry changes, the diffraction 

factor is l-(sin t#l)/qR. This factor is quite small in 

the forward direction though not zero. Thus, if the nuclear 

symmetry changes, the forward inelastic DCS are expected 

to be rather small. Finally the expression of the DCS is 
to be multiplied by (2S + 1)/2, where S « 0 for.the 

singlet-singlet and 1 for the singlet-triplet transitions.

Apart from all these special comments high— 

-lighting the characteristic features of the electronic 

excitations in the diatomic molecules, the usual corrections 

to the IAM can be made here also. Notable of them are the 

multiple scattering and the effect of nuclear vibrations. 

These effects are quite insignificant in the e-H2 system, 

it is even more so for the excited states of the molecule. 

The requirements of a ’ good' IAM spelled out in the
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beginning of section (4.6) of the previous chapter, are 
wellfmei^ln the case of e-H2 system at intermediate to high 
energies. In the treatment of elastic scattering of 
electrons by H2 molecules, the model breaks down below 
100 ev. This might also be the case presently,

5.13 Applications the IAM to Inelastic e-Ho 
Scattering

Consider first the excitation of H2 molecules
1 +from the ground state to the singlet B 2^ state, the 

lowest stable excited state of H2, Here, since the nuclear 
symmetry changes, we have to use the diffraction factor

(1 - .). We take R » 1.4 aQ, which is not a very
good choice. To consider the valance-bond correction we 
take the.orbitals in the ground state as exp (-zr), with 
z = 1.2005. Further, the exchange is also incorporated, 
using eqn, (5.104), we have obtained the averaged DCS for the
transition X1 2* ——■» B1 2^ with 60 ev electrons 

and compared with measured values of Srivastava and Jansen 
(1977) for V* =* 2 vibrational band of the final state.
For the same state, the DCS summed over all final 
vibrational states are calculated by Fliflet and Mckoy 
(1980). Our results with IAM at 60 ev (not shown) are 
much lower than both of these cited results, primarily due
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to the failure of the model at that low energy. Thus, the 
I AM must he used above, say 100 esv,. At these high energies, 
no data are yet available. Hence, we have compared the 
DCS of the B1 2^ state (or 'B*-state) with those of the 
a5 2* (or fa’-state), both of which are extremely 

neighbouring stable states (Massey et al 1969). The DCS
of the transition X1 2*--- > a3 2* are calculated

from,

1(0) » 2 j %(Z) + |gH (Z) |2

(1 * > (5.107)

The DCS of the fB* and the ’a* states, are shown for 100,
200 and 400 ev in figs. (5.10), (5.11) and (5.12) at 
scattering angles between 10 an4l40°. Also in the table 

5.8 we have compared the DCS of these two states near' the 
forward direction at 100, 200 and 400 ev. The diffraction- 
-f act or, (1 - ), at different angles for 100 ev,

is exhibited in the table 5.9. The most significant 
feature to be noticed is a drop of the DCS for the B-state 
as against the peak for the a-state in the forward direction. 
Further, as seen from the DCS curves (figs. 5.10 to, 5.12) 

the difference between the DCS of these two states decreases
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Table 5.9 .

The diffraction factor ( 1 - )

at 100 ev (R = 1.4 a )

®deg

••

: „ sin aR: 1 “ qR
••

0 0.01

2.5 0.014

5 0.03.

10 0.06 .

20 0.26 .

' 40 0,78

60 1.14

80 1.21

100 1.10

120 1.01

140 1.08
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in the angular range 30 -50 and again it increases at 

large angles, but still remains smaller than that near the 

forward direction. This behaviour continues practically at 

all energies. The drop of DCS near the forward direction 
in the case of b”5 ^ (dissociative) state is noticed by

Pliflet and Mckoy (1980) between 12 and 60 ev. But such a
4 "-I*

behaviour is not observed by them for B 2U state.

That the diffraction pattern is 'inverted' for transitions 

leading to u-symmetry states, has been confirmed by Swick 

and Karle (1961) for the excitation of Br2 molecules by 

fast electrons. However, there are ho recent studies in this 

regard. ‘ «

. Finallymusing the,H(2p) dross-sections in 

the IAM, we can study the excitations to several other 

electronic states of H2. Notably, the H(2p) cross-sections 

in the forward direction are higher, but it will not be so 

for transition based on 1S —» 2p and resulting into a 
final u-symmetry state of H2, ^

5.14 Chapter Summary. Further Prospects

The fifth chapter covering a study of the 

inelastic collisions of fast electrons, by atoms and 

molecules, was divided into two main parts; part A 

dealing with atomic targets, while part B with molecular 

targets. In the part A, we have first reviewed the
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fundamental aspects of the Inelastic- scattering of fast 

electrons by atomic hydrogen. This time the distorted wave 

methods have been at the centre of our attention. Many of 

the distorted wave theories end up with a numerical 

procedure to obtain the cross-sections, and further there 

is a great disparity in their outcome. Hence, we have 

developed presently a new high energy distorted wave 

(first) Born approximation for elastic collisions of 

electrons with atoms, based on the assumptions and 

evaluation methods of the Glauber approximation. The 
energy parameter p of this theory distinguishes it from 

the Glauber theory. Further, the present method employs 

a Green's function expansion, retaining two terms, to 

obtain distorted waves. The present high energy DWBA is 

fully illustrated for H(2S) excitation. Here are the 

distinct features of our basic theory.

* The distorting potentials in the initial and the 

final channel are appropriately chosen,

* The exchange is also accounted for

* No resort whatsoever is taken to numerical procedures.

* At a relatively low energy of 54.4 ev, the present 

method yields a dip-bump structure in the DCS curve, as 

observed with some of the other theories.

The present theory is then corrected by
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including the polarized orbitals of Temkln and Lamkin. (,1961). 
This method does not include the target polarization in 
the final state. The DCS are calculated for 54,4 - 400 ev 
and comparisons with available, data are made. At 54.4 ev 
experimental results for 1S —2S process are now avai­
lable but an accord is reached with no other theory except 
that of Kingston (1976). The present DWBA method is 
reliable at and above 100 ev, though at 54.4 ev, it behaves 
like that of Buckley and Walters (1975). At all energies, 
the various theories compared here, are found to yield the 
forward DCS at variance with each other and further, the 
energy-dependence of this quantity also varies. The DCS 
at high energies are found to fall off very rapidly.

The cross-sections of 1S —> 2p process in 
e-H scattering are dominated by the first-Born approximation 
in the forward direction, and are much higher than the 
1S—> 2S cross-sections. The present DWBA theory can be 
applied to 1S —> 2p case also, although the results in 
this case are not shown here.

In the part ,B of the present chapter, we have 
dealt with electronic excitation in e-ID, collisions. We 
have given some of the basic concepts of electronic states 
of molecules, in particular Hg. The purpose of the present 
chapter was two-fold viz, to develop a distorted wave 
theory for inelastic electron-atom collisions and to apply
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it to the inelastic electron-molecule scattering via

independent atom model. Accordingly in the part A we

discussed a new DWBA theory. The next thing required is

an IAM for electronic excitation of molecules. This is

discussed in sec. (5.12). The important differences between

the IAM formulations of the elastic and inelastic cases

are brought forth. Now our calculations of H(2S) excitation

can be employed via IAM to describe the inelastic e-Hg

scattering leading to four distinct final states, differing
in symmetry and spin. They are given as, B1 I* £* ,

• u ) g
E Eg and 2U f For the first of these states, experi­

mental and theoretical data exist between 10 and 60 ev.

Some calculations have also been reported for the other 

states, but not for energies between 100 and 1000 ev. The 

present DCS are obtained in this range of energy. We have 

tried to compare the present IAM results with the available 

data of 60 ev, but without success, the reason being the 

breakdown of the IAM. The IAM calculations indicate that 

although the two states B Zu and ar Zg are quite 

neighbouring, the DCS for their excitation are very much 

different. The DCS for the excitation of a state with 

u-symmetry are much lower, especially near the forward 
direction. This can be seen from the “ inverted*! diffract ion. 
factor, table 5.9. The DCS of a^ 2* excitation are 

sharply peaked, in the forward direction. The difference in
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the DCS of these states is small in the range of 

intermediate angles, hut a difference of an order of 

magnitude or more is found, in the other regions. The 

behaviour of the B-state DCS near the forward direction, ■ 

caused by the change of symmetry, is in accord with the 

observations of Swick and Karle (1961). No other recent 

references are available for this kind of work.

Finally, as we converge to the end of this

chapter, let us conclude by giving indications of further
__—--prospects ; of work in the inelastic electron-atom- 

molecule collisions.

1. There is still a disparity among various 

theories as regards the DCS of the H(2S) excitation below 

100 ev. This calls for an accurate distorted wave second 

Born approximation. This is also true for the Sensitive’ 

near-threshold region, which we have not attempted.

2. There is a great scope for theorietical 

as well as experimental work for electron impact 

excitation of the higher states of atomic hydrogen 

.e.g. n * 3.

3. We have remarked in sections (5.5) through 

(5.9) that the distorted wave first Born amplitude contains 

elements of the second and third Born terms also. Hence, 

such an amplitude can be used to assess the importance of
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the third Born term. This idea, together with the second 
order distorting potentials has been very recently explored 
Madison et al (1983). The DWBA method of the present chapter 
can he extended by employing the second order potentials and/ 
or second Born formulation.

4. The present theory can be applied to 2S ——> 3S 
excitation in the e*Li scattering. There is also a wide 
scope .of work on excitation of other atoms, molecules and 
ions, by electron Impact. We have not touched the more 
difficult problems of ionization by electron impact, which 
do need a lot of study.

5. The electronic excitation of molecules is 
gaining attention now; see e.g. Lee-Mu Tao et al (1982) 
for a very recent reference. The dissociation of molecules 
by incident electrons has been hardly studied beyond Hg.
All these aspects constitute nearly vacant area, where, a 
lot of prospects for further work may be found. Obviously, 
the list of 'knowns' is smaller than that of the 'unknowns', 
so we stop here to come to the last chapter of the thesis.


