Chapter 2

High energy methods used in slow electron scattering
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2.1 Introduction

The second chapter deals with some of the
high energy methods that find applications in the lovw-
energy work., The reason for taking up this particular
QSpeot here, immediately after the first chapter is
two-fold, vlz, (i) in the most part of the present
work after this'chapter, we have dealt with high energy
problems only, so that the subject matter of this
chapter is independent and self-cogsistent, (ii) the
author himself started his work on the kind of pfoﬁiéms
described here and then, from the trends in thé';iiterh
atufe,‘a>sw1tch'0ver to the problems described later
on, was though of, We begin, in.the next sectioﬁ, |
after specifying the meaning of 'highf and 'low’ energies,
with an outline of various theoretical methods in. vogue,
in various enefgy domains, The basic idea underlyipg‘
different methods is very briefly mentioned. The theore-
tical methods of our interest in this chapter, viz. the
Born and the Glauber approximations are treated smeWhat
at length. The reason why 'high!' énergy theories éré
suitable for some of the 'low' energy problems is also

discussed,
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2,2  * Various Theoretical Methods

First of all, the study of electron
collisions with atoms and molecules cannot be done
through one single theory thatiuniversally applies
to electrons of any energy impinging on any target. ]
Specific quantum mechanical theories have been develo?ed
for specific domains of the energy of-the‘projgctile:
electron, If the speed of the incident electron 'v. ' is
less than or nearly equal to the speeds 'va' of target
electrons (of the atom/molecule), then the range of.
energy is termed as 'low', Equivalently in the low
energy reglon, only a fewechagnels are open, Thereafter,
the 'intermediate' energy is near the excitation threshold
of the target and extends upto a few times the ionization
threshold., Then, from a few times the ionization threshold,
upwards, we are in the 'high' energy region. This last )
one finally goes over to very high energies where
relativistic considerations become demanding. Obviously,
this classification depehds very much on the target., So,
quite generally, 'low' energy is the regioﬂpélb§'1d ev
incident energy, 'intermediate' range eitends from about
10 eV to nearly 100 &V, and above tﬁax, is the high,

- energy region. In this connection, let us recall that-

'thermal' electrons are the ones having energy of the
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order of 'kT', with k as the Boltzmann constant and T
as the absolute temperature. Near room temperatures;'

this amounts to nearly 0.025 eV energy.

We now classify different theoriés. All -

. the theories of collision Physics, now in practice, are
meinly quantum mechanical, and the whole of quantum
mechanics stems from the famous Schroedinger equation.
Thus all the different methods, that we are going t&’
mention huwg‘are but differentxépprpximate ways to solve
- the Schroedihger equation. Basically, various theories of

our study, falﬂvnder two cataegories, as follows,

1% differential approach : here, attempts are made
to solve the Schroedinger equation xtself, which

is a differential equaticn.

2, integral approach : here, the attempts are made
to solve an integral equation of scattering,
i.e, .the Lippmann-Schwinger equation, which is

equivalent to the Schroedinger equation.. -

" We do not attempt to describe how various
approximaﬁion methods‘originate'from éither‘of the two
approaches stated above, Rather it will suffice to glve
only an lntroduction of varicus approximate methods

together with their range of applicability. However, many
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of the theories have been stretched beyond their usual

energy domains, often with successes, Given below are

various approximations used in various ranges of energy.

The 1ist is not at all exhaustive.

&

‘Approximation method

o a8 -‘

Broad energy range

1

10

eigen-function expansion,
or close=-coupling method

L?-methods

R~matrix theory

?ar?ial wave analysis:
Many body theoriles
Optical potential methods
distorted wave methods
Born ;pproximations

Semiclassical methods,
eikonal and Glauber

.theories

EBS, modified Glauber
approaches, etc.

Low

Low

Low, intermediate
Low,.intermediéte
Low, intermediate
Intermediate
Intermediate to high
Intermediate.ﬁo high

Intermediate'to high

L0

Intermediate to high

Now, we follow the (non relativistic)

time - independent Schroedinger equation,., This is

because, it i8 assumed that our system has reached a.
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stationary state, i.e. the incident beam has been acting
for a long time., Consider the time independent Schroedinger
equation for the system of incident electron plus the

target,
H-B)§(z,X =0 (2.1)

where, the wave function of the system Y(z , X). 1is a
function of the coordinates of the incident electron ' (r)

and of the farget (X)+ The hemiltonian of the system is

(in a.u.)
Ho= =372 + V(LB + B @ (22
1 .2 |

with, - 5V, as the kinetic energy operator of the

incident electron, V(r , X) as its potential energy of
interaction with the target and, .Ht(x) as the hamiltonian
of the target aloneﬂ The total energy of the system E 1is
the sum of energies of the projectile and the targetx At
large distances the total wavefunction of the system
appears as a sum of the wave functions in the incident

and the scattered channels, There are certaidpasic
assumptions or formulations which help us in tackling . the

Schroedinger equation with a relative ease. Broadly
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speaking, some of them are as follows,

1. Born-oppenheimer approximation : Since, the
ratio of the electronic to nuclear masses is
very small,iit is possible to separate out
the nuclear i,e. rotgtional and vibratioﬂalA

motions from electronic motions in a3 molecule,

2, Secondly, we mention two reference frames
that are used in the theory of electron
molecule collisions, They are, the space

fixed or LAB frame and the BODY-frame,

3. Fixed nuclel for%%tion : By this, we mean an
adiabatic approximation in which the incident
particle is fast enough, so that the nuclei of
the ﬁarget molecule can be assumed to be

fixed,

Now the equation (2.1) can be used to |
understand the basic idea underlying vaficus approximation
methods, Thus, e.g,, in the clos% coupling formalation,
one seeks' a solution of the Schroedinger equation, as an
expansion of Y(x , X) in terms of the eigen

functions of the target states.

The other approach towards the solution
of equation (2.1) stems from the fact that the potential
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V(r, X)’' and the wave function §(z_, X) are the
functions of the coordinates of the incident electron

and of the target as well. Difficultles arise because of
many céord;nates involved. The 'optical o potential!
methods, therefore, are aimed at determining an equivalent,
local, central potential, dependent on r only, which

can be used to extract solutions of the scattering

éroblems.

One must also mention an.important formalisgm
in the scattering problems, and that is the .partial wave
analysis, This is a well established theoretical procedure
in which the scattering wave function is expanded in terms
of partial waves and the basic quantity to be evaluated
is the phase shift that leads to scattering amplitudes and

hence the cross-sections.

The high energy methods, to be discussed
below, arise from an integral equivalent of the

Schroedinger equation.

213 High Energy Methods

2.3.1 General

o g - S -
]

Consider the non-relativistic scattering
of an electron by a structureless target, generating a .

potential V(£3. The Schroedinger equation (2,1) can be
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rewritten as,
@ ) P, =T T D (2.3)

Here, Vﬁ fis the. k., E, operator of the ihcident:éleqtron.

—
Y

Ky = k = bkl and k; 1is incident momentum vector

(in a.u.). The:reduced,pétential is,
U(p) = 2V (D) (2.,
The solution of egn, (2.3), also denoted by.W;i (),

satisfies the boundary condition as follows. -

I (2) —— o Ei-Z +‘f(e‘,'¢)> eH (2.5)
B oy 0 o T

with f£(e , §) as the scattering amplitude. This
quantity is of utmost importance, as it is related to
the differential cross section through,

| . | |
0 @H - L e, |? (2.6)

Lndi {0

The 1last eqn, is the meeting ground of the theory and

experiments. We must mention one more fundamental'reiafion
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of scattering theory, called the optical-theorem,
given as |

@

o tot . %‘ Inf (8 = 0) (2.7)
where, O tOF is ‘the total collision cross-section
and Inf (6 = 0) is the magiziary'paria of the ‘scat'féring
amplitude in the forward direction (scatter;né angle
e = 0). Although, we have started with a pérficular case
of scattering by a structureless target, the fundamental

equations like. (2,6) and (2.7) are quite genereal,

Coming back to the Schroedinger eqn. (2.3)
the general solution is written, after some mathematics,

as (Joachain, 1975),

v

N ‘.‘ -+ .
Iifki (r) = ﬁki (x)# J&, (zz") (2.8)
u(r*) Wki(r§ ar!
The normalized plane wave is, )

g ) = T SEE )
i ' : ;

‘ ®

‘Similarly, with ke as the scattered electron momentum,

ikp.x

B, () = (eHE e (2.10)
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The Green's function (or the free=-particle propagatory -

is given by,

, exp ik; |z - z'|

lz - z*] (2f11)

The eqn. (2.8) is the Lippmann-Schwinger equation.

The general expression of the scattering aﬁplitude is,

in a.u,,

£(e,) =-4w < Hy |V IV @> .. (2.2

2.3 High Energy Methods

2.3.4 The Born approximations
The zeroath approximation to the solution
of the Lippmann~-Schwinger equation is to replace W; (x)
. ) i
simply by ¢k1(£)' Substituting this in the right hand

side of egn. (#2.8), we obtain the first Born scatteﬁing
amplitude as, ;
Iy, = ~47° <.¢kf|v | P, (2.13)

The second Born approximation is then obtained by next

iteration, This procedure generates the Born series as .a
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perturbative expansion in the powers of the potential
U(r). If the potential is weak enough, the expansion

coverages to a limit,

Let us now analyse the first Born approximation,
eqn. (2, 13) The first Born amplltude as a function of the
scattering direction (8, #) and the momentum transfer is,

obtained from,

. 1 ig.rz
fhi = "% fye v(z) dr (2,14)
The momentum transfer,
a = | k -k| ina u (2:15)

For a central potential, the scéftéring'amplitude is
independent of azimuthal angle @; Written as above in
eqn: (2,14) fpq . is the Fourier transform of potential
V{r). Now, £ what are the physical conditions under
which the first Born approximation is valid ? We find that
it 1s essentially a high energy approximation. At high .

4
&

energies,-it is valid if only,

U, 2 - o
= << 1 _ (2.16)
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where, 'Ub' is the stﬁength and 'a' 1is the range of
the ﬁotential. For low energies, i.e. ka —>» 0, this

becomes

i.e, it is valid only if the potential is very weak.

Further insight inte the nature of the first
Born approximation is obtained by considering a targeti
with an internal structure, We must then go back to -
eqn, (2.1) and introd&ce the wave function of the target

through,

ks 1> = 4 @) 1 ® | (2,18)

where, ¥(X) is the eigen function of the target in its
initial state i, A similer ekpression holds for. the final
state of“tﬁe system, Thus, thé,first,Born amplitude for
the scattering of electrons by a target, lead?ng to.its

transition 1 —3 £, becomes,

1, =ig.r
£ = = 33 J e gb“

B1 Vg @ (2.19)

with
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Ve = <elv Dl (2.20)

Let us now point out how, the first Born approximatlon;
though a high energy approximation, holds true ina |

limlted class of low energy problems.

‘ We are presently interested in poler molecules'
as targets of our 1nvestigatian. These molecules possess a
permanent electric dipole moment, 80 that the interaction
between a polar molecule and an incident electron, at large
distances, 1s domlnated by the point dipole potential,

v = -

BD cos @ o (2.21)

N

'e' and. 'D' are the electronic charge and the dlpole
moment of the target respectrvely, wherever the. constants
'e',. 'h' or ‘'m' appear explicitly, we are NOT working
in a.u. In this ‘chapter, we have frequenfly switched
over to either system of units, In egn. (2, 21), 6 is
the ‘angle between r and the dlpole axis (see fig. 2.1).
Further, the fdllowing relation ;s quite often & used,

cos © = cos ©' cos @ + sin @ sin 6 cos (¢! - g.) (2.22)

Table 2.1 shows some of the well known polar molecules

and their dipole moments. Additionally polar ions sre



Table 2.1

Some of the well-known polar molecules and
their dipole<moments (Itikawa, 1978)

: Dipole
Molecule : Moment (a.u,)

co 0.0441
CSCl 4.09
CsF 3.10
HC1 0.436
HF - 0.719
HI 0.176
KF 3-38
KI 4,26
LiH 2.31
NO 0.0624
NH3 0.578
03 0.210

“HoCO 0.917
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also found to be ;existing. , : S

We see from eqn, (2,2§); that the dipole ‘
interaction has a long-range nature and its 'strength!'
depends on ‘D', As early,és in 1931, Massey pointed out
that the rotational excitation cross-sections for
electron-polar molecule collisions must be quite large and
theBorn approximation can be éppliedzto this;casegéTo
understand how the Born approximation can be useful for
such potentials even with slow electrﬁns; we must decompose
the plane wave part in the fp, into partial waves of

different angular momenta 'l'.

It is found that, in the cross-section of
electron polar molecule cotlisions, a large contribution
comes from higher partial waves (1 >> 1), which, in the
classical sense, means that collisions with large impact
para?eters,(or 'distant encounters' as they are calléd}‘
are important. A.partial wave analysis to delimit the -
lowef‘bouhd of '1' has also been'performeﬁa,(Tgkayéh@gi
1966, Clark; 1977). Now, 'at large distances thé potenéial,
eqn. (2,21), is generally weak enough so that the first
Born approx1mation is valld Thus, to summariSe, we ;

emerge with three cases

P .For small dipole moments (D< 1 a,u:) the

partial waves, except for the first few are
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hardly distorted, so that the first order pertur-
bation theory applies, The lower partial waves
(with small '1') are surely distorted, and hence
the corresponding large angle scattering,is not

truely described by.the Born approximation, That

is why, the momentum trahsfer cross-section obtained

by the Born approximation is not accurate.

As the dipole moment 'D' increases, the lower
limit of 1 for agpiicability of the. Born
approximation, itself goes up‘ana further error
is introduced .as the lower partial waves are

strongly distorted. -

At small distances,'the’interaction betwéen'the
incident electron and the polar molecule is not
represented by egn. (2.21), and a short range
potential is also required, the inclusion of which
may not be possible within the Born approximation.
The Born approximation also fails when the

dipole moment is too strong to permit a simple
first order perturbation, These conclusions

are confirmed by more elaborate calculations,

such as those by close=coupling method

(Itikawa, 1969).

‘Thus, in a limited class of low energy
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problems, the Born approximation is favourable.

2.3.3 The first-Born calculations for polar molecules

The Born-Oppenheimer approximation allows
us to separate out rotational-vibrational énd electronic
motions in a molecule, For the present, we restrict oure
selves to rotational transitions. Furthéf, aséuﬁing the
molecule to be a rigid rotator, its eigen functions are
the spherical harmonics ij (8), with the unit vector
S specifying the direction of the rotator (or the dipole
axis), Let (Jj, m) show the molecular rotational angular
momentum and 1ts projection respectively. Let us assume
in the fixed nuclei approach, that the molécular orien-
tation (i.e, unit vector S) is fixed during the collision,
This assumption holds .true if the incident électron is
relatively faster, The scattering amplitude for rotational
transition (J, m) => (J', m') vwhich is particulérly simple
in the fixed nuclei approach is, (Itikawa, 1978).

fm =y = e Yo ©
208, @ Yy (8) (2.23)

in which £(S , g) 1is the elastic scattering amplitude
from a fixed point dipole. Altsuler (1957) obtained, in



03

the Born approximation,
. _ 2i Dem y : B
. fB1,PD' (5,49 = ~—E;Z—~ cos ) (2,24)

where, Y 1is the angle between g and S,

This simple expression can be used to evaluate
the transition amplitude of eqn. (2.,23) and hence the total
oriintegral cross-section and the momentum transfer cross-—
sec#ion can be evaluated. The importaﬁt outcome of the

Bord‘calculations‘is summarized below,

A
v

1. ‘Owing to the cos © - dependence of the dipole
potential (eqn. (2.21)), the rotational transitions
J—> J+t 1 only are induced in the electron=-

polar molecule collisions.

2. The elastic scattering amplitude of egn. (2.24)
diverges at @ =-O, or ¢ = 0, hénce’fhe total
cross-section cannof be calculateds However,
for the real inelastic collisions, g # 0

even at & = 0, and the probiem does not arise,

3. Even when the validity of the first Born
approximation is not clearly established, it

serves as a first and a crude estimate.

Next, we find that the predictions of the
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first Born approximation are in general at variance with
experimental results, A Swarm type determination of MICS
in rotational transitions of polar molecules was déne’b&b
Hurst et al (1966), where a rough accord with Born
results was found. Remarkably, for polar molecules like
I—I20, DZO’ HZS’ etc. the experimental observations were
much larger than the Borﬁ results, We are going to discuss
this point further towards the end of this chapter. Also
the molecular beam recoil measurements by Slater et al
(1974) on strongly polar molecules like KI are found

to0 be lower than the Born wvalues of vafious ¢ross-~sections,

It is thus recognised that there is clearly
a need to go beyond the“iirétléorn calculations. We have
emphasized in the préce¢ding that, for electron-polar
molecule collisions, distant encounters dominate, so
that the distortion of the projectile is quite small,
making the -weak scattering gpproximation, i.e, the Born
approximation applicable. However, if that .is not so,
ways must be saught to improve upon the first order
calculations. How can this be done ? An effective way |
of improving upon the simple Born calculations is the
distorted wave Born approximat;on. Here, the basic idea
is to calculate the first Born amplitude, egqn. (2.14),
by taking into account the distortion of the inéident

(scattered) plane.waves as they approach (recede from)
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the target. Rudge (1976) has given a distorted wave
approximation for the electron polar moleculé‘col;isigps.
Recalling that, in the present chapter, our aim is tona
study the hiéh energy methods applied to low ehergy
problems, we attempt here the modified (£irst) Born
approximation of Jﬁncker»(1975)q | |

2;3.é The modified Born_ sapproximation - T

\

Vo As an impr?vgmént over the first Born
caléglatiqns, let us ekplbfe the possibility of applying

the Sodified Born approximgﬁion as given by Juncker (1975)«
This is an attempt to take info account the distortion of
the incident plane waves approaching the target; by
considefing.partial screening in the nuclear charge. It

has been successfully applied to 1ight'étoms for elastic

and inelastic processes by electrons with energieé of

50 - 200 eV (Gupta and Mathur|

)
3

here for, the polar molecule targets, The modified Born

| 1978). Ve employ it

approximation, with a suitable split up of the hamiltonian,

consists in evaluating the T—matrix? (in a.u.) given below.
T = [ 1~ iai) exp (nai /2) I, ' ; ngg,?5)

With the subscript 'D' meaning direct scattering or =
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without exchange. Further, in our case for the eleciron

dipole collisions,

Ip = J dr exp (ig.r) 1F1(iai,1,ikir - igi.;)‘

X < Yy (8)Fl Vpp 1Yy, (5), 12 (2.26)
where, a; ="5/ki ,- and the screening parameter &
takes into account the distortion of the incident :

plane-waves,

Also, P, (1a; , 1, ikr = ik.r ) is the

hypergeometric function, which can be expanded as follows,

‘ ’ 2
+ 1
lFl (“3 y, Z)‘z 1 +'a72 +a7%£¢7_1_ﬁ ] + ?oc (2.27)

Now, thé matrix element of eqn. (2.26) breaks up into

N

»

two parts, the target part and the incident electron:

part, of which the former is,

< Yyupe (8) leos o 1y - ()
which gives rise to the tramsition J' = J + 1, similar
to the case of the usual Bofﬁ approximation. Now, “

considering the incident electron part of the T-matrix,
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S | ia-r F‘ 1, ik 1k )‘
Ip = Jdz e Fqliag, 1, ikr - 1k,.0

x<r | ReegsBl | > (2.28)
r : ) ’

For the case of electron atom scattering. the modified

- Born approximation (MBA) has beep evalﬁatedgusing'the a
integral techniques of Nordsieck (1954) and Mitra and
Sil (1976)., In the present case of the dipole ﬁotent;al,
we follow the expanéiqn of the hypergeometric function,
given in egn: (2:27). With the first term of that expansion
and 9o = 0, we end'up.with fE% » The higher terms of
the MBA arélevaluated by us using standard integrals
(Grandshteyn and Ryzhik, 1965). We quote here our f;nél
erression obtained in this way;“which is,

MBA -5 “1 (1 4 51(2 )
‘ f =}'fB1’PD ( 1 = -2‘-5 ..;_ 2q2
+ Lii \(2629)

Let us note here that the plane wave Born approximatlon

fB1 PD is purely imaginary, while the modified Born \
b 4

4

amplitude of eqn. (2.29) is complex and contains real i

terms also. Unfortunately we recognize, that ‘the above \
- © - . \
analysis does not lead to any positive outcome. This is
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because of the fact that, in the modified Born amplitude,
eqn., (2.29), the corrections over the plane-wave first Born

term are of the order of q"2

and higher powers, Thus, for
q € 1, the qorrection terms are quite large compared to
the first Born term. Now in the present case, the first
Born prediction itself is larger than the avaiiable '
experimental results, as weil~asrthose of the Glauber
approximation. Thus, the present. treatment of the MBA
can lead only to a further disagreement between theory and
experiment, and hence it is concluded that the MBA is
not suitable for the treatment of low energy elgctrcn
scattering by péiéﬁ molecules., There is no computational'
difficulty, however, It may be recalled that in the.
electron atom scattering problems, the scattgﬁing
amplitude always contains a paramgter, fo be denoted by
'A' in the later chapters, which comes from the
(electronic) Wavefuncfion.df‘the target. In the present
case of a rigid rotator dipole, with spherical harmonic
eigen"functions; this parameter is absent and this fact
plays a crucial roles It even makes the amplitude'
diverge at4q= 0. We further conclude thereforé,}that the
failure of the MBA can be traced back to the ffpical
nature of the electron molecule interaction considered
here., The modified Born approximation may be useful at

large momentum transfers and not so low energies together
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with modificatiqns in the interaction potential, This has
not been tried at present. ;astly, although there is no
comparison, it is interestiné_to note that, according to
Kaushik et al (1982 b), the mod;ﬁied Born approximation
fails to come up %o the experimental and. other results for
elastic scattering of electrons from complex atoms like

C, O and Ne at intermediate energies, Our nextvéask is to

study the higher order theories in the present problem,

2.4 ' The Second Born approximation

Basically to take into accounﬂthe‘second
order perturbation; the correstnding:approximation is
-made in the Lippmann-Schwinger egn. (2.8), to obtain the

second Born approximation, in a.u., in the form,

<kp» £{V[Em<En|V]k;, i

2
£ = 8x° f 4K X .
B2 = ' 2 - - i
o n K2_1;i+2(wn W) - i€
+
€ ===y O
’(2030)

where, [K, n) shows an intermediate state of the

system with the projectile having momentum' hK and
the target in its excited state 'n', ’WO* and 'Wﬁ{
show respectively the energies of the target in its

ground (initial) state and the nth state.
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.This amplitude represents the fact that, the

projectile with an incident ' momentum xhki interacts

with the target potential via an intermediate or virtual

state from which it scatters with final momentum hKe, -

leaving the target in the final state 'f',

In the field of slow-electron scatterirg by

polar molecules, the second (or a higher) Born approxi- ‘

mation has not found much headway., The following are the

reasons for this,

Te

3

A calculation with fBZ involves a féir amount
of difficulty,

It leads to transitions with A3 =0, % 2,

but does not improve upon the first Born
results of the more important transition,

Aj = + 1,

A higher order perturbation theory, viz.

the Glauber approximation has found an ample

success in this area of research,

Usualiy, the literature on electron-scattering

by polar molecules doeSnot deal with the second Born . .

approximation, so 1t 'ls attempted here.

Thus, we wish to evaluate, presently,
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. a2 <kes fIVPDiK»n><.I£sninD3£11>
TE gl k§ +2(W -W)) - i€

B2, FD

(2.3L)

Now here it is convenient to adopt the fixed scattefér
approximation (FSA) of Ghosh (1977, 1978). In this
fofmulation, the velocity of the prbjeétile_is assumed
to, be high so that, during the édllision, the target
assumes a fixéd configuation, The wave function of the
incident particle then has only a parametric dependence on
the target coordinates. Thus, in the T=-matrix, the coupling
.0f the target and projectile coordinates is removed, and

the second Born term is reduced to, (Ghosh 1977),

Ceps £[Vpp| X ><E|Vpplksy 15

FSA o
£ =.81€ de
2 = K® - K% -~ ie

i

.

(2432)

Some relevent points about the FSA are discussed in
the chapter to follow. In the present case of the
dipole rigid rotator, we have, from éqn.‘(2.32),
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£, = 87n° [ Yj'm' (8) cos® o Yim (8) ds
<Gk V] E>< E|V| Xk > (
X [ dg —= - e (2,33)
X - k] - e
where, the plane-wave matrix element,
<k.|V]|K? =
f ar D cos o ei(ﬁ - Ef)’z
- r
D in ,
3 (2.34)
(2m) K - kel -
And a similar result is obtained for the other
matrix element of egn. (2.33)., Thus,
FSA *
= 2
f2 = f Yy (8) cos® 6 Yo (8) a8
1
x J ax 5  (2.35)

S E - wplig - KDOE - K

Now, we evaluate the K-integral of egn. (2.35). It

falls under the general class of Dalitz integrals,
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which are discussed by Joachain (1975). The Dalitz integrals
are widely used for second Born calculations at intermediate
and high energies. It is of interest to note that this

evaluation procédure is applicable here also.

The %?eral integral is given by

1
Im’n (a!ﬁ’kii k‘f) = f dK

T (&% - K -1€)

i B
(@ + |-k 19" (6% + gx_gfgz;‘a?-%)

In the present case, we have,

m=n= 1/2, o

.
. TR
i
O

(2.37)

As discussed by Joachain (1975), the K-integral of
eqn. (2.35) can be reduced to the following form.

1
I =X [at 472 (ol g)1/2
i1 s -

2 %+A+i§
I_n { :
: (2.38)
A ki“A+14 4 . .
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with
A=tk + (1-1%) Kk (2.39)

and
F2e t-t) Ik -k I° (2,40)

Let us observe here that q= 0, for elastic scattering, so
that, because of the log-function in'the'eqn. (2.38),

the amplitude diverges at g = O. This is similer to the
behaviour of the first Born term and it confirms the well
known fact that the total cross~section for the dipole
potential diverges, Due to this reason, we consider the
inelastic scattering i.e. rotational transition, in

what follows,

To evaluate egn. (2.38), we expand the

log-function as given below,

In ( Ez%—:—:yl) = % + i—zg— T anne ) (2.4?)

N

~

This holds provided that z # + A (see Abramowitz and
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Stegun,,(197h). The evaluation of the t-integral is
easier if the first term only is retained,.

Thus,‘we get,
1 2 /2 A |
Ioa o foar V2 (-T2 L (2.)

which yields upon substitution, t = sin~ 8,

wr

o V( 2" 2\ B
. (@ + 4ky ) + q o
I t—— va—_——4—1:£~n2' ( ’[M i; ln( V‘ - 1 oramn ) ) ;(2.&4)
o? + Lk - (o * “k"f > -'q

-Now, going back to the second Born expresslon (2535), we
find that owing to the presence of cosz Q in the ,'.
target part of that equation the allowed transitions
obey A J = = 0, 2; We are presently interested in

the 'rotational transition, j =0 -—9-2, ‘for .which

we get the following result fnr the differential Crosse=

sections (DCS), in a. u. -



P

4

dg- 64 D
(-—-- —3 C —uz——-—-—m
dw E‘)’C (q2 + l&k?.)

I -
¢ (& + (In 7+ 4k ) *d 2 (2.45)

W+ 4l) -a

where, the constant C depends on,

"

J m = 0,

= 2, m=0 etc,

Based on the above result, a sample calculation has

been made for e + CsCl system, at the incident
energy 4.77 eV. Ashihara et al (1975) have investigated
the same system at the same énergy, employing the

Glauber approximation. The table 2.2 represents a
comparative statement of our results and those of

Ashihara (1975). Given below are the conclusions drawn

therefrom,

1. The Glauber DCS fall off too steeply as the
scattering angle increases (see also fig. 2.2);
The Glauber theoiy being a smallnéngle approxi«
mation, these results may not be quite reliable
at large angles. The exgeriméntal cross-sections

(Slater et al, 1974) also fall off rapidly. The
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Table 2,2

DCS for e+ CsCl at 4,77 eV for

= 0->2 inélastic process (a‘g /sr units)

Present .

> : ! Glauber

deg ‘ ; results
. 0 ' . 1125 S 1800 - -
30 . . 1048 -
60 890 010
90 795 -

120 700 —




2,

present

1.

present DCS decrease rather slowly with angles,
This behaviour i.e, slow variation with ¢ is
also found in the DCS obtained by the first Born
approximation, The behaviour can be seen from

fig, 2,2 taken from Itikaewa (1978).

The present results agree with the Glauber

results near forward direction, It may be concluded
that the true behaviour at large angles might be
somewhere in between the Glauber and the present

results, .

There are also some limitations of the

simple calculations, as pointediout below,

It is not possible to include higher orders of
perturbation in the Born approximation, and it
'is this point that makes the Glauber theory
superior, The higher orders contain higher
povwers of cos 8, hence in those cases too,

Aj = 0, % 1, +'2 etc, transitions are induced,
they effectively couple with the first and

second order results.,

Presently also, the second Born term is
simplified in order to keep the computations
simpler, Actually, egn. (2.38) must be

evaluated exactly.
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The next section is, therefore devoted to

the Glauber approximation.

2.5 The Glauber Approximation

In the previous section, we saw that the
first Born approximation predicts the important transition

AJ = + 1, while the second Born'approximatioh predicts

aj = 0, + 2, In the higher order terms, higher powers of
the potential, and hence of the factor cos Qm appear,
and overlappingly, all transitions Aj =0, + 1, + 2 etc,
will be allowed, Thus the higher terms interact with

the first Born term, whence they cannot be neglected.
This amply speaks of the importance of a higher order

" perturbation theory.

The Glauber theory stems from thé eikoﬁal
approximation in scattering problems. This is also a
high energy approximation wherein, the de Broglie wave-
length of the incident partiple is assumed to bevshort
compared to the distance over which the potential |

varies appreciably. This 1is equivalent to the requirement,

ki a>>1 ) (2.46)

Here, 'a' 1is the range of the potential, Under this
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condition, the Green's function in the Lippmann-Schwingér
equation can be linearized, i,e. its dependence on\us'
is removed by a suitable expansion. We are going to dgscuss
this procedure in connection with the high energy higﬁkr
order Born'approximation”in'thé'next’chapﬁer. This
procedufe leads ‘here to the eikonal scaftéring wave

function,

§ () = (2m)7/2 exp (ik;.r -,g%-i-

5 U(b. z') dz' ) | (2,47)
-0 '
This shows that the incident' particle suffers a
potential dependent phase-change; Thus, the eikonal

scattering amplitude is,

h‘

ty = ii J a® b exp (iq. b& exp (iX(k R b)— 1)

- (2,48)

-

Here, b is the impact parameter,

This treatment is for a structureless

target. The many body generalization of the eikonal
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approximation was done by R, J. Glauber (1959). The
Glauber amplitude for a 'direct' collision of an electron

er
with a target containing fixed scatte§§ 1s expressed as,

k - '
2 . .
£6 = J b exp (ig': D) -
e t]exp (X% - 1)1 : ' (2.49)

The momentum transfer g is here assumed to be two
dimensional, Further, d?p is an element of area in
the (X, Y) plane. The Glauber phase is

G

x& = x©

(Bs by eens B (2.50)
where r = b + 2 o B - (2.51)

And the target coordinates look like,
r. = b, + 2z, (2.52)

etc,

Let us note here that the Glauber multiple
scattering series can be developed by expanding the
exponentiated phase x& in eqn, (2.49) and its

connection with the terms of the Born series cén be
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established, (Byron and Joachain, 1977). In the last .
fifteen years or so, the Glauber approximation has |
acquired an important status in the electron—atom—moleqﬁle
problems, Some of the special features of this theory are
pointed oﬁt below, Some pertinent remarks are also made

in the later chapters.,

Te Because of the exponential phase XG y the
Glauber amplitude takes into account all orders

of perturbation, albeit approximately,

2, The longitudinal component of the momentum
transfer i,e. that along the incident

direction, is neglected. Thus,

)

g.r * g.b (2.53)

Hence.this approximation is valid for small angle

- scattering only. However, the gssumptioh,eqn. (2.53)
makes the evaluation of the Glauber amplitude easier.
It also ensures that the first Glauber term is

identical -with the first Born term, -

Let us evaluate the Glauber amplitude -
of eqn. (2{49) in the case of a dipole potential,
- assuming a fixed orientation of the vector S. We

need,
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G 1 z .
R 0y {; Vpp (0, 2') dz! - (2,54)
'vi' shows the speed of the incident electron.

Upon integration, one gets,

2¢eD

b 8 AR T (2.55)

o’
-
(93]
~—r

il

The z-axis is chosen here along the direction (k; + ke)o
Ashihara:et al (1975) havé applied the Glauber approxi-
mation for tréating the scatﬁefing of slow electroﬁs by

" strongly polar molecules like KI and CsCl. According
to thém, the amplitude for a rotational transition from
a state (J, m) to ' (J', m'), obtained by expanding

exp (iXG)' is given as, .

G - i1
(8, @9 = 2ik 1?n J ( 816%00 - 3 ( hZeD ) )
ig.b )
‘?&n () e ol dzb / Ya o (S) Yln ) Yy o (8). a8

: ‘ : . (2.56)

where we have used eqn. (2.55) and also the fact

that,
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1,n

-
]

In the egqn. (2.56) J; is the spherical Bessel fuﬂotion
of order '1'. With this Glauber amplitude, the results
obtained for electron scattering from strongly polar
molecules like CsCl (D = 4,09 a.u.) are much lower than
the Born values and thus agreement with experiments is
reached, (Ashihara et al 1975). However, it has been
noted that these results do not guarantee that the
Glauber approximation would succeed ¥ 1in any low
enefgy problem, Thus, it 1s required to be tested

in different cases of interest.

Now we turn our attention to a specific

low-energy process, to be investigated in the Glauber theory.

2,6 Elastic Scattering via Temporary Capture

As noted earlier, it is observed that the
elastiec scattering of slow electrons by polar molecules
like H,0, H,S, D,0, etc. showed a typical behaviour.
The experimental momentum transfer (or diffusion) cross-
sections were found to’be much larger than those obtained
by the first Born amplitudes. These molecules have

relatively low polarizabilities, so the reason for this
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behaviour must be something elgse, Hurst et al (1963))
suggested that the‘enhancement of the momentum transfef
cross=-section could be due to a temporal attachment of

an electron to the polar molecule. J., E, Turner (1966§i'
investigated the possibility of tnuclear excited_FeshbéCh
resonance'! i,e, resonant scattering of electron through an
intermediate negative ion formation. The term 'nuclear'
stands for the excitation of nuclear motions ile. rofation
and/or vibration., Turner observed that stable bound states
'af an electron can exist in the field of a stationary
dipole, if its dipolé moment exceeds a certgin critical
value of 0,64 a.,u. Garrett (1970, 1971) studied the same
problem for a rotating dipole. In Turner's mechanism
(1966) this is a two step=-process. The electron of the
incident Swarm is first capblffred by the dipole field of
the target molecule and a rotational state of the target
is excited. Then, the natural decay of the negative ion
thus formed, returns the electron back to the Swarm, thus
contributing to the momentum transfer cross-section, In a
simple Born approximation treatment of Altsuler (1957)
this contribution from gquasibound states is absent, hence
a simple treatment underestimates the cross-sections., '
The 1life-time of the negative ion is estimatedte to be

of the order of the rotational period of the target molecule.
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This process differs from the dissoclative
attachmenﬁ,:giveﬁpe;aw,

MN + e —> M + N . (2.%8)

Here M and N represent the atoms of the molecule.
The present case is that of non-dissociative attach@ént,

either temporary, and autoionizing,
MN + e —> MN™ 2.59
> ( )
or permanent, i.e.
MN + e —> MN ‘ (2.60)

We confine ourselves to the process of eqn. (2 59)
above, i.e, to the temporary and loose binding of the ‘
projectile electron. In the initlal state of the system,
a free eleciron 1n a Swarm is 1ncident on the target
polar molecule in a rotational state ( jm ) and we
consider the final state £t of the system as that of
the bound electron and the molecule 1n ‘the excited
state, (3' m'). (The latter eventually decays back to -
the initial state)., Our problem is to determiﬁe the |
probabllity of tranéition from the state 'i' to 'f',
For this, we need the initial and the final state wave
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functions. Following Turner (1966); we take the iniyial
state of the electron of the Swarm; represented by éxk
plane wave plus a scattered spheridal wave i;e; as ﬁgﬁﬁﬁéf

%
en > G

R LU
ik, z ik:r < .
i i / r (Z;QX)

e + f(e, @) e

'Here, f(®, #) is the amplitude of elastic scattering
from the fixed dipole. Here lies the point, With our
knowledge of an improved scattering amplitude £ f£(8, @)

the calculations can be modifled.

A simplest choise for f(o, @) would be the
amplitude of eqna'(zézh) giveﬂ@n the first Born approxi#
mation. Desai and Meru (1972) calculated the amplitude
variationally and later Desai et al (1974) qbtaihed the
ampligude in the finite dipole Born model. Both of these
afford a small change in Turner's calculations; We
(Joshipura and Desai, 1980) have applied the Glauber
amplitude in this problem.

We thus go back to the main track of our
discussion. The Glauber amplitude eqn. (2.56) for
elastic scattering of electrons by polar molecules, to

be used here, requires the evaluation of the integral,

@®
I (8 = o (3673 = 810) 9, (x) x ax  (2.62)



with FJ (x) as the ordinary Bessel function. This.is
evaluable in the form of a rapidly convergent infinite.
series (Aéhihara et al, 1975). The expression for "t:l’w:,'~

Glauber amplitude is now,

3

ik, G
£%s, 9 = g (B )° [2 sin o5 cos(dg - 8

x ( ég - %) -2 1n.(,§,)1

Ly + 312+ 3 107 269

+

where, we-define,

B o= (B )4 (2.64)
h ki‘ .

Also (GS o ¢Sx) show the orientation of the molecule

relative 'to a fixed frame, as shown in fig.: 2.1.

'¢q' is the angle made by -g wvector in the (x, y)

plane, ¥ (a) is a digemma function,

We used the amplitude of eqn. (2.63), fo

calculate the transition probability T for the

fi°?
decay of the negative ion,‘diScussed in the prece¢ding.

The following derivation rests heavily on Turner (1966).
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Writing for the matrix element of the dgcay, we have,

o - B (E)Y2 e,y (2.69)
fi fa o ' S |
¢ o ] .
Here z° = W0k, Z 1is the scaling factor, a_ is the

o
Bohr radius., Further, the integrals .I{, 12 and  13 are

as follows . (see also Maru, 1975),

1/2 CZrfa. .
- o ¥ S
I,‘ = (4112) I dy 45 e Ya'm' (-)
@1 (5, @ S5— Yy, (B ~ (2.66)

where,

dv = r°dr sine de dp , for the
scattered electron,

43 = sin g d6y dfg ‘
Further, if . v # 3 I1 = 0,

b

The next is, I2=, which is the same as X in .
Turner (1966).
Finally,
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-Zr/é

1, = @Y L e @ e (Y, DY, ®

3

* Yp0 (B Ty 0 (8) Y3 4 () Yy 4 (D)

ikir

Ty D 8% £ G Yy (8 (2.67)

Specifically, this Iy is evaluated here, with the
Glauber amplitude, and found to be, | '

Iy ,%E-’- 30 Y2 a1 -R) 1331

+,%%(%£ﬂﬂp2m3*1fm1-ms§\_
P

X(((:l' + 14+ w1 - m'))1/2 ' v
23+ N2y 3) 31,5 hm',m

(' + m*)(J* = m') ~1/2
v ( o) |
(23" + y@a* - Carea,s Swin)

“(2.68)

where,
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Za
eD "0 2
P =5, 0= (=)
h AN ki a, .
k;a k,a o
and R = ( _%~2.)2 s21 (42) (2,69)

The quantities Sgi are defined by Maru (1975).

For a sample calculatlon we consider, for
water molecule the 1nitia1 rotator state j = 2, m= 0,
the final state being j' = 3, m = 0, This case is
frequently studied in the literafure; The mean energy
of the incident electron Swarm is 0,025 eV, corresponding
to the room temperature. From the transition probability,
Tfl’ eqn. (2, 65) the lifetime of the intermediate
negativeion is obtalned by the following equation, |

T = ﬁhh - 1
n{ 2mE )1/2

iniiz : (2.70)
An&\finally, the captufe eross-section can also be
calculated from the transition probabllity -
A comparison of the present result with tho;e of’ other
workers 1s given in the table 2,3, We hgve already
mentioned the other calculations referred to in the
table 2,3. ‘ |
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Q ——
Results of [T, |” and the life time T of the (H:0J

-

temporary negative ion, obtained by different

theoretical methods

Quantity ; a ; b H c H d
2 -47 ’
|Tpsl x 10 1,183 1,182 1.248 0,27
Tx 10"¥see 3,488 3.4 3,307 15.0

(38.2)"

a, Turner (1966)

b, Variational method (Desai et al 1972f

¢, Finite dipole (Maru and Desai 1978)

d, Glauber results (Joshipura and Desai, 1980)
* Rotational period of the target
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Our results indicate that, the lifetime of
the negative ion is longer than that predicted by any
other theory, but it is shorter than the period of
rotation of the molecule, which means that a stable
negative ion is not formed.'Further, in our results, the
transition probability is small, so that the capture
cross-section is reduced and the momentum transfer cross-
section (MICS) should increase. This last point was the
beginning of the present article no., (2.6). The MICS are
not calculated here, but we refer to a recent comparison
of results by Desai and Chhaya (1979). The present results
can bring a closer agreement with the experimental results

of this quantity.

Thus, the application of the Glauber appro-
ximation succeeds in explalning the high momentum trénsfer
cross-~sections as resulting out of a temporary attachment
process, A similar behaviour can be predicted for molecules

like NHz, HC1, Hy0,, etc.

2.7 Nonpolar Molecules

Our interest in the previous sections was
mainly confined to polar molecules, Now, the prominent
gases like H2 ’ '02, NZ’ etc. are nonpolar. In general

the potential of interaction between a molecule and an
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incident electron ¢an be expressed as an expansion in
multipole electric moments and in many of the ncn-polaf
molecules, the quadrupole moment dominates,at least at
large distances; The point quadrupole potential

reads as,

Here, O 'is the electricic quadripolé moment of the
molecule and Po(r . 8) is the 2nd order Legendre pély—
nomial in (r . S). The possibility of ‘applying high
energy methods to slow electron. scattering by nonpolar
targets also follows from afguments made previously ‘
(Chang, 1970, also Chhaya, 1980), for polar targets., Here
also the first Born results turn out to be first estimates.
The Glauber theoryhe has been applied to slow electron
scattering from quadrupolar molecules by Ashihara (1975)
and also by Rahman (1978). Further, the inclusion of
short range and polarization forces, along with other
methods of calculation, change the picture considerably.
One must mention that an improvement over 'point' dipole
or quadrupole model has been to consider a ‘'finite' or a
'cut off' dipole or quadrupole potential. Also, in the
case of specific molecules, thé linear rigid rotator

model is replaced by a more realistic, symmetric or
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asymmetric top model. All these are mentioned only
briefly here as the purpose of the present study is not
to cover the details of this aspect. With this, we come
to the last section of this chapter,

2,8 Chapter Summary, Further Prospects

In the second chgpter, we cohsidered some - .
of the theories of high energy electron écattering that
find applications in the treatment of scattering of slow
electrons from molecules, Our starting point was’ the
Schroedinger equation from which all quantum mechanical
theories arise, An integral equivélent of the Schroedinger
equation, is the Lippmann-Schwinger equation, which, when
attempted to solve approximately, gives rise to the Born,
eikonal and Glauber appfoximétions..These high energy’
approximations have found applications in the calculations
of various cross-sections of low-energy electrons by
polar andd non-polar molecules and we have discussed here
the arguments to Jjustify their applicability., The modified
Born approximation, for taking into account the distortion
of the projectile is attempted, but without success, This
method might prove to be useful with some modifications
€.g. a cut off procedure. The second Born approximation
for dipole targets is attempted here and some interesting

consequences are derived, It predicts the transitions with
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AJ = 0, + 2, The order of magnitude of the DCS for

0 —> 2 transition for CsCl molecule, at 4,77 eV
agrees with the Glauber result only near the forward
direction. Our DCS vary very slowly with q. The

limitations of the present treatment are noted,

Glauber's high—éngrgy, small angle approxi-
mation is known to be better than the first Born approxi-
mation, even iﬁ the low=energy work, Presently, the
Gléuber'amplitude for elastic scattering of slow
electrons from polar molecules is employed to obtain
the lifetime of temporary negative ion formed in Turner's
mechanism (1966). A compafativé stétement is made for a
sample case of J = 2 —> 3 +transition in the Hy0
polar molecule, showing the present results and those
of others, The present results predict a higher value of
the MICS, in accord with Swarm experiments, (Christo-
phorou and Christodoulides, 1969), Thus we have a better
understanding now about & peak observed in the MICS at
the dipdle moment aréund 1 a.u. Turner's theory applles
to only certain molecules with a suitable ratio of the
dipolé moment to moment of lnertia, An important motivation
for employing the Glauber theory is the simplicity of
the Glauber amplitude of eqn. (2.56) for the dipole

potential, However, if all the dominent a terms of the
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interaction potential are taken into account, the
sophistication takes tall of simplicity, Reference must
be made here of the work of Gianturco.et al, (3978), who
considered the dipole quardupole and polarization terms
of interaction in their Glauber formulation for low to
intermediate energies upto 50 eV, with a considerable‘
success, As we come to the end of this chapter it will'
be worthwhile pointing out future prospects for the kind

of work shown here. The following points are noteﬁorthy.

1e Now~a~days, in high energy problems, the Wallace
~ correction (1973) to. the Glauber and eikonal \\
formulations is gaining more and more attentﬁpn.
. This author has not ) seen the Wallace—correcyed,
Glauber amplitudes for law energy problems an&veo“{
1t will be interesting to do the same, In esse €y

x

the Wallace amplitude is given by (see also eqn. 2 49),

k ig.b
fw=—1;j_fdb eg
Xi )
<f iexp ( 1i¢( + - ) =1 ! i? (2,72)
i

The correction over the Glauber phase x¢ being,

o .
X, (2, %) =§~,£D (TX,) * (LX.) dz (2.73)
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with,
z
X, (s 2, %) = = J V(b 2", x) dz2'-. (2.74)
- Q0
And,
* ¢ - L S
X_ (b, 2z, ) = = K'VQ?.:‘Z"; x) dz* (2{75)

Z

‘Hefe,‘the evaluation of X1 is easier for‘cehtrai )
popentialé. But for the cases like the dipole potential,
it is vastly difficult. Our attempts in this direction
have not peen sﬁccessful as yet, but it means fhat

challénges are in store,.

2, However, even the Wallace amplitude is not

free from some of the dﬁawﬁacks of the Glauber amplitude.
For high energy electron atom collisioné several modi-
fications of the Glauber approximations are developed
mention must be made of the work of Rosendorff (1977,‘
1980, 1981) which is a basic modification. This is also
worth trying for electron polar molecule or electron

quadrupocle collisions, at low energies,

3.  If a high energy method works with a limited
success 1in the rea}m of electron polar ﬁolepule

collisions, it may be suitably combined with more successful



90

theories, Chhaya (1980) has coupled the close-coupling
approach for the first few target states with the Born
approximation for all the higher states, in his study
of electron scattering rrom alkali halides, Dewangan '
(1978) has suggested a more general method using the
Glauber theory, ’

4, " As an application of electron polar molédule
-collision studiés, we can consider collision of a highly
excited long-lived (Rydberg') atom with a polar molecule,
In this case; the radius of the rydberg orbit being.
very larée, the problem divides into two parts

‘(i) Athe éxcited—electron polar - molecule interaction
and (ii) the ionic-core polar-molecule interaction.’
Thus the studies of electron~-dipole and and ién—dipole‘

systems find relevence in this hew conteit.

Se In the previous paragraph, .the term 'ion—
dipole' stands for, a neutral, polar molecule considered
as the target and an ion aé;a projectile, It is also

of interest to consider ions, exhibiting dipole

character, as targets.

6. The pﬁ?se 'nuclear excited Feshback resonance ’
used in this chapter applies to rotational and/or

vibrational excitations, In this chapter, we considered



31

only rotat;onalhexcitations, Recently Gauyacq and
Herzenberg (1982) have studied e + HQl scattering
under the nuclear excited Feshbacly resdnéhce‘iﬁcluding“
the vibrational aspect. Thus there is a renéwed .

intereét iﬁ the subJject.
With this, we 2o over to the next
chapter devoted to elastic séa;tering of fast electrons

by atoms,



