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2.1 Introduction

The second chapter deals with some of the 

high energy methods that find applications in the low- 
energy work. The reason for taking up this particular 

aspect here, immediately after the first chapter is 

two-fold, viz. (i) in the most part of the present 

work after this chapter, we have dealt with high energy 

problems only, so that the subject matter of this 

chapter is independent and self-consistent, (ii) the 

author himself started his work on the kind of problems 

described here and then, from the trends in the .liter­

ature, a switch ova* to the problems described later 

on, was though of. We begin, in.the next section, 

after specifying the meaning of ’high' and 'low* energies, 

with an outline of various theoretical methods in vogue, 

in various energy domains. The basic idea underlying 

different methods is very briefly mentioned. The theore­

tical methods of our interest in this chapter, viz. the 

Born and the Glauber approximations are treated somewhat
i

at length. The reason why 'high* energy theories are 

suitable for some of the * low’ energy problems is also 

discussed.
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2*2 ’ Various Sheereticai Methods

First of all, the study pf electron 
collisions with atoms and molecules cannot he done 
through one single theory that universally applies 
to electrons of any energy impinging on any target.
Specific quantum mechanical theories have been developed 
for specific domains of the energy of the projectile 
electron. If the speed of the incident electron *ve' is 
less than or nearly equal to the speeds *v ’ of target 
electrons (of the atom/molecule), then the range of 
energy is termed as 'low*. Equivalently in the low 
energy region, only a few .channels are open. Thereafter, 
the ’intermediate* energy is near the excitation threshold 
of the target and extends upto a few times the ionization 
threshold. Then, from a few time*? the ionization threshold, 
upwards, we are in the 'high' energy region. This, last 
one finally goes over to very high energies where 
relativistic considerations become demanding. Obviously, 
this classification depends very much on the target. So, 
quite generally,’ ’low* energy is the regionjbelow 10 eV 
incident energy, ’intermediate* range extends from about 
10 eV to nearly 100 eV, and above that, is the high, 
energy region. In this connection, let. us recall that 
’thermal* electrons are the ones having energy of the
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order of 'kT*, with k as the Boltzmann constant and ,T 
as the absolute temperature. Near room temperatures, 
this amounts to nearly 0.025 eV energy.

We now classify different theories. All 
the theories’of collision Physics, now in practice, are ' 
mainly quantum mechanical, and the whole of quantum 
mechanics steins from the famous Schroedinger equation. 
Thus all the different methods, that we are going £o 
mention now, are but different approximate ways to solve 
the Schroedinger equation. Basically, various theories of 
our study, fall^nder two categories, as follows.

1f differential approach : here, attempts are made
to solve the Schroedinger equation itself, which 
is a differential equation:

2. integral approach ; here, the attempts ar.e made
$o solve an integral equation of scattering, 
i.e. .the Lippmann-Schwinger equation, which is 
equivalent to the Schroedinger equation.

We do not attempt to describe how various 
approximation methods originate from either of the two 
approaches stated above. Rather it will suffice to give 
only an introduction of various approximate methods 
together with their range of applicability. However, many
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of the theories have been stretched beyond their usual 
energy domains, often with successes. Given below are 
various approximations used in various ranges of energy. 
The list is not at all exhaustive.

Approximation method

1 eigen-function expansion, 
or close-coupling method

2 L^-methods

3 R-matrix theory

4 Partial wave analysis

5 Many body theories

6 Optical potential methods

7 distorted wave methods

8 Born approximations

9 Semiclassical methods, 
eikonal and Glauber 
.theories

10 EBS, modified Glauber 
approaches, etc.

* Broad energy range
♦ 1

Low

Low

Low, intermediate 

Low, intermediate 

Low, intermediate 

Intermediate 

Intermediate to high 

Intermediate to high
f.Intermediate'to high

Intermediate to high

Now, we follow the (non relativistic) 
time - independent Schroedinger equation. This is 
because, it is assumed that our system has reached a
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stationary state, i.e. the Incident beam has been acting 
for a long time. Consider the time independent Schroedinger 
equation for the system of incident electron plus the 

target,

(H -E) f (r , X) = 0 (2.1)

where, the wave function of the system $(r , X) , is a 

function of the coordinates of the incident electron (r) 
and of the target (X)% The hamiltonian of the system is 

(in a.u.)

H - - + v (£* D + Ht (X) (2,2)
mm

1 1 2

with, - g V as the kinetic energy operator of the
incident electron, V(r , X) as its potential energy of 
interaction with the target and, H^(X) as the hamiltonian 

of the target alone. The total energy of the system E is 
the sum of energies of the projectile and the target. At 
large distances the total wavefunction of the system 
appears as a sum of the wave functions in the incident 
and the scattered channels. There are certain|basic 

assumptions or formulations which help us in tackling.the 
Schroedinger equation with a relative ease. Broadly
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1. Born-oppenheimer approximation : Since, the 

ratio of the electronic to nuclear masses is 
very small, it is possible to separate out 

the nuclear i.e. rotational and vibrational 
motions from electronic motions in a molecule.

2. Secondly, we mention two reference frames 
that are used in the theory of electron 
molecule collisions. They are, the space 
fixed or LAB frame and the BODY-frame,

ul
3. Fixed nuclei fornjation s By this, we mean an 

adiabatic approximation in which the incident 
particle is fast enough, so that the nuclei of 
the target molecule can be assumed to be 
fixed.

Now the equation (2,1) can be used to 

understand the basic idea underlying various approximation
methods. Thus, e.g,, in the close coupling formlation,

?

one seeks a solution of the Schroedinger equation^ as an 
expansion of ^r(r , X) in terms of the eigen 

functions of the target states.

The other approach towards the solution 
of equation (2.1) stems from the fact that the potential



V(r, X) and the wave function f(r , X) are the 
functions of the coordinates of the incident electron 
and of the target as well. Difficulties arise because of 
many coordinates involved. The ’optical o potential' 
methods, therefore# are aimed at determining an equivalent, 
local, central potential# dependent on r only, which 
can be used to extract solutions of the scattering 
problems.

One must also mention anrimportant formalist 
in the scattering problems, and that is the partial wave 
analysis. This is a well established theoretical procedure 
in which the scattering wave function is expanded in terms 
of partial waves and the basic quantity to be evaluated 
is the phase shift that leads to scattering amplitudes and 
hence the cross-?sections.

The high energy methods, to be discussed 
below, arise from an integral equivalent of the 
Schroedinger equation.

i , - * i

2.3 High Energy Methods 

2.3.1 General

Consider the non-relativistic scattering 
of an electron by a structureless target, generating a , 
potential V(r). The Schroedinger equation (2.1) can be
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rewritten as,

'(▼! + k2) f(k , r) ■» U(r) tf(k, r) (2.3)

Here, is the k. E. operator of the incident electron.

k^ = k « I kj. I and k^ is incident momentum vector 
(in a.u,). The reduced potential is,

U (r) * 2 ¥ (r) (2.4)

The solution of eqn, (2.3), also denoted by (r),

satisfies the boundary condition as follows.

ft <*) ik. .r
*» e 
oo

+ f(6,0)) e ikr (2,5)

with f(9 , 0) as the scattering amplitude. This 
quantity Is of utmost importance, as it is related to 
the differential cross section through,

.^ * EJ |f(« # 0) I2 (2.6)

The last eqn. is the meeting ground of the theory and 
experiments* We must mention one more fundamental relation



of scattering theory, called the optical-theorem, 
given as •

- (j- tot = |2. xmf (q « o) , (2,7)
i

where, <T~ is the total collision cross-section
and imf (© = 0) is the imaginary part of the scattering 
amplitude in the forward direction (scattering angle 
8 = 0), Although, we have started with a particular case 
of scattering by a structureless target, the fundamental 
equations like. (2,6) and (2,7) are quite general.

Coming back to the Schroedinger- eqn. (2,3) 
the general solution is written, after some mathematics, 
as (Joachain, 1975),

*■

fk. <*>'-*>*. /■<(£.£') <2-8>

U(r*) fk (r) dr'
The normalized plane wave is,

•z /p ik. ,r ■0k (r) = (2%) 3/2 e 1 (2.9)
1

, 9

Similarly, with k^ as the scattered electron momentum,

0k (r) * 'e*"**” (2.10)
t *



The Green's function (or the free-particle propagator) 

is given by,

+ 1 exp ik^ |r - £* j
°0 (£ > £'> ”“7i ----- 1 ”, |

The eqn. (2.8) is the Lippmann-Schwinger equation.

The general expression of the scattering amplitude is, 

in a.u.,

f(0,0) = -4%2 < 0k i V J.f £ (r) >, , .. (2.12)
f i

2.3 High Energy Methods 

2.3*3* The Born approximations

The zeroath approximation to the solution 

of the Lippmann-Schwinger equation is to replace Tj£ (r)

simply by 0k (r). Substituting this in the right hand

side of eqn. ($2.8),we obtain the first Born scattering 

amplitude as,

fB1 (2.13)

The second Born approximation is then obtained by next 

iteration. This procedure generates the Born series as „a
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perturbative expansion, in the powers of the potential 

U(r). If the potential is weak enough, the expansion 

coverages to a limit.

Let us now analyse the first Born approximation, 

eqn. (2,13). The first Born amplitude as a function of the 

scattering direction (0, 0) and the momentum transfer.is, 

obtained from,

V(r) dr (2,14)

in a. u* (2*15)

For a central potential, the scattering amplitude is 
independent of azimuthal angle 0* Written as above in 

eqn* (2,14) ffi1 is the Fourier transform of potential 

y(r);. Now, X what are the physical conditions under 

which the first Born approximation is valid ? We find that 

it is essentially a high energy approximation* At high .
t

energies, it is valid if only,

Kt2k

„ i ,fB1 " 2% f e

The momentum transfer,

q = I ki “ I

« 1 (2.16)
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where, *U * Is the strength and *a* Is the range of 
the potential. For low energies, i.e, —> 0, this 

becomes

7 | U0 I a2 « 1 (2,17)

i.e, it is valid only if the potential is very weak.

Further insight into the nature of the first
‘ ' ’ ’ a *

Born approximation is obtained by considering a target 
with an internal structure. We must then go back to 
eqn. (2.1) and introduce the wave function of the target 

through,

|kr 1 > = ft (r) ^ ® . (2.18)

where, is the eigen function of the target in its

initial state i. A similar expression holds for the final 
state of the system. Thus, the, first Born amplitude for 
the scattering of electrons by a target, leading to,its 
transition i —» f, becomes, . „ ;

1 r -i&.r
fB1 * " E7t J e Vfl dr (2.19)

with
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Vfi - < f | V (r , X) 1 t > <2.20)

Let us now point out how, the first Born approximation, 
though a high energy approximation, holds true in a , 
limited class of low energy problems.

We are presently interested in polar molecules 
as targets of our investigation. These molecules possess a 
permanent electric dipole moment, so that the interaction 
between a polar molecule and an Incident electron, at large 
distances, is dominated by the point dipole potential,

VPD = ~ pf cos 9 (2.21)

, ‘ <,* e* and ’D* are the electronic charge and the dipole 
moment of the target respectively,-wherever the .constants 
'e’t, rh*. or 'm* appear explicitly, we are NOT working 
in a.u. In this * chapter, we have frequently switched 
over to either system of units. In eqn. (2.21), © is 
the angle between r and the dipole axis (see fig. 2.1). 

Further, the following relation is quite often & used.

cos © = cos ©* cos ©ffl + sin ©' sin ©m cos (0* - 0ffi) (2.22)

Table 2.1 shows some of the well known polar molecules 
and their dipole moments. Additionally polar ions are
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Table 2.1

Some of the well-known polar molecules and 
their dipole-moments (Ittkawa. 1978)

Molecule Dipole
Moment (a.u.)

CN 0.570
CO 0.0441
CsCl 4.09
CsF 3.10
HBr 0.325
HC1 0.436
HF 0.719
HI 0.176
KC1 4.04
KF 3.38
KI 4.26
LiH 2.31
NO 0.0624
NaCl 3.54
h2o 0.728

h2s 0.38

HCN 1.17
N02 0.124

nh3 0.578

°3 0.210
-h2co 0.917
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also found to be .existing.
r •' _

We see from eqnf (2.21)* that the dipole 
interaction has a long-range nature and its ♦strength*, 
depends on ‘B** As early as in 193,1, Massey pointed out 
that the rotational excitation crossesections for 
electron-polar molecule collisions must be quite large and 
the«Born approximation can be applied to this case. To 
understand how the Born approximation can be useful for 
such potentials even with slow electrons* we must decompose 
the plane wave part in the fB1 into partial waves of 
different angular momenta ’ 1 ‘.

It is found that* in the cross-section oft 
electron polar molecule collisions, a large contribution 
comes from higher partial waves (1 > > 1), which, in the 
classical sense, means that collisions with large impact 
parameters (or ‘distant encounters’ as they are called) 
are important^ A. partial wave analysis to delimit the 
lower bound of ‘1* has also been performed; (Takayanagi 
1966, Clark* 1977). Now* at large distances the potential, 
eqn; (2.21), is generally weak enough so that the first 
Born approximation is valid. Thus, to summarise, we 
emerge with three cases :

1. -For small dipole moments (D< 1 a.u;) the
partial waves, except for the first few are



hardly distorted, so that the first order pertur­
bation theory applies, The lower partial waves 
(with small *1») are surely distorted, and hence 
the corresponding large angle scattering is not 
truely described by,the Born approximation. That 
is why, the momentum transfer cross-section obtained 
by the Born approximation is not accurate.

As the dipole moment "D’ increases, the lower 
limit of 1 for applicability of the ; Born 
approximation, itself goes up and further error 
is introduced as the lower partial waves are 
strongly distorted. '

At small distances, the interaction between the 
incident electron and the polar molecule is not 
represented by eqn. (2.21), and a short range 
potential is also required, the inclusion of which 
may not be possible within the Born approximation. 
The Born approximation also fails when the 
dipole moment is too strong to permit a simple 
first order perturbation, These conclusions 
are confirmed by more elaborate calculations, 
such as those by close-coupling method 
(Itikawa, 1969).

Thus, in a limited class of low energy



problems, the Born approximation is favourable. 

2.3.5 The first-Born calculations, for polar molecules

The Born-Oppenheimer approximation allows, 
us to separate out rotational-vibrational and electronic 
motions in a molecule. For the present, we restrict oure 
selves to rotational transitions. Further, assuming the 
molecule to be a rigid rotator, its eigen functions are 
the spherical harmonics Yjm (S), with the unit vector 
S specifying the direction of the rotator (or the dipole 
axis). Let (3, m) show the molecular rotational angular 
momentum and its projection respectively. Let us assume 
in the fixed nuclei approach, that the molecular orien­
tation (i.e. unit vector S) is fixed during the collision. 
This assumption holds true if the incident electron is 
relatively faster. The scattering amplitude for rotational 
transition (j, m) ^ (j*, m*) which is particularly simple 
in the fixed nuclei approach is, (Itikawa, 1978).

f jm -+ j'm* « / dS (S)

£(S , a) Yam (§) (^2.23)

in which f(S , £) is the elastic scattering amplitud^ 
from a fixed point dipole. Altsuler (1957) obtained, in



53

the Born approximation,

1 * fB1,Eb» (§. * 2) “ .....cos y (2; 24)

where, X is the angle Between £ and S.

This simple expression can he used to evaluate
the transition amplitude of eqn. (2.23) and hence the total

\

or integral cross-section and the momentum transfer cross-

section can he evaluated. The important outcome of the\

Born calculations'is summarized helow.

\ v
1. Owing to the cos © - dependence of the dipole 

potential (eqn. (2.21)), the rotational transitions 

j —» j + i only are induced in the electron- 

polar molecule collisions.

2. The elastic scattering amplitude of eqn. (2.24) 

diverges at © = 0, or q = 0, hence the total 

cross-section cannot he calculated* However, 

for the real inelastic collisions, q ^ 0

even at © * 0, and the problem does not arise,

3. Even when the validity of the first Born 

approximation is not clearly established, it 

serves as a first and a crude estimate.

Next, we find that the predictions of the .
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first Born approximation are in general at variance with 
experimental results. A Swarm type determination of MTCS 
in rotational transitions of polar molecules was done by, 
Hurst et al (1966), where a rough accord with Born 
results was found. Remarkably, for polar mol.ecules like 
HgO, D20, H2S, etc. the experimental observations were 
much larger than the Born results. We are going to discuss 
this point further towards the end of this chapter. Also 
the molecular beam recoil measurements by Slater et al 
(1974) on ^strongly polar molecules like KI are found 
to be lower than the Born values of various cross-sections.

It is thus recognised that there is clearly 
a need to go beyond the first Born calculations.'We have 
emphasized in the preceding that, for electron-polar 
molecule collisions, distant encounters dominate, so 
that the distortion of the projectile is quite smallr 
making the weak scattering approximation, i.e. the Born 
approximation applicable. However, if that „is not so, 
ways oust be saught to improve upon the first order *
calculations. How can this be done ? An effective way „ 
of improving upon the simple Born calculations is the 
distorted wave Born approximation. Here, the basic idea 
is to calculate the first Born amplitude, eqn. (2.14), 
by taking into account the distortion of the incident 
(scattered) plane waves as they approach (recede from)
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the target. Rudge (1976) has given a distorted wave 
approximation for the electron polar molecule collisions. 
Recalling that, in the present chapter, our aim is to 
study the high energy methods applied to low energy 
problems, we attempt here the modified (first) Born 
approximation of Juncker (1975),

2.3.4 The TOdlflgdJ3orn approximation ‘

\ As an improvement over the first Born
calculations, let us explore the possibility of applying . 
the modified Born approximation as given by Juncker (1975). 
This is an attempt to take into account the distortion of 
the incident plane waves approaching the target, by 
considering partial screening in the nuclear charge. It 
has been successfully applied to light atoms for elastic 
and inelastic processes by electrons with energies of 
50 - 200 eV (Gupta and Mathurl l 1978). We employ it
here for, the polar molecule targets-. The modified Born 
approximation* with a suitable split up of the hamlltonian, 
consists in evaluating the T-matrix, (in a.u.) given below.

T = f (1 - ia^ exp (ig^ /2) ID (2,25)

With the subscript 'D* meaning direct scattering or
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without exchange. Further, in our case for the electron 

dipole collisions,

Ip = / dr exp (t£.r) ^(ia^ljik^r - ik^.r)

x C Vjrm-'(S)ffl Vro I Y3ffi (S), t > (2.26)

where, ai = /K± ,• and the screening parameter 6

takes into account the distortion of the incident 

plane-waves.

Also, ( ia^ ,1, ikjT - ifa^.r ) 3-s ^he

hypergeometric function, which can be expanded as follows,

2^2. (“j y» z) = 1 tyz + yfyl"'!} §T + *** (2.27)

Now, the matrix element of eqn. (2.26) breaks up into 

two parts, the target part and the incident electron5 

part, of which the former is,

< x3.m, (S) | cos em I Y^-(S) >

which gives rise to the transition » 3 + 1, similar 

to the case of the usual Born approximation. Now, 

considering the incident electron part of the T-matrix,
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iFi<lai ik,r - ik. .r) 1 -I —

X < f | “De cg£.S-. | i > (2.28)

For the case of electron atom scattering,the modified.

Born approximation (MBA) has been evaluated using the 

Integral techniques of Nordsieck (1954) and Mitra and 

Sil (1976). In the present case of the dipole potential, 

we follow the expansion of the hypergeometric function* 

given in eqn* (2*27). With the first term of that expansion 

and 6 = 0, we end up. with fg^ . The higher terms of 

the MBA are evaluated by us using standard .integrals 

(Grandshteyn and Ryzhik, 1965)* We quote here our final 

expression obtained in this way* which is,

MBA
f

ED
fBl,FD ( 1

% k^ (1 + 5* )

—5?------ 5
+ hi ik (2*129)

Let us note here that the plane wave Born approximation 

fgi pD is purely imaginary, while the modified Born \

amplitude of eqn. (2*29) is complex and contains real \
; • . \

terms also. Unfortunately we recognize, that the above \
\

analysis does not lead to any positive outcome* This is
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■because of the fact that, in the modified Born amplitude, 
eqn. (2*29)t the corrections over the plane-wave first Born 
term are of the order of q”^ and higher powers. Thus, for 

q < 1, the correction terms are quite large compared to 
the first Born term. Now in the present case, the first 
Born prediction itself is larger than the available 
experimental results, as well as those of the Glauber 
approximation. Thus, the present treatment of the MBA 
can lead only to a further disagreement between theory and 
experiment, and hence it is concluded that the MBA is 
not suitable for the treatment of low energy electron 
scattering by polar molecules. There is no computational 
difficulty, however, It may be recalled that in the 
electron atom scattering problems, the scattering 
amplitude always contains a parameter, to be denoted by 
*X1 in the later chapters, which comes from the 
(electronic) wavefunction of the target. In the present 
case of a rigid rotator dipole, with spherical harmonic 
eigen functions, this parameter is absent and this fact 
plays a crucial roleT It even makes the amplitude 
diverge at q= 0. We further conclude therefore, that the 
failure of the MBA can be traced back to the typical 
nature of the electron molecule interaction considered 
here. The modified Born approximation may be useful at 
large momentum transfers and not so low energies together
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with modifications in the interaction potential. This has 
not been tried at present. Lastly, although there is no 
comparison, it is interesting to note that, according to 
Kaushik et al (1982 b), the modified Born approximation 
fails to come up to the experimental and.other results for 
elastic scattering of electrons from complex atoms like 
C, 0 and Ne at intermediate energies. Our next task is to 
study the higher order theories in the present problem.

2.4 The Second Born approximation

Basically to take into accountjthe second 
order perturbation, the corresponding, approximation is 
made in the Lippmann-Schwinger eqn. (2.8), to obtain the 
second Born approximation, in a.u., in the form,

<kf, fi >
K2 - k| + 2(Wn - WQ) - 16

(2.30)

£n = 8iT / dK 2

where, |K, n) shows an intermediate state of the 
system with the projectile having momentum hK and 
the target in its excited state fn*, *W * and *¥ f 
show respectively the energies of. the target in its 
ground (initial) state and the nth state. -
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This amplitude represents the fact that, the 
projectile with an incident momentum hk^ interacts 
■with the target potential via an intermediate or virtual 
state from which it scatters with final momentum hk^, • 
leaving the target in the final state ’f ’,

In the field of slow-electron scattering by 
polar molecules, the second (or a higher) Born approxi­
mation has not found much headway. The following are the 
reasons for this.

1. A calculation with involves a fair amount
of difficulty,

2., It leads to transitions with AJ = 0, + 2, 
but does not improve upon the first Born 
results of the more important transition,
Ad = + 1,

3. A higher order perturbation theory, viz.
the Glauber approximation has found an ample 
success in this area of research.

Usually, the literature on electron-scattering 
by polar molecules does not deal with the second Born 
approximation, so it is attempted here.

Thus, we wish to evaluate, presently,
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_o ** <*f>
£B2, ED ■ « k2 _ i| + 2(Wn - WQ) - ie

(2.31)

Now here It is convenient to adopt the fixed scatterer 
approximation (FSA) of Ghosh (1977, 1978). In this 
formulation, the velocity of the projectile is assumed
to, be high so that, during the collision, the target

\assumes a fixed configuation. The wave function of the 
incident particle' then has only a parametric dependence on 
the target coordinates. Thus, in the T-matrix, the coupling 
of the target and projectile coordinate's is removed, and 
the second Born term is reduced to, (Ghosh 1977),

FSA ? r £ J7pp j K XKjVp-Q jls^» i >
2 K2 - - 16

(2.32)

Some relevent points about the FSA are discussed in 
the chapter to follow.. In the present case of the 
dipole rigid rotator, we have,, from eqn. (2.32),
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FSA p X o
t9 = 8tc S y (s) cos2 e y._ (s) ds 2 “ Om

X / dK
<kf |V] K >< KjV | k.. > 

K2 - k2 - 16

where, the plane-wave matrix element,

<^|vi5> = '^)3

far fi-s-os-e'
“ r2

(2,33)

D
(2x)'

4x
|K- fel

(2.34)

And a similar result is obtained for the other 
matrix element of eqn, (2.33). Thus,

FSAf - f Y, (S) cos2 Qm Y. (S) dS o 7 o’m’ ' m om —

X / dK
Ok - kfi)(j kt - K I )(K2 - k“ ) (2.35)

Now, we evaluate the K-integral of eqn. (2.35). It 

falls under the general class of Dalitz integrals,
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which are discussed by Joachain (1975). The Dalitz integrals 

are widely used for second Born calculations at intermediate 

and high energies. It is of interest to note that this 

evaluation procedure is applicable here also.

The gperal integral is given by

I (a»p , kp) * S dK o ^ y1 f - (FTkjTie)

x

(a2 + ll-kii2)m(p2 + |K-^ j2)^ *36*

In the present case, we have,

m = n = 1/2, a = p = 0 (2.37)

As discussed by Joachain (1975), the K-integral of 
eqn. (2,35) can be reduced to the following form*

I
1

/ dt t 
0

(1 - t)*"1/2

k. + a +1 r~i------------— )
^ - a +1 r~

(2.38)
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A = tk^ + (1 - t) kf (2.39)

and

f8 - t(1 - t) | kt - kf |2 (2.40)

Let us observe here that q«* 0, for elastic scattering, so 
that, because of the log-function in the eqn. (2.38), 
the amplitude diverges at q ** 0. This is similar to the 
behaviour of the first Born term and it confirms the well 
known fact that the total cross-section for the dipole 
potential diverges. Due to this reason, we consider the 
inelastic scattering i.e. rotational transition, in 
what follows.

To evaluate eqn. (2.38), we expand the 
log-function as given below,

z (2,41)

(2,42)

This holds provided that z ^ + A (see Abramowitz and
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Stegun, /l974), The evaluation of the t-integral is 

easier if the first term only is retained.

Thus, we get,

I A ni /
0

dt t-1/2 (1 (2.43)

which yields upon substitution, t sin2
0,

I m
4iti

y~
q + 4k"

( * i in (
^ ,(q2 + 4k2 ) + q 

fq2 +>kf ) -'q
) ) (2.44)

Now, going back to the second Born expression (2,35), we
'*2

find that owing to the presence of cos ©m in the 

target, part of that equation the allowed transitions 

obey A j » 0, + 2. We are presently interested in 

the'rotational transition, j = 0 —2, for which 

we get the following result for the differential cross- 

sections (DCS), in a. u.
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K dw }
64

tC (q2 + 4k| )

, P %2 + 4k| ) + <1 n2 %
x {« + (In — - > ) J

%2 + 4k| ) - <1
(2.45)

where, the constant C depends on*

j = m ■ 0*
01 = 2, m’ ® 0 etc*

Based on the above result, a sample calculation has 
been made for e + CsCl system* at the incident 
energy 4.77 eV. Ashihara et al (1975) have investigated 
the same system at the same energy, employing the 
Glauber approximation. The table 2.2 represents a 
comparative statement of our results and those of 
Ashihara (1975). Given below are the conclusions drawn 
therefrom,

1. The Glauber DCS fall off too steeply as the
scattering angle increases (see also fig. 2.2). 
The Glauber theory being a small angle approxi­
mation, these results may not be quite reliable 
at large angles. The experimental cross-sections 
(Slater et al, 1974) also fall off rapidly. The
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Table 2.2

DCS for e CsCl at 4.77 eV for
2.,j « 0 -» 2 inelastic process (aQ /sr units)

®deg Present Glauber
results

0 -1125 1800

3° 1048 *»«■»

60 890 010

90 795

120 700



68

present DCS decrease rather slowly with angles. 
This behaviour i.e. slow variation with q. is 
also found in the DCS obtained by the first Born 
approximation. The behaviour can be seen from 
fig. ,2.2 taken from Itikawa (1978).

2, The present results- agree with the Glauber
results near forward direction. It may be concluded 
that, the true behaviour at large angles might be 
somewhere in between the Glauber.and the present 
results. - s.

There are also some limitations of the
present simple calculations, as pointed out below.

1. It is not possible to include higher orders of 
perturbation in the Born approximation, and it 
is this point that makes the Glauber theory 
superior. The higher orders contain higher 
powers of cos hence in those cases too,
Aj * 0, + 1, + 2 etc. transitions are induced,
they effectively couple with the first and 
second order results;

2. Presently also, the second Born term is 
simplified in order to keep the computations 
simpler. Actually, eqn, (2.38) must be 
evaluated exactly.



PIG.. 2.2
e>+ CsCl at 4.77 ev (Ashihara 1975)

9
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The next section is, therefore devoted to 

the Glauber approximation.

2.5 The Glauber Approximation

In the previous section, we saw that the 
first Born approximation predicts the important transition 

Aj = + T, while the second Born approximation predicts

hj = 0, + 2. In the higher order terms, higher powers of
the potential, and hence of the factor cos appear, 
and overlappingly, all transitions Aj = 0, + 1, + 2 etc. 
will be allowed. Thus .the higher terms interact with 
the first Born term, whence they cannot be neglected.
This amply speaks of the importance of a higher order 

‘ perturbation theory.

The Glauber theory stems from the eikonal 
approximation in scattering problems. This is also a 
high energy approximation wherein, the de Broglie wave­
length of the incident particle is assumed to be short 
compared to the distance over which the potential 
varies appreciably. This is equivalent to the requirement,

^ a » 1 (2.46)

Here, *a* is the range of the potential. Under this
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condition, the Green’s function in the Lippmann-Schwingfer 

equation can he linearized, i.e. its dependence on.*K * 

is removed by a suitable expansion. We are going td, discuss 
this procedure in connection with the high energy higl^r 

order Born approximation In the next chapter. This 
procedure leads here to the eikonal scattering wave 
function,

$ (r) = (2x)-3/2 exp (ik^#r - iy|—

z/ U(b, z») dz’ ) (2.47)
-CD

This shows that the incident-5 particle suffers a 

potential dependent phase-change# Thus, the eikonal 
scattering amplitude is,

fE " 2xi f d2- 6X5 (!X(ki, b)- 1)

(2,48)
r

Here, b is the impact parameter.

This treatment is for a structureless 
target. The many body generalization of the eikonal
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approximation was done by R. J. Glauber (1959). The 
Glauber amplitude for a •direct' collision of an electron 
with a target containing fixed scatters is expressed as,

fG * gk ^ d2- exp
< f j exp (iXG) - 1 j i > • (2.49)

The momentum transfer £ is here assumed to be two
2dimensional. Further, d b is an element of area in 

the (X, Y) plane. The Glauber phase is

XG - XG (b , b1 .... (2.50)

where r = b + z (2,51)

And the target coordinates look like,

* b1 + (2.52)

etc.

Let us note here that the Glauber multiple 
scattering series can be developed by expanding the 
exponentiated phase XG in eqn. (2.49) and its 

connection with the terms of the Born series can be
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established, (Byron and Joachain, 1977). In the last , 
fifteen years or so, the Glauber approximation has 
acquired an important status in the electron-atom-molecule 
problems. Some of the special features of this theory are 
pointed out below. Some pertinent remarks are also made 
in the later chapters.

* G1, Because of the exponential phase X , the 
Glauber amplitude takes into account all orders 
of perturbation, albeit approximately.

2. The longitudinal component of the momentum 
transfer i.e, that along the incident 
direction, is neglected. Thus,

£.£ * £•£ (2.53)

Hence this approximation is valid for small angle 
scattering only. However, the assumption^eqn. (2.53) 
makes the evaluation of the Glauber amplitude easier.
It also ensures that the first Glauber term is 
Identical with the first Born term,

Let us evaluate the Glauber amplitude - 
of eqn. (2.49) in the case of a dipole potential, 
assuming a fixed orientation of the vector S. We 
need,
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XG = — £ Vpu (b, 2’5 dz' (2.54)
i _(D

*v^* shows the speed of the incident electron.

Upon integration, one gets,

XG (b, S) - (S* b) (2.55)

The z-axis is chosen here along the direction + k^). 
Ashihara et al (1975) have applied the Glauber approxi­
mation for treating the scattering of slow electrons by 
strongly polar molecules like KI and CsCl. According 
to them, the amplitude for a rotational transition from 
a state (j, m) to ’ (o’, m'), obtained by expanding

Q 'exp (iX ) is given as, ,

^ ^ ^ - d, ( E§f§- ) )

Yin <£) 1 Y3'm' (I) Yln Ydm <§> «

(2.56)

where we have used eqn* (2.55) and also the fact
that,
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1 - * 6io 6mo (2-57)
l,n

In the eqn. (2.56) ^ is the spherical Bessel function
of order *1*. With this Glauber amplitude, the results 
obtained for electron scattering from strongly polar 
molecules like CsCl (D = 4.09 a.u.) are much lower than 
the Born values and thus agreement with experiments is 
reached. (Ashihara et al 1975). However, it has been 
noted that these results do not guarantee that the 
Glauber approximation would succeed id in any low 
energy problem. Thus, it is required to be tested 
in different cases of interest.

Now we turn our attention to a specific 
low-energy process, to be investigated in the Glauber theory,

2.6 Elastic Scattering via Temporary Capture

As noted earlier, it is observed that the 
elastic scattering of slow electrons by polar molecules 
like H20, H2S, DgO, etc. showed a typical behaviour.
The experimental momentum transfer (or diffusion), cross- 
sections were found to be much larger than those obtained 
by the first Born amplitudes. These molecules have 
relatively low polarizabilities, so the reason for this
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behaviour must be something el/se, Hurst et al (1963) 
suggested that the enhancement of the momentum transfer 
cross-section could be due to a temporal attachment of 
an electron to the polar molecule; J, E. Turner (1966) 
investigated the possibility of 'nuclear excited FeshbaCh 
resonance' i.e. resonant scattering of electron through an 
intermediate negative ion formation. The term 'nuclear' 
standsfor the excitation of nuclear motions lie. rotation 
and/or vibration. Turner observed ‘that stable bound states 
of an electron can exist in the field of a stationary 
dipole, if its dipole moment exceeds a certain critical 
value of 0,64 a.u, Garrett (1970, 1971) studied the same 
problem for a rotating dipole. In'Turner's mechanism 
(1966) this is a two step-process. The electron of the 
incident Swarm is first capfeifered by the dipole field of 
the target molecule and a rotational state of the target 
is excited. Then, the natural decay of the negative ion 
thus formed, returns the electron back to the Swarm, thus 
contributing to the momentum transfer cross-section. In a 
simple Born approximation treatment of Altsuler (1957) 
this contribution from quasibound states is absent, hence 
a simple treatment underestimates the cross-sections.
The life-time of the negative ion is estimated^© to be 
of the order of the rotational period of the target molecule.
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This process differs from the dissociative 
attachment, giverl^elow,

MN +. e~ «—> M + N“ (2,58)

Here M and N represent the atoms of the molecule.
The present case is that of non-disso.ciative attachment,

t

either temporary, and autoionizing,

MN + ' e“* •-—> MN“ (2,59)

or permanent, i.e,

MN + e"-- > MN“ t (2.60)

We confine ourselves to the process of eqn. (2,59) 
above, i.e, to the temporary and loose binding of the 
projectile electron. In the initial state of the system, 
a free electron in a Swarm is incident on the target 
polar molecule in a rotational state ( j i ) and we 
consider the final state *f* of the system as that of 
the bound electron and the molecule in the excited 
state, (o’ m*). (The latter eventually decays back to - 
the initial state), Our problem is to determine the 
probability of transition from the state *i* to ’f.
For this, we need the initial and the final state wave
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functions. Following Turner (1966)* we take the initial 

state of the electron of the Swarm* represented by a \
*« l

plane wave plus a scattered spherical wave i;e; as
{ j>c{3 ** /V 'N

ik4 z ike r1 + f(6, 0) e 1 / r
f \t y- A:

(2.6i)

Here, f(9, 0) is the amplitude of elastic spattering 
from the fixed dipole. Here lies the point; With, our 

knowledge of an improved scattering amplitude % f(9, 0) 

the calculations can he modified. s

A simplest choifie for f(9, 0) would he the 
amplitude of eqn. (2*24) giver^Ln the first Born approxi­

mation. Desai and Maru (1972) calculated the amplitude 

variationally and later Desai et al (1974) obtained the
1 *

amplitude in the finite dipole, Born model; Both of these 

afford a small change in Turner’s calculations; We 
(Joshipura and Desai, 1980) have applied the Glauber 

amplitude in this problem.

We thus go back to the main track of our 
discussion. The Glauber amplitude eqn. (2.56) for 

elastic scattering of electrons by polar molecules, to 

be used here, requires the evaluation of the integral*

GD
= 0-f V*) - Slo) Jn(x) x dx (2.62)*1*
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with / Jm(x) as the ordinary Bessel function. This .is 
evaluable in the form of a rapidly convergent infinite 
series (Ashihara et al, 1975). The expression for the 
Glauber amplitude is now, . v,

fG(S-» a) * (f^ )2 £2 sin ©s cos(0s - 0q)

x ( - 40 ) " 2 ln C § >•

’ + i t (5/2) ♦ l f (2) + \ |(1>3 (2.63)

where, we» define,

(S - ( -§SE_ ) q (2.64)

h V
Also (©g l, 0g ) show the orientation of the molecule

relative to a fixed frame* as shown in fig. » 2.1.
•0 ’ is the angle made by £ vector in the (x, y)

4.

plane. l|f (a) is a digamma function.

We used the amplitude of eqn. (2.63), to 
calculate the transition probability Tfl . lor the 
decay of the negative ion, discussal in the preceding.
The following derivation rests heavily on Turner (1966).
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Writing for the matrix element of the decay, we have,

T = =22* ( |- )3/2 (I, *lz* I,) (2.65)

Ifa0 0

2Here Z = .04, Z is, the scaling factor, aQ Is the

Bohr radius. Further, the integrals 1^, Ig and ahe
as follows, (see also Maru, 1975),

r 1/2 -Zr/art _*I1 * (^) // ,*▼ IS e 0 T" , (S)

<9 2 *° (S, a) ~r- Yim (S)ik. r

dm (2.66)

where,

pdv » r dr sin 9 d9 d0 , for the 

scattered electron,

dS = sin 9g d9g d0Q 

Further, if 0* f 0» 1^ = 0,
■ i

The next is, Ig , which is the same as .-in . 
Turner (1966).

Finally,
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I3 = )1/2 JV dv dS e 0 (Y1>_1 (r) Y^ (S)

+ Y1,0 <£) Y1,0 (§> + Y1,1 <*> Y1,1 ® >

eiicirY3,>m, (S) @2 f° (S, a)'-7— Y^m (S) (2.67)

Specifically, this 1^ is evaluated here, with the 
Glauber amplitude, and found to be,

T _ 2iP^ -*sr (3ti)1/2 Q(1-R)S
fl

+ f1 ( )1/2 Q(1 - R) s|t

+ M )1/2 p2 3(3 + t) *Q(1 _ R) s3;a

XCfl' f.,1 + mV)(3* + 1 - mV)\ 1/2, .(2d* ♦ 1>(2d + 3) •°3,-+1.a

+ ( ULi.ally,!.z.ml).)V2 ’
(2d« + 1)(2d* -1) d'“1*d m*,m >

(2.68)

where,
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meD
*

h

Za
Q - < ^ ' %....g )‘

z ♦ *1 %

k, an 0 k. anand R * ( -4-& )Z + 2i (, -§-2- ) (2-69)

-T I -

The quantities are defined by Maru (1975)i

For a sample calculation we consider, for 

water molecule the initial rotator state j = 2, m = 0, 

the final state being 3* * 3, m = 0. This case is 

frequently studied in the literature. The mean energy 

of the incident electron Swarm is 0,025 eV, corresponding 

to the room temperature. From the transition probability, 

T^i» eqn, (2,65) the lifetime of the intermediate 

negative Ion is obtained by the following equation,

T % h
VSm( 2mE )

(2.70)

\ \ ■ -

And\finally, the capture cross-section can also be

calculated from the transition probability 

A comparison of the present result with those of other 

workers is given in the table 2.3. We have already 

mentioned the other calculations referred to in the 

table 2.3.
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Table 2.3

Results of | T^ | and the life time T of the (Mj.0) 

temporary negative ion, obtained by different 

theoretical methods

••Quantity :
•

;a : b
••

: c s d
••

|Tf/X 10-^ 1,183 1.182 1.248 0,27

T x ICT14 Sec 3,488 3.49 3,307 15.0
(38.2)*

a, Turner (1966)
b, Variational method (Besai et al 1972)
c, Finite dipole (Maru and Desai 1978)
d, Glauber results (Joshipura and Desai, 198O) 
* Rotational period of the target
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Our results Indicate that, the lifetime of 

the negative ion is longer than that predict®! by any 

other theory, but it is shorter than the period of 

rotation of the molecule, which means that a stable 

negative ion is not formed. Further, in our results, the 

transition probability is small, so that the capture 

cross-section is reduced and the momentum transfer cross- 
section (MTCS) should increase. This last point was the 

beginning of the present article no. (2.6). The MTCS are 

not calculated here, but we refer to a recent comparison 

of results by Desai and Chhaya (1979). The present results 

can bring a closer agreement with the experimental results 

of this quantity.

Thus, the application of the Glauber appro­

ximation succeeds in explaining the high momentum transfer 

cross-sections as resulting out of a temporary attachment 

process. A similar behaviour can be predicted for molecules 

like NH*# HC1, H-O-, etc.Cm Cm

2,7 Nonpolar Molecules

Our interest in the previous sections was 

mainly confined to polar molecules. Now, the prominent 

gases like H?, 0?, N?, etc. are nonpolar. In general 

the potential of interaction between a molecule and an



incident electron dan be expressed as an expansion in 
multipole electric moments and in many of the non-polar 
molecules, the quadrupole moment dominates,at least at 
large distances; The point quadrupole potential 
reads as, ' '

Vpn (£)=-4 <£*§.) (2.71)

Here, Q. is the electric!c quadripole moment of the 
molecule and P2(r • S) is the 2nd order Legendre poly­
nomial in (r . S). The possibility of applying high 
energy methods to slow electron,scattering by nonpolar 
targets also follows from arguments made previously 
(Chang, 1970, also Chhaya, 1980), for polar targets. Here 
also the first Born results turn out to be first estimates 
The Glauber theory]*® has been applied to slow electron 
scattering from quadrupolar molecules by Ashihara (1975) 
and also by Rahman (1978). Further, the inclusion of 
short range and polarization forces, along with other 
methods of calculation, change the picture considerably. 
One must mention that an improvement over ’point* dipole 
or quadrupole model has been to consider a ’finite’ or a 
’cut off’ dipole or quadrupole potential. Also, in the 
case of specific molecules, the linear rigid rotator 
model is replaced by a more realistic, symmetric or
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asymmetric top model. All these are mentioned only 
briefly here as the purpose of the present study is not 
to cover the details of this aspect. With this, we come 
to the last section of this chapter.

2,8 Chapter Summary. Further Prospects

In the second chapter, we considered some * 
of the theories of high energy electron scattering that 
find applications in the treatment of scattering of slow 
electrons from molecules. Our starting point was the 
Schroedinger equation from which all quantum mechanical 
theories arise. An integral equivalent of the Schroedinger 
equation, is the Lippmann-Schwinger equation, which, when 
attempted to solve approximately, gives rise to the Born, 
eikonal and Glauber approximations. These high energy 
approximations have found applications in the calculations 
of various cross-sections of low-energy electrons by 
polar andjrf non-polar molecules and we have discussed here 
the arguments to justify their applicability. The modified 
Born approximation, for taking into account the distortion 
of the projectile is attempted, but without success. This 
method might prove to be useful with some modifications 
e.g. a cut off procedure. The second Born approximation 
for dipole targets is attempted here and some interesting 
consequences are derived. It predicts the transitions with
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* 0» +_ 2. The order of magnitude of the DCS for

0 —>> 2 transition for CsCl molecule, at 4,77 eV 
agrees with the Glauber result only near the forward 
direction. Our DCS vary very slowly with q. The 
limitations of the present treatment are noted.

Glauber’s high-energy, small angle approxi­
mation is known to be better than the first Born approxi­
mation, even in the low-energy work. Presently, the 
Glauber amplitude for elastic scattering of slow 
electrons from polar molecules is employed to obtain 
the lifetime of temporary negative ion formed in Turner’s 
mechanism (1966). A comparative statement is made for a 
sample case of j ° 2 —> 3 transition in the HgO
polar molecule, showing the present results and those 
of others. The present results predict a higher value of 
the MTCS, in accord with Swarm experiments. (Christo- 
phorou and Christodoulides, 1969). Thus we have a better 
understanding now about a peak observed in the MTCS at 
the dipole moment around 1 a.u. Turner’s theory applies 
to only certain molecules with a suitable ratio of the 
dipole moment to moment of inertia. An important motivation 
for employing the Glauber theory is the simplicity of 
the Glauber amplitude of eqn. (2.56) for the dipole 
potential. However, if all the dominent a terms of the
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interaction potential are taken into account, the 
sophistication takes tail of simplicity. Reference must 
be made here of the work of Gianturco et al (.1978), who 
considered the dipole quardupole and polarization terms 
of interaction in their Glauber formulation for low to 
intermediate energies upto 50 eV, with a considerable 
success. As we come to the end of this chapter it will 
be worthwhile pointing out future prospects for the kind 
of work shown here. The following points are noteworthy.

1, Now-a-days,. in high energy problems, the Wallace
\ \correction (1973) to.the Glauber and eikonal \
\ \
\ \formulations is gaining more and more attention;

.. This author has not JS seen the Wallace-corrected,
Glauber amplitudes for low energy .problems andlso i

A\ '
it will be interesting to do the same. In esse^fie, 
the Wallace amplitude is given by (see also eqn.2.49).

i£.b
e

< f I exp ( i ( XIcI
G

"5 ) I i >
k;

(2.72)

(jrThe correction over the Glauber phase X being,

. ooXi (b , x) = \ f (VX+) * (?XJ dz (2,73) 
*•00
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with,
X. (b, z,x) = - A(b, z», x) dz». (2.74)

-00

And,

X_ (b, z, x) - - / V(b, z’, x) dz» (2.75)
- — — z ^ ' “*

. ( ■* «* "i

Here, the evaluation of X1 is easier for central 
potentials. But for the cases like the dipole potential, 
it is vastly difficult. Our attempts in this direction 
have not been successful as yet, but it means that 
challenges are in store,.

2, However, even the Wallace amplitude is not
free from some of the drawbacks of the Glauber amplitude.
For high energy electron atom collisions several modi­
fications of the Glauber approximations are developed 
mention must be made of the work of Eosendorff (1977,
1980, 1981) which is a basic modification. This is also 
worth trying for electron j>olar molecule or electron 
quadrupole collisions, at low energies.

3.. If a high energy method works with a limited
success in the realm of electron polar molecule 
collisions, it may be suitably combined with more successful
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theories, Chhaya (1980) has coupled the close-coupling 

approach for the first few target states with the Born 

approximation for all the higher states, in his study 

of electron scattering from alkali halides. Dewangan 

(1978) has suggested a more general method using the 

Glauber theory, •

4. As an application of electron polar molecule 

collision studies, we can consider collision of a highly 
excited long-lived (Rydberg1) atom with a polar molecule. 

In this case, the radius of the rydberg orbit being, 

very large, the problem divides into two parts
(i) the excited-electron polar-molecule interaction 

and (ii) the ionic-core polar-molecule interaction. 

Thus the studies of electron-dipole and and ion-dipole 

systems find relevence in this hew context.

5. In the previous paragraph, the term * ion- 

dipole’ stands for, a neutral, polar molecule considered 

as the target and an ion as a projectile. It is also

of interest to consider ions, exhibiting dipole 

character, as targets.

6. The phl&se 'nuclear excited Peshbacfc resonance /
r

used in this chapter applies to rotational and/or 

vibrational excitations. In this chapter, we considered
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only rotational excitations. Recently Gauyacq and 
Herzenberg (1982) have studied e + HC1 scattering 
under the nuclear excited Feshbacfe resonance including 
the vibrational aspect. Thus there is a renewed 
interest in the subject.

With this, we 'go over to the next 
chapter devoted to elastic scattering of fast’ electrons 
by atoms.


