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3.1 Introductory Remarks

In this chapter, we present our studies on
the elastic scattering of intermediate to high .energy -
electrons, by atoms, The importance of the elastic '
scattering procesé is easily recognised as one of‘tpe '
simplest processes of collision, where there is only a
transfer of moméntum..In the case of electron scattering,
this merely results into a deflection of the projectile.
Theoretical formulation 1s relatively simpler for elastic
collisions, and a wealth of experimental data is now
available on elastic collisions of electrons with various
targets. Thus, today, the elastic collisions are the most
widely studied processes followed by inelastic collisions
of electrons by atoms and molecules, and the present
knowleﬁge about ionizing collisions is inadequate. One
‘'more theoretical view point here is that the elastic
electron~atom processes are also easily studied in terms

of the model (optical) potentials.

Here, we'begin our study of elastic
scattering of fast electrons, with hydrogen atbmé as the
target, which offers the simplest example of three-body
collisions, For consistenéy, vwe begin with the first Born
approximation, Unless otherwise mentioned we now work

in a,u,
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3.2 The First Born Approximation

This well known theoretical procedure is
already introduced in the last chapter, The first Born
amplitude for the elastic scattering of electrons by
atoms is given by,

_ l ig.- PR
fB'l T = %r f dr e Vii(r) (391)

where the momentum transfer in a.u., is

' )
a = ol = |k -kl =2k sing (3.2)

<
¢

'®@' 1is the angle of scattering.

Furtherg

vy = <Olv(r,_)]o> - (33
In these eﬁnsl ‘]ii or 0> "brepresents the ground
state of the target atom, and V(r , x) 1is the

potential of interaction between the incident electron

and the target atom,, The coordinate system is centred at
the atomlic nucleus,, Here,, *x!' represents all’ the target-

electron coordinatesm For e-H collisions, the potential
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is,

v(r , 51) = ""f"' + {rl =] (3,4)
I-xn

where, r, is the coordinate of the target electron;

.I_'1=.]?.1 1'

plane, The quantlty of eqn, (3,3).also denoted by . V t

where, as usual, 21 is in the (X, Y)

represents the potential of interaction averaged over ‘the
static charge distribution in the. atom, This jsonpallgd
static potential is more effective in the range of .atomic
dimensions i.e, it is a shorg range‘interaction; If an
incident particle comes sufficienfiy closer to the atom,
it experiences the static potential and is deflected
considerably, Thus, the first'Born amplitude of eqn, (3,1)
takes into account only the static poténtial aq@ governs
large angle scattering, On the other hahd, no'iong range
forces are explicitly considered here, which, thé projectile
may experience even at a large distance and that nay
produce a gentle deflection of its path, Due to this, the
first Born amplitude is not good enough for smélf angle
scattering, The simple first Born amplitude does not take
into account also, the effects of the distortion of the

& Q8N
projectile or the targetAproduced due to interaction,

Now for the atomic hydrogen the static.
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potential is

Vgg = =(1+ ) exp (-2r) - Gs)

This yields the first Born direct Transition matrix as,
2

Wi = -2 () G

. ‘ gn” - (q© + &)

4

Now, the relation between the Te~martix and the.
‘scattering amplitude is the following

£ = - 47°r C(3.7)

Thus, the direct first Born amplitude for elastic’ e~H

scattertﬁé feads as,

2 .
fgqa = .?i%__"‘_% (3.8)

(a” + 4)
The elastic. DCS is obtained from the relation,

1 . )
Q9= jzf? (3.9)

~We observe that the first Born amplitude depends only
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on the magnitude of momentum transfer g and 1%
predicts a constant value of the forward DCS, independent

of the incident energy.

In the above discussion, 'direct scattering'
means without exchange, The electron exchange 'effecﬁ can
also bé tfeated in the first Born'approximation. Tﬁe
purpose of the present chapter is to discuss some of the
higher order perturbation theories in the direct elastic
scattering. We, therefore, do not discuss the exchange

aspect,

It is found that, the first Born Des' agree
with the experimental data only at high energies and at
large angles of scattering. Cleérly, it is 1hé&equaté
to describe fully the Physics of the collision process
and one must seek some higher order perturbation theories

that are capable of déing S50,

3¢5 The Glauber Theory

As mentioned in the previous chaptef, the
generallzation of the elkonal approximation for the
scattering of charged particles from tergets with internal
structure, was given by R, J. Glauber (1959). In recent
years, the well known Glauber approximation has been

applied with success for simple targets and further
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refinements too, have been brough about. (See e.g.

Byron et al, 1977). We analyse the Glauber approximation
again in this chapter to elucidate its nature, The
Glauber amplitude for the electron~atom collisions is;

ik ‘
£% (g, X;) =-é-;;¥ J db exp (ig.h)

¢ £)1=ep (X)) 1> (3,0

With 1 and f representing the initial and the final
target states, b being the impact parameter, db
showing an area~element in the (x,.y) plane and the

Glauber phase X being given by ,’

*

1 m ' ’ . .
X =g= J d&zV(z,x - -(3.11)
p )

The evaluation of the Glaubér amplitude depends thus on
the expression ofl 'é‘ . No?; except for'Hydrcgeq«and
Helium atoms, the Glauber phase has a cémpliCated
expression, so that the evaluation of the amplitude

of egn. (3.10) beccmés difficult and even uﬁmanagable.
Thus, although it i§>true that thé Glauber approximation
takes into account, somehow, all orders of perturbation

and is therefore superior to the first Born approximation,
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the problem of evaluating the Glauber amplitude.is not
that simple. Thomas and Gerjuoy (1971) obtained the

closed . fovm. expressions for the Glauber amplitude of -
the'collisions of charged particles with Hydrogen atoﬁé.
Rather than trying to evaluate the amplitude of eqn.
(3.10) as a whole, let us resort to its  termwise analysis,
as shown by Yates (1974). In the last chapter, too, we
expressed the Glauber amplitude as a series (see eqn,
(2.56) of chapter 2). Presently, we wish to write,

. D=1

G - @
T (Qu ki) = X i

fGn (q, kfl.) . m (3.12)
n=1l - )

where, the first term reduces to the first Born amplitude
and each term is obtailned from the expansion of exp (iX)
in eqn. (3.10) so that, the n th term would be

{

fGn = Suat J db exp (ig.b)< £} Xn' i > — (3.13)

Let us note that X is a function of the
incident as well as the target electron coordinates.
Hence, to 51mplify the evaluation of the matrix element
of eqn, (3;13), we take the Fourier transform of X with
respect to the incident electron co-ordinate L,

corresponding to which the Fourier "var;ab;é is



E =2 * By

The variablé p 1is two dimensional, dmd the (p, , py)
plane.‘The incident electron momentum k, is along the
polar axis, For e~H scattering, we write Blp » b )
for the two dimensional Fourier representation of the

interaction potential of eqn. (3 4), so as 'to yield,

X(2,2,) «=-;};— s —zexp (ig.b) B, by  (3.15)
oy

Thus, ‘the 2nd Glauber term in ‘che series of eqn. (3.12)

becomes.,
dp
T3k
T B g-p?
<£|B(p,b) Bla-py2y) | 1> - (3.16)

Notably, the coupling of b " and” 21\ is removed by the
use of the ?ourier franéform. Tﬁe 2nd 6rder Glauber

amplitude for elastic e-H scattering has a form

5
' ’ * x‘“t“ 2 !
R R - 1rz

f = .
T2 - (5 ) ;_:—EZ In ( ——=) (3.17)

. 8migy 2
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with Z = g/ A. The parameter A =2 arises from .
the product of the ground state wave functions for .the
. Hydrogen atom, Let us note two p important features of

the 'i:erm, fGZ .

(1) The 2nd order Glauber amplitude is pureiy
imaginary. in fact, "the alternative terms of the full
Glauber:amplitude, eqn. (3.12), are :eal and - imaginary

respectively.

(2) The 2nd Glauber term of eqn‘ (3.16) diverges

as lngq as gq —> O. This 1s ore of the main draw—
backs of the Glauber  theory and it has been attributed
to the fact that, 1n the evaluation the Green's function
in this case, the off-shell contributions are suppressed,
i.e, the intermediate vector .k, 1s replaced by
incident vector gi;J In the 2nd order Born term also’
this behaviour 1svfound if thé average excitation enérgy
18 replaced by zerou(MoiSeiwitch%nd.Williums 1959, -
Yates 1973). Further, the third,clauber amplitude is
given by (Yates 1974), -

£/ _A

- l+Z ))
@3 16n3§ 7%

(a-@ ""—‘"g"' {4 (n (-

Y

I - @) o - (3.188)
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vhere,
2 2y 1
MZ) = 2nz)2+ 2+ 2 LED (3.18b)
¢ n=l n
Cdf oz &
> .20 , 2 o
A(Z) = - X (=1/2%)"/n (3.18c)
n=1 - _ o
if 2> 1

We find from eqns, (3.17) and (3.18) that the‘Giauber
series of ean. (3.12) is an expansion in the powers of

1/k . It has been called the Glauber eikonal series
(GE%). For the elastic scattering of electrons by Hydrogen
atoms, the exact Glauber amplitude f£° was evaluated by
Thomas and Gerjuoy (1971). In the e-H elastic scattering
it is found that (Yates, 1974) the first three terms of
eqn. (3.12) are sufficient to approximate £ very
closely. Later on, Singh and Tripathi (1980) applied the
GES method to the elastic and inelastic scattering of
electrons from Helium atoms. These authors have elaborated
the mathematical details of evaluating the second and
third terms of the GES. It‘is observed that some of the
integrals involved in the calculations of fGZ and ,fGB

are absolutely singular but their combinations turn out
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to be such that the singularities cancel exactly. How

does the Glauber approximation (or the GES) compare with
experiments ? First of all, the Glauber DCS are .-
divergent in the forward direction, for elastic scatﬁering.
And secéndly, more or less at -all angles, the Glauber
cross-sections are lower than the experimental data. In
the region of larger éngle&, even the first Born appro-
ximation is far better. We note here two relevent points,

for the Glauber results,

(1) The second Glauber term lacks a real part, as
compared to the second Born term. The real part of the
second Born term represents the polarization effects in

the target, and is dominent near the forward direction..

(1i) The sign of the third Glauber term £33 is opposite
to that of the first term. This is true for inelastic .
cases as well, Hence, the inclusion of fGB’ reduces  the

cross-sections,

+* Now for inelastic processes, the problem of
divergance of fGZ does not occur, because in that case,
the momentum transfer q # O ‘even in the forward direction.
But there is cerfainly one point that deserves attention.
In this case, when the incident particle is scattered
exactly in the forward direction, the momentum traﬁsfer

g (# 0) is in the forward direction, with no component
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perpendicular to the incident direction. Now, the Glauber
amplitude egn, (3.10) , assume q only in a plane perpen=-
dicular to k; 1 Thus, there is a contradiction.
Perhaps, the way out is to remove the restriction that

g must be two dimensional and in the plane normal to kK, “

(see Gau and Macek 1974, 1975).

A number of issues related to various aspects
of the Glauber theory.have been discussed and analysed t
in the literature of the recent past., In ouwr present
discussion, we consider two more points before switching

over to the next section.

<

1) The importance of the Glauber theory lies in the
fact that it contains all orders of a perturbation
expansion hence, it satisfies the optical theorem (or

unitarity relation) in its own frame work. :

2) Of the improvements suggested to modify the.
Glauber amplitude mention must be made of the Wallace—
correction (1973). This has been applied with success to
e~-H scattering problems by Roy and Sil'(1978) and
Unnikrishnan end Prasad (1§82); The Wallace—corréétibn
has been further elaborated 5y Frénco (1982) and also by
Byron et al (1982). We now go over to the next section

on the second Born approximation,
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3.4 The Second Born Approximation

It becomes clear from the prece¢ding discussion
that, in many respects, the second Born amplifude mist be
superior to the second Glauber ampliéude. Recalling the
origin of the Born series as a perturbative expansion in

the powefs of the interaction potential, ﬁefﬁrite it as,
(3.19)

of which the n = 1 ‘term is the first Born amplitude:; In
the nth Born amplitude the potential éppéars n times
and the Green's .function, (n~1) times, In partxcular, the
direct second Born term is written as,,

ik

fg, = fdr e fz;<f|v(r,x)in >.

o)

. ' ‘,3 ! - B e,
ar? o) - X dk
N n l"
ik, 1!

=it " (3.20)

< n v (' yx) |1 >e
In the last equation 1n > denotes an intermediate
state of the target. 'k ' 1is the intermediate momentum

of the projectile electron. The variable XK comes from
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. the Green's function, and whenever € appears € e—e»O*
is implied, The vector k  is related to the internal
energy of the target in its nth state, through the

conservation of energy, i.e.

Y2 K2 W (3.21)

. -
o -‘.1/2 k, + W

g

Wo = the ground state energy of the target. Now, upon

slight rearrangement and use of eqn. (3.21), we get;

o 2 f ;<_1_5,£:f‘3vf1_{_,, nk(_g_p‘niV{Ki’i‘ )
£ = 871 dKk = S - ‘
B T on K -k e W, -V ) - e

(3.22)

where |k, i > = initial asymptotic state of the

total system, e%c.

The next step to simplify the above exact
.expression, many times employed;'isato approxiﬁate,

Wy - W, 2 W C - (3.23)
- Jughakr©
&
This turns out to be a good approximation above, say
50 eV incident energy, (Walters and Ermolaev, 1980) .
The use of average excitation energy simplifies

- the expression (3;22)b The simplified second Born
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approximation obtained in this way is;

1
K° - k5 + 2W - e -~

fopp =/ &

< l(<g Ivip<kivig>)i1>  (3.24)

Here, the closure relation has been used for the target
states, The way of writing eqn, (3.24) shows 'that we

first evaluate the plane wave part of the matrix element,

The simplifiéd second Born term (3,24) has been
evaluated using the Dalitz integrals (see e.g. Joachain,

1975) .

The subsequent discussion naturally leads us
to the eikonal Born series (FERS) theory, an elegant
approach developed by Byron -and Joachain (1973, . 1974) to
describe the scattering of intermediate and high energy
electrons by étoms; The aim of the EBS is to write the
ieading‘terms of the Born series to obtain accurate DCS
of electron-atom collisions. Now, in the third Born term
of the series, the real part is of order 1/k>, but the
calculation of the third Born term is quite difficult.
On the other hand, the.ﬁhird_term of the Glauber series,

i.e. £z, 1is relatively easily computed, as we have
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seen in the previous section. Both the terms ‘fGB and

£ are- zero for elastic scattering in the forward

B3
direction. (Dewangan, 1980). They are both O(k;a ). -
Hence fBB is approximated by . 43 and a direct “i
amplitude ‘given below is constructed, (Hyron and

Joachain, 1973)

ngs = fgy * T ?GB.\ - (3429)
The direct EBS amplitude of egn, (3.25) isvconsisfent
through'the order (k;z) « In the last ten years or so,
the EBS theory has been successfully applied to severgl
elastic and inelastic processes in the light and compiex
"~ atoms (éyron and Joachain 1973, 1974; Byron and Latour
1976), We are now going to discuss, in detail , an

alternative approach to the EBS,

- Highes , :
3.5 The High Energy]order Born Approximations (HHOB)
. l‘ N

This approach‘was developed by A. é; Yates
(1979) ‘and has been further éxplored by our group. The
HHOB 1s a Born theory based on the assumptions and
evgluaéion'methpds of the Glauber approximation. Let us
consider the Second Born amplitude, which we éan w}ite
from eqn. (3.20), by defining a variable R = r - g?.

We introduce, the elementg,
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Ve, (©) =<zl (s © In> ‘(3;26)

And a similar symbol, V ; (r - r').

Thus,

iK.r! .
=* ik, .r
X Jar' J &k e Vi(rer)e 1~
- = K o k% w ie ni ( )
n
(3.27)
where, now r' replaces R, Further evaluation
consists in considering the basic integral,
' ""ik .I‘i
= (27)~2 Al S
In (2%®) fd;:_‘e ,Vn.i(_r_'_ r')
iK.r!
J ax e 528‘
22 2.1 ~(3.28)
n e .
Defining,
S = K - kK, | (3.29)

We have,



I k:21 = g2 . 28.%, »
so that
k, =k )er!
- -3 ’ .(“i. =n’/?
Ip = (@977 Jarle & ni (2-2"
&
i8.r' |
=
X fds , . : (3.30)
fe 73 25.k, - i€

Nov, to linearize the Green's function, we assume that,
(1) V,i Varies slowly over the distance of wavelength
of the scattering electron i.e. k, a1 with 1a1
as the range of V; . (II) g_n does not differ much

E
from k, either in magnitude (which means kin < 1)

or in direction ' (L.e. the momentum transfer is also

small). The principal contribution to r' integraly
then, comes from small S and the following expansion

should be rapidly convérgent.

% oL
RERS

- f ds
T Ts% + 28k, - i€

s’

( 1 +'~'—"‘r".‘:_‘5:é+ qee )e (3*31)
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In the eikonal and Glauber theories a similar expansion

is employed and only the first term is retained. Heré;

the first two terms are retained and the S integral

is evaluated following the standard integration techniques.
The result is,

-

I, = s~ Jdr' e

i -1k =kp) !
n = Zk .

X (8(b') H(z") +-§1’-£-n- V2, 6(') z' H(z")  (3.32)

where fga | = k;. In arriving at eqn. (3.32) use has

been médg of the result

f ds e’ I,-- , = i 5 (_b') H(Z') ) 353
with the assumption, that,
b 2k o ' T (3.34)

In egn. (3.33), & (b') is for the Dirac delta function
and the Heavyside function (or the step function) is
defined by | '
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"

H(x) 1, x> 0

(3.35)

0, x < 0
Now choosing }_:_n as the polar axis, and using our basic

assumptions, the following (approximate) result is obtained.

pos b [P e P
= VA e
n 21'{']'_' o
| | 2 '
Bz (1 + B Vo0 ) Ty (@ - 2) (3.36)
where,
Bin = K = kg = (W -W)/ Kk - (3.37)

Let us recall that in the Glauber theory ki = k..
Thus the second Born direct amplitude in Yates' HHOB,

i3 written as »

3

‘ ig.r .
f. dg_ e vfn (z)’

f(z) = i bX
HEA ~2nk., n
~ i
0 iﬁin z! iz? V_z
X [ dz' e H(z) (1 + 5g— V3 Wyy(z-z')  (3.38)
~00 - : 1 _ A
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N

To carry out the sum over states here, we define the

parameter B, through
Bin = B = W/ K (3.39)

This gives us the simplified second Born appraximé:iion
of the present case. Further, to evaluate the second Born
term of eqn. (3.38) the z-axis is'chesen along k,
and g is made two dimensionai, as in the Glauber
'formulation. Also observe that under z'-integral, the
" coordinates of the incident electron and the target \
electrons are coupled. To uncouple them,‘ii is required to
take the Fourier transform of the interaction potential,
with respect to the incident eléctron variebles g,'and

r' by taking their Fourier variables as,

I

=R * R | - (3.40)

P' = p' + P} (3.41)

Throughout our‘work, these variables have been used,
for Fourier transformation, Here p and p' are both
two dimensional, while P, and pé lie along z-axis,

After some mathematics, we are left with the present

second Born term as follows,
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(2) (2) (2) :
fupa = 1 Ip fyga * Re fypy (3,42)
The imaginary part of the second Born amplitude of
HHOB is given by, \ . ‘

(2)  4n® i 8 , 2 .2 (2)
In fypy =g RO+ gy (07 4P Uy (3.43)

»

where,

(2) p 2 ey s, s
Uyg =<£l7 (a-p=P; %) T(p=8, 01> (3.4

with ¥ indicating the Fourier transform of the

potential V, In such expressions B  is the vector

along z-axis and is obtained through p, = B The second
term of the eqn. (3.43) comes/from the 2nd term of the
expansion in eqn. (3.32) and itlis of order 1/k§‘a We have
shown below how it is to be evaluated, but due to;its

higher order in k;1 s We will not consider it for
calculating the DCS, and the term Im fé%& will ‘now mean

only the first term of egn. (3.43)., Now, we go back %06
eqn. (3.42), win which the real part of fégi is,

to be given by,

(2) » :
Refyp, = Rg 1+ Be 2 (3.45)
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with,
2 o g
47 Py
Re 1 = o ?‘?f dp - f
i -0 ‘bz" B
(2) a
Uy (@rp< PRt ) (3.48)
2 w0 dp, (p% + pZ )
2ns 9 P p° Py
Re 2 & = =g= e dp
€ ki- o8 ?f f P, - P
e L
e Uy (g~ R-Bz s R* D ) (3.47)
where, the symbol /H> means the principal value,

Again we note that the term Re 2 originates from the

2nd term of expansion in eqn. (3.32).

3
H

Flnally, the direct scattering amplitude, consistent
through 0(k ) is written as ‘

d (2) (2) |
fyga = fpq * 1 Im fyp, + Re fHEA + £33 (3 48)

The theory discussed above is a blending of the Bbrn
and the Glauber theories. It differs from the direct
amplitude of the  EBS approach of Byron and Joachain
(1975) ean. (3. 25) in that,
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(1) | - Unlike the case of fp, of the EBS,
here the momentum transfer g is two dimensional. And
the assumptions of the HHOB make the theory valid 6nly

for small angles of scattering.

(ii) Unlike the previous EBS case, here the

final integrals (over the variable p) are two

dimensionalmaking the evaluation easier,

The present theory differs from the
Glauber approximation in the following points.

(i) We have mentioned earlier that, the

integrals for the evaluation of f,, eqn. (3.16),
are individually singular. For the HHOB,this problem
does not arise. All the integrals occuring here are

absolutely covergent (see the apprendixJ.‘

(i1) - Becausé of the presence of the averagé
excitation energyc of thehtafget through the parameter
Bs the imaginary pért of the éecond Born term here,
does not diverge for forward elastic scéﬁteringb In
fact, 1f we put B = 0 all the present results go over
to those of the Glauber theory., Further the real part of
fBz exists ip the present case, unl;ke the Glauber. .
approximation, ”

(111) The terms arising out of the second term
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of the Green's function expansion, eqn. (3.32) are
similar to the Wallace-correction (1973) to the Glauber
amplitude., Now we apply the present theory to the
elastic e~H scattering. It can be further extended to
any atom for which the wave function can be expressed

as an antisymmetrized product of one electronﬁdrbiﬁais,

3,6 ° Application of HHOB to° e-H Elastic Scattering

3.6.1 Basic results

- The -evaluation of the direct amplitude for
e-H elastic scattering in the present theory, is discussed
by Yates (1979) and can befggigigﬁ‘iout by using the
intergéls defined in the appendix. Presently, we evaluate
the second terﬁ of eqn. (3.43) which is not discussed in
that paper. We write it as,’ e

g 5 2

; of [ dp (P + %) |

20

Im2z =

b

w2 @=p- B2+ B (5449)

where, in the case of e-H scattering,

(2) . 1 3
uss) = . 2 )
fi '1;‘4' (P2 + 62‘) (’9. - Piz + 52) "éx
2 2
( &= 2N" 1 _ 1 ‘
EoTad) T (gal ot Fagan) @00
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The product of the ground state. wave functions is written

as

o =Ar
* 1 ) e

We note that the :Lnterchange of\{g _p_l

and ]p| does not change the outcome. '

Thus,

-
m2 = -4 (=2=) [ ap &° 4-?2)

Tk op dA
2
( 5ty
* kﬂ“x(wfﬂwﬁzéj

R
51
ST I +x2)(is.~:el+i§“§s\ (o2

Let us evaluate this for forward elastic scattgr-ing{ \in '

which case the first term vanishes, and we get,

— 2p ‘1,1
In2 (qg=0) = —y
n2la=o 3k 4(p%+4) T

\
(3.52)

Since = W/ki, thls term-is actually. 0(k'{3 ). It
is much smaller than the dominent first term of
eqn. (3.43) in its contribution. Note that, as B ——%0

Im2 —3 0 i.e. there is no such term in Im £;,.
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Again we remark that the imaginary part of the second

Wallace-amplitude is the seame as Im fg, . Now for the
purpose<of obtaining the DCS through 0(k;2), we require
the imaginary part of the sécond Born term through

o(k]' ) and the real part through O(k; ). The
expressions of these terms in the case of elastic - e-H
scatteriﬁg are given below,

@
In = H- GRSy L (6P

R S T I M asuary
- (7, (7
- .._.95_? *';?;E:ﬁ (3 54)
A® 4 g® 2 - o
. T 2 ) I (ﬁ 0)“ -
) _{ 2 ! 6 ? l )
ez -z oam (L

+ S Ly (8 A7) - T8, AB))  (3.55)

‘Where, Ij's are defined in the appendix. Now, we

consider the properties of the HHOB in the case of

the forward elastic e-H scattering.
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'3,6,2 Forward Elastic _e-H Scattering

. Given below are the expressions of the.
various terms of the HHOB for the eiastic'écattering 
of electrorns from Hydrogen atoms in the forward direction.
At g:= 0, the imaginary part of the préseﬁt second
" Born amplitude, through O(k]') obtained from egn.

(3.53) is

Im :?1({%1% (q = O) = -Ez; (}_n ki + 1n 4 - i‘; ) (3.56)

which agrees with imaginary part of the simplified
second Born approximation fsBZ of Byron and Joachain
(1973) and has a dependence of (ln kiyki on the
incident energy. The last equation is derived by -
substituting the definition, B = ﬁ/ki and W = 0.5.
a.u. for the hydrogen atom, On the other hand, if |

W and hence B is taken as zero, the present seéond
- Born term shows the familiar 1n a divergence of the
second Glauber term‘at q = 0 ’

We also learn from the egqn. (3.56) that

tot

the total cross-seétions.( ol ) obtained from the

present second Born term and from f B2 will be

identical.

Considering nextvthe real part egqns. (3.54),
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(3.55) we find that

2) i 3
Re f( = + -

£

» =0 (3-57)

Ky

Again it is observed that in the HHOB as well as in.
the EBS of Byron and Joachain (1973) the real parts of
second Born amplitudes afe identical atg~= o. Tﬁis means
that in the forward direction, the two-term Green's
function expansion, eqn. (3.31) is so rapidly qunvérggnt
as to be falrly accurate, Further, the contribution of
Re 2 i8 quite small compared to Re 1 at q = 0, as
can be seen from the eqn. (3.57). Also froﬁ eqn. (3.57)
we find that, if the average excitation energy is

reduced to zero, we have,

Re 2 (W = 0) = 3/2k§ | (3.58)

This is exactly the real part of the second term of
the Wallace amplitude at q = 0, obtalned recently
by Byron et al (1982),

Lastly, an interesting csmment is worth
making. The EBS expression of the direct scattering
amplitude, egn. (3.25) or (3.48) is the leading part of
an exact amplitude, in that, it is O(kgz). The exact “

amplitude must contain all orders of perturbation. But,
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it has been shown (Dewangan, 1980) that the higher odd order

Glauber terms,
fG(Zn + 1) = 0, (-q = 0) n=1, 2, 3.. (3.‘59)

. Also if the closure approximation or eqn. (3.23), is

applied the higher odd order Born terms,

K}

fa(zn+ 1) = 0» a=0,n-= 1,=2, 3.. (3.60)

In that case; for the forwardlelastic scattering, the
amplitude of eqn, (3.48) is quite fairly accurate. It is
therefore, of interest'to compare the elastic e-H results
at q = 0, obtained in the HHOB, with a few other

theoretical calculations. It is clear that the G‘t ot N

results obtalned from the optical-theorem using the
HHOB or the EBS with simplified second Born amplitude

are 1dent1cal.

In table 3.1, comparisons of the total

cross-sections are made with the following theories.

1. The Modified Glauber (MG) calculations of o~ “OF
(Jhanwar et al 1982az are done by deriving analytical
expressions for the forward elastic amplitudes in Gien's
(1976). modified Glauber approximation, in which the
amplitude is,
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Table 3.1

Total cross-sections, GftOt in a? unit; for -

e~ scaftering

Energy : EBS or ¢ MG ' : TUEBS : DWSBA'
ev s HHOB s (a) : (v) =+ (c)
50 . 11.86 10,09 - . -
100 o T34 : 6.’81_;. 7.19 ’ 7'@6'15 .
200 ' 4,38 4,18 4,27 4,34,
300 - ¢ 3.11 3.06 3,10 3.1
400 2,47 2,43 2,45 12,46

a, the MG results are given by Jhariwar ét al (1982 a)
b, the UEBS results are given by Byron et al (1982)

c, the DWSBA results are given by Kingston and
Walters (1980). ‘
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G G :

2, The uniterised eikonal Born series (UEBS) is
‘obtained by Byron et al (1982) as a generallzation of the.
potential scattering eikonal expansion given by Wallace
(1973). In the following, the subscript 'W' denotes the
corresponding Wallace amplitude, so that the UEBS scattering
amplitude is, ‘ |

3 . The DWSBA results of Kingston and Walters

(1980) are obtained in the formulation of distorted

wave seécond Born approximation,

3.6,3 -The differential cross-sections

' We now obtain in DCS for elastic e-H
scattering using the HHOB, To afford a better comparison;
at intermediate energies, one must alwéys cdnsider the
effect of the electron exchénge.xFor’the present purpose,
it suffices to consider the first orderléxchange amplitude
given in the Ochkur approximation (19&3) which for the

present case, gives the amplitude,

32 K

= “ .. (3.63
f T Ewr (28
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The differential cross-section obtained by consideration

‘'of the Pauli-exclusion principle is given below.

. 2 g4 7 42 '
IO - N tfy el + 2 g -el” (3.6
Because we are not considering the direct a‘mplitudes,beyond

O( ) in the HHOB, we only take ‘into account here the first

order exchange ampl:.tude in the Ochkur approximatlon.

Expllcitly_.in our case, fche es is,

- -._a___ldo"w(g = ('ng'.‘l).Z + } Im f%% © o+ (Re ’.1_)~2 "

PR Getemez gD

Le®

+ 3 (2 25, (Re 1.+ Re'2 + £5 = ). * (3.65)

The DCS is through z O(k l).

‘ In the figs. 3 1 thrcugh 3.5 we 3
present the DCS of HHOB theory at dif’r‘erent scattering
angles and different incident ener'gi.es.x In each graph, the
number ih theb bracket at the top-left is the présent
ICS atq= 0, e.g at 100 eV, the forward DCS is 7.6 a2
sr~1, Further, in the tables 3.2 and 3.3, the numerical
values of the first Born term (f§1) » imaginary .part of the
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second Born term (Im f&%& ), the real part of the present
present theory i.e., Re 1 and Re 2, the third Glauber term

i f and the DCS are tabulated, at 100 eV and 200 eV

G
foi various angles, The DCS includes exchange. The real
parts of the second Born term of HHOB ‘and the EBS, both
cwith f£on5; at 200 eV are compared in table 3.5. The
table 3.4 shows the pfesent DCS compared with the ‘first
Born vélues, at 700 eV, An extensiveﬂcomparispn’is made

with recent calculations of other workers. The foliowing

are the theories with which we:compare our results.

T The EBS with the simplified second Born
approximation, £.n, (Byron and Joachain 1973) is quite
akin to our present theory for nearly forward scatfering,“
as discussed in the section (3,632); But the differences

will be there in the prediction of large angle scattering.

2. In the EBS of Byron and Joachain (1977)

a more accurate second Born amplitude 1s obtained by

treating exactly the first term of the sum over states in

ean, (3.22) and employing - closure to the rest of them,

. This procedure exactly treats the static potential of the

atom and hence improves the large angle results. The,

second Born amplitude, thus obtained is denoted by I, .

The differencelbetweeh fsBZ and fBZ decreases . with energy.

3 The fixed scatterer approximation (FSA),
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- introduced by Ghosh (1977) and successfully applied to -
‘simple systems, assumes a fixed or static bonfiguratidhﬁbf
the target as it interacts with an incident particle. This
theory thus neglects the excitation energies~§f the target,
in the second Born term, but still, it differs from'tbe |
" Gleuber theory in that, here g is not 'two ‘d'iménsional
and the three dimensional nature of the Born theory is
~preserved. However, in the FSA of Ghosh, the Qqal part
of the second Born term is absent, so alsec in the Glauber
approximation, due to the absence of fvirtual excitations';
In a simplified FSA, the single and the doﬁble scattering
terms only, are retained. Thus apart from constants, the
double scattering direct amplitude in the FSA' looks like,

%

£ = Sk ar, ¥ (v ¥(ry)

(ke |V _1_{_><;5_4$v i~_lgi1>

pod z

Tt

Let’us ﬁention the all importanflébnnection among the
theories being discussed presently. In an exact 2nd Born
.approximation, the sum over infinite set of intermediate
target states appears, expllcltly. In the simplified second
Born approximation an average excitation energy w is

defined and the sum rule is applied. In the FSa, the
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intermediate excited states do not appear and W = 0.
Further, from the FSA, upon linearizing the Grgen's
function, we arrive at the Glauber approximation. Altegu
natively, if we do not resort to FSA (i.e. keep W # 0)
and expand the Green's function, retaining the first tﬁo

terms, we obtained the HHOB,

Tayal et al (1979) have considered the
FSA for obtaining the modified Glauber (MG) amplitude,

which we have mentioned previously in eqgn. (3.61).

4, Again, the MG amplitude of egn. (3.61)
can be calculatgd using §sBZ s oOr EBZ (see, Tayal
et al 1979). In the caption of the figures, 3.1 through

3.5 a clear mention has been made regarding this,

5 The UEBS theory of Byron et al (1982)

has also been mentioned previously through eqn. (3.62).
Both the MG and the UEBS approaches can be consldered to
be superior to any of the present theories, in the sense
that both are non-perturbative i.e. they take into account
all orders of perturbation, The basic aim of the MG, in
subtracting fao and adding £z, has been to remove
the divergence of the Glauber amplitude and to account for
the absorption and polarization effect through fBZ‘

The UEBS approach goes a step further to take into account
the Wallace correction to the Glauber amplitudes. The
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Table 3.4

Elastic e-H scattering at

700 ev
Scattering : ?resent :‘ Firsfi
angle 3 DCS ¢ Born -
(deg) : ‘ BCS
0o | . 2.8 1,9 |
‘ 0.87 0.76
- 10 0.40 - 0.38
20 0.079 0,074
30 0.022 0.019
4. - 0.0086 ° ‘0.0966
*

60 ' 0.0025 . 0.,0015

* ' 7
At large angles the present DCS are overestimating.
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subftraction of £, and addition of £y, here follow

the same reasoning as that given for the MG appréximation.

6, At 700 eV and above, experimenfal data
for e-H scattering are not available, We have, theréfore,
used the (inverted) independent atom model (see chapter 4)
to estimate e~H DCS from the available e—Hz data of
Van Wingerden et al (1977).

3.7 Discussion of the e-H Results

We must now discuss the results exhibited
here for the TCS as well as the DCS, Table 3.1 shows
a comparative statement for the e-H TICS in various
approaches, between 50 eV and 400 eV, One finds that the
resultg of the EBS and the HHOB theories, both using
fsBz are somewhat higher than the results of MG or !
UEBS theories, This is because of the inclusion of the
negative higher order terms, Im th etc,, in the MG
amplitudes, and of similar Wallace amplitude terms in
the UEBS, Hence within their frameworks, both MG and
UEBS theories satisfy the optical ‘theorem exactly. The
difference between the TCS of the e EBS (or HHOB) and
the above two theories decreases with energy, showing that
the higher order terms, beyond O(kzz), are unimportant
above 400 eV. Let us note again that, the present (HHOEQ
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theory also predicts a term O(kzz) in the form of Im 2,
eqn. (3.49), but its contribution is negligible, Further at
ﬁigh energies, the distortion of the incident eléctron is
considerably small (see also chapter 5) sSo that the DWSBA
results of Kingston and Walters (1980) are close to the

other plane-wave results,

Now we discuss fthe graphical plots of the
DCS exhibited in figs, 3.1 through 3.6: The main points

emerging are a s follows,

1. Consider first the region of small and
intermediate scattering-angles. The effect of exchange

(fig. 3.1) is considerable at 100 ‘eV. Further the DCS of
the presént work (fig. 3.2 curve A) agree with the results
of the ﬁBS with f_p, at all energies in the angular

. range betweén 0° and about 250, beyond which, the
présegt results are higher than the EBS results (figs. 3.2,
3.3). Both these theories are in good agreement with the
experimental measurements (Williums‘1§75}, Van Wingerden

et al 1977) in the intermediate angular range. The HHOB

is occasgionally closere to experimental polnts.

2. - We have shown in this section previously
that the TCS of the EBS and the HHOB, both with fsaz ’
are identical showing that the absorption effects predicted

by both these theories are of egqual magnitude near gq = 0.



134

F16.3.2
100 eV

e-H ELASTIC SCATTERING

.—-PRESEM?

maas WITH $SB2
@M e ow B2 e
@-———FSA IN MG  —— e
(E)—MGWITH (B2 ——t—X—

& — WINGERDEN et al
Ke—witLLigMs -

-3

DCS (2l sr)

) 20 40 60 80 00 120 130



135

10!
. FIG. 3.3
— 200 eV
_ e-H ELASTIC SCATTERING
(5.24) :
109
-
- (A)—PRESENT
N (B)—MG WITH {582 — ————m
] ""’a (©)—veBS '
(©)—M6 WITH Rel  — .
W \ & —WINGERDEN et al
0 ~ \2 X —WILLIgMS
—
7% A\
e
— ,m ‘,?:\4;
O
48 \
5 \\e\ | ®
' b
- B Y
_ © \%:
RN
— "\\\
- © A
) 8 —b~ /
10 | | | ] [ l
0 20 40 60 80 106 ) 120 130



136

RN

!

i

)

-
S,

Ll

EEE

|

© (3:84)

-t

DCS (F-57) ——sm

Fi6. 3.4

4&00 gV

8-H ELASTIC SCATTERING

(A)— PRESENT
(8)— ueBsS

% — witligms




137.

10°
3 ys(2.0) o
— 1 FIG. 3.5
7] 700 ey -
- o ’: e
e-H ELASTIC SCATTERING
16"
] @'—-pnsssm‘
—_ 0.—1AM INVERTED :
— X —W\FLLIAMS (680 V)
!9:2— T
=N
——NJ
e
(@]
Q
- ‘ .
‘0"3
— o
"
] *
. : o
. =4 5 T 8 —re .
10 1 1 | | - .
0 40. 60 80 100 120 130



138.

Also the polarization effects in both of them, represented -
by the real parts of the second Bornéﬁiﬁi%ﬁﬁgh are the same
near q = O. But the dependence of the real parts in these

theories on q at 1large angles if different. The term

Refégi varies rather slowly with 'q' at large angles.

3. : The higher order approaches like the MG
theory are found to be somewhat underestimating, between
100 eV and 400 &V (see»alsé‘fig. 3.6). The reason lies in

the negative higher order .terms in them as already discussed.

h,;{ It has been recognized that, near the
forward direction the effects Eﬁ polarization of:the target,
induced by the incident particle are dominent so that the
contribution of the Re fj, 1s quite large, The FSA,
lacks in this regard, so that when the FSA is used in the
framework of the MG approximation (Tayal et al 1979), it
further undefestimates the DCS towards the forward

direction (fig. 3.2, curve D).

5. Below 60°, the  present DCS compare
favourably with +the experimental results of VaﬁjWingerden
et al (1977). However, these experimental resuits are not
available above 200 eV, and the agreement with the measure-
ments of Williums (1975) is not so close. In fig. 3.5 for
700 eV we have shown the available data of Williums (1975)
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at 680 eV,

6. At éll energles considered, the situation

is quite different whenever gq> k; ( @ > 60°). The present
DCS inéreasingly’ovéreétimate as q increases e.,g. at

100 eV and 6 = 100°, the present DCS is 35 % higher than
the EBS result as well as the experimental value:; This’
large-angle overestimation is common to all the systems that

 havei peen studied under the HHOB by us. Onthe other.hand,

the EBS with f_,, or £, “,is fairly accurate even at
1arge—apglesz This—suggests that the convergence of the
Green's function expansion eqn. (3.31) is quiﬁe slow for
large momentum transfers., However, it @ust be borne -in mind
in discussing this point' that, the third Er&;r term we have
used ﬂs the f;5. For a more accurate amplitude 0(k;2),

we must use the correSpopding}third Born téim of Yates!
(J979) thebry; Still however,qweiiﬁSS gﬁided by the fact
that the present approagh is a high energy,sma;i éngle appro=-
ximation, At gq =0, both fy; and fG; are zero and for
small q-, they would not differ very much from each other,
This is the justificatidn for writing the present'éirect
scattering amplitude as in eén,t(f.hs). Yates (1979) has

o

suggested,



Table 3'5

Real partsof £(2) and £o05 in a.u. for 200 ev
= : ‘ P oRe 22
aeg 3 Re fgpp i Re fymy
40 0.028 0.048
€0 . 0.016 0,050
90 ' 0,008 0.048
120 . 0.006 0,049
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d | ; (2)
faea fpq * 1 Imfgpy + Re 1
+ Re 2 + Re f}({gl)& . (3.66)
7o To look further into the large angle

behaviour of the present DCS, we have compared in the
table 3.5 , the real parts of the second Born amplitude
of HHOB and the EBS at 200 eV, the expression of

Re fsBz of EBS is given below,

' 2 .
- g + 8 1 9 .
Re fopp =27 ( k. ~ Zq? . 4W2)172 )

(a® + 4) L(k]
G b+ 6F A
2k (a° + ) 1 (L BT
128 W

(3.67)
KS(q” + 4)°

Af once one sees from the table 3.5 that for g?» ki‘.’

~ these quantities in the HHOB are larger than correéppnding
EBS values and the difference yiidqns }mith q. Thus, we
conclude that the present large~angle overestimation results

from Re féé)l and further, from tables 3,2 and 3.3,

we find that the real culprit for this behaviour is the

term Re 2, We recall here, that the term Re 2 originates
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from the second term of the Green's function expansion,
eqn. (3.31). With the parameter = O, it resembles the
real part of the second order Wallace amplitude Re £, .
It is worth mentioning here that the eikonaiiéxpansion of
Wallace (1973) was proposed for small momentum\transfers
and its validity ¢ criterion has been dlscusséﬂ by -
Gerjuoy and Thomas (197%) (see also Glauber,yﬂ959). in
the derivation of the basic results of the 'HﬁpB; the
assumption of small angle scattering is’ alread made,
following ean. (3.30). Therefore, a good outco ‘

expected only for small angles. At this stage,\kg quote
an observation made by Unnikrishnan and Prasad (1 2), who
have calculated 1S == 25 excitation cross—secti s for
e~H -scattering in the second order eikonal approx1 ation
(i.e. with the‘Wallace—correctlon) These authors find
that at large angles, their DCS values steadily 1ncrease

with 6, Hence they have reported only upto 9 = 309,
\

8. ) In the precefding discussion, égfluded is
the fact that, our scattering amplitude is con fﬁtent‘only
through O(k2). The picture would change if highkr

: 4 A\
orders of perturbation are included in the scatterypg
amplitudes; This means- that a modified Glauber ampl%ﬁude
(MG) with the present second Born term, should imp%ov%

the present results.
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sy

"~ 9, . | In this dicsussion, it 1s~interest1ng. v

to compare the USBS theory of Byron et al (1982) with
the MG theory of Gien (1977), as both these have explored
the‘higher orders of perturbation., This comparison is

made at 100-&V in fig. 3.6 . The difference between the
MG and the UEBS results arises from theyfacf that, unlike

the Glauber amplitudes £, ', the Wallace amplitudes

Gn
fyn (B 2 2). are comple# and contain both real and
iﬁaginary parts, Both the appnoaches are uﬁdérestimgting
the experimental results, more so‘at.large anéles. The
effect of higher order termsfdwindlés at high energies,
At 100 eV and 200 eV the MG and UEBS results ‘are 20 %
to 30 % lower than the experimental results. At present,
there seems to be no effect which would improve upon ;he-
theoretical results, in order to bring an ~agreement with
expefiﬁeﬁts.'To sum up, we ére led to conclude that the.
HHOB theory is accurate in its predictiohs at ‘small and
intermeéiate angles, l.e. for g < kﬁ‘, in the‘entiré

energy range considered, It appreéiably deviates fro&

other theories and experiments at q > k.

10. : While it would be an ideal thing to have
the scattering amplitude evaluated in the Born series
for all orders, it is an impossible task. So, it is resorted

t0 have higher order tgrms in the Glauber seriesland the
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usefulness of the second Born term is exploited through
_the modified Glauber approximation. Now, the HHOB approach
paves the way for the evaluation of the third Born tefé
relatively easily. Hence in the MG amplitude £;, may

be replaced by Re fé%& .. ‘

3.8 Modifications in the HHOB

3.8.1 A modified Glauber approach

The discussion of the precegding article
naturally leads us to think of possible modifications in
the HHOB theory of Yates (1979). At least in the case of
electron hydrogen atom collisions, there have been quite
a few recent attempts to obtain the scattering amplitude
through all orders k;1 . This point has been often
discussed in connection with egns, (3.61) and (3.62). While
we do not repeat the arguments preceéding those equations,
let us here propose the modified form of the Glauber ‘
amplitude, with the second Born termff the HHOB, instead

of the :ESBZ .

_ One can aski, what motivation do we
have in replacing f_p, of EBS in the well known MG
approximation, eqn. {(3.61), by the present second Born

(2)
term f3oi ? On th?bontrary one can argue that £ o,
is found to be superior to féé& .. A1l the same, in
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writing eqn. (3.61), to remove the drawbacks of the second
Glauber term, there has been an arbitrary digression from
the basic framework of the Glauber theory and use has been
made of an altogether different apparatus, viz that of

the Born theory. Rosendorff (1980) has critisized this.

new Glaube: amplitude with an addition of Re fBam The
advantages of the MG formilation can still be retained
within the Glauber theory by making one change, and that is
to retain the average excitation energy W in the second
term of the Glauber series, Thus, in our proposal, the
first Born term remains in tact, Further, the'Greeﬂ's
function is linearized and the second order amplitude is
obtairied by 'switching on' the .average ekcipation energy
and all higher orderdterms fGn“ are obtained as usual, by
'switching off' the average excitation energy. Now& from
section (3.5), we know that whenever W # O, £g0 15
taken over by Im fé%g and further the first term of the
real part, i.e, Re 1, appears, According to this idea

then, the proposed modified Glauber amplitude should be,

- (2) o e 1 £(2) |
Tngq = fg = fgo * 1 Im fpg) * Re 1.fppy (3.68)
or,  fygq =(fgy* I Tg)) + 1 Imfgpy + Re 1 fipy-
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" Table 306

DCS a?‘ sr-?t for elastic e-H scattering at

200 ev, in the Modified Glauber approaches

Scattering ; ;
angle © : a H b
: (present) :
4o 0.0608 " 0.0708
60 ' 0'.9164 , 0.0187
'90 ' . ' 000048 . 0.0053 ’
120 . 0.0022 . 0.0024
a using eqn. (3.68) of the text.

b using eqn. (3.61) (Gien, 1977).
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where, the last term is the same as Re 1 of eqgn. (3.45).
In a more or less the same spirit, we can propoge, a

new UEES amplitude,
‘ 2 ‘ ‘
flpps = T, = £, * 1 Ih £52) + (Re 1+ Re 2)  (3.,69a)

Tﬂe amplitudes of egns. (3,.68) and (3.69) have the
advantages of their original expressions (3.61) and (3.62)
respectively, Additionally, each term in any one of thenm is
derived under the same basic formulation as already discussed.
At sufficiently small angles, thé results with thesel new
amplitudes are not much different from thoée of the ‘

corresponding amplitudes with - fopo-

Presently we’ have used Gien's (1977)
results and eqn. (3.67) to estimate the ncs from the eqn.,
(3.68) and these modified results estimated in this way
are shown for 200 eV in the table 3.6. The fig. 3.3
shows the‘grabhical ﬁiot (caption, curve D). It is found.
that the DCS obtained by the proposed amplitude £MG1
of eqn. (3.68) are following closely below the MG

results of G&g™ (1977).

The modification introduced by eqn. (3.69) is
not expected to improve the large-angle overestimation of

the HHOB, This 1s because of the large magnitudes of the
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term » Re 2 at large angles, The results therefore,
estimated from eqn. (3.69) are not shown. A careful examina-
tion of the behaviour of Re 2 1is required. Even in the
Wallace amplitude, we can think of the following variant,

fw = £, - £ (Imf%l{ +Ré1f( ) )
+ Re f,wz ‘ (3069b)

Thus, here too, we replace only the term Im fw2 0Y the

term in the bracket,
Qur: aim in proposing the above modifications
+has-been to have a single,theory capébie‘bf serving at least

three purposes as follows :

1. giving all order k;' terms,

2. © yielding a nonsingular imaginary part of tﬁe second
term, and

3. producing a real part in the seéond term

corresponding to the induced polarization of the
target.

Recently, a serious attempt in this direction
' has been' made by Rosendorff (1981). He has evaluated the
real part of the propagator of the second-order amplitude
in the eikonal approximation by an angular momentum

expansion. The new amplitude satisfies the unitarity
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theorem to all orders of the.coupling constant, and is free
from all the shortcomings of the Glauber theory. A very
attractive feature of this work is that, non-zero excitation
energy is retained in all orders expect the first, This
mist be a most superior theory of the day.

i I
3,8.,2 Corrections to the second term| Of the HHOB

It follows'frop the above discussions that
the more important task here is to improve upon the 2nd
Born term of the HHOB theory. Let us recall that the 2nd
term of the HHOB amplitude is derived along the lines of
the Glauber‘theory. An 1mpbrtant~correction to the usual
Glauber approximation is the sécond Erder ﬁhase correction
(Wallace, 1973) in which the straight line trajectory
of the incident particle is modified andssystematiq
corfeptions to the T-mgtrix of eikonal formulation are.
iﬁtrod_uced. TH HHOB, Yates ( 19'79)~ has followed the
Glauber’ formulation and has allowed k., * .k, , eqn.
(3.34), assuming a small angle scattering.'Chaﬁdraprabha
et al (1982) have considered the Wallace-type correction

in HHOB by taking,

_lSn = 1/2 (-lsi + _l_i_f) Ve (3.70)

which offers a better approximation to the particle

[3
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trajectory. For the moment, let us call the following,

our Green's function keeping the other symbols of eqn.

(3.31)

o
fl
N

Then the correction of eqn. (3.70) leads to,

G = 14 vy _ ’ 52 .
C28.k, -ie (28 .k, - &)

" where, y.= 1 - cos (8/2).

Now further, the HHOB anaiysis can be

(3.7%)

(3.72)

'(3.73)

)

made with eqn. (3.72), exactly as done previously, to

calculate the . scattering amplitudes. The term of the

-1

amplitudes éf order ki are modified as follows

W Im fé%i = (1+ 2 In f(z)
And, . . L
wRe 1 £52) = (1% y) Re £$2)

And the terms of 0(ki ) are unaltered by the said

(3.74)

(3.75)

correction. Notably, the trajectory correction is zero
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at © = 0 and quite small at small angles. At 10Q éV!
this correction is shown for the DCS of HHOB between 10°
and 30° in fig. 3.8 . ,

[}

Now' as already mentioned, the term Re 2
is not well behaved at large momentum transfers., Also,
attlafge q, the scattering of electrons is governed by the
static potential of the atom, i.e, the terms with W=0
arerimportantr Further, Byron ey'alvﬁave recently shown

(1982) that in the limit of W = O, the term O(K]%) in

Re iéea goes over to Re f,. Considering all this, it‘
is not a bad approximation to write, . ‘
Re 2 & Re f, ' (3.76)

at large momentum transfers. In other words, it 31mply
means that the original expression (3 55), is valid for
small momentum transfers and 1% should not be stretched to
large momentum transfers, ‘Inclusion of egn. (5 76) can
definitely improve our present results. That this is so,
can be readily seen from fig. 3.7 plotted for 100 &V

with the usual HHOB and the one with the replacement

of Re 2 by Re £, for .a) k;. The eqn. (3.76) Erings
down the overestimation of our previous calculations, B
Now, what is the significance of this change ? If meéns

that only in the first term of the linearized propagator,
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eqn. (3.31), we retain W # 0, to avoid the shortcomings
of the second qrdef Glauber term, The argument of eqn.
(3.76) can also be extended to our previous modification
given throuéh eqn. (3.69), but at least presently, it is
not attempted,

3.8.3 The third Born term

We now turn briefly to the third Born
term of the HHOB (Yates, 1979) which 1s one of the few
serious attempts ever made to evaluate fBB‘ In the HHOB,

we begin with the .expression,

(3) ig.z ()
= = 2 ac e v L
58 === ni’.:n’f ‘ fn

thy.r

J oart e G (z") Vont (z -z')

T w
[ aen S50 0 (2t

.

Vonwy (B =z =2") ~ (3.77)

n"

where, two intermediate-state labels nk,and4 n' and two
dummy variables r' and r* appear, Here again, to

" develop fégg s We define the integral, 'In' through
equation (3.30) and use presently, b
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4 co -ig. =zt '
I, & .2.%:.; Joase OH(EY) Yy (z-z") (3.78)

So that the +third Born amplitude of the HHOB, has a
shape,

f(ﬁ) - 1 f 4d fOOd f dpt © 1 te
HEA = .2 2 P, pt Jdp" [ dp
an.i - -0 2

00 " 3(g =D = D' = D" )b
= « ]

©  -i(p, + D} +1p))Z

X [ dz e
-00
00 ) i( - Y pn ) 7!
X [ dz' e B =P = H(z')
-m
o i(p - M)
X [ dz" e b z H (z") (3.79)
-00 , .

This result makes use of the average energy parameter,

)
*

Also, as done previousgly, the Fourier representation of the
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}

pofentiéls is used and the followihg quantity is defined.

u®) @ 1) =<t | TE T T@ 1> (3.80)
Further if we require the DOS through O(iG® ), we need
only the real part of the third Born term, which in the
HHOB anelysis, splits up into two terms as,

(3) _ £(3) -(3) } ~
Re fppi = fl + f5 (3.82)
Now, for the elastic scattering of electrons by hydrogen

atoms the form of . Uég) is simple, so that the <first

term of (3.82) is expressed as,

(3) _ 2 (. 38 | '

0% =& (~X ) fap S —5

' K7 o 2 (2°+%) (Ja - 2 - 2'{% + 85) »'®
a® 2 ‘ 2

X (- = + - -
S O T T S T L L

(3.83)

1 : 1
+ - 5

)
p2 o+ N gl ea®
To bring about the relation between the present treatment

and the Glauber-eikonal series (GES) of Yates (1974) we
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have to define 2z = 4/A and take B = 0, One would
find then, \
(3) (8 =0) =
£37 (8 =0) a3 (3.84)

With the static potential, we have readily B =0 and
the term f}%{ will reduce to the third term of the
eikonal amplitudé, fEE' In the HHOB third Born amplitude,
we get a term f§3) similar to the third Glauber term,
and also another term, viz, féB) is obtained. Again as

expected, atqg = O,
Re fx%)x. - fg” * fg) =0, (g =0) (5.85)

The important result of Yates" theory is that in the real
. part of the third Born amplftqde, apart from a Glauber-
like term, there is a term viz., f(3),, also 0(k;2).

The expression for the DCS 0(k12 ) with
the third Born term is already given in the eqn. (3.66).
The evaluation of the terms f§3) and f§3) involves a
general integral of the type, | |

dp (1n K
2, nd) - fR( (5 + £5)) (3.86)

‘ 3
I (Z: ny,
. 1t (° + 0z - pf+ nd)
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' This integral is easier for K = 0, With K = 1 and the
special cases ng = 0O as well as n, = n3, the integral

I,' has been evaluated by Singh and Tripathi (1980). For

the third Born terms, quite general cases of I, (XK = 1)
are encountered and the evaluation has been far more

“difficult,

We have also tried to perform numerical
integration of I, (K = 1) but without a reasonable success.,
The recent trends indicate that, rather than trying for
higher Born terms, the attempts are directedxtéwards more

sophisticated 'eikonalizéd' theories.

3.9 Elastic Scattering from Other Atoms

3.9.1  General

The HHOB has been further applied to
e-He scattering (Rao and Desai, 1981) and e-H(Zs)
scattering (Rao and Desai, 1983) and the behaviour, as
discussed in the article 3.7 is observed. These
calculations are open to co#rections suggested in our
previous analysis, In the cése of atoms other than
Hydrogen, an additional source of & error comes from
the use of approximate wave functions, Als&, due to fhe
complexity of wave functions and many target elecfrons

involved in the case of higher atoms, it becomes difficult
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to generalize a method used for e-H scattering, Still
however, employing optical potentials and other methods,
successes have been achieved in the study of elastic |
scattering of electrons from atoms like He, Ne, etc,
Fortunately in some the cases, experimental data are also

available (Jansen et al 1976, Williums and Crowe 1975). .

. For tho alkaii atom (L1, Na etc) targets,
“tinert core approximatlon' consists in considering the
target as composed of the 1ast (active) electron and the
inert core, so as to write the interaction with an '

incident electron as,

V(r , x) = v‘1 + Vv, : (3.87)

With this, the calculations are easier‘

3.9. 2 Electron soattering from C, N and 0 atoms

[ E

The present knowleage about cross-sections
for C, N and 0 - atoms is inadequate, We review here 1n
brief the present state [ of affairs., First of all, one
is. faced with the problem of target wave functions which,
even if accurate, are very difficult to handle. This can
be overcome by the use of static potentials. Strand
and Bonham (1964) expressed the static potential betﬁeenl‘
a neutral atom of charge ‘2! and incident electron as

(1n a.uo) .
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V() = - &(z, (r)/2) ' (3.88)

where, the qﬁagtity Zp (r)/Z was expressed as a éuperw

position‘of Yukewa terms and derivatives of Yukawa terms,
Later, Cox and Bonham (1967) eipressed the potent;al |
completely 1n the superpoéitién of Yukawa terms in.thg .

coordinate of the inc;dént electron, as

n
z

vz = -% %

Y exp (RA;7) 0 (3.89)
where the parameters Yi’hi and. n ere tabﬁla?gd

{Cox and Bonham, 1967). These pérameteré successfully
predict the bound-state properties of the atoms, Originally
these parameters were employed in the'very high'energy
scattering problems, but 1t is not clear upto what 1ower
energy of the projectile they can be applied. With the
static potential of egqn. (3. 89), the first Born amplitude
for the electron scattering by an atom of number 'Z', has

a simple for;n,

zn Yy
£ = 22
B1 i=1 (q2+h§)

(3.90)

In an earlier work, Duncan et al (1972) used the eikonal -
approximation for Oxygen atoms at intermediate and hiéh
energies, Blaha and Davis (1975) have done distorted

wa
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wave calculations for that system, The static potential is
only the first term of the optical potential, which must
inciqde in general the polarization, absbrptién and exchange
terms, Recently, Kaushik et al (1982) have applieﬁ a model

polarization potential having the form,

q ay rg o r4
Vy (r) ==2( + gt (3.91)
dp 20 2+ d2)> P+ d)’
, “with,
d = 0.375K/ % . (3.92)

And o4 and % respecti%elyAare the atomic dipole
and quadrupole polarizabilities. Kaﬁshik et al (1982) have
gsed the moqified Borh approximation to consider the
projecéile-diétértions‘It fails below about 500 ef and
the results of partial w?vg analysiéﬁ?Zmarkably different
from those of other methods, Now we might have attempted
the HHOB to say, electroh Oxygen atom case, No computa-
tional difficulty would arise with the use of the static
potential, But consider a part of eqn. (3.38) for elastic

scattering i.e.
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(2) . __i. L2
firA = B, J 9 ° z

i Q)"‘ " .
<0 |V |n> —i) dz* exp(-ip;, z')

H(z') <n |V | 0> ‘ o (3.93)

Clearly, because ‘of the static potentials, only n =0
remains and the excitation energy pafameter vanishes,
in eqn. {3.93). This will lead to the 2nd term of the
eikonal approximation, Im £E2’

waéver,the exact caleulation of the .
pecond Born amplitude is possible using the Cox and

Bonham potential of egn. (3.89). To do this we define,
U(r) = 2 V(xr) (3.94)
And obtain the second Born amplitﬁde,

= e [ aK <k |U| K>

fpe

1 S
- <EK|U|EK > (3.95)
Z : . [l &

i--l
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Substituting the egn. (3.89) in eqn. (3.95) we find that

the evaluation of the term fBé requires the Dalitz
integral,

11’1 (cy By .151' .}f&f) =[d§

X , . = —
(R - 16)(a® + K - k; |°) (8%+] 5k, 1)

(3.96)

One finds that the second Bofn tefm consists of the

real and imaginary parts @&f follows,

| 42% 4~
I £ = b

{ s
. 12 B \

2 : 2 .2

z ., A (AR 4 4 |

+ 3z -——Z%—-za—-- X i A4 2 (3.97)
£ ky(f =2y | AOF s d )
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2 A
_ . 3. s
Re fpp = "4 x? (x? + 4k§')

2

ac ¥, V. 2k, ok.
Z - ‘3 (‘ban','l Y - tan"'l X—-q‘) (3,98)
27 )\2 }\d ) j

+

In the last two equations, q = O,

The corresponding expressions using the Strand and

Bonhem (1964) potentials are a little more complicated.
Physically; the second Born teérm accounts for the polari-
zation and the absorption effeéts; But in the present case,
we have considered the 'statié' potential, which is

'flat' towards the forward direction, but as energy
increases, it will be more and more accurate. Now, we
use Im £5, to calculate the total cross-section (TCS)
via optical theorem. For C, N and O atoms experimental
data are not available for O °°%, 5o we planned to
calculate this quantity empioying the static potentiais
of Strand and Bonham (1964) (SB) as well as of Cox and
Bonham (CB) (1967) and compare fhemér The quantities

obtained in the present calculations are total elastic

cross-sections (TECS).

The results with SB parameters are higher

than those with CB parameters, We obtained the TECS
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for e-Lli scattering using the (CB) paramters, and -
compared with the results of Guha and Ghosh (1979),
obtained in the FSA (see table 3.7). The agreement between
the two is quite satisfactory and more so at high energies.
Next, in the table 3.? we héve shown the TECS for the
electron- Ox&gen atom scattering, calculated with (CB)
potentials, We include the results of Inokuti and
McDowell (1974a) who have expressed the TECS in the- form,

-2 s
(aki + bki

Wf\)
~
fl

+ a0 (3.99)

These authors have tabulated the parameters a, b and ¢

for various atomic %argets. The results of eqn. (3.99)

are also included in the table 3 8 and a very good agreement
is found eﬁbecially above 100 ev. The CB potentials give

a more reliable value of the quantity than that given by
SB-potentials at all - energies (table 3.8). Towards lower
energies, the actual cross-section mighﬁ be reduced because
of the projectile distortion étc. Finally, in the table

3.9, we have'compared the TCS of electrdn scattering

fromC, N and O atoms, employing ¢ CB pdtentials.

However, in the present calculations,

there is no difference between the TCS and the TECS
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Total Elastic Cross=Sections Cﬁ'aﬁ ) _for e-Li
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scattering

Engigy E P€:§ent ‘ 2 Ghoé?b§1979)
100 3.11 :3.52 :
150 - 2,16
200 1,59 1,60
300" 1.07 -
400 0.80 ' -
500 0.65 -
600 - 0. 54 -
700 0.46 -
800 0.41 -
S00 0.36 -
1000 0.32 -

(a) Using the Cox-Bonham potentials,

(p).

Using the FSA (Ghosh, 1979).
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Table 3.8

Total Elastic‘Cross~Sections$a% )‘fg; Electron-

- Oxygen atom scattering

ey PEame | bt em

100 22,2 30 . 22,00
200 1.7 20 | -

300 . 7.97 7 -

400 6.04 - -— 6,00

500 . . 4,86 13 -

600 4,06 - -

700 3,49 - 3.5

800 3,06 - - -

900 2,73 - - -

1000 2.46 . - 2.5

(a) .Using Cox=Bonham botentialé
(b) . .Using Strand-Bonham potentials.
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Table 3,9

1

Total Elastic Cross-SectiongQa%i_;pr C.'nggd 0_atoms

Oxygen

E?:$§y S Carbon Z Nitrogen E
100 20.0 21.0 22,2
200 10.5 11,1 ST
300 71 7.5 .97
400 5,38 | 5,67 " 6.0
500 32 W56 4,86
(600 361 - 3.8 406
700 300 3.27 349
800 | 2,72 2.87 3.06
. 900 22 2,55 2.73

1000 2.18 . 230 2.46
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tot and it

Actually to get O , Wwe must obtain hﬁz

nel
mist be added to our cross-sectioms. Inokuti (1974b) has
obtalned total e1 inelastic cross-sections for all atoms

from He to Ne,

Now a good theoretical picture can be

obtained by constructing an optical potential

Vopt = Vgg ¥ Vpol *oVops Vexb (3.100)

t

wﬁere, Vo ©of ean. (3.89) and V., of ean. (3.91) can

)
" be employed. In eqn. (3.100) the tzrms are wr;tten in -’
order of their difficulty value, ‘In the case of complex
atoms like Ne, Byron and Joachain (1977) have developed a
| second order potential, by making use of the Hartree-
Fock a wave functioné given by Clementi (1965). Lastly,
an interesting calculs tiong hes been reported by Konaka
(1952) in which a high eneréfulimit of electron atom (or
molecule) second Born term is obtained, without an

explicit use of wave functions., This may. prove to be

quite useful for atoms beyond H, He and Li,

3.10 Chapter Summary, Further Prospects .

The third chapter has mainly dealt with
the elastic scattering of electrons by H-atoms in Yates!

(1979) theory. The basic theory is outlined and calculatimns
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of the DCS and the TCS are compared with theoretical
and experimental data. The HHOB overcomes the Shortcomings
of the 2nd order Glauber amplitude in that, the imaginary
part is finite at & = 0, and a real part of the second

order amplitude exists, This has been made possible by
considering a non-zero intermediate energy loss to the
virtuel target states in the second order amplitude. However,
the evaluation of the third term of the HHOB hgs:remained
problematic and we have to be content with the corresponding
Glauber term, The present DCS are satisfactory for small
and intermediate angles, (q ¢ ki)' but are appreciably
larger than experimental and other theoretical data for

q> k. This,is a major drawback of the HHOB. We have not
tried this theory below 100 ev, -since it 18 a high energy

approximation,

The reasons for the 1arge—angle discrepancy
of the HHOB are discussed. The term O(k ) in the Treal
part of its second order amplitude is responsible for the
same, ModifiéGtions of this theory are studied, Now, in
the energy range, 50 ev - 200 ev, the higher order terms
in the amplitude are also important, hence an amplitude
O(RZZ) is inadequate. The modified Gattber amplitude of
Gien (1977) employs the full Glauber amplituée minus 1ts

second term, supplimenﬁed with the second Born term.
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This procedure is not quite satisfactory. Presently we
propose a better way of removing the ﬁgll—known short-
comings of the Glauber amplitude., It cénsists iﬁ evaluating
the second order term with lineériied Greent's function,

by retalning an average excitations-energy and keeping

the higher order Glauber terms unchenged. The DCS
obtained in this way are not only better than the simple
HHOB results, but they also compared favourably with
recent works, The proposal Jjust mentioned, can also be
extended to the uniterized EBS amplitude of Byron

et al (1982). As a by-product of the discussion, }t becones
clear that, at least at 100 and 200 ev, more accurate
theories tend to fall below the experimental daté,especially

at large angies,

The trajectory correction applied to
the HHOB leads to only a marginél change. Further the
close analogy between Re Zfééz and .Re fﬁz’ is
used here to- rectify the large angle oversstimation

by the HHOB,

Towards the end of the third chapter,
we have turned our attention tq the elastic scatter;ng
of electrons by C, N and O atoms, The TCS for these
atoms are estimated in the ¢ CB and ¢ SB static

potentials and comparisons are made, These are compared
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with Inokuti (1974a). Also, we suggest improvements over
the calculations available in literature, of the TCS

of electron scattering from C, N and O -atoms.

It will be appropriate to point out‘atJ
further prospects of researches to which the chapter

has been devoted, These are as follows 3

1. Going through the chapter, one cannot miss the
delicate issues related to the second order
amplitude in the elastic electron-atom collisions,
Let us point'out here an aspect wh;ch has remained
untouched. In the Glauber approximation as well as
in the HHOB, the iomentum trgnsﬁer is éssumed to
be two‘dihénsional. Gau and Macek (1974-75) have
shown'pow the restriction q, = 0 can be
removed in the Glauber approximation. A similar
treatment 1s required for the '"HHOB also. This

may have its effects on the large angle scattering,.

2, A simple HHOB treatment holds good for smell
and intermediate angles., In this chaptef, we have
shown a way to extend ité reliability to large
scattering angles also, even with DGS< 0(k;2).
This suggestion can definitely improve the
results of Rao and Desai (1981, 1982), which
are derived on the basis of a simple HHOB theary.
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As mentioned,. the present method of
calculating the second Born (HHOB) amplitude
can also be incorporated in the modified
Glauber formulation. Also, the modified
Glauber approximation needs thénknowledge of
the full Glauber amplitude, which 1tsel? is
quite difficult in the case of higher atoms
(z' > 2). In this context, the termwise

' expansion, (Yates, 1974) is still very much

relevant, for complex cases,

= It is found that the calculations with
the following amplitude are reasonably good for
elastlc scattering from H(2S) and Li,

¥

- ' (2) (2)
f= fB1 + 1iIm fHEA + Re 1 £ * Re iwz .

The results are not shown here.

‘While it would be an ideal thing to have the

Born amplitude evaluated to all orders of k11)
1t is an impossible task. Hence, we § resort to
the Glauber series, Now, Rosendorff (1981)

has evolved a Glauber formulation where the
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excitation energy is retained in all orders
beyond the first, More and more applications

of this theory are expected,

The Methods like the HHOB, the EBS or ﬁhe

modified Glauber approximation do not yield

good results below 100 ev, where there is a

considerable variance with the experimental

values at all angles, The reasons aré that,

1) the high energy approximation slowly
becones weaker in that region, and

ii) the distortion of the projectile needs

to be taken into account, -

It will be instructive if a distorted wave

formalism is incorporated in the MG formulation,
between 50 ev and 200 ev, Thus, we need a fheor&

to account for the projectile as vell as target

- distortion, absorption, exchange and also higher

ordérs of perturbation.

The HHOB theory applied here to the
electron scattering may be appliéd to any

charged particle by hydrogen atoms, to surmount

the shortcominés of the Glauber theory. Turning

to higher atoms, there is a need for further
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theoretical and experimental work. There is

a scope of improving our present TECS results

of C, N and O atoms, at least in t}vé ways

(1) by supplimenting our results.with the
total inelastic cross section Oy ., of

' Inokuti (1974b) and

(11) by carrying out thelopticaljmodel

calculations for -these atoms,

Qalculations for ﬁhege atoms have not been
made as yet using the wave functions. Konaka
(19883) has discussed the second Born amplitude
without the explicit use of the wave—funcéions

of the target.



