
(2b«pte*-2

formal S**te

Conductivity

of

Cuprate Superconductors



CHAPTER-II

NORMAL STATE DYNAMICAL CONDUCTIVITY

OF

LAYERED SUPERCONDUCTORS

In this chapter^ we performed a model calculation of normal state 

macroscopic and microscopic dynamical conductivity for layered 

superconductors which consists of one and two conducting layers per unit cell, 

in the long wave length limit. Our calculation incorporates; (i) weak tunnelling 

of current between the layers, (ii) strong electron-electron interactions which 

remits in frequency and temperature dependent transport relaxation time and 

(iit) optical phonons which contribute to dynamical conductivity in infra-red 

frequency regime. Both a-b plane and c-axis dynamical conductivity are 
calculated for longitudinal as well as transverse component of the field. It is 

found that both intralayer and interlayer interactions contribute to dynamical 

conductivity of a layered superconductor. Our computed macroscopic 

conductivity as a function of frequency and temperature shows good agreement 

with experimental results on YBa2Cu307. hi agreement with prior reported 

detailed numerical calculations, our model calculation of c-axis conductivity 

also shows a broad peak (which is attributed from tunnelling between layers) in 

infra-red frequency regime. We find that there exist one and two plasma modes, 

respectively in normal state of layered superconductors consisting of one and 

two conducting layers per unit cell, both in a-b plane and along c-axis. On the 

other hand, several transverse electric modes are found to exist in a layered 

superconductor. One of the two plasma modes, in a layered superconductor
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having two conducting layers per unit cell, is found to exist for wave vector 

values larger than critical value determined by intrinsic parameters of the 

superconductor. The complex frequency which describes a plasma mode or a 

transverse electric mode consists of large imaginaiy part as compared to its real 

part The frequency and temperature dependent transport relaxation time which 

is needed to obtain a good agreement between theory and experiments, leads to 

larger imaginary part of complex frequency and the broad peaks in microscopic 

dynamical conductivity.

2.1 INTRODUCTION

The cuprate superconductors (CS) possess layered structure with 

extremely pronounced anisotropy. Intensive investigations have focused on how 

the layered structure of CS determines and affects their properties [1]. During 

early stage of investigations on CS, it was believed that their properties can be 

described in terms of the properties of two dimensional system, because of high 

anisotropy along c-axis. However, recent experimental as well as theoretical 

studies on CS reveal that there is an interaction between the layer, which gives 

rise to a possible charge transfer along c-axis [2-11]. The c-axis properties are 

found as important as a-b plane properties in understanding the anomalous 

behavior of normal state and the mechanism of superconductivity in oxide 

cuprates. In fact, charge transport along c-axis of CS has been one of the 

mysteries of these materials. Measurements of conductivity in CS show that the 

electronic transport along c-axis is very different in character from die electronic 

transport in a-b plane [2,3,6]. There have been speculation about the source of 

this difference. One school of thought believes that the unusual c-axis transport 

is due to a metallic ground state with some unconventional tunnelling between 

the layer, which gives rise to the charge transfer along c-axis [4-9], It has also 

been claimed that unusual c-axis transport is evidence for some non-Fermi-
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liquid like ground state with Cu02 layers. Recent angle-resolved photoemission 

[12] and time-resolved optical photomodulation [13] data suggest that some kind 

of gap may be present (at least for parts of Fermi surface) for charge excitations 

in underdoped CS. Measurement of c-axis frequency-dependent conductivity 

above T0 reveal a definate pseudogap in underdoped CS. Significant 

supercurrent along c-axis of underdoped YBa2Cu307^ has also been observed 

which contradicts the idea of absence of coherence between different Cu02 

layers in CS. Conductivity in a-h plane has also been measured in different 

frequency (©) and temperature (T) regions. Optical conductivity date in a-h 

plane have so far mainly been discussed in terms of a extended Drude model 

with ©-and T-dependent scattering relaxation time, x(ra, T) and charge carrier 

effective mass m*(©, T) [14,15]. The a-b plane normal state conductivity 

exhibits larger spectra! weight at high frequency than would be present from a 

Drude formula with ©-dependent x(©, T). It has been suggested that this 

behavior reflects a two component charge carrier picture above a certain 

crossover temperature [16]. Other special features in conductivity of CS are; (i) 

similarity in the ©-dependent behavior of conductivity in microwave and infra­

red region below and above Tc and (ii) a broad peak in temperature dependent 

microwave conductivity.

Another important aspect, which involves the dynamical conductivity of 

a system, is propagation of electromagnetic (EM) waves. There have been 

several experimental and theoretical studies on plasmons in normal state of CS 

[17-20]. Proposed mechanism of superconductivity via exchange of plasmons 

has motivated the study of plasmons in CS. Propagation of transverse 

electromagnetic (TEM) and longitudinal electromagnetic (LEM) modes have 

been studied theoretically in metallic superlattices which have been taken as a 

model for high Tc superconductors [21]. It was concluded that the photon line
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separates the TEM and LEM modes in a metallic superlattices and a single 2D 

metallic sheet cannot support the propagation of TEM modes.

The aim of this chapter is to understand some of basic aspects of normal 

state conductivity in a simple manner. Our simple model calculation of normal 

state conductivity take into account weak coupling between the conducting 

Cu02 layers in order to allow charge transport along c-axis. It also uses ©-and 

T-dependent t. We calculate macroscopic and microscopic longitudinal and 

transverse conductivities in normal state of CS consisting of one and two 

conducting layers per unit cell. Frequencies of longitudinal electronic collective 

excitations (plasmons) and of transverse electronic collective excitations (also 

known as transverse electric) modes are calculated from microscopic 

conductivity. The macroscopic conductivity is expressed in terms of bare 

susceptibility and it relates the current density to macroscopic field. Whereas, 

microscopic conductivity is expressed in terms of screened susceptibility and it 

correlates current density to externally applied field. Our calculation is applied 

to La2-xSrxCu04 (LSCO) and YBa2Cu307 (YBCO) by modelling them as a 

layered structure with one and two conducting Cu02 layer per unit cell, 

respectively. Tunnelling between conducting layers is taken into account 

through angle particle energy and Coulomb potential. A tight binding type 

energy dispersion allows the possible chaise transfer between the layers. It is 

further assumed that conducting layers are embedded into an anisotropic 

dielectric host medium. The contribution of lattice vibrations to dynamical 

conductivity is incorporated through a phenomenological background dielectric 

function. The frequency of lattice vibrations along a~h plane and along c-axis 

are taken to be different. It is found that the frequency of an electronic collective 

excitation mode along a-b plane is much higher than that along c-axis. The soft 

electronic collective excitation modes exist along c-axis, whose frequencies are 

comparable to those of optical phonons. Our calculations of longitudinal and
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transverse conductivity and polarizabilfy are given in section-2.2. The d. c. 

conductivity is described in section-2.3. Conductivity along a-b plane and along 

oaxis are given in sections 2.4 and 2.5, respectively.

2.2 LONGITUDINAL AND TRANSVERSE CONDUCTIVITIES

Application of an electromagnetic field produces induced charge and 

current densities in a system. On combining Maxwell’s equations with equation 

of continuity, dynamical longitudinal and transverse conductivities are given by 

[22,23]

aL(r, s', oo) = J[eL(r, r", a)]'!o0L (r", r\ co) dV (2.1)

and

crT(r, F, co) = J F*(r, F\ co) a°T(r", F, o) d3 Fr. (2.2)

The ctl(<7T) is longitudinal (transverse) microscopic quasi-conductivity, whereas 

is macroscopic longitudinal (transverse) conductivity. eL(r, F, co) and 

F(r, F, co) are response functions for longitudinal and transverse fields, 

respectively. The F(r, F.eo) is defined as [22]

F(r, F, co) = 8(r - F) - (ico/c2}[G(r, r", co) oV, F, co) dV, (2.3) 

where c is velocity of light and

41



exp{ ik| r - r'|}
Gfci'.o)- -------------------- (2.4)

Ir-r'i

is proper Green function and k = co/c. In non-retarding limit, which is of our 

interest for longitudinal field, sL(r, tf, co) is given by [23]

eL(r, r', <o) - £,(<») 6(r - r>) - JaL(r, r", a>) v(r", r') dV , (2.5)

where aiXaj) is polarization response function for longitudinal (transverse) field 

in absence of bare Coulomb electron-electron interaction

e2
v(nO= --------- (2.6)

fr-r'1

Bi(fl>) is the lattice dielectric function which consists of lattice vibrational 

frequencies. Existing theoretical and experimental investigations suggest that 

there are several optical and acoustic phonon branches in CS [24]. In this study 

of conductivity, our focus is on electronic transitions in CS. We therefore take 

into account only the optical phonon to express si(o)) in following simple form;

l [cou2-o(co + iyPh) ]
ei(co) = eJlY---------------------------- . (2.7)

i=l [®ti2 - ®(© + iyPh)3

The 8W is high frequency dielectric constant The cou (cdtD is the longitudinal 

(transverse) phonon frequency of i* branch. yph is the damping constant for

lattice vibrations, which is taken same for all phonon branches. We assumed that
\

our model CS is a one-dimensional (ID) periodic sequence of two-dimensional
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(2D) conducting planes (2DCP) embedded in a dielectric host medium 

represented by ej(cd). The a-b plane of our model CS is taken along x-y plane, 

whereas e-axis is taken along z-axis. The length of unit cell is denoted by d. We 

Fourier transform Eqs. (2.1) and (2.2) using continuous transformation in x-y 

plane and a discrete transformation along z-axis to obtain

0-°mL(q, K », T)
0-mL(q,fc2,<»>T) =-------------------- (2.8)

Bjn (q? kz, to, T)

and

<5°mT(q, kz, CD, T)
Omr(q,kz,cD,T) =---------------------- (2.9)

Fm(q, kz, o), T)

where index m takes value 1 and 2 for CS consisting of one 2DCP and two 

2DCP per unit cell, respectively.

CT°i/r(q, kz, co, T) = (-ico 14%) [EL/r(q, kz, <x>, T) - 1 ] (2.10)

8i(q, kj* ©, T) = eL(q, ka co, T) (2.11)

Fi(q, kz,co, T) = 1 - (co(co+iy)d/2pc2}S(p, kz){sT(q, kz, co, T) - 1} (2.12)

where q and kz are wave vector components along a-b plane and c-axis, 

respectively. The S(p, kz) and £Lci(q, kz, cd, T) are defined as

sinh(pd)
S(p, k2)=------------------------- (2.13)

cosh(pd) - cos(kzd)
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ei/r(q> kz, ©, T) = 6i(©) - {27ce2d/q}aL/r(q, kz, to, T)S(q, kz) (2.14)

Here, p = [q2- ©2/c2]1/2 for qc > co and p = -i[©2/c2 - q2]I/2 for qc<©. S(q, kz) is 

obtained from Eq.(2.13) on replacing p by q. For CS consisting of two 2DCP per 

unit cell, we obtain

cr02t(q, kz, ©, T) =

a°iL(q, K ©, T)[2-{2TO2d/qei(co)}aL(q, ©, T){2S(q, kz) - S'(q, k2) - S"(q, kz»]

(2.15)

s2(q, kz, ©, T) = ei(©) - [{47ce2d /q}aL(q, kz, ©, T)S(q, k2)]

+ [{27ce2d/q}2/si(©)]a2L(q, kz, ©, T){S2(q, kz) - S'(q, kz) S"(q, kz)>

(2.16)

kz, ©, ry=
o0ii(q, kz, ©, T)[2 -{2TCi©d/pc2}<T°1T(q, kz, ©, T){2S(q, kz)-S'(q, kz)-S"(q, kz)}]

(2.17)

F2(q,kz,©,T)=

[1- {©(©-4y)d/pc2} {eT(q, kz, ©, T) - l}S(p, kz)]

+ [{©(©+iy)/2pc2}{eT(q, kz, ©, T) -l}]2[S2(p, kz) -S'(p, kz)$"(p, kz)]

(2.18)
\

The S’(p, kz) is defined as
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sinh(pd) + exp(-ikzd)sinh(pdi)
S'(p, k2) =------—---------------------------

cosh(pd) « cos(kzd)
(2.19)

where d* = d - di, di is separation between two 2DCP in a unit cell of CS 

consisting of two 2DCP per unit cell. The S (p, kz) is complex conjugate of 

S(p, kz). S(q, kz) and S”(q, kz) are obtained from S(p, kz ) and S(p, k2), 

respectively on replacing p by q. In obtaining Eqs. (2.12) to (2.14), we have 

considered a weak coupling between 2DCP. In case of CS, conducting layer 

consisting of electrons in much smaller than the separation between the layers. 

Therefore, there is a small transfer of charge between conducting layers.. 

Possible charge transfer between conducting layers of a CS is also to be 

introduced in ai/r(q, kz, co, T) through single particle energy involving half 

width of a miniband (W) and the wave functions [25,26]. In order to understand, 

in a simple manner, the experimental results on electromagnetic response of a 

CS, we restrict ourselves to long wave length limit of ai/r(q, kz, co, T). In long 

wave length limit, <xl = aT. For weak coupling case (W«Ff ,.Ef being Fermi 

energy of 2D surface) a simple form of ai/r(q, kz , ©, T) in long wave length 

limit can be given by [26,27]

«q2 4©g2 sin2(kzd/2)
h T) = [—[ 1 +---------------------- ], (2.20)

m*co(co+iy) coP2 (qd)2

where cop:={47t«e2/m*}1/2 is usual plasma frequency. The n is number of electrons 

per unit volume and y is damping constant for electronic transitions. The y has
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been found co and T dependent in CS. A simple expression, which very well 

describes asymptotic behavior of y in CS, is given as [28]

y = 8 itf + m2]112 (2.21)

where 8 and 3 are the constants which depends on nature of electron-electron 

interaction in CS. 8 is independent on T, whereas (3 depend on T. % depends 

upon d, the effective Bohr’s radius a*=ii2/m*e2 and overlap integral between the 

wave functions of adjacent layers (i.e. W). In case of very small overlap of wave 

functions on adjacent layers (weak coupling, 2W«EF, as is the case for CS), cog 

is approximately given by [25]

■ifc&g = W{2d/a*}1/2. (2.22)

The (og does not appear in single particle energy but it appears in 

aLn(q, kz, w,T). Therefore, it represents a pseudogap whose presence at Fermi 

surface has been suggested by angle-resolved photoemission [12] and time- 

resolved optical modulation [13] experiments. The o-1L(q, kz, co, T) exhibits peak 

form close to confq, kz) which is given by the real part of zero of s(q, kz, go, T). 

coiiXq, kz) is the frequency of plasma oscillations. Computation of couXq, kz) as a 

function of q for -1< cos(kzd)<l gives rise to a full band of plasma frequencies. 

The lower edge of the band, which occurs for cos(kzd) = -1 approaches to 

g>s{U2(1/Ac- 1/A2c»1/2, whereas upper edge goes to cop{ 1/2(1/Aah - l/A2^)}12, 

where Aa£={l+8a62}1/2 and Ac ={1+8C2}1/2 for q-»0. 6ai(3«fr) and 8XP<>) are the 

values of 8(3) along a-b plane and along c-axis, respectively. The S„6(3as) and 

8cOc) differ from each other because of the difference in strength of electron- 

electron interaction along a-b plane and along c-axis. Also, the T-dependence of 

3^ and f3c are different, y is roughly proportional to co at higher co-values. As has

46



been discussed at several places in existing literature, tunnelling between layers

introduced an energy gap at lower part of plasma spectrum of a superlattices
&

[26,27]. Therefore a superlattice structure with tunnelling between layers can not 

support acoustic plasmons, for qd«l.

2.X THE D.C. CONDUCTIVITY

The deduced d. c. conductivity from our formalism, we take qd-*0 and 

kzd-»0 limit of Eqs. (2.10) and (2.15). For qd-»0, both <j°2L(q, kz) and 

CT°2r(q, k2) reduces to 2o-°1L(q, kz) as can be seen from Eqs. (2.15) and (2.17). 

From Eq. (2.10), we obtain

m2 q2 + (cog2 /<DP2) kz2

ad(q, kj. cd, T) = {-------- }{---------------------- } + {-i(o/47i}{ei(co) -1}. (2.23)
my (q +kz").

The d.c. conductivity in a-b plane (kzd=0 ) is

ne2
{_-----, (2.24)

whereas d.c. conductivity along c-axis is obtained by putting q = 0 in Eq. (2.23) 

<%2

OdC={-~---------}- (2.25)
4%Scpc

Equation (2.24) and (2.25) are used to determine T-dependent of $ab and pc. 

.Experimental measurements on pab and pc as a function of T suggest that one 

can take pa* = Xabl and pc = A/T, where Kb and K are independent of T
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and © [29]. The anisotropy ratio of resistivity (pc /pa*), using (2.24) and (2.25) is 

given by

P./P,* - {<B,V(Dp2 }{8o4W 5AJT2 (2.26)

Equation (2.26) can be used to estimate o},i{8,*7^/6c7.}!/2 by using 

experimentally measured value of (pc/p„j) and ©p at given T-value. (pc /pah) has 

been found reasonably high for CS. One can take (pc /p«&) = 150 for LSCO at 

T=40K and (pcIpah) = 200 for YBCO at T=100K [29]. The electron-electron 

interaction within a-b plane is stronger than that along c-axis. y, in our 

calculation, is a measure of strength of electron-electron interaction. This 

suggests that jab>jc at given values of © and T. Further, ©g which is the measure 

of coupling between conducting layers, should be smaller than ©p. In view of 

this, we choose y«$/yc = 5.0 at ©=0. As pc is high yet never infinite, our 

Eq. (2.26) justifies the existence of ©g in CS. This can be taken as an 

experimental evidence for charge transfer along c-axis in CS.

2.4. CONDUCTIVITY IN a-b PLANE

The a-b plane conductivities are calculated by substituting Eqs. (2.20) 

and (2.21) into Eq. (2.10) and (2.15) and then taking kzd -» 0 limit of Eqs. (2.8) 

to (2.19). Equation (2.20) for a-b plane conduction, reduces to

»q2
a*b(q,<»,T) = ------------- . (2.27)

m*©(©+iyoft)
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LSCO is modelled as CS consisting of one 2DCP per unit cell in terms of 

following value of parameter: ©P=T.308 eV, ©g=0.238 eV. £*,=5.0, 8ai= 0.55, 

7w=0.80 mev/K and d=13.25 A0. To model YBCO as a CS with two 2DCP per 

unit cell, we take ©p= 1.315 eV and ©g = 0.239 eV, 8^=4.0, bab =0.55, Xab=0.4 

meV/K, d=l 1.67 A0 and di~d/3. The yab is given by Eq. (2.21) on replacing 5 by 

bah and (3 by XabT. To compute ei(eo) for a-b plane, £"*(©), for LSCO and 

YBCO, we used calculated optical phonon frequencies reported by Parade 

etal.[24]. The reported values for LSCO are; ©u~81.80 meV, raL2=48.37 meV, 

©13=18.69 meV, ©xt= 80.56 meV, o>T2=44.62 meV and ©b=16.73 meV. And, 

for YBCO ©Li=67.35 meV, ©L2=58.25 meV, ©13=42.38 meV, ©L4=29.62 meV, 

©ti= 67.42 meV, ©T2=48.96 meV, ©b“35.94 meV and ©t4=29.50 meV. yPh=0.2 

meV has been taken for both LSCO and YBCO. The values of ©p, ©g, bah and 

Xab are chosen to reproduce experimentally measured values of pjpab, using 

Eq. (2.26). Also, value of ©p is consistent with reported experimental value of 

plasma frequency in LSCO and YBCO [29].

2.4.1 Macroscopic Conductivity

Macroscopic conductivity for CS consisting of two 2DCP per unit cell is 

given by Eqs. (2.15) and (2.17) for longitudinal and transverse field, 

respectively. Both cr°2L and ct02t are contributed by intralayer as well as 

interlayer interactions. The contribution of interlayer interactions is given by the 

second term inside the' square bracket on right hand side of Eq. (2.15) and 

(2.17). For kz->0, contribution of interlayer interactions is roughly proportional 

to q2 for © close to zero and it is almost zero at higher ©-values for all q-values. 

It is found that the maximum contribution from interlayer interactions is less 

than 6% of intralayer interactions for long wavelength case. The macroscopic 

a-b plane conductivity for LSCO, cAa^q? ©, T) and for YBCO, o°2aj(q, ©, T)
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are obtained from Eqs. (2.10) and (2.15), respectively on substituting Eq. (2.27) 

in (2.14) and (2.15) and then taking kz-»0 limit. Our computed Recr0iai(q, ©, T), 

real part of ar0iai(q) ©, T), is plotted as function of © for qd=0.005, in Fig. 2.1 for 

three different value of T. As can be seen from the figure, increase in 

temperature decreases Rea°iai(q, co, T) in lower range of © (oKA^T), whereas 

Reo°ia&(q, co, T) increases with T in middle range of <o and then it become 

independent of T for /WT«©. The variation of ReoVsCq, T) versus T at 

qd=0.005 for two values of © (10 meV and 60 meV) is shown in inset of 

Fig. 2.1. As is seen, Re cf°iab is approximately proportional to 1/T for ©=10 

meV. It is an expected behavior of Reo0^ because of linear T-dependence of 

pab. However, at © -60 meV, Reor0ia$ shows a broad peak located in the range of 

T-vaiue, where X^T is comparable with ©. The peak resembles with the 

experimentally observed peak in macroscopic conductivity as a function of T 

below Tc in YBCO at given ©-value in microscopic frequency regime.

Our computed Recr^^q, ©, T) is plotted as a function of © at qd=0.005 

for three different values of T. The general behavior of Re <s°2ab(% ©, T) versus 

© is similar to that of ReoVs(q, ©, T). The over all nature of our computed 

Reo°2aj(q, ©, T) as a function of © at different temperatures agrees with the 

experimentally measured real part of macroscopic conductivity as a function of 

© at different T [30]. This supports our choice of y given by Eq. (2.21). A small 

peak near about 35.85 meV can be seen in Fig. 2.1 and 2.2. This peak belongs to 

phonon modes which are incorporated in our calculation through 8iab(©). The 

plot of our computed Recr^^q, ©, T) for © > 25 meV at T=T00 K and qd=0.005 

along with the experimental data [31] is shown in the inset of Fig. 2.2. As is 

seen, our computed Reo°2di(q, ©, T) shows very good agreement with 

experimental data for 25 meV<©<60 meV. The experimental data also show a
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Fig. 2.1 Plot of Re a0iai>(q, o), T) as a function of © for T=40 K (dot- 
dot curve), 1-70 K (desh-desh curve) and T= 100 K (solid line curve) 
at qd= 0.005. Inset shows plot of Re cT°ittb(q, o>, T) as a function of T 
for ©=10 meV (desh-desh curve) and ©=60 meV (solid line curve) at 
qd=0.005.



Fig, 2.2 Re cr02ab(q> co, T) is plotted as a function of © at qd=0.005 for 
T=100 K (solid line curve), T=200 K (desh-desh curve) and T= 300 K 
(dot-dot curve). Comparison of our computed Re o°2ab(q> ©, T) at 
qd=0.005 and T=100 K with experimental results (desh-desh curve) is 
shown in the inset.
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small peak for co close to 30 meV, which we believe as due to latticevibrationsirf t:.

The discrepancy between our calculation and experimental data% higher t <?y 

©-values (©>60 meV) is because of exclusion of interband transitions

calculation. As has been pointed out interband transition significantly contribute 

to ©-dependent conductivity at higher frequency [16], Our computation of 

Rec°2»6(q, ©, T) as a function of © for different q-values at a fixed T-value 

shows that Rea^Cq, ©, T) decreases on increasing q at all ©-values.

2.4.2 Microscopic Conductivity

The a-b plane microscopic conductivity is obtained by taking kz-»0 limit 

of Eq. (2.8) and (2.9). o^q, ©, T), where m takes value 1 and 2 describes 

optical conductivity in a-b plane when qd«l. We find that for ©<©p, 

tvKq, cd, T) s a°mT(q, ra, T), whereas amL(q, ©, T) « a°mL(q, ©, T). This is 

because of the severe screening of longitudinal component of field and no 

screening of transverse component of field for ©<©p. The propagation of plasma 

oscillations (also known as transverse magnetic TM modes) in a-b plane are 

studied by calculating complex zeros of em(q, ©, T). Whereas, propagation of 

transverse electric (TE) modes in a-b plane studied by calculating complex zeros 

of Fm(q, ©, T). The solution of the si(q, ©, T) = 0, when © is much larger than 

any of ©u(©Ti) and it is comparable with ©p, gives

2o>o2-(6Ai)!!±2i6„#{<DoW+P»»2)+8«520»64/4)}1/2
">ip,b(q,T) = [---------------------------------------------------------------------- f2,

2(1 + &J)

(2.28)

where
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(2.29)
©p2(qd) sinh(qd) 

2e» cosh(qd) -1

For qd«L, eoo = ©p/Vs*., which is much larger than when T<100 K, 

©lp**(q) can be simplified to

®i*(q)-®o[l + i8aJ1/27[l+Sa62]1/2 • (2.30)

The Re©ipaJ(q) gives the real part of frequency of plasma oscillations, whereas 

-Imcoip^fq), imaginaiy part of frequency of plasma oscillations, is the measure 

of damping of plasma oscillations. As is obvious from Eq. (2.28), -lm©ipa&(q) is 

not veiy small, as compared to Re©ipai(q), it is 27% of Re©ipofc(q) for 8aA=0.55 

and poj=32.0. This results in a broad peak in ReoiL(q, ©, T). It is important to 

notice that ©-and T-dependence of yab and above mentioned values of 8ab and 

pa* are needed to explain experimentally observed behavior of normal state 

macroscopic conductivity as a function of © and T, within our formalism. 

Further, we relate dab and \ab to electron-electron interactions in our model 

calculation. We therefore can conclude that larger value of -Immjp^q) is 

manifestation of electron-electron interactions. -Im ©ipai]/[Re ©ipfl&3 increases 

on increasing T and it can approach unity at very high temperatures, as can be 

seen from Eq. (2.28). This suggests that at very high temperatures plasma 

oscillations may not remain well behaved and the peak in -Im[l/£i(q, ©, T)] will 

disappear. Our computed -frn[l/Ei(q, ©, T)] is platted as a function of © at 

qd=0.005 for three values of T (40 K, 70 K and 100 K) in Fig. 2.3. As is seen, 
peak position in -Im[l/ei(q, ©, T)], which appears at ©=Re©ipfl6, remains almost 

unchanged; However, peak height decreases marginally on increasing T. Peaks
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which correspond to phonon frequencies are not seen here because of their 

suppression due to the screening of longitudinal component of field. In order to 

see how plasma oscillations in CS like YBCO differ from those in CS like 

LSCO, we solve S2(q, o>, T) = 0 for qd«l when si(fo) is replaced by s*. We 

obtained two values of co for which S2(q, ffl,T) = 0 is satisfied,

©2p+(q,T)=[-
4cop2- + 2eop2pa&2- 8flA2|V/4) }m

»] 1/2

2(1 +

(2.31)

©2P (q, T) - [■
2Z2- (SA)2 ± 2i8ai{Z4 + Z2 }1/2

2(1 + dab2)

(2.32)

where Z=(qdcOp/3). ©2P (q) behaves like coip^q) except that the magnitude of 

real and imaginary parts of CD2p+(q) are larger than those of G>iPoJ(q). We again 

find that imaginary part of a>2P+(q) is approximately 27% of its real part, as is 

taken 0.55 for both LSCO and YBCO. The co2p(q) is caused by interlayer 

interactions in YBCO, which has two 2DCP layer per unit cell. An interesting 

information is provided by Eq. (2.32). As can be seen, (0% (q) has non-zero real 

part for which suggests that there exists a cut-off q-values,

qc=(3 S<jjpaj/(Gpd). For q<qc, plasma mode of frequency ©2p (q) does not 

propagate. We further find that for q > qc, oa2p' (q) is roughly proportional to 

(q -qc ) . This further suggests that there is no possibility of observing soft 

acoustic plasma modes in any of CS as has been observed in several 

experiments performed to measure plasmons in normal state of CS. With die use
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Fig. 2.4 Plot of -Im[l/s2 (q, to, T)J as a function of co at T=10() K for 
qd=0,005 and 0.1(desh-desh curve) and qd=i.O (dot-dot curve). Two curves 
of-Im| l/e2(q, o). T)| for qd-0.005 and 0.1 merges with each other.



Fig. 2.5 Plot of - Im[l/Fi (q, ©, T)] as a function of © at qd=0.005 for 
three values of T(40 K, 70 K and 100 K). Three curves merge with 
each other for all values of © except © close to peak position.Peak 
height increasing with increase in temperatuire.



-Im[l/Ei(q, to, T)], -Im[l/Fi(q, co, T)] exhibits sharp small peaks in low 

frequency regimes, which belong to phonon modes. The peaks representing 

phonons are seen in Fig. 2.5 because of almost no screening of transverse field 

for to < (Op.

Solution of F2(q, co, T) = 0 for co as a function of q and T gives complex 

frequency of TE modes which can propagate in normal state of YBCO. Again, 

like the case of LSCO, there exist large number of TE modes in YBCO. Unlike 

the case of TM modes, there does not exist any TE mode in YBCO whose 

frequency goes to zero at q=qc. Real and imaginary parts of frequency of a TE 

mode, which has smallest frequency, o>2ts(q) among all TE modes existing in a 

CS like YBCO, are plotted as a function of q in Fig. 2.6 at T=100 K. As can be 

notice from the figure, both Rea>2ts(q) and Imo>2ts(q) vary almost linearly with q 

and {Imco2ts(q)/Reco2ts(q)}s26% at all q-values. For q->0, oo2ts(q), can 

approximately be given by

£ <0,{2(l-HSt*) / (2&.-1XHV)}1'2 • (2-33)

For qd < 0.001, both Retoats(q) and Imcoats(q) become almost independent of q, as 

is seen in inset of Fig. 2.6. Other TE modes exist at very high oo-values. The real 

part of the frequency of next TE mode in YBCO is approximately equal to 

286.15 eV.

2.5 CONDUCTIVITY ALONG c-AXIS

The oaxis conductivities are calculated by substituting Eqs. (2.20) and 

(2.21) into Eqs. (2.10) and (2.15) and then taking q-»0 limit of Eqs. (2.8) to 

(2.19). Eq. (2.20) for q->0, reduces to
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Fig, 2.6 Real part (solid line curve) and imaginary part (desh-desli 
curve) of a>2p,(q> T) and 0)2p' (q, T) are plotted as a function of qd at 
T= 100 K, Inset shows the curves for qd->0.
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(2.34)
G>g2 sin2(kzd/2)

ac(kz, co, T) = ------------ ---------.
ne2d2© (©+iy)

yc is given by Eq. (2.21) on replacing 8 by 8C and (3 by \JT. We take 8C= 0.11 

and Xc= 1280 mevK for LSCO and 8C=0.11 and Ac=4000 meVK for YBCO. 

Values of phonon frequencies to compute 8i(©) along c-axis, e* (co), are taken to 

be coli = 52.43 meV, ©^=25.78 meV, ©l3= 18.59 meV, coTi = 46.48 meV, 

00x2= 19.95 meV, 13.50 meV for YBCO and ooLI= 76.74 meV, ©u= 57.63 

meV, ©Ti=61.22 meV, ©T2= 30.00 meV for LSCO [24]. The e]c(co) is needed to 

calculate macroscopic and microscopic conductivity along c-axis.

2.5.1 Macroscopic Conductivity

The c-axis macroscopic conductivity is given by Eq. (2.10) for LSCO and 

by Eq. (2.15) for YBCO on taking q-»0 limit and by making use of Eq. (2.34). 

The c-axis macroscopic conductivity for LSCO, o°ic(©, T) is found independent 

of kz, whereas that of YBCO, a°2c(kz, co, T) depends on kz. Our computed 

Rea°ic(oo, T) is plotted as a function of oo in Fig. 2.7 for three values of T (40 K, 

70 K and 100 K). Like the case of Recr°ia*(q, co, T), Re<j°ic(<», T) decreases on 

increasing to for co not close to phonon frequency, as can he seen from the 

figure. However, Reo°ic(co, T) shows: (i) linear T-dependence for co close to 

zero, (ii) magnitude of Recr°lc(co, T) is smaller than that ofRetj°JaA(q, to, T) for to 

smaller than phonon frequency and (iii) large height peaks which correspond to 

lattice vibrations, because of yc < yab- The behavior of Reor°ic(co, T) with T at

co =1.0 meV and at oo = 8.0 meV found similar to that of Re0°iaj(q, co, T) versus
\

T at ©=60.0 meV and ©= 10.0 meV, respectively. This can be understood in 

terms of T-dependence of pc and pThe behavior of our computed
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Fig. 2.7 Plot of Re o' ic(©, 1) as a iunction ol © for T^dO K(dot-dot 
curve), T—70 K (desh-desh curve) and 1=100 K (solid line curve).



Rea°2c(kz, ©, T) versus © and T at given kz value is found similar to that of 

Rec0!^©, T) with © and T.

2.5.2 Microscopic Conductivity

The microscopic conductivity along c-axis is obtained from Eqs. (2.10) 

and (2.15) by taking q—>0 limit. As is obvious, a transverse field can not be 

confined to a single direction, c-axis conductivity can therefore not defined. 

Therefore, we computed, cr!Lc(©, T) and cy2LC(kz, ©, T), c-axis microscopic 

conductivity for CS like LSCO and YBCO. respectively. oilc(©, T) is 

independent of kz, whereas o2LC(kz, ©, T) depends on k2 because of contribution 

of interlayer interactions to o2LC(kz, ©, T). Similar to the case of s2(q, ©, T), we 

obtained two plasma frequency on solving e2(kz, ©, T)=0 for © as a function of 

kz. Frequency of lower plasma mode is approximately given by Eq. (2.32) on 

replacing 5ab and pai by 8C and pc, respectively and then taking

Z2 = ©g2/Eo0 [1 - (1- 8sin2(kzd/2)/9}1/2] (2.35).

This suggests that lower c-axis plasma mode can exist for kz > k^ where

k^ = {2/d} sin1 [9/8(25£r2pc2Eo0/©g2 - (5c%2eJ ©g2)2}]1/2 (2.36).

On substituting values of 8C, pc, s® and ©g, we find that lower c-axis plasma 

frequency is non-zero for kzd > 0.11. Our computed Reo2LC(kz, ©, T) as a 

fimction of © is plotted in Fig. 2.8, for kzd=0.005, 0.1 and 1.0 at T=100 K. 

Large and broad peak represente the upper c-axis plasma mode, whereas one of 

the small peaks in low frequency regime (©<500 cm'1) belong to lower c-axis 

plasma mode. Other small peaks in low frequency regime belong to lattice
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Fig. 2.8 Plot of Re a2c (kz, co, T) as a function of o> at T=100 K for 
kzd=0,005 and 0.1(dot-dot curve) and kzd=1.0 (desh-desh curve). Two 
curves of Re <j2c (kZ} co, T) for kzd=Q.005 and 0.1 merge with each 
other.



vibration modes, which propagate along c-axis. The peak at around co = 317.23 

cm'1 represents lower c-axis plasma mode at k2d=1.0. Position of peak, 

representing lower plasma mode, shifts towards higher co-value and its size 

increases on increasing kzd. Whereas, size of peak representing upper plasma 

mode, reduces and its position shifts towards lower co-value on increasing k2d. 

Existence of a broad peak in c-axis optical conductivity at around oo=100 meV 

has also been shown by Atkinson and Carbotte [10] in their calculation of 

normal state c-axis optical conductivity of YBCO. As is obvious, broad peak in 

our computed Reo2LC(kz, to, T) is originated from charge transfer along c-axis 

which is represented by cog and the co-and-T-dependent pc. Our simple model 

calculation qualitatively agrees with detail numerical calculation of c-axis 

optical conductivity of Atkinson and Carbotte [10]. It can therefore be said that 

our simple model calculation qualitatively described broad feature of normal 

state dynamical conductivity of a CS
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