


2. Background

Modem Control theory, which has contributed so significantly to the exploration and 

conquest of space, has not had similar success in solving the control problems under various 

categories. Even though its progress, the chasm between theory and practice has been widening 

and many needs of the industry remain unsolved. Industry has had little choice, therefore, but to 

rely heavily on conventional control techniques that are based on PID controllers. Unfortunately 

these simple and ubiquitous devices can’t always cope with the demands and complexity of 

modem systems.

The chasm between theory and practice has led to a search for new and unconventional 

techniques that are not subject to the constraints and limitation of modem control theory to solve 

the control problems faced by present day real time system.

As we move from linear to non-linear systems, we are faced with more difficult situation. 

The basic principles of control theory derived in classical methods do not hold any longer and 

analysis tools involve more complex mathematics.

Chapter provides a comprehensive study of the work done by the researchers using 

conventional as well as cognitive techniques for the design and development of real time control 

systems. The survey is classified as per the application of techniques based on Conventional 

methods, intelligent methods & Hybrid methods.

2.1 Conventional Methods
These methods depend on empirical knowledge of the dynamic behavior of the controlled

i
plant, derived from the measurement of control and manipulated variables of the system. 

Traditionally we have relied heavily on three term (PID) controllers and Programmable logic
I

controllers. Over the period researchers have used following methods to explore the various 

control issues.
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2.1.1 Gain Scheduling
A technique for transforming original system models into equivalent models of a simpler 

form, also known as linearization about an equilibrium point. In this case it can be said that the 

linearization may not be a good approximation to the system for arbitrary configurations. Since 

the system is linearized about a single point, trajectory tracking can only be guaranteed in a 

sufficiently small ball of states about that point. There are several methods for circumventing this 

problem; One of the most common is gain scheduling as analyzed by Shamma and Athans[58]. 

The idea of gain scheduling is to select a number of operating points which cover the range of 

system operation. Then at each of points, the designer makes a linear time invariant 

approximations to the plant dynamics and designs a linear controller for each linearized plant. 

Between the operating points, the parameters of the compensators are interpolated, or scheduled, 

thus resulting in a global compensator. To use gain scheduling, tracking controllers are designed 

for many different equilibrium points and gains are chosen based on the equilibrium points to 

which the system is nearest.

The main problem is that it has only limited theoretical guarantees of stability in 

nonlinear operations, but it uses some loose practical guidelines such as “the scheduling 

variables should change slowly5’ and “the scheduling variables should capture the plant’s 

nonlinearities”. Another problem is the computational load in a gain scheduling design, due to 

the necessity of computing many linear controllers.

2.1.2 Feedback Linearization
An alternative technique is Feedback linearization, also known as non-linear dynarnic 

inversion. Feedback linearization deals with techniques for transforming original system models 

into equivalent models of simpler form. Feedback linearization can be used as a non-linear 

design methodology. The main idea is to algebraically transform a nonlinear system into a linear 

form using state feedback like in [59,60] and then to use the well known linear design techniques 

to complete the control design. The purpose of dynamic inversion Is to develop feedback control 
law that linearizes the plant response to commands, then a non linear control law is desigjned

which globally reduces the dynamics of the selected controlled variables to integrators. A closed
!

loop system is then designed to make the controlled variable exhibit the specified command 

response and robustness requirement of the overall system.
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The approach can be used for both stability and tracking control problems and has been 

applied to a number of practical nonlinear control problems, including the control of helicopter, 

high performance aircrafts and industrial robots, electro servo hydro actuator [61,62,63].

Feedback linearization techniques requires full state measurement and desired tracking 

performance is only valid for exact knowledge of model parameters, however can be useful as 

model simplifying device for robust nonlinear control for real time systems, which are capable to 

provide robustness of the closed loop systems.

2.1.3 Variable Structure Control techniques
Variable structure control is a viable high speed switching feedback control. This variable 

structure control law provides an effective and robust means of controlling nonlinear plants. 

Essentially it utilizes a high speed switching control law to derive the nonlinear plant’s state 

trajectory onto a specified and user chosen surface in the switching surface and to maintain the 

plant’s state trajectory on this surface for all subsequent time [64]. The plant dynamics restricted 

to switching surface represent the controlled system’s behavior. With proper design of switching 

surface, variable structure control attains the conventional goals of control such as stabilization, 

- tracking, regulation etc.

Concepts of variable structure control systems have been utilized in the design of robust 

regulators, model reference systems, adaptive schemes, tracking systems, state observers, fault 

detection systems etc.[65,66].

This method is attractive in the design of controls for non linear uncertain dynamics 

systems with uncertainties and nonlinearities of unknown structure as long as they are bounded 

and occurring within a subspace of the state space, that’s the reason that when this method is 

applied to a particular problem a very high quality control system results. Another problem is the 

need for complete state information.

2.1.4 Sliding Mode Control
1

The aim of the sliding mode controller is to design a non linear feedback controller for a 

class of nonlinear systems given the extent of parametric uncertainty, disturbances and range of 

unmodelled dynamics. The one of the most intriguing aspects of sliding mode control is the 

discontinuing nature of the control action, whose primary function of each of the feedback
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channels is to switch between two distinctively different system structures such that a new type 

of system motion, called sliding mode, exists in a manifold.[67,68] This peculiar system 

characteristic is claimed to result in superb system performance which includes insensitivity to 

parameter variation and complete rejection of disturbances.

Advantage of this method is only single design is required over the entire operating range 

of the plant so there is no need for a series of linear controllers. Stability is maintained in 

Lynapunov sense. This method has excellent robustness properties against parametric 

uncertainties when matching conditions are satisfied. In practice the switching, chattering control 

law should be replaced by a smooth approximation, which can be very inconvenient. Another 

drawback, can be pointed as the need of complete state information, which may not be always 

available.

2.1.5 Back-stepping Approach -
Another technique defined as a different version of variable structure control is the back- 

- stepping approach. This- technique has been approached by researchers for output tracking 

problem of a class of observable minimum phase uncertain nonlinear systems, an adaptive 

nonlinear control design etc. [69,70,71]. This approach can be applied to a large class of non

linear systems, including those that are not transferable into the parametric-pure and parametric - 

strict feedback forms.

Back stepping approach is a very promising technique for an autopilot design of missiles, 

which are highly nonlinear in aerodynamics with unknown parameters. This approach is very 

robust to parametric uncertainties. By properly chosen Lyapunov function a global asymptotic 

stability can be proved, conversely to sliding mode control no chattering effect is involved. 

However, there is need of an observer for the estimation procedure which is definitely not very 

appreciated by real time problems, when a fast response is required from the design.

2.2 Intelligent Methods
!

During past two decades or so, a major effort has been under way to develop new and
i

conventional control techniques that can often augment or replace conventional control 

techniques. A number of unconventional control techniques have evolved, offering solutions to 

many difficult control problems.
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An intelligent system should be able to cope .with a variety of unexpected changes and 

environments, which requires learning and adaptation ability. Such a system can be referred to as 

an intelligent control system where technology plays major role in modem control design and 

implementation. Goal of the intelligent control approach is to make advanced control systems 

easier to design and also to make them less vulnerable to uncertainties in system parameters and 

to unknown environment.

This is the domain of soft computing, which focuses on stochastic, vague, empirical and 

associative situations, typical to most applications. Intelligent controllers are derivatives of soft 

computing being characterized by their ability to establish the functional relationship between 

their inputs and outputs from empirical data, without recourse to explicit models of the 

controlled process. This is radical departure from conventional controllers, which are based on 

explicit functional relations.

Unlike their conventional-counterpart, intelligent controllers can learn, remember and 

make decision. Intelligent controllers use a qualitative description on how a process operates 

instead of an explicit quantitative description of the physical principles that relate the causes to 

the effects of the process. An intelligent controller is therefore based on the knowledge, stated 

linguistically in-the form of production rules, which are elicited from human experts. 

Appropriate inference mechanism must then be used to process this knowledge in order to arrive 

at suitable control decisions. One or more of the following techniques of computational

intelligence are used to this end. [72]

1. Expert Systems

2. Fuzzy Control

Neural Control

4. Neuro - Fuzzy Control

5. Evolutionary Computation

2.2.1 Expert Systems
The objective of an expert system is to permit a non-expert user to exploit the 

accumulated knowledge and experience of an expert in a specific field of expertise. Knowledge 

based expert systems use rules, data, events, simple logic and other fonn of knowledge in
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conjunction with search techniques to arrive at decisions. Where an element of knowledge is 

missing then the expert system cannot but return a don’t know response, implying an inability to 

arrive at a decision. An expert system cannot extrapolate data and infer from similar or adjacent 

knowledge.

Expert system operate either in online when decisions are required in real time, as in case 

of fault detection, energy management and supervisory control, or offline, as in the cases of 

interactive, dialog based systems for fault diagnosis and production management.

In the case where a complete decision tree that can account for every possible situation 

that may-arise in practice is available, then such knowledge based systems offer a simple and 

effective solution to the unconventional control problems. Its obvious that situations involving 

uncertainty and vagueness cannot be treated effectively using conventional decision tree based 

expert system. In contrast, when insufficient or incomplete knowledge about a process is 

available and when uncertainty and vagueness characterize the plant and its measurements, then 

such knowledge based expert systems are not always able to arrive at decision and are 

-consequently unacceptable for real time controLpurposes. In such situations of uncertainty and 

vagueness, more effective mechanisms, capable of inferring decisions from incomplete data, are 

- necessary. Fuzzy logic, Artificial Neural Network, Genetic Algprithm and their hybrids are the 

primary examples of techniques that possess appropriate mechanisms to deal with uncertainty 

and vagueness.

2.2.2 Fuzzy Control
Control system should have the capability to gain increasing knowledge of the system 

through operational experience, without interference of human operators. The knowledge based 

control techniques use reasoning mechanisms to determine the control action from the 

knowledge stored in the system and from the available measurements. These systems can 

improve the robustness of control systems by incorporating knowledge that cannot be 

accommodated in analytical models upon which conventional control algorithms are based. A 

common type of knowledge based control is rale based control, for which the control actions are 

described in terms of if -then rules. The principle of designing a fuzzy controller is to integrate 

an empirical knowledge and operator experience into the controllers by using fuzzy sets 'and 

fuzzy rules. The theory was developed by Zadeh [73 j and then Lee [74] explored its applications
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in control. Much of the expert’s knowledge contains linguistic terms such as small, negative, 

positive etc. which can be represented by fuzzy sets. Using fuzzy sets and fuzzy operations it is 

possible to design a fuzzy reasoning system, which can act as a controller. The control strategies 

are stored in the form of if-then rules in a rule base structure. The rules present an approximate 

static mapping from inputs to outputs i.e. control actions and are determined by using expert 

knowledge of the process.

Fuzzy logic controllers have been useful when applied to control uncertain nonlinear 

systems. Fuzzy reasoning builds the understanding of imprecision into the process which could 

—be either parametric uncertainty, unmodelled dynamics or imprecise measurement values hence 

can provide the ability to control a system in uncertainty or unknown environments, which is the 

most important requirement of an intelligent controller. Fuzzy logic control is knowledge based 

system that derives control actions based on input-output relationships; therefore, estimation of 

- the system parameters is not required. Fuzzy control can model complex nonlinear functions and 

derive smooth controTaetion-for-uncertain system behavior. - -

■ ~ ; However, firzzy control, requires some-qualitative description of the rules with which

'- human operator can control a process. For many complex processes a high level of precision is 

not possible::or even necessary in order to provide acceptable control. If the initially chosen 

control-parameters such as membership functions and rule base structures are not satisfactory in 

terms of closed loop performance, then it is necessary to use “trial and error” philosophy, which 

may not always convenient. Although fuzzy control strategies suffer from some limitations, they 

can produce robust control design for real time system in the presence of parametric 

uncertainties.

2.2.3 Neural Control
Neural networks have shown great promise in solving nonlinear control problems 

because of their universal approximation capability. This powerful property has inspired the 

development of many neural network based controllers without significant prior knowledge of 

the system dynamics. Artificial Neural networks are based on the attempt to mimic the brains 

operations in a particular way with a move away from hard, exact mathematical calculations 

towards generalizing fuzzy computations[75]. The brain’s powerful thinking, remembering and 

problem solving capabilities have inspired many scientists to attempt computers modeling of its
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operations. Artificial neural networks, as models of specific biological structures, have the 

advantages of distributed information processing and the inherent potential for parallel 

computations. An Artificial neural network consists of many interconnected identical simple 

processing units, called neurons, called neurons or nodes, which form the layered configurations. 

An individual neuron aggregates its weighted inputs and yields an output through a nonlinear 

activation function with a threshold. There are three types of synaptic interconnections, intra

layer, inter-layer and recurrent connections, in artificial neural networks. The recurrent 

connections provide self feedback links to the neurons.

Few important advantages of using neural control for controlling nonlinear control 

systems are: the dynamics of the controlled system does not need to be completely known for the 

design of the controllers or for the modeling of the system, the potential of online learning is 

very powerful feature of controlling any process in real time, in addition neural networks have 

the ability for adaptation and interpolation as^well as ability of parallel computation and an 

universal-approximation capability, which altogether makes them an attractive and useful 

technique for solving various nonlinear control problems. They can be trainednto approximate 

any function sufficiently-well. Conversely to such an attractive characteristics, the applications of 

neural control as element of realtime control systems could be very limited due to large number 

of iterations over the desired mapping are required before the network adequately reproduces the 

required responses.

2.2.4 Neuro-Fuzzy Control

Fuzzy logic controllers have several important benefits in that they do not require a 

complete analytical model of a dynamic system. They provide knowledge based heuristic 

controllers for complex systems, and they can be analytically validated. However they are not 

well suited to learning. This means that fuzzy control can not meet the goals of adaptation to 

changes in system dynamics or to unmodelled dynamic characteristics; they can’t gain increased 

performance through learning. On the other hand artificial neural networks have been 

successfully used to model and approximate various nonlinear relationships and systems. Neural 

networks can be trained to Ieam the mapping between the input and the output domains based on 

observations without requiring knowledge of the structure of the underlying systems. They can 

exploit the inherent parallelism associated with fuzzy algorithms because of the lack of
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dependencies on control rules. Once the network is trained it can process the rules in parallel. 

They have shown to posses the ability to adapt to dynamic environment changes through 

continuous training. The application of knowledge based control techniques for flight control 

[76,77] has indicated that techniques like neuro-fuzzy control can provide appropriate tools for 

adaptive nonlinear identification and control.

In the conventional fuzzy design, membership functions of the fuzzy sets are tuned, as 

defined in the input and output universe of discourse by trial and error. This drawback can be 

eliminated with neuro-fuzzy networks. Due to supervised learning methods it is possible to 

optimize the antecedent and consequent parts of the linguistic rale base fuzzy systems. The 

neuro-fuzzy systems are universal approximators of any nonlinear functions. There is no need of 

trial and error procedure to tune the control parameters of the fuzzy controller, as self learning 

inherently exists. This becomes an-obvious advantage-when neuro-fuzzy controls are used: for

- realtime systems, as number of iterations can be reduced byTarge; These systems can have high 

learning speed-and be able to process the rules in parallel. By combining fuzzy logic and neural 

network-the controller becomes more robust to imprecise information and external disturbances 

and an improvement in-performance can be guaranteed. However a major drawback is the design

- complexity;

2.2.5 Evolutionary Computation
Evolutionary computation is a generic term for computational methods that use models of 

biological evolutionary processes for the solution of complex engineering problems. The 

techniques of evolutionary computation have in common the emulation of the natural evolution 

of individual structures through process inspired from the natural selection and reproduction. 

These processes depend on the fitness of the individuals to survive and reproduce in a hostile 

environment. Evolution can be viewed as optimization process that can be emulated by a 

computer. Evolutionary computation is essentially a stochastic search technique with remarkable 

abilities for searching for global solutions.
By analogy, in evolutionary computation, solutions that maximize some measure! of 

fitness will have high probability of participating in the reproduction process for new solutions 

and it is likely that these solutions are better than the previous ones. This is a fundamental 

premise in evolutionary computation. Solution of an optimization problem evolve by following
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the well know Darwinian principles of “survival of fittest”. Stochastic methods of optimization 

are computer intensive but in recent past impressive progress has been observed in 

computational technology. Ready availability of extremely fast and powerful computes has made 

these techniques very attractive. One of the ascending techniques of intelligent control is the 

fusion of fuzzy and neural control with evolutionary computation.

The greatest advantage of the evolutionary computation comes from the ability to address 

problems for which there are no human experts. Although human expertise should be used when 

it is available, it often proves less than adequate for automating problem solving routines. It can 

be also of great help while adapting the solutions for changing circumstances. The ability to 

adapt on the fly to changing circumstance is of critical importance to practical real time control 

. problems. Most classic optimization techniques require appropriate settings of exogenous 

variable, which is true for evolutionary methods too but it is possible that evolutionary process 

itself optimize-ta these parameters as a part of the search for optimal solutions[78,79].

Evolutionary algorithms are a-subset of-evolutionary computation and belong to the 

generie fieldSiOf the simulated evolution and artificial life. The search for an optimum solution is 

based on the natural processes of biological evolution and is accomplished in parallel manner in 

the parameter search space. The terminology used in evolutionary computation is familiar, 

candidate solution of an optimization problem are termed as individuals. The population of 

solutions evolves in accordance with the laws of natural selection. After initialization, the 

population undergoes selection, recombination and mutation repeatedly until some termination 

condition is satisfied. Each iteration is termed as generation, while individual that undergo 

recombination and mutation are named parents that yield offsprings. The most common types of 

the evolutionary algorithms are Genetic Algorithm, Evolutionary strategies, Evolutionary 

Programming, simulated annealing etc.

The difference between Genetic Algorithms, Evolutionary strategies and Evolutionary 

programming lays in the operations that candidate solutions are subject to, during the 

evolutionary procedure. Due to significant advantages of evolutionary methods in terms of
I

achieving robust adaptive performance for the real time system, I have used genetic algorithm 

with fuzzy logic to carry our present research work.

These methods are discussed in detail in the later chapters along with their applications to 

real time control problems.
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2.3 Design of Fuzzy Systems

This section deals with the brief description of the foundation and techniques developed 

and used by the researchers for design, development, simulation and development of fuzzy logic 

based real time control of non linear systems.

The difficult task of modeling and simulating complex real-world systems for control 

systems development, especially when implementation issues are considered, is well 

documented. Even if a relatively accurate model of a dynamic system can be developed, it is 

often too'complex-to’lise in controller development, especially for many conventional control 

design procedures that require restrictive assumptions for the plant (e.g., linearity). It is for this 

reason that in practice conventional controllers are often developed via simple models of the 

plant behavior that satisfy the necessary assumptions, and via the ad hoc tuning of relatively 

simple linear or nonlinear controllers: Regardless, it is well understood that heuristics enter the 

conventional control design process~as long as"we are concerned with the actual implementation 

of the control system.Itmust be acknowledged that conventional control engineering approaches 

that use appropriate heuristics to tune the design have been relatively successful. We can have 

questions like how much of the success can be attributed to the use of the mathematical model 

and conventional control design approach, and how much should be attributed to the clever 

heuristic tuning that the control engineer uses upon implementation? And if we exploit the use of 

heuristic information throughout the entire design process, can we obtain higher performance of 

control systems?

Fuzzy control provides a formal methodology for representing, manipulating, and 

implementing a human’s heuristic knowledge about how to control a system. In this section, a 

philosophy of how to approach the design of fuzzy controllers is discussed.

The fuzzy controller block diagram is given in Figure 2.1, where we show a fuzzy 

controller embedded in a closed-loop control system. The plant outputs are denoted by y(t), its 

inputs are denoted by u(t), and the reference input to the fuzzy controller is denoted by r(t).

The fuzzy controller has four main components:

(1) The “rule-base” that holds the knowledge, in the form of a set of rules, of how best to 

control the system,

22



(2) The inference mechanism evaluates which control rules are relevant at the current 

time and then decides what the input to the plant should be,

Fuzzy Controller

Reference Input 
• \ r@

7 \

Output

Figure 2.1 : Fuzzy Controller

(3) The fuzzification interface simply modifies the inputs so that they can be interpreted 

and compared to the rules in the rule-base, and

(4) The defuzzification interface converts the conclusions reached by the inference 

mechanism into the inputs to the plant

Basically, the fuzzy controller is an artificial decision maker that operates in a closed- 

loop system in real time. It gathers plant output data y(t), compares it to the reference input r(7), 

and then decides on what the plant input u(t) should be, to ensure that the performance objectives 

are met. To design the fuzzy controller, the control engineer must gather information on how the 

artificial decision maker should act in the closed-loop system. Sometimes this information can 

come from a human decision maker who performs the control task, while at other times the 

control engineer has to understand the plant dynamics and write down a set of rules about how to 

control the system without outside help. These “rules” basically say, “If the plant output and 

reference input are behaving in a certain maimer, then the plant input should have some value.” 

A whole set of such “If-Then” rules is loaded into the rule-base, and an inference strategy is 

chosen, then the system is ready to be tested to see if the closed-loop specifications are met.

2.3.1 Fuzzy Controller Design

Fuzzy control system design essentially amounts to (1) choosing the fuzzy controller 

inputs and outputs, (2) choosing the preprocessing that is needed for the controller inputs land 

possibly post processing that is needed for the outputs, and (3) designing each of the four
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components of the fuzzy controller shown in Figure 2.1. There are standard choices for the 

fuzzification and defuzzification interfaces. Moreover, most often the designer settles on an 

inference mechanism and may use this for many different processes; hence, the major area of 

focus is the design of the rule-base. The rule-base is constructed so that it represents a human 

expert “in-the-loop.” Hence, the information, which is loaded into the rule-base normally come 

from an actual human expert, who has spent long time learning how best to control the given 

process. In situations, where there is no such human expert, the control engineer has to study the 

plant dynamics and write down the set of control rules that makes sense. As an example, in the 

cruise control problem it is clear that anyone who has experience driving a car can practice 

regulating the speed about a desired set-point and load this information into a rule-base. For 

instance, one rule that a human driver may use is “If the speed is lower than the set-point, then 

press down further on the accelerator pedal.” A rule that would represent even more detailed 

information about how to regulate the speed would be “If the speed is lower than the set-point 

AND the speed is approaching the set-point very fast, then release the accelerator pedal by a 

small amount.” This second rule characterizes our knowledge about how to make sure that we do 

not overshoot our desired goal (the set-point speed). Generally speaking, if control engineer is 

able to load very detailed expertise into the rule-base, then it enhances the chances of obtaining 

better performance.

2.3.2 Adaptive Robust Fuzzy Control of Nonlinear Systems

Uncertainties are inevitable in dynamical systems, and they may arise from errors in 

system modeling, parameter variations, unknown physical phenomena and working 
environments. In addition to the classical feedback control theory, adaptive control and robust

l

control are effective techniques to treat these uncertainties. Adaptive control, by online tuning 

the parameters (of either the plant or the controller—corresponding to indirect, or direct adaptive 

control), can deal with large uncertainties, but generally, suffers from the disadvantage of being
t

able to achieve only asymptotical convergence of the tracking error to zero. The online 

computation burden to update the parameters is also very high in case of real time systems1. In 

robust control designs, on the other hand, a fixed control law based on a priori information on 

the uncertainties is designed to compensate for their effects, and exponential convergence of the
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tracking error to a small ball centered at the origin is obtained. But if the uncertainties are larger 

than the assumed bounds, no stability or performance is guaranteed.

In recent past analytical studies of nonlinear control, using universal approximators such 

as fuzzy logic system (FLS) [9],[59],[73],[74] is used to approximate the unknown functions 

involved in the control design. In the class of approximators, which are linear in parameters, FLS 

is much closer in spirit to human thinking and natural language, and preferred by control 

engineering practitioners. The problem of controlling nonlinear systems expressed in the 

.canonical form to follow a reference trajectory in the presence of uncertainties. Fuzzy logic 

systems are used to approximate the unknown dynamics of the system. This problem has been 

extensively investigated; however, most results reported in the literature suffer from at least one 

of the following drawbacks:

• lack of robustness to unmodelled dynamics and/or external perturbations due to only 

asymptotical convergence of the tracking error to a residual set of the origin is achieved

•- requirement of the knowledge on the nonlinear systems for controller implementation, 

such as bounding functions on f(x) and b(x);

• requirement of the^bound on the norm of the optimal parameter vector of the universal 

approximators, or a compact set to which the optimal parameter vector of the universal 

approximators belongs;

• Heavy online computation burden due to updating the parameters of the universal 

approximators.

By combining advantages of FLSs, adaptive, and robust control techniques, an adaptive 

robust fuzzy control capable of achieving exponential convergence of the tracking error to a 

small ball of the origin, whose radius can be made arbitrarily small by properly choosing some 

design parameters. From a practical point of view, exponential tracking is more desirable for its 

robustness against unmodelled dynamics and/or external perturbations. To implement the 

controller only the knowledge of b[a constant lower bound on b(x)], and a nominal parameter

vector of the FLS are required. The nominal parameter vector may be obtained either from a
\

priori knowledge of the plant or through offline training, and may be set zero if no a priori 

knowledge of the plant is available nor offline training is done. The online computation burden is 

also reduced since only uncertainty bounds are adaptively tuned online.
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2.3.3 Integrating membership functions and fuzzy rule sets from multiple knowledge 
sources

Expert systems have been successfully applied to many fields and have shown excellent 

performance. Knowledge-base construction remains, however, one of the major costs in building 

an expert system even though many tools have been developed to help with knowledge 

acquisition. Building a knowledge-based system usually entails constructing new' knowledge 

bases from scratch. The cost of the effort is high and will become prohibitive as we attempt to 

build larger and larger systems. Reusing and integrating available knowledge from a variety of 

sources, such as domain experts, historical documentary evidence, current records, or existing 

knowledge bases, thus plays an important role in building effective knowledge-based systems.

Especially for complex application problems, related domain knowledge is usually 

distributed among; multiple sites, and no single site may have complete domain knowledge. The 

use of knowledge; integrated from multiple knowledge sources is thus especially important to 

ensure comprehensive coverage.

Most knowledge sources or actual instances in real-world applications contain fuzzy or 

ambiguous information. Especially in domains such as medical or control domains, the 

boundaries of a piece of information used may not be clearly defined. Expressions of the domain 

knowledge using fuzzy descriptions are thus seen more and more frequently. Several researchers 

have recently investigated automatic generation of fuzzy classification rules and fuzzy 

membership functions using evolutionary algorithms [80,81 ]. These methods can be categorized 

into the following four types:

• learning fuzzy membership functions with fixed fuzzy rules;

• learning fuzzy rules with fixed fuzzy membership functions [81] ;

• learning fuzzy rules and membership functions in stages (i.e., first evolving good fuzzy 

rule sets using fixed membership functions, then tuning membership functions using the 

derived fuzzy rule sets);

• learning fuzzy rules and membership functions simultaneously [80],



2.3.4 Analysis and Design of Fuzzy Controller Based on Observer

Fuzzy logic control techniques suffer from following limitations...

• the design of the fuzzy logic controller is difficult because no theoretical basis is 

available

• the performance of the fuzzy logic controller can be inconsistent because the fuzzy 

logic control depends mainly on the individual operators’ experience.

Therefore, despite the fact that much progress has been made in successfully applying 

fuzzy logic control to industrial control systems, it has become evident that many basic issues 

remain to be further addressed.

Stability analysis and systematic design are certainly among the most important issues, to 

fuzzy control systems. Recently, the issue of stability of fuzzy control systems has been 

considered extensively in nonlinear stability frameworks. The stability analysis and robust fuzzy 

controllers design methods for a class of uncertain nonlinear systems was discussed in [82], 

which only considered the uncertainty of fuzzy model without considering the unobservable 

problem of states of systems. The stabilization of a feedback system containing a fuzzy 

controller and a fuzzy observer for Fuzzy systems for multi-input and multi-output linear 

systems was addressed in paper [83, 84], which only took into account of the state unobservable 

problem of the system without considering the uncertainty, of fuzzy model. It is well known that 

the observer design and robust control are very important problems in control systems; the frizzy 

observer design is hardly addressed. A very key problem is that the stability of the whole system 

must be guaranteed.

2.3.5 Fuzzy Observer-Based Control of Nonlinear Systems

In recent past there had been rapid growth in using Takagi-Sugeno [85] fuzzy models to 

approximate nonlinear systems. These models consist of fuzzy If...Then rules with linguistic 

terms in antecedents, and analytic dynamical equations in the consequents. There has been a 

great deal of effort in trying to find conditions for stability of these types of control systems. The 

approach proposed by Sugeno and Tanaka [86,87], uses a common quadratic Lyapunov function.
I

The most important draw back of this method was that finding a common matrix that satisfies all
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Lyapunov inequalities is not easy. With the emergence of new optimization methods [88] that 

can solve Linear Matrix Inequalities (LMFs) in polynomial time, this problem has been solved.

Among many results in fuzzy control, Takagi and Sugeno introduced the now so-called 

T-S fuzzy model. The T-S fuzzy systems have certain relations to conventional linear models, 

and therefore many classical control theory methods can be used for the analysis and synthesis of 

fuzzy systems. Many control strategies are achieved via state feedback control like ...

• Thau-Luenberger Observers for TS Fuzzy systems

• Sugeno-type Fuzzy Observers etc.

2.3.6 Design and analysis of a fuzzy logic controller

People very often make decisions in their daily lives based on qualitative information. 

Zadeh’s fuzzy sets theory was thus proposed to enable people to describe d formulate the 

linguistic mental 'models apparent in daily life behaviour. Mamdani and his coworkers 

[89,90,91] were pioneers in applying fuzzy techniques to process control. Their results, as well 

as those of many other researchers, have demonstrated the potential value of the fuzzy logic 

control system on simple process dynamics. Practical fuzzy logic control applications for real 

time applications have also been reported in turn. A comprehensive review of the classical 

design and implementation of the fuzzy logic controller can be found in [92], more advanced 

design techniques have also been reported in the literature, such as the adaptive fuzzy logic 

control [93,94,95,96].

The superior performance of fuzzy logic controllers reported in the literature usually 

conjectured to have its origin in their switching nature, where the magnitude of the rate of 

change in controller output is greater for larger error and small for plant output close to the set 

point. The nonlinearity and complexity of fuzzy control responses, however, causes the analysis 

and systematic tuning of fuzzy logic controllers to remain a difficult research problem.

The relations between fuzzy and conventional PID controllers have been studied by 

various researchers and found that some specialized fuzzy logic controllers [97], have been 

proven to be equivalent to a nonlinear two-mode PI controller with state-dependent variable 

controller gains. A uniformly distributed triangular family of membership functions is applied
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for linguistic members of each fuzzy variable, and all control laws are expressed in a simple 

form in such a controller. Such a simplified design makes the number of undetermined fuzzy 

members, the sole design variable, and the input/output scalars along the most relevant tuning 

variables in the controller. Such an FLC, no matter the number of fuzzy members it uses, have 

proved to be functionally equivalent to a non-fuzzy nonlinear PI or PD controller with state- 

dependent controller gains and a value of integral (derivative) time dependent on input scalars 

only. Several extensions of the basic FLC, including the FLC with dual control laws (PI and PD 

forms) by including one switching factor, and the FLC with varying gains according to the 

discrepancy between process variables and set point, are thus proposed to enhance control 

performance. The superior results obtained employing various extensions to the FLC are 

illustrated by several numerical examples. A neutralization process is also employed to 

demonstrate the potential applicability of the fuzzy logic control method on real time control 

problems. To understand the various steps involved in proper design of fuzzy controller, let us 

discuss the design of simple fuzzy controller with reference to Inverted Pendulum.

23.6.1 Design of Simple Fuzzy Controller

Let us discuss each of the components of the fuzzy controller for a simple problem of 

balancing an inverted pendulum on a cart, as shown in Figure 2.2. Here, y denotes the angle that 

the pendulum makes with the vertical place, in radians, / is the half-pendulum length, in meters, 

and u is the force input that moves the cart, in Newtons, r is used to denote the desired anghlar 

position of the pendulum.

The goal is to balance the pendulum in the upright position (i.e., r = 0), when it initially 

starts with some nonzero angle off the vertical (i.e., y ^0). This is a very simple and academic 

nonlinear control problem, and many good techniques already exist for its solution. Indeed, for 

this standard configuration, a simple PID controller works well even in implementation. Later, I 

am using the same problem to discuss much more general issues in fuzzy control system design 

for more challenging applications also.
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Figure 2.2 Inverted Pendulum on a Cart.

23.6.2 Choosing Fuzzy Controller Inputs and Outputs

Consider a human-in-the-loop whose responsibility is to control the pendulum, as shown 

in Figure 2.3. The fuzzy controller is to be designed to automate how a human expert, who is 

successful at this task, would control the system. First, the expert tells us (the designers of the 

fuzzy controller) what information she or he will use as inputs to the decision-making process. 

Suppose that for the inverted pendulum, the expert (this could be you!) says that she or he will

use e(t)= r(t)-y(t) and _as the variables on which to base decisions. Certainly,

there are many other choices (e.g., the integral of the error e could also be used) but this choice 

makes good intuitive sense. Next, we must identify the controlled variable. For the inverted 

pendulum, we are allowed to control only the force that moves the cart, so the choice here is 

simple.

£ Haman /»K
Pendaktia

Figure 2.3 Human Controlled Inverted Pendulum on a Cart

For more complex applications, the choice of the inputs to the controller and outputs of 

the controller (inputs to the plant) can be more difficult. Essentially, we have to make sure that 

the controller will have the proper information available to be able to make good decisions and 

have proper control inputs to be able to steer the system in the directions needed to be able to 
achieve high-performance operation. Practically speaking, access to information and the ability 

to effectively control the system often cost money. If the designer believes that prosper 

information is not available for making control decisions, he or she may have to invest in another

i
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sensor that can provide a measurement of another system variable. Alternatively, the designer 

may implement some filtering or other processing of the plant outputs. In addition, if the 

designer determines that the current actuators will not allow for the precise control of the 

process, he or she may need to invest in designing and implementing an actuator that can 

properly affect the process. Hence, while in some academic problems the plant inputs and 

outputs may be readily available; in many practical situations we may have some flexibility in 

their choice. These choices affect what information is available for making on-line decisions 

about the control of a process and hence affect how we design a fuzzy controller. Once the fuzzy 

controller inputs and outputs are chosen, we must determine what the reference inputs are. For 

the inverted pendulum, the choice of the reference input r = 0 is clear. In some situations, 

however, we may want to choose r as some nonzero constant to balance the pendulum in the off- 

vertical position. To do this, the controller must maintain the cart at a constant acceleration so 

that the pendulum will not fall.

After all the inputs and outputs are defined for The fuzzy controller, we can specify the 

—r. fuzzy control system. The -fuzzy control system for the inverted- pendulum, with our choice of 

inputs and outputs, is shown in Figure 2.4.

Now, within this framework we have to obtain a description of how to control the 

process. We see then that the choice of the inputs and outputs of the controller places certain 

constraints on the remainder of the fuzzy control design process. If the proper information is not 

provided to the fuzzy controller, there will be little hope for being able to design a good rule-base 

or inference mechanism. Moreover, even if the proper information is available to make control

Figure 2.4 Fuzzy Controller for Inverted Pendulum on a Cart
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decisions, this will be of little use if the controller is not able to properly affect the process 

variables via the process inputs. It must be understood that the choice of the controller inputs and 

outputs is a fundamentally important part of the control design process.

2.3.6.3 Putting Control Knowledge into Rule-Bases

Suppose that the human expert shown in Figure 2.3 provides a description of how best to 

control the plant in some natural language. We have to interpret this “linguistic” description and 

load them into the fuzzy controller, as indicated by the arrow in Figure 2.4.

Linguistic Descriptions

The linguistic descriptions provided by the expert are generally broken into several parts. 

There will be “linguistic variables” that describe each of the time varying fuzzy controller inputs 

and outputs. For the inverted pendulum, under consideration

“error” describes e(t)

“change-in-error” describes d/dt( e{t))

“force” describes u(t)

As e(t) takes on a value of, for example, 0.1 at t = 2 (e(2) = 0.1), linguistic variables 

assume “linguistic values.” That is, the values that linguistic variables take on over time change 

dynamically. Suppose for the pendulum example that “error,” “change-in-error,” and “force” 

take on the following values:

“neglarge”

“negsmall”

“zero”

“possmall”

“poslarge”

Where, “negsmall” is used as an abbreviation for “negative small in size” and so on ifor 

the other variables. Such abbreviations help keep the linguistic descriptions short yet precise. For 

an even shorter description we can use integers:
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“-2” to represent “neglarge”

1 ” to represent “negsmall”

“0” to represent “zero”

“1” to represent “possmall”

“2” to represent “poslarge”

This is normally preferred choice for the linguistic values since the descriptions are short 

and nicely represent that the variable we are concerned with has a numeric quality. Here, 

associating “-1” has nothing to do with any particular number of radians of error; the use of the 

numbers for linguistic descriptions simply quantifies the sign of the error in the usual way and 

indicates the size in relation to the other linguistic values. Use of this type of linguistic value 

quite convenient and hence its given the special name, “linguistic-numeric value.” The linguistic 

variables and values provide a language for the expert to express their ideas about the control 

decision-making process in the context of the framework established by our choice of fuzzy 

controller inputs and outputs. Recall that for the inverted pendulum r = 0 and e = r-y and 

hence,

e=-y and d/dM=~d/dt^ since %M=0-

Let us first, quantify certain dynamic behaviors with linguistics and later we will see how 

to quantify knowledge about how to control the pendulum using linguistic descriptions.

For the inverted pendulum shown in Figure 2.2 each of the following statements quantifies a 

different configuration of the pendulum

• The statement “error is poslarge” can represent the situation where the pendulum is at a 

significant angle to the left of the vertical.

• The statement “error is negsmall” can represent the situation where the pendulum is just 

slightly to the right of the vertical, but not too close to the vertical to justify quantifying it 

as “zero” and not too far away to justify quantifying it as “neglarge.”

• The statement “error is zero” can represent the situation where the pendulum is very near 

the vertical position (a linguistic quantification is not precise, hence we are willing; to
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accept any value of the error around e(f) = 0 as being quantified linguistically by “zero” 

since this can be considered a better quantification than “possmall” or “negsmall”).

• The statement “error is poslarge and change-in-error is possmall” can represent the

situation where the pendulum is to the left of the vertical and, since d/dt{y)<0, the

pendulum is moving away from the upright position (note that in this case the pendulum 

is moving counterclockwise).

• The statement “error is negsmall and change-in-error is possmall” can represent the 

situation where the pendulum js slightly to the, right of the vertical and, since

the pendul um is moving toward the upright position (note that in this case the pendulum 

is also moving counterclockwise).

In order to quantify the dynamicsuf the process we need to have a good understanding of 

the physics, of the underlying process we are trying to control. While for the pendulum problem, 

the task of-coming to a good understanding of the dynamics is relatively easy; this is not the case 

for many real time physical processes. Quantifying the process dynamics with linguistics is not 

always easy, and certainly a better understanding of the process dynamics generally leads to a 

better linguistic quantification. Often, this leads to a better fuzzy controller provided that you can 

adequately measure the system dynamics so that the fuzzy controller can make the right 

decisions at the proper time.

Rules

Next, the above linguistic quantification is used to specify a set of rules (a rule-base) that 

captures the expert’s knowledge about how to control the plant. In particular, for the inverted 

pendulum in the three positions shown in Figure 2.5, following rules

1. If error is neglarge and change-in-error is neglarge Then force is poslarge - This rule 

quantifies the situation in Figure 2.5(a) where the pendulum has a large positive angle 

and is moving clockwise; hence it is clear that we should apply a strong positive force (to 

the right) so that we can try to start the pendulum moving in the proper direction.
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Figure 2.5 : Inverted Pendulum in different positions

2. If error is zero and change-in-error is possmall Then force is negsmall - This rule 

quantifies the situation in Figure 2.5(b) where the pendulum has nearly a zero angle with 

the vertical (a linguistic quantification of zero does, not imply that e(i) = 0 exactly) and is 

moving counterclockwise; hence we should apply a small negative force (to the left) to 

counteract the movement so that it moves toward zero (a positive force could result in the 

pendulum overshooting the desired position).

3 . If error is poslarge and change-in-error is negsmall Then force is negsmall - This rule 

quantifies the situation in Figure 2.5(c) where the pendulum is far to the left of the 

vertical and is moving clockwise; hence we should apply a small negative force (to the 

left) to assist the movement, but not a big one since the pendulum is already moving in 

the proper direction.

Each of the above rules is a “linguistic rule” since it is formed solely from linguistic 

variables and values. Since linguistic values are not precise representations of the underlying 

quantities that they describe, linguistic rules are not precise either. They are simply abstract ideas 

about how to achieve good control that could mean somewhat different things to different 

people. They are, however, at a level of abstraction that humans are often comfortable with in 

terms of specifying how to control a process. The general form of the linguistic rules listed above 

is If premise Then consequent.

The number of fuzzy controller inputs and outputs places an upper limit on the number of 

elements in the premises and consequents. Here, there does not need to be a premise 

(consequent) term for each input (output) in each rule, although often there is.
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Rule-Bases

Using the same approach, as discussed earlier one can continue to write down rules for 

the pendulum problem for all possible cases. But since we specify a finite number of linguistic 

variables and linguistic values, there is only a finite number of possible rules.

For the problem under consideration, having two inputs and five linguistic values, there 
are at the most 52 = 25 possible rules (all possible combinations of premise linguistic values for 

two inputs). A tabular representation of one possible set of rules for the inverted pendulum is 

shown in Table_2.1. The table lists the linguistic-numeric consequents of the rules, and the left 

column and top row of the table contain the linguistic-numeric premise terms. Then, for instance, 

the (2,-1) position (where the “2” represents the row having “2” for a numeric-linguistic value 

and the 1” represents the column having “-1” for a numeric-linguistic value) has a -1 

(“negsmall”) in the body of the table and represents the rule.

Table 2.1 : Rule Table for Inverted Pendulum

force (u)
Change in error - d/dt (e)

-2 -1 0 1 2

-2 2 2 2 1 0

-1 2 2 1 0 -1

error (e) 0 2 1 0 -1 -2

1 1 0 -1 -2 -2

2 0 -1 -2 -2 -2

If error is poslarge and change-in-error is negsmall Then force is negsmall, which is 

rule 3 above. Table 2.1 represents abstract knowledge that the expert has about how to control 

the pendulum given the error and its derivative as inputs.

Its not that these are the rules only valid for given inverted pendulum, this rule bas can 

differ with different individuals. Here one can notice the diagonal of zeros and viewing the body 

of the table as a matrix we see that it has certain symmetry to it. This symmetry that emerges,
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• If e(t) = icH then pi(~n/2) = 0, indicating that e(t) — —it/ 2 is not “possmall.”

• If e(t) = 7t/8 then pi(nM) = 0.5, indicating that we are halfway certain that e{t) = n/B is “possmall”

• If e(t) - n/4 then u(k/4) =1.0, indicating that e(t) = tc/4 is what meant as “possmall.”

® If e(l) = it then u(ix) — 0, indicating that e(t) — jr is not “possmall”, actually, it is “poslarge”.

pi/2 3pi«
e(t) fn radian

Figure 2.6 : Membership Function for possmall

23.6.4 Fuzzy Quantification of Knowledge

Up till now, the knowledge of the human expert about how to control the plant is 

quantified in an abstract way, now; we have to use fuzzy logic to fully quantify the meaning of 

linguistic descriptions so that we may automate the control rules specified by the expert, in the 

fuzzy controller.

Membership Functions -

First, we need to quantify the meaning of the linguistic values using “membership 

functions.” Consider, for example, Figure 2.6. This is a plot of ^function pi versus e(t) that takes 

on special meaning. The function pi quantifies the certainty that e(t) can be classified 

linguistically as “possmall.” To understand the way that a membership function works, it is best 

to perform a case analysis where we show how to interpret it for various values of e(t):
Membership Function for positive small

when the rules are tabulated, is no an accident but is actually a representation of abstract 

knowledge about how to control the pendulum; it arises due to a symmetry in the system’s 

dynamics. This type of similar patterns also found when constructing rule-bases for more 

challenging applications, and we also need to exploit this symmetry in implementing fuzzy 

controllers.
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The membership function quantifies, in a continuous manner, whether values of e(t) 

belong to the set of values that are “possmall,” and hence it quantifies the meaning of the 

linguistic statement “error is possmall”. The membership function shown in Figure 2.6 is not the 

only one possible definition of the meaning of “error is possmall”; it can also be a bell-shaped 

function, a trapezoid, or many others. Few of possible shapes of memberships functions are 

shown in Figure 2.7.

Figure 2.7: Different possible shapes of Membership Functions

For some application someone may be able to argue that we are absolutely certain that 

any value of e{t) near u/4 is still “possmall” and only when you get sufficiently far from tt/4 we 

lose our confidence that it is “possmall.” One way to characterize this understanding of the 

meaning of “possmall” is via the trapezoid-shaped membership function in Figure 2.7(a). For 

other applications one may think of membership in the set of “possmall” values as being dictated 

by the Gaussian-shaped membership function as shown in Figure 2.7(b). For still other 

applications one may not readily accept values far away from n/A as being “possmall,” in that 

case the membership function in Figure 2.7(c) can be used to represent them. Figure 2.7 (a) to (d) 

show membership functions, where symmetric characterizations of the meaning of linguistic 

values is considered but selection of membership function is not restricted to these. Figure 2.7(d) 

represents belief that as e(t) mover to the left of jr/4, one is very quick to reduce their confidence 

that it is “possmall”, but if one move to right of n/4, confidence that e(t) is “possmall” diminishes 

at slower rate. In summary, depending on the application and the designer (expert), many 

different choices of membership functions are possible.
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Now, on the same line we need to specify the membership functions for all 15 linguistic 

values - five for eft), five for d/dt(e) and five for uft) for inverted pendulum problem under 

consideration. Figure 2.8 displays the same for one choice of membership functions, which can 

be any function, as we have discussed earlier.

Figure 2.8: Membership Functions for Inverted Pendulum on a Cart.

The membership functions for the inputs eft) and d/dt( eft)), the outermost membership 

functions “saturate” at a value of one. This is to mark sense as at some point the human expert 

would just group all large values together in a linguistic description such as “poslarge.” The 

membership functions at the outermost edges appropriately characterize this phenomenon since 

they characterize “greater than” (for the right side) and “less than” (for the left side).

For the output u, the membership functions at the outermost edges cannot be saturated for 

the properly defined fuzzy system. The basic reason for this is that in decision-making processes, 

we seek to take actions that specify an exact value for the process input. We can not indicate to a 

process actuator that “any value bigger than, say, 10, is acceptable.”
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The rule-base of the fuzzy controller holds the linguistic variables, linguistic values, their 

associated membership functions, and the set of all linguistic rules as shown in Table 2.1, this 

was about the description of the simple inverted pendulum. Now, lets move to the fuzzification 

process.

Fuzzification

It is actually the case that for most fuzzy controllers the fuzzification block in Figure 2.1 

can be ignored since this process is so simple. The exact operations of the fuzzification process 

can be referred in [32,33,34,35], Lets us discuss the simplest of the fuzzification process as the 

act of obtaining a value of an input variable (e.g., e(t)) and finding the numeric values of the 

membership functions) that are defined for that variable.

For example, if e(t) = %/A and d/dt(e(t)) = 7t/16, the fuzzification process amounts to 

finding the values of the input membership functions for these. In this case

M possmall (e(0) = 1
with all-others zero and

M=ero (<#>))= Mposs.aU ^/dt (*«)) = 0-5

So, the membership function values are as an “encoding” of the fuzzy controller numeric input 

values. The encoded information is then used in the fuzzy inference process that starts with 

“matching.”

23.6.5 Matching; Determining Which Rules to Use

Now, let us discuss how the inference mechanism in Figure 2.1 operates. The inference 

process generally involves two steps:

1. The premises of all the rules are compared to the controller inputs to determine which 

rules apply to the current situation. This “matching” process involves determining; the

certainty that each rule applies, and typically rules which are more certain to apply toj the
!

current situation are recommended strongly.

2. The conclusions (what control actions to take) are determined using the rules that have 

been determined to apply at the current time. The conclusions are characterized with a
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fuzzy set(s) that represents the certainty that the input to the plant should take on various 

values.

Premise Quantification via Fuzzy Logic
To perform inference, quantifying each of the rules with fuzzy logic is necessary. To do 

this we have to first quantify the meaning of the premises of the rules that are composed of 

several terms, each of which involves a fuzzy controller input. Consider Figure 2.9, where we list 

two terms from the premise of the rule

If error is zero and change-in-error is possmall Then force is negsmall

The meaning of the linguistic terms “error is zero” and “change-in-error is possmall” is 

already quantified via the membership functions shown in Figure 2.9. Let us now quantify the 

linguistic premise “error is zero and change-in-error is. possmall.” Here, focus is on how to 

- quantify the logical “and” operation that combines the meaning of two linguistic terms.

• "enoriszero aaA change-in-earor is possmall"
^ ( V : j

quznrifiMiwfib r

Jr fee-)

Figure 2.9: Membership Functions of e(t) and d/dt (e(t))

To see how to quantify the “and” operation, begin by assuming that 

e{t) = 7r/8 an dd/dt{e{t))=nl32

referring Figure 2.8 or Figure 2.9, we can get

M-ew (e(0)= 0-5 and

/W/(%(e(0))= 0.25

these values of e(t) and d/dt( e(t)), is the certainty of the statement

“error is zero and change-in-error is possmair
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Let us denote this certainty by ypremise-

There are actually several ways to define it:

• Minimum: Define ypremise = min/0.5, 0.25} = 0.25, that is, using the minimum of the two 

membership values.

• Product: Define ypremise = (0.5)(0,25) = 0.125, that is, using the product of the two 

membership values.

Similarly, there will be a different premise membership function for each of the rules 

defined in the rule-base, and each of these will be a function of e(t) and d/dt( e(t)) so that for a 

given specific values of e(t) and d/dt( e(t)), a quantification of the certainty that each rule in the 

rule-base applies to the current situation is derived. It is very much important that designer 

defines in their mind about the situation where e{t) and d/dt(e(t)) change dynamically over time.
When this occurs the values of Mpremise (e(0> cjZjt (e(0)) for each rule change, and hence the

applicability of each rule in the rule-base for specifying the force input to the pendulum, changes 

with time.

Determining Which Rules Are On

Determining the applicability of each rale is called “matching.” A rale is said to be “on at 
time t”, if its premise membership function ypremise [e(t), cj/^( (e(0)) >- 0. Hence, the inference

mechanism seeks to determine which rules are on to find out which rales are relevant to the 

current situation. And later the inference mechanism will seek to combine the recommendations 

of all the rales to come up with a single conclusion.

23.6.6 Inference Step: Determining Conclusions

It is very much important that how to determine which conclusions should be reached, 

when the rales that are on are applied to decide, what the input force should be, to the cart 

carrying the inverted pendulum. To find out this, first need to find the recommendations of each 

rale independently and later need to combine all the recommendations from all the rales to 

determine the force input to the cart. !
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Recommendation from One Rule

Consider the conclusion reached by the rule

If error is zero and change-in-error is zero Then force is zero,

Let us refer the same as “rule (1).” Using the minimum to represent the premise,

l1 premise 0) = min{0.25,l} = 0.25

where (ipremised) represents membership of premise for rule (1), meaning that we are 0.25 certain 

that this rale applies to the current situation. The rule indicates that if its premise is true then the 

action indicated by its consequent should be taken. For rale (1) the consequent is “force is zero”, 

here the pendulum is balanced, so no need to apply any force since this would tend to move the 

pendulum away from the vertical.. The membership function for the conclusion reached by rale 

(1), which is denoted as /z(l), is given by p(\){u) = min{0.25, fi:erg(«)}.

This membership function defines the “implied fuzzy set” for rale (1) (i.e., it is the 

conclusion that is implied by rale (1)). The justification for the use of the minimum operator to 

represent the implication is that we can be no more certain about our consequent than our 

premise. The membership function fi{\){u) is a function of u and that the minimum operation 

will generally “chop off the top” of the /Wo(«) membership function to produce /*(1)(»). For 

different values of e(t) and d/dt(e(t)) there will be different values of the premise certainty
I1 premise (e(0> (e(0)) for rule (1) and hence different functions /*(l)(w) obtained.

Recommendation from another Rule

Now, consider the conclusion reached by the other rale that is on,

If error is zero and change-in-error is possmall Then force is negsmall 

Let us refer the same as “rale (2).” Using the minimum to represent the premise,
f1 premise (2) = min{0.75,l} = 0.75

It means that we are 0.75 certain that this rale applies to the current situation. It’s also clear here 

that application of rale (2) is certain then rale (1), in current situation. For rale (2) the consequent 

is “force is negsmall”, because for here the pendulum is perfectly balanced but is moving in the 

counterclockwise direction with a small velocity. The membership function for the conclusion 
reached by rale (2), which we denote by p{2), is given by p(2)(u) = min {0.75,// „(«)}- This
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membership function defines the implied fuzzy set for rale (2) (i.e., it is the conclusion that is 

reached by rule (2)). Once again, for different values of e(t) and d/dt(e(t)) there will be different
values of Hpremise (e(f), (j/jt (e(0)) for rale (2) and hence different functions g(2)(u) obtained. Rule

(2) is quite certain that the control output or process input should be a small negative value. This 

makes sense since if the pendulum has some counterclockwise velocity then we need to apply a 

negative force (i.e., one to the left). As rale (2) has a premise membership function that has 

higher certainty than for rale (1), we see that we are more certain of the conclusion reached by 

rule (2).

2.3.6.7 Converting Decisions into Actions

Next, we need to carry out the defuzzification operation, which is the final component of 

the fuzzy controller shown in Figure 2.1. Defuzzification operates on the implied fuzzy sets 

produced by the inference mechanism and combines their effects to provide the “most certain” 

controller output. One can think of defuzzification as “decoding” the fuzzy set information 

produced by the inference process (i.e., the implied fuzzy sets) into numeric fuzzy controller 

outputs. We need one output, which we denote by “ucmp,” that best represents the conclusions of 

the fuzzy controller that are represented with the implied fuzzy sets. There are actually many 

approaches to defuzzification.

2.3.6.8 MATLAB Simulation of Fuzzy Controller for Inverted Pendulum

As there is no general systematic procedure for the design of fuzzy controllers that will 

definitely produce a high-performance fuzzy control system for a wide variety of applications, it 

is always better to learn about fuzzy controller design via examples. Let us continue with the 

inverted pendulum example to understand the various typical procedures used in the design of a 

fuzzy controller.

To simulate the fuzzy control system shown in Figure 2.4 it is necessary to specify a 

mathematical model of the inverted pendulum. Here we are not using the model for the initial 

design of the fuzzy controller but to accurately assess the quality of a design, we need either a 

model for mathematical analysis or simulation-based studies, or an experimental test bed in
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which to evaluate the design. Here, we will study simulation-based evaluations for design. One 

model for the inverted pendulum shown in Figure 2.2 is given by

9.8 • sin(y) + cos(y)
— u— 0.25 • y2 ■ sin(y)

1.5

0.5- r4 1 2 / j--------cos (v)
[_3 3 J

...(2.1)

U = — 100-M+100-M

The first order filter on u to produce u represents an actuator. Given this and the fuzzy controller 

discussed in previously, we can simulate the fuzzy control system shown in Figure 2.4. Let us 

define the initial condition be y(0) = 0.1 radians, y(0) = 0, and the initial condition for the actuator 

state is zero. The simulink model of the same is shown in Figure 2.10, and response of the same 

is shown in Figure 2.11.

Figure 2.10 : Simulink Model of the Inverted Pendulum

2.3.7 Sliding Mode Observers for Takagi-Sugeno Fuzzy Systems

A dynamic TS [98] fuzzy system is composed of multiple local affine dynamic linear
I

models. These local models are related to local linearization, via Taylor series expansion, of the 

original nonlinear system at off-equilibrium points. Thus, the local models have no equilibrium 

point within their regions of validity, i.e., they are off-equilibrium local models
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Figure 2.11 : Response of Fuzzy controlled Inverted Pendulum

In [83] it is proved that a TS fuzzy system where the local affine dynamic models are off- 

equilibrium local linearization leads to an arbitrary close approximation of the linear time 

varying (LTV) dynamic system resulting from dynamic linearization of the original nonlinear 

system about an arbitrary trajectory. Thus, the results concerning observers for TS fuzzy systems 

are also relevant to systems such as linear parameter varying (LPV) systems, piecewise linear 

systems, and conventional gain-scheduled systems.

TS fuzzy system is subject to observation and defines a Luenberger type of observer, 

which may be realized in terms of a parallel distributed compensation scheme incorporating an 

intexpolation between local Luenberger observers. This is the type of nonlinear observer that has 

received most attention in the fuzzy control literature, but all results reported assume no 

matched/unmatched uncertainties.

A sliding mode fuzzy observer that is related to the so called min-max observer 

described by Zak and Walkot [99] utilizes interpolation between local observer gains which has 

one major negative effect: large number of local models will give a large number of linear matrix 

inequalities (LMI) in the stability analysis and design, which may prohibit the use of existing 

LMI tools.
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TS fuzzy system may be reduced to a dominant linear one, that is one local model is 

chosen and the effect of the rest are incorporated in it in terms of known deviations interpreted as 

uncertainties. This avoids the use of LMIs for analysis and design and instead a direct sliding 

mode observer design is possible. The model mismatches are taken into account as known upper 

bounds of matched and unmatched uncertainties.

2.3.8 LMI-Based Design of T-S Fuzzy Estimator based Controllers

Tanaka and Sugeno [100] proposed a theorem on the stability analysis of T-S fuzzy model. 

Later Wang et al. [101] proposed the so-called PDC as a design framework and also modified the 

Tanaka's stability theorem to include the effect of control. An important observation in the paper is 

that the stability problem is a standard feasibility problem with several LMIs when the feedback 

gains are pre-determined and can be solved numerically using an algorithm named interior-point 

method. - - —

They are, however, NMIs (Nonlinear Matrix Inequalities) when the feedback gains are 

treated as unknowns. Later, Joh et al [102] converted the NMIs to LMIs for both of continuous and 

discrete T-S fuzzy controllers by applying the Schur complements to the Wang et al.'s stability 

criterion and named it as stability LMIs. And they proposed a systematic design method based on 

the stability LMIs for T-S fuzzy controllers which guarantees global asymptotic stability and 

satisfies desired performance of the closed-loop system.

Joh et al.'s assumed, however, that all the state variables are accessible. The fuzzy state 

estimator is proposed as a T-S type fuzzy rules using Wang et al.'s PDC structure to estimate the 

inaccessible states. In particular, a systematic design method for PDC - Fuzzy controllers with 

inaccessible states is obtained by combining LMIs for fuzzy state estimator and LMIs for control.

2.3.9 Fuzzy Regulators and Fuzzy Observers: Relaxed Stability Conditions and 

LMI-Based Designs
The issue of stability of fuzzy control systems has been considered extensively in 

nonlinear stability frameworks [103,104,105,106,107]. Specially, the stabilization of a feedback 

system containing a fuzzy regulator and a fuzzy observer for discrete fuzzy systems and, more 

importantly, new relaxed stability conditions and LMI- (linear matrix inequality) based design
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procedures are obtained for both continuous and discrete fuzzy systems. The stability analysis 

and design procedures proposed here are straightforward and natural, although the nonlinear 

regulator and observer design is difficult in general. Linear regulators and linear observers play 

an important role in modem control theory and practice. We envision that a systematic design 

method of fuzzy regulators and fuzzy observers would be important for fuzzy control as well. To 

begin with, Takagi-Sugeno (T-S) fuzzy models and previous stability results are recalled. To 

design fuzzy regulators and fuzzy observers, nonlinear systems are represented by T-S fuzzy 

models. The concept of parallel distributed compensation (PDC) [103,104,105] is used to design 

fuzzy regulators and fuzzy observers from the T-S fuzzy models. LMI-based design procedures 

for fuzzy regulators and fuzzy, observers are constructed using the PDC and the relaxed stability 

conditions. Other LMI’s with respect to decay rate and constraints on control input and output 

are also derived and utilized in the design procedures.

2.3.10 Separation principle: for the analysis & design of fuzzy controller & observer

The objective of this section is to develop a concept of separation property for the design 

of Fuzzy logic controller and observer, which helps in designing both of them separately as in 

normal control system. Analysis & Design of the Fuzzy Controller and Observer based on 

Takagi-Sugeno (T-S) fuzzy model is also discussed. A numerical simulation is also carried out to 

illustrate performance of the fuzzy controller & the fuzzy observer.

Since the last decade fuzzy logic based systems are gaining more attention from the 

scientific and industrial community. The fuzzy control departs significantly from the traditional 

control theory, which is essentially based on the mathematical models of the controlled process. 

Instead of deriving controller via modeling the controlled process quantitatively and 

mathematically, the fuzzy control methodology tries to establish a controller directly from the 

domain experts or operators, who are controlling the process manually and successfully. Other 
way it can be said that it’s a expert system where primary attention is paid to the humaiTs 

behavior and experience rather than to the process to be controlled. It is this distinctive feature 

that makes fuzzy control applicable and attractive for dealing with those problems where the 

process is so complex and ill-defined that is either impossible or too expensive to derive a 

mathematical model, which is accurate and simple enough to be used by the traditional control
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methods but the process may be controlled satisfactorily by the operators. This in turn leads to 

the fact that is has lack of theoretical basis and also that its performance is inconsistent.

Based on the above concept some fuzzy models based on the fuzzy control system design 

methods have appeared in fuzzy control field [108,109,110]. Linear feedback control methods 

can be utilized as in the case of feedback stabilization.

The procedure for that is as follows:

First, the non-linear plant is represented by its T-S type fuzzy model. In this type of fuzzy 

model local dynamics in different state space regions are represented by linear models. The 

overall model of the system is obtained by combining these linear models using non-linear fuzzy 

membership functions. The controller design is carried out using the parallel distributed 

compensation scheme. The resulting overall controller is non-linear in general and is again a 

fuzzy combination of each individual linear controller. The same procedure is used to design a 

fuzzy observer. The important point here is the separation property, which helps in designing the 

fuzzy controller and the fuzzy observer independently.

• Plant Definition: Obtaining mathematical models of the complex physical systems can 

be difficult or sometimes impossible too. But many of these systems can be expressed in 

some form of the mathematical model locally. Takagi and Sugeno have proposed a fuzzy 

model to describe the complex system [111]. In [112] we have consider a dynamic model 

to represent a complex MIMO system, which has both local analytic linear model and 

fuzzy membership functions. T-S dynamic model is described by the fuzzy IF-THEN 

rules, which locally represents linear input-output relations of nonlinear systems.

The ferule of the fuzzy model is:
Plant Rule i:

IF mj(t) is F/; and ... and mg(t) is

THEN = Aix(t) + ) ^2
y(t) = Ctx{t)
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Where, Fy (j = 1, 2, g) are fuzzy sets, x(t) e Rn is the state vector, u(t) e Rm is the 

input vector and y/t) e R/; is the output vector. (A,- e R"x", B, e R"xra, Ci e Rpx”) is the matiix 

triplet, r is the number of IF-THEN rules and mj ~ mg are some measurable system variables.

Considering the T-S model and using a standard fuzzy inference method the final state of 

the fuzzy system is inferred as ...

x(t) = £ M>(i)][z(; X(t) + Bt u(t)] (2.2)
i=i

Where, |ij[m(t)7] (= ji{) is weighted average of fuzzy membership function at each local 

level and m(t) = [mrft) rri2(t) ... ms(t)\ It is assumed in this paper that fuzzy membership at each 

level is positive and hence

M^(0] ^ 0, i = 1,2,...,r;
XN>(0] = 1 V/
1=1

The final state of the fuzzy system can be represented as

* r r
x(t) = ^ LL- Ai x(t) + P Bi u(t) (2.3)

i=i i=i

The final output of the fuzzy system is inferred as follows...

T(0 = X^Gx(0 (2.4)

• Design of Fuzzy Controller

From the plant definition given earlier one can say that if the pairs (A#, B,), i = 1,2,..., r 

are controllable, the fuzzy system is called locally controllable. For the design of fuzzy controller 

it is assumed that the fuzzy system (2.1) is locally controllable. First, the local state feedback 

controllers are designed based on the controller rules for each pairs (Ai, Bi):

Controller Rule i:

1F mi(t) is F;/ and ...and mJt) is F,g THEN u(t) ~ ~ Kjx(t), i =1, 2, ...,r (2.5)

Then, the final output of the fuzzy controller is given as
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Where, ji; is the same weight as ilh rule of the fuzzy system. The parameters of the 

controller are Kj in each rule. Substituting (2.6) into (2.3) vve get

= (2.7)
<=i 7=i

A sufficient condition that guarantees the stability of the fuzzy system is obtained in 

terms on Lyapunanov’s direct method. The equation (2.7) is said to be asymptotically stable if 

there exists a positive semi definite matrix Pi such that

(Ai - Bi Kif Pi + Pi(Ai - Bi Kt) < 0

• Design of Fuzzy Observer

As we know in practice all the states of the systems are not fully measurable. Hence it is 

necessary to design the fuzzy observer in order to implement the fuzzy controller of (2.6).

It can be said that if pairs (Ai, Ci), i = 1, 2, ..., r are observable, the fuzzy system is 

locally observable; First, the local state observers are designed based on the triplets (Ai, Bi, Ci):

Observer Rule i:

IF mi(t) is F// and ... and mg(t) is F^THEN

x(t)~ Aix(t) + Biii(t) + Gi[y(t)-y(t)] 

y(t) r Ci x(t), i = l,2,...,r
(2.8)

Where, Gi (i=l, 2,..., r) are observation error matrices. y(t) and y (,) are the final output of 

the fuzzy system and the fuzzy observer, respectively. Then the final estimated state of the fuzzy 

observer is

a r ■ r

x(t) = I p Ai.x(t) +y£lhBnt(t)
l ^ „ (2-9)

+ £n,G,fy(0-.v(0]
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the final output of the fuzzy observer is

y(0 = i>C,i( 0 (2.10)

/=!

where, we use the same weight ji, as the weight of i* rule of the fuzzy system. The 

observer parameter for each rule is G,. Substituting (2.4) & (2.10) into (2.9) we get

A -r A J"x(0 = ^ p/ Aix(t) +^T piBiu(t)
;=i ;=l

+ X X W# Gi CjlxM - x(0]
/=i j-i

(2.11)

A

Using the final estimated state x(t), in (2.5) and (2.6), we get the following fuzzy controller:

Controller Rule i;

IF mi(t) is F,7 and ...and mg(t) is F^THEN u(t) = -Kix{t) i =l,2,...,r (2.12)

Then, the final output of the fuzzy controller is given as

u(t) = ~YiyuKix(t) ' — - (2.13)

Now, substituting (2.13) into (2.3) and (2.11),

x(t) = ^\ii[iiBi-Kjx{t) (2.14)

/=I j=\

*(0 = XX^Pi (Ai - Bi - Kj) x(0
/=! j=i

/=i /=i
x(t) - x(t)

(2.15)

let, x(t) — x(t) — x(t), this gives

- r r ~

x(t) - Pig/ (Ai - Gi ■ Cj)x{t)
i=i y=i

(2.16)
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The equation (2.16) is asymptotically stable if there exists a positive definite matrix p> 

such that

(At - Gi■ Cif Pi + Pi(Ai - Gi ■ G) < 0 (2.17)

• Separation Property

The Separation principle of Estimation and Control in traditional control theory is [113]

“ When the control law u ~ —K x is used in conjunction with either a full order or 

reduced order state observer for

x(t) = Ax + Bu 
y(t) = Cx

the controller gain K does not influence the eigenvalues of the state observer and the choice of 

the observer gain G does not influence the remaining eigenvalues

The state- space transformation allows us to look at the system from a different but 

possibly more informative way. Lets look at the fact that under such transformations, the matrix 
“A” becomes “P'*AP”. Representing the equations (2.14) and (2.16) in matrix form as below...

•

X r r 'Ai-BiKj BiKj X

X 1=1 y=i 0 At — GtCj X

Note that in this new realization, the matrix is block- triangular. According to the matrix 

algebra [114] “Eigenvalues of a block triangular matrix are equal to the eigenvalues of the 

matrices along the diagonal blocks”.

Using this fact and the knowledge that system eigenvalues remain invariant under state 

transformations, we can say that the closed loop poles of the fuzzy observer based control system 

are union of the fuzzy observer poles and the fuzzy controller poles.

As controllability allows us to place the eigenvalues of

;=i j—\

arbitrarily and the observability does the same for the eigenvalues of
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i=l H

From the above two conditions we can say that designer has complete freedom in fuzzy 

controller and fuzzy observer pole selection as in the case of traditional control theory.

Stability and real time implementation are the major issues that also required to be 

addressed before finally controller gets implemented. Let us address the stability issues first.

2.3.11 Design of Fuzzy Controller — Stability concerns
Design of a stable controller for non-linear systems is always a complex problem. The 

choice of the identification and controller model for non-linear plants is a formidable problem 

and successful identification and control has to depend upon several strong assumptions 

regarding the input and output behavior of the plant. Soft computing based approach helps such 

problems by learning the system behavior. In order to analyze the system stability TSK fuzzy 

plant model is proposed. Fuzzy controller is designed and stability conditions for the same are 

derived.

To investigate the stability of the system, the Takagi-Sugeno-Kang (TSK) fuzzy plant 

model [111,115] is proposed. There are two ways to obtain the fuzzy plant model. One way is 

through identification of the model using input-output data of the plant and other is by direct 

derivation using mathematical model of the plant. Stability of such fuzzy plant and controller is 

to be investigated. Different stability conditions based to the Lyapunov stability theory [100] and 

other related approaches were reported. Using these stability conditions, closed loop system 

stability can be tested after finding the fuzzy controller parameters, which are usually determined 

by trial and error. Further ways to solve the stability conditions are usually not considered. If the 

stability conditions can be formulated as some LMI, there are softwares available to find the 

solutions numerically. However, formulating, the stability conditions into an LMI problem will 

limit the realm of the stability analysis. In order to have systematic method to obtain fuzzy 

controller with guaranteed system stability, a fuzzy controller can be derived from genetic 

algorithm, which will be discuss in later chapter is proposed. The stability conditions for fuzzy 

controllers are first derived and based on these conditions, the parameters of the fuzzy controller 

is to be obtained using GA in the later chapter.
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2.3.11.1 TSK Fuzzy Plant Model, Fuzzy Controller and Fuzzy Control System

Lets’ consider a fuzzy control system, where a Non-linear plant is connected with a fuzzy 

controller in closed loop. The TSK fuzzy plant model is employed to describe the dynamics of 

the model. Let there are p rules for describing non-linear plant and c rules for fuzzy controller. 

The z'-th rule for the plant and model can be written as

Rule i:IF f\ (x(t))is Mj and ...and f^(x(t))isTHEN x(t) = Ajx(t) +

Where Mla is a fuzzy term of rule i corresponding to the function fa(x(t)) containing the 

parameter uncertainties of the nonlinear plant, a = 1,2, ... y/, i = 1,2, ...p. y/is positive integer. 

Aj g Sinxn and Bt e %nxm are known constant system and input matrices, respectively.

x(t)<= SR”*1 is the system state vector and zz(/)e c!Rmxl is input vector. The inferred system is 

given by - ~ " - '

P P
x(f) = X wi W0)(/W(0 + Bjii(t)} where (x(t)) — 1, w{ (x(t)) e [01] for all i

1 1

Mm- C/i W0))x/%;(/2(-<0))x"-x^m' (4/WO))
- --«5W0>=—---------- !------------------------------------------2----------------------------------------------------- -------------------------------------

(/iWO))x%- (/2W0))x-x%‘ (fv W0)|
*=i v

is a non-linear function of x(t) and - C/a WO)) is the membership function corresponding to

Mla. The value of pM< (fa{x(t))) can be known or unknown. If it is unknown function 

(fa WO)) reflects the parameters uncertainties of non-linear plant.

A fuzzy controller will be obtained based on the TSK model [116]. The j-th rule of the 

controller has the form of...

Rule j: IF gj (x(t)) is and ... and gQ (x(t)) is THEN u{t) = Gjx(t)

Where JV^is a fuzzy teim of rule j corresponding to the function gp (x(t)). f = 1,2, ...Q, j = 1,2,

...c. Q is positive integer. Gj e S\mxn is the feedback gain of the rule j to be designed. The 

inferred output of the fuzzy controller is given by
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u(t) = nijjx(l)) where ntj (x(0) = 1, mj (x(t)) e [01] for all j

j=1 M

MnI fel (x(0))x/xAri (g2 WO))x-x%/ (gQ (x(0»
my (x(O) =   !------------------- 2------------------------ 2----------------

zUn: (gl WO))x%‘ (g2 WO>)x—X//JV* (go(x(0))) 

*=1

is the non-linear function of x(t) and pN^[g^(x(t))) is the membership function of Njjto be

designed. In order to carry out the analysis, closed loop fuzzy systems is to be there, which can 

be given by

u(t) = it w, (x(t))mj (x(t))Hy x(t) where Hy — Ai + Bi Gj. i=i M

2.3.11.2 Stability Analysis

Stability Analysis of the fuzzy control system can be carried out by considering the 

Taylor Series x{t + At) = x{t) + x(t)At + o(At).

Where o(At)~= -~x(t) — x(t)At + x(t + At) is the error term and At > 0, and

lim |kAO/=0 
Af —> 0 II /At

Multiplying a transformation matrix T, having rank n and TtT being symmetric positive 

definite matrix and then taking /_? norm of the same we can derive that fuzzy control system will 

be exponentially stable [100,117],
if ptTHjjT1] <-c for all i & j.

. lim \l + THiiT~'At\-\
Where |i[THjjT] is given as p[THyT~l ] = p[T{Al + Bfi^T1 ] = *-------- 9—----i—.

Here, s is a non zero positive constant scalar. Which can be summarized in the lemma: 

“The fuzzy control system defined above, which may have parameter uncertainties, is 

exponentially stable if THijT-1 is designed such that p[THijT-l] <-e for all i & j". It should be 

noted that with the use of a suitable transformation matrix T we can have the system which is 

exponentially stable. So, now problem is left with finding such matrix T for the given system.
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In the paper [117], refers the derivation of transformation matrix T by way of Fuzzy logic 

and then later implemented using G A, which is discussed in the later chapters.

2.3.12 Fuzzy Controller - Real Time Implementation Issues
When it comes to implementing a fuzzy controller, we often want to try to minimize the 

amount of memory used and the time that it takes to compute the fuzzy controller outputs given 

some inputs. The pseudo-code in the earlier section was not written to exploit certain 

characteristics of the fuzzy controller that I had developed for the inverted pendulum; if I have to 

actually implement this fuzzy controller and have severe implementation constraints, I need to 

try to optimize the code with respect to memory and computation time.
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