

3. Evolutionary Computation

The design of intelligent controllers based on unconventional control techniques is

undoubtedly becoming common and these developments rely heavily on the use of stochastic

methods of soft computing in seeking optimum results. These methods offer a new and veiy

exciting prospect for control engineering, leading to solutions to problems that cannot be solved

by conventional analytical or numerical optimization methods.

Although stochastic methods of optimization are computer intensive, the impressive

progress that has been observed in computer hardware also in past decades, which has led to the

availability of extremely fast and powerful computers that make stochastic techniques very

attractive for control applications, and especially for real time control issues.

3.1 Evolutionary Algorithms
Evolutionary algorithms are iterative and stochastic optimization techniques inspired by

the concepts, of from Darwinian evolutions theory. An EA simulates an evolutionary process on

a population of individuals with the purpose of evolving the best possible approximate solution

to the optimization problem on hand. In simulation cycle, three operations are typically in play;

recombination, mutation, and selection. Recombination and mutation create new candidate

solutions, whereas selection weeds out the candidates with low fitness, which is evaluated by the

objective, function - also referred to as fitness function. Figure 3.1 illustrates the initialization

and the iterative cycles in Evolutionary Algorithms.

Historically, Evolutionary Algorithms were first suggested in the 1940[118]. However,

the founding fathers of modem Evolutionary Algorithms are considered to be Lawrence Fogel —

Evolutionary Programming [119], Ingo Rechenberg and Hans-Paul Schwefel - Evolutionary

Strategies [120] and by John Holland - Genetic Algorithm [121]. Later Evolutionary Algorithms

(EAs) and Evolutionary Computation (EC) were introduced as unifying terms for the forest of

optimization techniques inspired by biological evolution.

58

Initialization and Evaluation

JL

Figure 3.1: Iterative Cycles in Evolutionary Algorithms

Evolutionary computation is a generic term for computational methods that use models of

biological evolutionary processes for the solution of complex engineering problems. The

techniques of Evolutionary Computation have in common the emulation of the natural evolution

of individual structures through process inspired from natural selection and reproduction. These

processes depend on the fitness of the individuals to survive and reproduce in a hostile

environment. Evolution can be viewed as an optimization process that can be emulated by a

computer. Evolutionary computation is essentially a stochastic search technique with remarkable

abilities for searching for global solutions.

There has been a dramatic increase in interest in the techniques of Evolutionary

computation since their introduction in the mid 1970s. Many applications of the techniques have

been reported, including solving problems of numerical and combinatorial optimization, the

optimum placing of components in VLSI devices, the design of optimal control systems,

economics, modeling ecological systems, machine learning etc.

The idea behind Evolutionary computation is best explained by the example quoted by

Michalewicz in 1992 “Do what the nature does. Let us take rabbits as an example: at any given

time there is a population of rabbits. These faster, smarter rabbits are less likely to be eaten by

foxes, and therefore more of them survive to do what rabbits do best: make more rabbits. Of

59

course some of the slower, dumber rabbits will survive just because they are lucky. This

surviving population of rabbits starts breeding. The breeding results in a good mixture of rabbit

genetic material: some slow rabbits breed with faster rabbits, some fast with fast, some dumb

rabbits with smart rabbits and so on. And on the top of that, nature throws in a ‘wild hare’ every

once in a while mutating some of the rabbit genetic material. Th e resulting baby rabbits will on

average be faster and smarter than those in the original population because faster, smarter

parents survived the foxes..By analogy, in evolutionary computation, solutions that maximize

the measure of fitness will have higher probability of participating in the reproduction process

for new ones. This is fundamental premise in Evolutionary Computation. Solutions of an

optimization problem evolve by following the well known Darwinian principles of “survival of

fittest”. In following sections we are to discuss the basic principles, the principle techniques and

operators of evolutionary computation. The most popular Evolutionary algorithm is Genetic

Algorithm.

Genetic Algorithm derives their name from the genetic processes of natural evaluation.

They were developed from Holland! 121] and have been implemented successfully in a broad

range of control applications, e.g. the design of neural and fuzzy controllers, for tuning of

industrial controllers and also for the creation of hybrid fuzzy/ evolutionary and neural /

evolutionary controllers etc. The rapid progress in the computer technology permitted the use of

the evolutionary algorithms in difficult large scale optimization problems, real time control

applications etc. also.

The terminology in the field of evolutionary computation is derived from biology and

genetics. Although evolutionary algorithms appear to be extremely simple compared with their

biological counterpart, they are, however, sufficiently complicated so as to yield solutions where

conventional numerical methods have been known to fail. Evolutionary algorithms are subset of

evolutionary computations and belong, to the generic fields of the simulated annealing and

artificial life. The search for an optimum solution is based on the natural processes of biological

evolution and is accomplished in a parallel manner in the parameter search space. The

terminology used in evolutionary computation is familiar. Thus, candidate solutions of an

optimization problem are termed individuals. The population of solutions evolves in accordance

60

with the laws of natural evolution. After initialization, the population undergoes selection,

recombination and mutation repeatedly until some termination condition is satisfied. Each

iteration is termed a generation, while the individuals that undergo recombination and mutation

are named parents that yield offsprings.

Selection aims at improving the average quality of the population, giving the individuals

with higher quality increased chances for replication in the next generation of solutions.

Selection has the feature of focusing the search in promising areas of the parameter search space.

The quality of every individual is evaluated by means of a fitness function, which is analogous to

an objective function. The assumption that better individuals have increased chances to

reproduce even better offsprings is based on the fact that there is a strong correlation between the

fitness of the parents and that of their offspring. In Genetics this correlation is termed as heredity.

Through selection, exploitation of the numerical/ genetic information is thereby achieved.

Through recombination, two parents exchange their characteristics through random

partial exchange of their numerical/ genetic information. The recombination of the characteristics

of two parents of high fitness assumes that if a portion of-the numerical/ genetic information

responsible for high values of fitness recombines with an equivalent parent, then the chances that

their offspring will have as high of even better or higher fitness values are correspondingly

increased. Recombination is also referred to as Crossover. Likewise, through mutation, an

individual undergoes random change in one of its characteristics i.e. in a specific section of the

structure. Mutation aims at introducing new characteristics to the population that does not

necessarily exist in the parents, leading thereby to an increase in the variance of the population.

Exploration of the search space is achieved through the operators of recombination and mutation.

The cornerstone of Evolutionary Algorithm is the iterative procedure in exploring the

search space while simultaneously exploiting the information that is being accumulated during

the search. This is in fact, where their functionality lies. Through exploration, a systematic

sampling of the search space is achieved, while through exploitation the information that has

been accumulated during exploration is used to search for new areas of interest in which

exploration can be continued. Unlike exploitation, exploration includes random steps. It should

be emphasized that random exploration does not mean exploration without direction, since the

technique focuses on the most promising directions.

61

3.2 Why Evolutionary Algorithms?
In general, most real-world optimization problems have several challenging properties.

Nearly all problems have a significant number of local optima, and the search space can be so

huge that the exact global optimum cannot be found in reasonable time. Additionally, the

problems may have multiple conflicting objectives that should be considered simultaneously

(e.g., cost versus quality). Moreover, there may be a number of non-linear constraints to be

fulfilled by the final solution. Furthermore, the problem may have dynamic components altering

the location of the optimum during the optimization process. For some problems, variants of the

local search approach have-proven to be very efficient, e.g., Lin-Kemighan’s algorithm for the

Traveling Salesman Problem. However, deterministic local search algorithms, such as steepest

decent, do not allow a decrease in the solution’s quality during the search. For this reason, these

algorithms often stagnate at a local optimum, which makes local search less desirable for many

real-world problems. Valuable alternatives are stochastic search methods such as simulated

annealing, tabu search, and evolutionary algorithms. Among these techniques,“Evolutionary

Algorithms- seem to be a particularly promising approach for several reasons. Evolutionary

Algorithms are very general- regarding the problem types they can be applied to (continuous,

mixed-integer, combinatorial etc.). Furthermore, these algorithms can easily be combined with

existing-techniques such-as local search and other exact methods. In addition, it is often

straightforward to incorporate domain knowledge in the evolutionary operators and in the

seeding of the population. Moreover, Evolutionary Algorithms can handle problems with any

combination of the above mentioned challenges in real-world problems (local optima, multiple

objectives, constraints, and dynamic components). In this connection, the main advantage lies in

the Evolutionary Algorithm’s population-based approach. For local optima, the genetic diversity

of the population allows the algorithm to explore several areas of the search space

simultaneously. This is of course no guarantee against premature convergence to a local

optimum, but the population improves the Evolutionary Algorithms robustness on such

problems. In multi objective problems, Evolutionary Algorithms provide a set of trade-off

solutions to the problem’s conflicting objectives in a single run, whereas traditional approaches

typically only produce one solution per run. Regarding constraint problems, Evolutionary

Algorithms typically allow a mix of feasible and infeasible solutions in the population. This

improves the algorithms capabilities of exploring the boundary between feasible and infeasible

62

search space, and the capabilities for “crossing” infeasible regions. Finally, the population gives

Evolutionary Algorithms an advantage on dynamic problems, because the population is likely, to

contain a good solution after the problem changes.

Naturally, EAs do also have some disadvantages. Unfortunately, they are rather

computationally demanding, since many candidate solutions have to be evaluated in the

optimization process. However, there has been a recent increase in interest in dealing with this

problem and some techniques have been suggested. Furthermore, EAs should not be applied

blind foldedly to any problem. Many simpler and faster techniques exist and they should

typically be tried first. In this context, EAs offer- the possibility to further improve solutions

found by simpler techniques, which can be done by incorporating them in the start population. In

addition, EAs typically have a few more algorithmic parameters to tune compared with simpler

techniques. These parameters are unfortunately problem dependent, but this is also the case for

-simpler techniques though fewer parameters need to be tuned.

3.3 Basics of-Evolutionary Algorithms
Evolutionary algorithms (EAs) are iterative optimization techniques inspired by concepts

from Darwinian evolution theory. However, the evolutionary process in EAs is extremely

simplified compared with the process in nature. Although many terms used in connection with

EAs have been adopted from biology, only a few modem approaches have implemented

biological concepts in a realistic manner. Conceptually, an EA maintains a population of

individuals that are selected and created in an iterative process. An individual consist of a

genome, a fitness, and possibly a number of auxiliary variables such as age and sex. The genome

consists of a number of genes that altogether encode a solution to the optimization problem. The

encoding is the internal representation of the problem, i.e., the data structure holding the genes.

The fitness represents the quality of the solution encoded in the individual’s genome, and it is

usually calculated by a so called fitness function. The surface obtained by the fitness landscape is

the search space in relation to the fitness function.

Regarding the implementation of EAs, there is a great variety in population structures and

evolutionary operators. However, all EAs have an initialization phase followed by an iteration

phase that evolves the initial population to a better set of solutions to the problem. Figure 3.2

illustrates the pseudo code of a simple EA.

63

EA Main

t=0
initialize population P(0)
evaluate population P(0)
while (l('termination condition))
{

i — t +2
select population P'(t)from P(t-l)
create population P(t)from P'(t)
evaluate population P{tJ

}
Figure 3.2 Pseudo Code of Simple EA

In EAs, the population is usually initialized with randomly created individuals that are

evaluated with respect to the fitness function. After initialization, the iteration phase loops until

some termination criterion is met. This may be a maximal number of generations, a maximal

number of fitness evaluations, or that a desired fitness is reached. The loop consists of four parts.

First, the generation counter t is increased. Next, selection is applied to form the population at

generation t from the population at generation t-1. Naturally, individuals with better fitness are

more likely, to be represented in the new population. After selection, a new population is

typically created by recombination or crossover and mutation of the solutions in the selected

population P‘(t). The recombination operator creates one or two new solutions by mixing

(crossing over) the genomes of two or more parents. The mutation operator alters the genome of

one individual to create a new individual. A typical approach is to add a bit of stochastic noise to

the existing solution. Finally, the new population is evaluated and the process is repeated.

During the run, the fitness of the best individual improves over time and typically tends

to stagnate towards the end of the run, refer figure 3.3.

Ideally, the stagnation of the process coincides with the successful discovery of the global

optimum. However, stagnation also occurs on local optima, which is usually an unwanted result

and one of the key problems in EAs and other iterative search algorithms. Typically, the

performance stagnation is caused by genetic convergence of the individuals in one part of the

search space, i.e., the genes of all individuals have become very similar. At this point, mutation

is the only way to explore other areas of the search space, which corresponds to random steps

away from the current location in the search space.

64

Performance of GA(best value)

Figure 3.3 Fitness improvement during the GA run.

3.4 Terminology of Evolutionary computation
The terminology of evolutionary computation (EC) is, to a large extent, borrowed from

biology, but many terms have a different meaning in an EC-context. Unfortunately, there is no

agreement on a large part of the basic terminology used in connection with EC. In general,

researchers agree on the meaning of selection, mutation, and recombination, which is as

described above. However, the terms related to the problem, the objective, and the representation

are very vaguely, defined and call for more concise and unifying descriptions. A system

identification problem is used for illustrative purposes. The introduced terms are displayed in

figure 3.4 for the example.

The given problem is often described in an abstract way, top of figure 3.4. A system

identification problem may be described as “find a mathematical model describing the measured

data”. First, the abstract problem description needs to be formalized. This can be done in a

number of ways. In the system identification for example, a domain expert may derive an n-

dimensional parameterized model of the process that generated the data (the formalization used

in figure 3.4). A completely different approach may be to use an artificial neural network to

approximate the true system.

65

Decoding from genotype to phenotype search space

Encoding: Array of doubles

Genotype search space: S c 91"
Decoding: Identity Mapping

Abstract problem definition
Example: Build a mathematical model

describing the measured data

Figure 3.4: The problem, the objective and the representation

Assuming that the problem should be solved using a parameterized model, the objective

is to find the values of the n model parameters that generate a behavior matching the measured

data in the best possible way. Hence, the search domain is numeric and in this case 91”. The

actual search space S is usually defined by an interval for each of the n variables, i.e. S cr 9v".

The search space is called the phenotype search space1 when there is a difference between the

domain of and the search domain. The next step is then to define the objective function, or fitness

function. In the system identification example, the objective function could be the sum1 of

squared error between the simulated and the measured data. Note that there may be several

1 The term “phenotype” (alone) denotes the individual’s solution in the search space and its corresponding fitness as

well as other traits such as age and gender.

Encoding: Binary string of Length L
Genotype search space: 2L binary strings

Decoding : Bitstring -> decimal values -> intervals of S

Problem Formalization
n-dimensional parameterized model

Search Domain: Numeric: 91"
Phenotype search space: S <z 5R”

Optimization goal: Minimization
Objective function: Sum of squared errors between

simulated data and measured data
Objective space: 91+

Re
pr

es
en

ta
tio

n
bi

tst
rin

g,
 vector

Pr
ob

le
m

O
bj

ec
tiv

e

66

meaningful functions for a given problem. To this end, a number of important issues arise when

designing fitness functions. They are discussed in later. The objective function defines the

objective space, which is the set of possible fitness values. In the case of a single objective, the

objective space is usually a subset of9i. For multi objective problems, the objective space is a

subset of91”', where m is the number of objectives. Settling on problem formalization and a

phenotype search space narrows the number of meaningful representations. A representation

consists of an encoding data structure and a decoding function. The encoding is used to store the
actual solution in. The encoding defines the genotype search space2and also the size of this

search space, i.e., the number of possible solutions. The decoding scheme is a mapping from the
genotype search space to the phenotype search space. It may be the simple identity mapping3 if

the search space is a natural subset of the search domain (e.g., an interval in R): In all other

cases, a decoding scheme must be implemented. In the system identification example, the most

straight forward approach is to use vectors, which may be represented as arrays of doubles.

Another possible approach is to use binary strings of length L. Here, the decoding scheme must

map solutions ffom the search space of X-bit binary strings to 91”. Finally, the choice of encoding

determines the set of possible evolutionary operators. Encodings and evolutionary operators are

closely connected because the operators access the data structure of the encoding directly.

However, it should be mentioned that a great variety exist for each encoding, and that several

new operators are introduced every year. For a comprehensive survey of the most commonly

used operators, see [122]. The next sections describe the encodings and operators relevant for

system identification and control problems. Furthermore, the remaining components of

evolutionary algorithms are also introduced.

3.5 Encoding, Mutation and Crossover
The optimal type of parameter encoding in the genome of the individual depends on the

definition of the problem. In principle, any problem parameters can be encoded by a binary

representation. However, it is often convenient to use a high level problem representation and

2 The term “genotype” is often used in connection with the representation. However, there is no consensus regarding
what genotype exactly denotes. Some researchers use genotype for the encoding; other researchers use it for both the
encoding and the decoding scheme.

The phenotype and the genotype search spaces are usually just called “search space” when the identity mapping is
used.

67

implement specialized mutation and recombination operators for the particular encoding. The

wide variety of EA-applications has created a great variety of encodings and operators. The most

frequently used are encodings for numeric domains, permutation domains, matrix domains, and

function domains. It is beyond the scope of this thesis to describe all of them in detail. Here, I

will focus on the numeric and function domains, which are the two primary domains relevant for

control applications.

3.5.1. Numeric Search domains

Numeric domains cover problems where the objective is to find a numerical vector. The

majority of EA-applications originate in this domain and therefore a significant amount of work

has been devoted to investigate and develop encodings and operators for this domain. The two

main encodings are the binary string encoding and the real-valued vector encoding. An important

issue in the representation of numerical problems is the precision of the encoding. A discrete

encoding of a continuous interval can never be- accurate, since any finite set of numbers leaves

gaps in a continuous interval. The precision of the representation can be improved by increasing

the number of bits in the binary representation. However, this improvement in precision also

increases the size of the search space, which grows exponentially with the number of bits. For
instance, the size of a search space in a 16-bit problem representation is 216 = 65536. To double

the precision, the genomes have to consist of 17 bits, which doubles the size of the search space.

The same consideration applies to real value encoded problems. In high-level programming

languages, the binary encoding is hidden from the programmer and the precision, and thus the

size of the search space, is given by the internal representation of the used floating point data

type.

Binary Strings

Binary encoding is the traditional way to represent parameters in EAs. The data structure

used for binary encoding is a bit-vector with fixed length X, which corresponds to 2L different

solutions in the search space. Apart from numerical problems, binary encoding is often used in

permutation and combinatorial problems, such as the 0-1 knapsack problem. To use binary

encoding with numeric domains, one has to specify a decoding function that maps the binary

representation of a gene to a floating-point number. The decoding function converts the binary

number to a decimal number, and then it is mapped to the real variable’s search interval. Suppose

68

a gene x is encoded by L bits, then the corresponding floating, point value xvaiue is calculated

according to equation 3.1.

^value ''"min
-1

(L-1

14]. 2
i=0

L-\-i ...(3.1)

where, xvaiUe is the floating-point value, xmin and xmax are the minimal and maximal values of x,

and x[i] is the i’th bit in the binary encoding. If x is encoded by 8 bits, xmin — -2, and xmax = 2,

then the binary number 01100111 = 103 is translated as follows:

x value = -2 +
2—2

255
• 103 » -0.3843 ...(3.2)

Another way to map a binary encoding to a numeric domain is called Gray decoding. The

advantage of Gray decoding is that similar parameter values in the floating,point representation

correspond to adjacent numbers in the binary representation. For instance, the binary number

00011111 =31 is not adjacent to 00100000 =32 in the traditional binary encodings although 31

and 32 are adjacent jntegers._If .32 is a better solution than 31_then the EA has to change six bits

in the representation to change the value from 31 to 32. The Gray decoding function solves this

problem such that neighboring integers are represented by binary numbers that differ in only one

bit. Figure 3.5 shows a Gray decoding algorithm. However, in both binary decoding techniques

there is the problem that a small change of the binary genome can lead to very large jumps in the

floating point search space, such as in 00000001 = 1 and 10000001 = 129.

function Gray Decode(bit-string x) : integer
ones = 0
intvalue = 0
for (i=0;i<|x|;i++) {

if(x[i] = =l)
ones++

intvalue = intvalue + (ones mod 2)*2W"1"1

}
return intvalue

Figure 3.5: Pseudo code for Gray decoding in linear time.

Following accepted terminology, the binary string is named a genotype, the decoded

information the phenotype, while every individual solution is a chromosome. When the

69

optimization problem is multidimensional, then the partial strings are concatenated as shown in

figure 3.6.

Variable -1 Variable -2 Variable -m
LL o 0 r 0, 0

/
1 0 0 i 0 0

ill 001 0

1 1 U 0 1 0

Figure 3.6: Creation of bitstring in multi dimensional problem of optimization

Bit-flip mutation

Bit-flip mutation is the most widely used mutation operator for binary encoded problems.

The operator procedure consists of an iteration over all genes, where the bit in a gene g[i] is

flipped if a uniform random number u of £7(0,1) is smaller than a certain probability threshold

pm. The main drawback of this operator is the time complexity, which is 0{L) for bit-strings of

length L. However, the distance between two changed bits follows the geometric distribution,

i.e., if pm is the probability of changing a bit then T ~ ge(pm) is a stochastic variable describing

the distance between changed bits. The number of bits t to skip can be calculated from the

following function.

t = l + ln(w)
M1-PJ

...(3.3)

where, u is uniformly distributed according to U(0,1). If the position t’ of the next bit flip is not
in the current genome then the first bit flipped in the next mutated genome should be the (t’-L)111

bit. Empirical studies[123] have suggested values for pm e [0.001,0.01], Later Back[122] showed

that the value pm~\ fL is optimal for simple problems. Hence normally 1/L is used as lower

bound on pm.

N-point and uniform Crossover

A widely used crossover operator for binary and also for real encoding is the n-point

crossover operator, which recombines the genes of two or more parents in order to create two

offspring genomes. In one-point crossover, the parent genomes of size n are cut and reassembled

at a random position p of the genome. The first offspring genome receives its genes between

70

gene[l] and gene[p-l] from parent 1 and its remaining, genes genefp] to gene[n] from parent 2.

The second offspring genome is assembled with the mirror image of the first offspring genome,

i.e., gene[l] to gene[p-l] are from parent 2 and gene[p] to gene[n] are from parent 1, refer figure

3.7.

Offspring-2 01110011 00111001

Figure 3.7: One point Crossover Operator

The difference between n-point and one-point crossover is the use of n crossover points

instead of one. At each crossover point, the source of gene[i] alternates between the two parents.

Usually n is a value between 1 and 4. Another frequently used crossover operator is the uniform

crossover. In uniform crossover the offspring is generated by picking, each gene[i] randomly,

from one of the parent’s gene[i]’s.

Real Valued Vectors

Another popular way to encode numerical domains is to represent the genes directly by

(pseudo-)real numbers. Here, the search space is a subset of the objective domain. Thus, no

decoding is necessary. The direct representation of the real values allows the design of mutation

and crossover operators that are based on arithmetic operations and stochastic distributions.

Gaussian and uniform mutation

Most mutation operators for real valued vectors alter the solutions by adding a randomly

generated vector M = (m^ m2,m„) to the solution vector x, i.e., x -x+M . It is important that

the m, in M are generated from a distribution with zero as mean value, otherwise the solutions

will drift due to mutation. The common choice for the generation of M is the Gaussian

distribution N(0,a).

71

0.2

50 100
Generations

150 200

Figure 3.8 : Decreasing Functions

Arithmetic crossover
Arithmetic crossover is an operator for real encoded genomes in which an offspring

genome is generated by the weighted mean of each gene in the two parent genomes.

Idea also referred as annealing

0.8

A rather uncommon mutation is based on the uniform distribution U(-a, a),where M is a

value between - a and a with equal probability. A special case of the uniform mutation is x* = M

with Me U (geneRangemm, geneRongemia), which can be useful for the encoding of an enumerable

parameter other than binary.

The performance of the mutation operator strongly depends on the parameter a. If a is set

to too high, the algorithm has difficulties in fine-tuning the solutions while if set to too low, the

population might end up in a local optimum. Several techniques have been suggested to control

a, such as self-adaptation in Evolutionary Strategies [120].

A very simple but effective solution is to define a as a function of the generation number.

A well-supported hypothesis is that, in general, the population will converge towards a local or

global optimum. To improve the chances of locating the global optimum the algorithm should

start with a broad search strategy that gradually narrows as the population converges, i.e., a
should be calculated from a decreasing function4. Two decreasing functions are displayed in

figure 3.8.

Decreasing functions for alpha
1

——alpha=1-0.005*t
alpha—1 /(1 +sqrt(t))

_______________ l_______________ _

........;......■■x

V
ar

ia
nc

e -
 al

ph
a

o
p (D

72

X =<B-X, +(l-<0)-X2 ...(3.4)

where, w i& the weight and xi and X2 are the genomes of the parents. If w = 0.5 then arithmetic

crossover calculates the offspring genome as the arithmetic mean of the two parents. The weight

w is often generated according to the uniform distribution (7(0,1), which will place the offspring

genome numerically between the parent genomes, refer figure 3.9(b).

(a) Uniform & n-point crossover

O 0
Offspring Parent 2

0 O
Parent.1 Offspring

■

xi
fc\ Arithmetic crossover

with' n Weight

X1

jv-j Arithmetic crossover
' ' with one Weight

0

-

Parent 2

■ o -

-
^ Offspring

-
Parent 1

•

XI
sa\ Arithmetic, crossover with 3 parents
' ' & 1 Weight per parent

Figure 3.9 Crossover for real valued vectors

A variant of arithmetic crossover generates a specific weight w, for each gene x,- in the
genome vector x - (x|, x'2,..., xn)

x] =w, • xu +{l-wi)-x2i ...(3.5)

In this variant, the offspring is placed at a random location inside the hypercube spanned

by the two parents, refer figure 3.9(c). A third variant of the arithmetic crossover generates the

offspring of k > 2 parents. The offspring is created by combining the parents according to a

number of weights, which define the amount of contribution from each of the parents. The

offspring is created according to equation 3.6.

73

...(3.6)
k k

x'= ^ wjxj j where Wj e [0,l], ^ w, =1
M M

In this setup the offspring is created in the convex hull defined by the k parents, figure

3.9(d).

3.5.2 Function Search domains
In problems with function domains, the objective is to evolve a mathematical expression.

EAs evolving expressions are usually called Genetic Programming (GP) in the literature. In GP,

the evolved expressions act as problem solvers rather than particular problem solutions. This idea

is closely related to the much older idea of Evolutionary Programming [119], which is an

approach for evolving automata that can leam symbolic patterns.

The key data structure in GP is the parse tree representation. A parse tree consists of

terminals and non-terminals. The terminals are the leaves of the tree, while the non-terminals are

the nodes. The terminals may be constants und variables related to the problem. The non­

terminals are operators such as T, /, and if-then-else constructs. The difference between terminals

and non-terminals is that the non-terminals have subtrees under them. For instance, the +

operator has a left and a right subtree. Non-terminals can have different numbers of subtrees. For

instance, the unary minus has one subtree, plus has two, while the if-then-else constmct has three

subtrees (condition, then part, and else part). A tree is evaluated by recursively traversing the

tree. Naturally, a non terminal cannot be evaluated unless its subtrees have been evaluated.

The choice of terminals and non-terminals is of course dependent on the kind of parse

trees that shall be evolved. They must be carefully selected to allow just the kind of expressions

that are needed to represent the problem solution. A too limited set may lead to functions with

rather poor performance. On the contrary, a large set of operators could make the search difficult

because the search space grows with the available operators. Another approach to limit the

search space is to introduce a maximal depth of the evolved trees. Additionally, the choice of

operators and terminals might introduce some technical problems. For instance, the return type

of the subtrees of the if-then-else operator are both Boolean and the type of the expression in the

then and else branch. The evolutionary operators have to ensure that the tree only contains

syntactically legal expressions. Another kind of problem is illegal arithmetic expressions such as

division by zero and square-root of negative numbers. This problem is usually handled by letting

74

the operator return a fixed value when it would otherwise have rendered an illegal value. For

instance, the division operator may simply return 1 when a division by zero occurs.

Grow, shrink, switch, and cycle mutation

Mutation operators for function encodings either alter the structure of the parse tree or the

internal value of nodes and leaves. Angeline defines four forms of mutation called grow, shrink,

switch, and cycle [124]. The grow operator replaces a random leaf with a new randomly

generated subtree. The shrink operator selects a random node and replaces it with a random leaf.

The switch operator exchanges two subtrees of a random node, provided that the selected node

has two subtrees. Finally, the cycle operator replaces a node’s operator by another operator with

the same number of subtrees. Figure 3.10 illustrates an example of the four operators.

(c) Switch mutation operator. (d) Cycle mutation operator.

Figure 3.10: Grow, shrink, switch and cycle mutation

Subtree crossover

Crossover in parse trees is surprisingly simple. The most widely used crossover operator

is the subtree crossover. The operator selects two nodes with the same return type in the parents.

Two children are created by swapping the subtrees starting at the selected nodes, refer figure

3.11.

3.6 Population Initialization
The initialization of the population specifies the starting points of the search. The initial

population can be created in a number of ways, refer figure 3.12.

75

Figure 3,11: Subtree crossover

(a) Random Initialization

Random Initialization

•••••*•*•**•*•
****••*•***••*

•••*•*********

****** ********
•**•**••****••

(b): Grid Initialization

* * * * *

* * * * *
* * * * *

(d) Knowledge based
Grid Initialization

Figure 3.12 : Initialization Methods.

The most common setup is the random initialization where the chromosomes are

randomly assigned, preferably using a uniform distribution. The goal is to create a population

with a good coverage of the search space, and thereby have a gene pool with good potential for

breeding better solutions. Alternatively, genomes can be evenly scattered over the whole search

space according to a regular grid-layout. However, deterministically determined search space

positions can be suboptimal starting points. In particular, a random setup can take advantage of a

76

completely new selection of starting points when runs are repeated. A third approach is to

incorporate expert knowledge into the initialization. In some cases, it is possible to assign the

initial search space positions based on specific knowledge about the objective function. Domain

experts will usually have an idea of what a reasonably good solution is. Furthermore, the current

best known solution may easily be incorporated in the search by just inserting the solution as one

of the starting individuals. The remaining individuals could then be randomly scattered or

arranged in a grid near the best known solution. A problem with such an initialization is that the

search may be too focused on the area around the special solution. A randomly initialized

population may allow the EA to discover fundamentally different solutions in comparison with

what a human would have proposed. Several examples can be found in the literature, e.g.,

Rechenberg’s early and famous tube-bending [120] study. Finally, including solutions created by

other search techniques seem to be an extremely promising approach, although rarely used.

In summary, the choice of initialization methods depends on the study one is performing.

Random initialization is used in most general investigations on EAs, because the global optimum

is usually known for test functions used in this context. For real-world applications, a rale of

thumb is to incorporate as much expert knowledge as possible in initialization as well as operator

design.

3.7 Selection Operators
Selection is an essential process in EAs that removes individuals with a low fitness and

drives the population towards better solutions. In this section, I will describe the four most

common selection operators and manual selection, which is used when a formal description of

the fitness is impossible. The selection operator essentially defines how the algorithm updates the

population from present iteration to the next. In general, selection either replaces the entire

population or only a fraction of it. The former approach is used in generational EAs whereas the

latter is employed in steady-state EAs. There are a few major differences between the two

approaches. First, the selection procedure is stochastic in generational EAs, but deterministic in

steady-state EAs. Hence, generational EAs may accidentally not select the currently best

solution. However, it is generally considered a good idea to ensure the survival of the best

individual. This scheme is referred to as elitism or k--elitism if A' individuals are saved as the elite.

Second, individuals are cloned in generational EAs whereas steady-state EAs select a

77

deterministic subset of the candidate solutions. Steady-state selection is mainly used by the

Evolution Strategies [120],

An important aspect of selection is the selection pressure, which governs the individual’s

survival rate. It is important to balance the selection pressure. A too high pressure usually leads

to convergence to a small area of the search space and thus possibly premature stagnation on a

suboptimal solution. A too low pressure will result in a very slow convergence.

3.7.1 Tournament selection
Tournament selection creates the next generation by holding a tournament for each slot in

the population of the next generation. In each tournament, the process picks k random

individuals, compares their fitnesses, and copies the individual with the best fitness to the slot.

The tournament size k is usually set to two individuals and rarely above five, since this would

impose a too strong selection pressure and lead to premature convergence. Figure 3.13 shows the

pseudo code for tournament selection with a tournament size of two. The “source” population is

usually fixed during the selection of the next-generation, which allows good individuals to be

copied multiple-times. - _

tournament selection (P(t))
for (i=0;i<|P(t)|;i++){

Pick two random individuals Ki and K2 in P(t)
Compare the fitness of Ki and K2.
Insert a copy of the fitter individual in P(t+1) at position i.

}
Figure 3.13: Pseudo code for Tournament selection with a tournament size of two.

Tournament selection is easy to implement, produces good results within short time,

requires very little computing time, and is controlled by only a few parameters. For these

reasons, tournament selection is probably the most commonly used selection operator nowadays.

The selection pressure in tournament selection can be increased by letting more individuals to

compete. A tournament size of two will, on average, ensure that the best individual is copied

twice to the next generation. Increasing the tournament size to three will also increase the better

individuals’ winning chances, because all individuals on average take part in three tournaments

instead of two. On the other hand, the selection pressure can be lowered by introducing

stochastic winners in tournaments with two individuals. Hence, the fittest individual wins with

probability p > 0.5. Typical values are p = 0.75 or p = 0.8. Setting p = 0.5 is equivalent to

random selection.

78

3.7.2 Proportional selection or Roulette wheel selection

Proportional selection assigns the probability of an individual’s survival according to the

fitness of the individual. The probability is, calculated by dividing the fitness of the individual by

the fitness sum of the whole population, i.e., an individual’s chance of survival depends on its

relative fitness to the other individuals.

PsuniM-p^ess(K) , 1 -(3.7)
2^fiiness(Ki) 1=1
i=1

Each individual is assigned to a “slot” of the interval [0, 1] according to the individual’s

Psurvivai- An individual is selected if a random number of the interval [0, 1] is within its slot. This

selection method is often illustrated as a biased roulette wheel, where the interval slots

correspond to the slots of a roulette wheel and the “winners” are copied to the next generation.

The drawback of proportional selection is that the selection pressure depends on the

relative fitness of the individuals instead of a parameter such as tournament size. In proportional

selection, a few very good individuals can quickly take over the entire population, because they

dominate a large part of the roulette wheel and is therefore frequently copied when the next

generation is formed. For this reason, proportional selection is not much popular.

3.7.3 Ranking Selection

Ranking selection is a variant of proportional selection that deals with the uncontrolled

selection pressure. In ranking selection, the selective superiority of an individual is determined

by a fixed probability pSUrvivai according to its fitness rank. The ranking is obtained by sorting the

individuals according to their fitness. Each individual is then assigned a probability pSumvai,

which is determined by. the used ranking scheme. The selection is performed using the roulette

wheel approach.

Table 3.1: Example of ranking scheme for population size of 20 individuals

Rank Psurvival Rank Psurvjval Rank Psurvivai Rank Psurvival

1 0.100 6 0.075 11 0.045 16 0.020

2 0.095 7 0.070 12 0.040 17 0.015

3 0.090 8 0.065 13 0.035 18 0.010

4 0.085 9 0.060 14 0.030 19 0.005

5 0.080 10 0.055 15 0.025 20 0.000

79

The difficult part of applying ranking selection is to determine a good probability psurvival

for each rank. A scheme that is too generous towards low-fit solutions might slow down the

convergence, while a scheme favoring the best individuals might lead to a premature loss of

genetic diversity.

3.7.4 Steady State Selection

Evolutionary algorithms that are based on steady-state selection, also known as steady-

state EAs, update only a small fraction of the population at every iteration. The evolutionary

operators create X potential solutions from the parent population with size p. Afterwards the (p +

X) individuals are sorted and X individual s with the lowest fitness are discarded. Common values

are p = 100 and X = 15. This approach is fundamentally different from tournament, proportional,

and ranking selection. In steady-state selection the populations are overlapping and all the

surviving individuals are deterministically selected, which is only the case for the elite

individuals in the other three selection techniques.

3.7.5 Manual Selection — r

In some applications,-the quality of a solution is based on a subjective evaluation of

issues that are hard or impossible to capture mathematically; for instance, the beauty of a design.

Instead, the selection process can be handled by a human operator. The algorithm displays the

current solutions and asks the operator to select a subset of the presented solution. The selected

solutions are then used to create a new population and the process is repeated. Examples of

manual selection include evolution of robot controllers [125], mixing of food-colors, and more

experimental applications in evolutionary art [126].

3.8 Use of EA for Design of Intelligent controllers

3.8.1 Fuzzy Controllers

The traditional design of the fuzzy controllers is based primarily on heuristic techniques.

The main problem in fuzzy control design is the difficulty in defining a host of parameters, such

as the number and shape of fuzzy sets of the inputs and outputs, the form of inference engine and

the defuzzification mechanism. Their choice has considerable influence on the overall behavior

of the controller. Unfortunately, at present the theoretical foundation determining the optimum

solutions does not exist and consequently only experience with similar problems can be used in

80

their design. Often, the result is acceptable but there is no guarantee that there do not exist a

better solution.

The flexibility of Evolutionary Algorithms is the principal motivating factor for their use

in determining the optimum values of the parameters of the fuzzy controllers. As we discussed in

the previous chapter, the linguistic values of a fuzzy variable are defined by their membership

functions. When a membership function is triangular, then the three parameters a, (f and y as

shown in figure 3.14, uniquely specify the fuzzy set. The parameters of every fuzzy set are

encoded into binary strings of sufficient length to give the desired precision. For n fuzzy sets and

m variables and encoding with p bits, the total length of the chromosomes is clearly n* m*p bits.

Figure 3.14: Parameters of a Triangular Fuzzy set

If the dynamic behavior of the process is known and there exists a macroscopic model of

the process, then we may use the single objective function to evaluate the performance of the

closed system to a step disturbance using familiar ITAE and/or ISE criteria.

3.8.2 Neural Controllers

The performance of a neural controller depends critically on the architecture of the

Artificial Neural Network (ANN) used, i.e. the number of neurons in every layer, the number of

the layers and the topology of the network, the form of compression function and the algorithm

used to train the network.

The determination of these parameters is based on the knowledge and experience of the

designer and any discussion on optimum design is of no consequence. The determination of the

parameters of a neural controller can, however, be transformed into an optimization problem for

which Evolutionary Algorithm, we discussed, is attractive.

81

Genetic Algorithms are considered very efficient in rapidly finding the approximate

optimum solution of an optimization problem, but they are generally slow in finding precise

solution. For better convergence, Genetic Algorithms can be combined with local search

techniques such as hill climbing, which is ideally suited for finding out optimum solution in the
small. For ANN with m layers and tij neurons in the ith layer, the total number of parameters in

the optimization problem is...
m—1

^ = ...(3.8)
i-Q

If every weight is decoded into a binary string,_with X digits, the total length of the

chromosome is clearly NL. It is obvious that the use of Genetic Algorithms in problems

involving ANNs with thousands of neurons becomes, difficult and extremely time consuming and

hence not suitable for real time control applications. However ANNs, which are used in Neural

Controllers, usually have a very simple architecture with rarely more than 30 neurons or more

than one hidden layer, in which case GAs are very efficient.

3.9 Stability and Optimality in GA based control
GAs quickly locates near optimal solutions of complex problems, described by a

specified fitness or objective functions. This function provides a measure of fitness of an

individual and directs evolution of the population to the regions of the fittest individuals.

Because the fitness value is the only information required of the application and because the GA

consists of a population of many solutions, the GA performs well on nonlinear and discontinuous

response surfaces, as well as surfaces corrupted with high degree of noise. These features also

allow the GA locate the global optimum, where as other techniques often converge to local

optima.

The control research community employ genetic algorithm on many levels. While the

capabilities of the GA based controllers have been demonstrated in simulation and offline

analysis using a system model, there remains lack of real on-line applications where model

information is unavailable. The subject of online control is seldom addressed in past, the reasons

of this are clear: GA controllers in their present state of research require robust systems that can

withstand the evaluation procedure for the evolving controllers.

82

3.9.1 Convergence of the GA controller Population

Each member of the GA controller population corresponds to an individual controller,

and each control the system for a specified number of time steps, over which the fitness of that

individual is evaluated. Therefore, a necessary element to the stability analysis is a guarantee of

convergence of the GA controllers to a population of stable controllers. Once stability has been

established, the convergence of the GA controller’s populations towards the optimal controllers

is considered.

3.9.2 Stability of GA controllers

- A-common assumption in GA-convergence analysis is that the fitness of a particular

schema will remain above or below average by a constant amount through out the evolution of

populations.

+ V/ ...(3.9)

Where, f(H,t) is the fitness of schema H over the generation f,/(f) is the total average

fitness over the" generation t. A schema represents a subset or group of individuals in the solution

space and corresponds to attributes of those individuals. Goldberg [45] and Holland [121]

illustrate the effect of genetic operators on schemata represented by a particular population. Let

the number of schema# in the population Aft) at generation i be given by m(H,t). A fitness value

can be associated with the schema if by. averaging fitness of each string Aft) representative of H

at generation t. Under fitness proportionate selection pressure alone (no mutation, no crossover),

the number of instances of a schema is expected to increase of decrease in accordance with that

schema’s relative fitness in the current population. Therefore, the expected number of schema H

in population A(t+1) is

m{H, t +1) = m(H, t) ■ nm
f

...(3.10)

Extrapolating equation 3.9 from equation 3.10, the effect of fitness proportionate

selection on the expected number of a schema H represented in the population from generation

can be modeled as
m{H, t + i)—(l + c)-m(H,t) ...(3.11)

or in terms of the expected number of H in the initial population

m(H,t)=(l + c)-m{H,0) ...(3.12)

83

neglecting the effects of crossover and mutation. For an average individual (c > 0), the number of

schema H is expected to increase exponentially, while for below average solutions (c < 0) this

number will decrease exponentially [45]. Also the expected number of average members of the

populations (c ~ 0) will be more or less constant. While this assumption greatly simplifies the

analysis, it has received criticism for its validity and the accuracy of results obtained. An

alternative approach to facilitate the GA convergence analysis is to examine the behavior of

specific fitness functions that are of interest with respect to desired objective. For the GA

controller, the objective may be defined in terms of stable controllers surviving and the unstable

controllers perishing as quickly as possible.

At a given time, the GA controllers population may be divided into two sets, one of the

proportionate rs(t) corresponding to the proportion stable individuals in the population and

represented by Hs, the other, H„, consisting of the unstable members of having proportionate

ru(t) =l- rs(t). Let fs(t) be the fitness of Hs at generation t calculated as the average of the stable

members of Aft) and likewise fu(t) be the fitness of H„. Therefore, the average fitness of the Aft)

Where, the stability fitness ratio as >-1. This is a more reasonable assumption then that of

equation 3.9, since as the generation progress the fitness of stable individuals is more likely to

remain a constant percentage above the unstable members of the population than to remain a

constant percentage above the population average [127]. The average fitness in terms of stable

schemata statistics becomes...

Using the schema theory results to define the effect of proportionate selection on the

number of stable schema from generation t to t+1, the following relationships is obtained ...

is ...

Let the assumption hold: fs (t) = as-fu (t), Vf

...(3.13)

...(3.14)

‘s
...(3.15)

...(3.16)

...(3.17)

Substituting 3.15 for the average fitness yields :

84

...(3.18)*i(f + l) = (a,-l)-rs(0 + l

The Above equation provides the expected proportion of stable individuals in the GA

population at generation t+1 given as and the proportion of stable individuals at generation t. In

terms of the initial stable proportion population, the stable proportion at generation t is

determined as

rs{i) = aj-rs(0)
(«;-])• rs(0) + l ...(3.19)

The GA controller, under pressure of fitness proportionate selection alone, is expected to

converge to a population consisting entirely of stable controllers [127].

While the above results are essential to the stability analysis of the control system, the

analysis should also include the effects of any genetic operators such as crossover and mutation,

which are employed to evolve the population. In order to include the effects of genetic operator

on the GA controller, the above analysis is required to be modified accordingly.

Let ps(t) be the probability that a stable controller selected from the GA controller

population at generation t will remain stable after genetic recombination. The expected

proportion of stable schema in the population is then given by...

r,(t +1) = •pM ...(3.20){as-\)-rs(t) + Y

If the probability of remaining stable, ps(t), is not allowed approach the one, the GA

controller is not guaranteed to converge to a population of stable controllers [127]. To have

guarantee for the same consider ps(t) defined in usual manner for simple crossover and mutation

[45], the effects of genetic operators must decrease as the population converges in order to have

ps it) —^ 1. Also, the product as • ps (t) must exceed one to guarantee the convergence, which

implies that the advantage gained from the stability fitness ratio outweighs the destructive nature

of probability of survival. The GA controller is then expected to converge to a population of

stable controllers as shown in [127].

3.9.3 Optimality of the GA controllers

Once the GA controller population has converged to stable controllers, the convergence

near to optimal controllers becomes the predominant. To understand the optimality issues, let us

85

assume that there exists a unique optimal controller, the optimal controller provides the

maximum value of fitness and the GA controller has stabilized prior to the optimality analysis.
Let n(k*,oy) to be a neighborhood of near optimal controllers about the optimal

controller, K*, where (7/is less than 1 and represents the degree of optimality, such that...

f{N{K*,ef))zaff{K*) ...(3.21)

Therefore, the set defined by n{k* ,of) is the set of all controllers having fitness value bounded

from below by <jff{K*). Also, define the average fitness of the near optimal controllers

belonging to N{K*,af) to be bounded from below by some value times the average fitness of the

stable controllers.

~aN(K’,a/) ’fs ...(>.22)

Where,=the-a-.-.-„. --is the optimality fitness ratio and or,,,,.. , > 1
3 N(K ,<?y) * v N(K ,<jf)

The relations defined in section 3.9.2 concerning the proportion of stable controllers, in

the GA controller population is required to be modified to incorporate the notion of GA

controller optimality. Let the rW(Jc. (t) represents the proportion of the population that are

members of n(k* ,<yf) at generation t. Therefore, once the GA controller has stabilized, the

following applies...

i* +1) a r-r—(\'rA'<)('). , Av(.) (0, where, N(-) = N{K\(rf) ...(3.23)
\aN() V’rAr(-)W + i

A set of conditions similar to those place on the stability analysis, must be met for the above

relation to be converge to one. In particular, the probability of survival ^ j(t), now

dependent upon the degree of convergence, must approach to one and the

product av(rff/).pjv(A,.^)(0>l.

3.10 Simulation of PID Controller using GA
A numerical simulation for the fine tuning of the gains for the simple PID controller is

implemented and results are compared with the same derived using Zeigler Nichols Criterion.

Comparison of the step response for both shows how simple - GA can improve the performance

86

of the controllers. I have used MATLAB and MATLAB GAOT V2 GA tool box for

implementing the said example.

The Transfer function of the system under consideration is ...

T(s) = 1
.s4 +6-53 +15-s2 +6-5 + 1 ...(3.24)

Parameters for the genetic algorithm used are ...

Population Size : 100

Initialization of Population : Random

Fitness function or Evaluation function: ITAE

Termination function : Maximum Generation / Iterations

Maximum Iterations : 100/250;

Selection Criterion : Normal Geometric Selection

_ Crossover : arithmetic Crossover

Mutation : Uniform Mutation
Simulation Time5 : 159.4393 seconds

349.8631 seconds

Proportional Gain Kp, Integral Gain Ki and Derivative Gain Kd are obtained using both

Zeigler Nichols Criterion and Genetic Algorithm. Their values are

Z-N Criterion GA(100) GA(250)

Proportional Gain Kp 6.00 10.97611 11.00674

Integral Gain Ki 1.91 3.3602 2.9383

Derivative Gain Kd 4.74 14.66842 13.83305

If take a look at step response of the systems under consideration in figure 3.15 & 3.17

then we can say that the response of the system is getting stable more faster with the gain

obtained with the help of GA, also we can see that rise time of the system has improved, peak

overshoot is reduced significantly, settling time is also reduced. Only negative observation with

the usage of GA is time required to obtain the final solution.. Figure 3.16 & 3.18 shows change

in different gain values at every generation. We can see the improvement in the gain factors but

that is at the cost of additional time.

5 on Intel Pentium IV 1.50GHz processor, with 450 MB of RAM

87

Figure 1
File Edit View Insert Tools Desktop Window Help

jnjxj

p & y a||¥l^^O®h-g|DiB
Design of PID Controller

Step Response of the system

Figure 3.15: Step response of PID controller

1 Figure 2

File Edit View Insert Tools Desktop Window Help

□ & y m 1 * « DS B 0

Variation ofKp, Ki and Kd

Am
pl

itu
de

88

-) Figure 1

File Edit View Insert Tools Desktop Window Help

D^Hi m □
Design of PID Controller

Step Response of the system
1.6

1.4

1.2

V GA

ZN

Figure 3.17: Step Response of PID Controller

Figure 3.18: Variation of Gains of PID Controller

Am
pl

itu
de

89

3.11 Summary
The main characteristic that makes Evolutionary Algorithms attractive for a broad class

of optimization problems is their robustness because of

• They do not require specific knowledge or derivative information of the objective

function.

• Discontinuities, noise or other unpredictable phenomena have little impact on the

performance of the method.

• They perform in parallel in the solution space, exploring the search space with

simultaneous exploitation of the information derived and they do not become entrapped

in local optima.

• They have good performance in multidimensional large scale optimization problems.

• They can implement in many different optimization problems without big changes in

their algorithmic structure.

But the major disadvantages of the GAs are that...

• They face some difficulties in locating the precise global optimum, although it is easy for

them to locate the vicinity, where the global optimum exists and

• They require a great number of evaluations of the objective function and therefore require

considerable computational power.

Above discussion also suggests that if a Hybrid approach is adopted to carry out the

design of real time control system then the best of Neural, fuzzy and GA can give us better

control system for most of the application but again with the help of reasonably good

computational power only.

90

