


3. Evolutionary Computation

The design of intelligent controllers based on unconventional control techniques is 

undoubtedly becoming common and these developments rely heavily on the use of stochastic 

methods of soft computing in seeking optimum results. These methods offer a new and veiy 

exciting prospect for control engineering, leading to solutions to problems that cannot be solved 

by conventional analytical or numerical optimization methods.

Although stochastic methods of optimization are computer intensive, the impressive 

progress that has been observed in computer hardware also in past decades, which has led to the 

availability of extremely fast and powerful computers that make stochastic techniques very 

attractive for control applications, and especially for real time control issues.

3.1 Evolutionary Algorithms
Evolutionary algorithms are iterative and stochastic optimization techniques inspired by 

the concepts, of from Darwinian evolutions theory. An EA simulates an evolutionary process on 

a population of individuals with the purpose of evolving the best possible approximate solution 

to the optimization problem on hand. In simulation cycle, three operations are typically in play; 

recombination, mutation, and selection. Recombination and mutation create new candidate 

solutions, whereas selection weeds out the candidates with low fitness, which is evaluated by the 

objective, function - also referred to as fitness function. Figure 3.1 illustrates the initialization 

and the iterative cycles in Evolutionary Algorithms.

Historically, Evolutionary Algorithms were first suggested in the 1940[118]. However, 

the founding fathers of modem Evolutionary Algorithms are considered to be Lawrence Fogel — 

Evolutionary Programming [119], Ingo Rechenberg and Hans-Paul Schwefel - Evolutionary 

Strategies [120] and by John Holland - Genetic Algorithm [121]. Later Evolutionary Algorithms 

(EAs) and Evolutionary Computation (EC) were introduced as unifying terms for the forest of 

optimization techniques inspired by biological evolution.
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Initialization and Evaluation

JL

Figure 3.1: Iterative Cycles in Evolutionary Algorithms

Evolutionary computation is a generic term for computational methods that use models of 

biological evolutionary processes for the solution of complex engineering problems. The 

techniques of Evolutionary Computation have in common the emulation of the natural evolution 

of individual structures through process inspired from natural selection and reproduction. These 

processes depend on the fitness of the individuals to survive and reproduce in a hostile 

environment. Evolution can be viewed as an optimization process that can be emulated by a 

computer. Evolutionary computation is essentially a stochastic search technique with remarkable 

abilities for searching for global solutions.

There has been a dramatic increase in interest in the techniques of Evolutionary 

computation since their introduction in the mid 1970s. Many applications of the techniques have 

been reported, including solving problems of numerical and combinatorial optimization, the 

optimum placing of components in VLSI devices, the design of optimal control systems, 

economics, modeling ecological systems, machine learning etc.

The idea behind Evolutionary computation is best explained by the example quoted by 

Michalewicz in 1992 “Do what the nature does. Let us take rabbits as an example: at any given 

time there is a population of rabbits. These faster, smarter rabbits are less likely to be eaten by 

foxes, and therefore more of them survive to do what rabbits do best: make more rabbits. Of
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course some of the slower, dumber rabbits will survive just because they are lucky. This 

surviving population of rabbits starts breeding. The breeding results in a good mixture of rabbit 

genetic material: some slow rabbits breed with faster rabbits, some fast with fast, some dumb 

rabbits with smart rabbits and so on. And on the top of that, nature throws in a ‘wild hare’ every 

once in a while mutating some of the rabbit genetic material. Th e resulting baby rabbits will on 

average be faster and smarter than those in the original population because faster, smarter 

parents survived the foxes..By analogy, in evolutionary computation, solutions that maximize 

the measure of fitness will have higher probability of participating in the reproduction process 

for new ones. This is fundamental premise in Evolutionary Computation. Solutions of an 

optimization problem evolve by following the well known Darwinian principles of “survival of 

fittest”. In following sections we are to discuss the basic principles, the principle techniques and 

operators of evolutionary computation. The most popular Evolutionary algorithm is Genetic 

Algorithm.

Genetic Algorithm derives their name from the genetic processes of natural evaluation. 

They were developed from Holland! 121] and have been implemented successfully in a broad 

range of control applications, e.g. the design of neural and fuzzy controllers, for tuning of 

industrial controllers and also for the creation of hybrid fuzzy/ evolutionary and neural / 

evolutionary controllers etc. The rapid progress in the computer technology permitted the use of 

the evolutionary algorithms in difficult large scale optimization problems, real time control 

applications etc. also.

The terminology in the field of evolutionary computation is derived from biology and 

genetics. Although evolutionary algorithms appear to be extremely simple compared with their 

biological counterpart, they are, however, sufficiently complicated so as to yield solutions where 

conventional numerical methods have been known to fail. Evolutionary algorithms are subset of 

evolutionary computations and belong, to the generic fields of the simulated annealing and 

artificial life. The search for an optimum solution is based on the natural processes of biological 

evolution and is accomplished in a parallel manner in the parameter search space. The 

terminology used in evolutionary computation is familiar. Thus, candidate solutions of an 

optimization problem are termed individuals. The population of solutions evolves in accordance
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with the laws of natural evolution. After initialization, the population undergoes selection, 

recombination and mutation repeatedly until some termination condition is satisfied. Each 

iteration is termed a generation, while the individuals that undergo recombination and mutation 

are named parents that yield offsprings.

Selection aims at improving the average quality of the population, giving the individuals 

with higher quality increased chances for replication in the next generation of solutions. 

Selection has the feature of focusing the search in promising areas of the parameter search space. 

The quality of every individual is evaluated by means of a fitness function, which is analogous to 

an objective function. The assumption that better individuals have increased chances to 

reproduce even better offsprings is based on the fact that there is a strong correlation between the 

fitness of the parents and that of their offspring. In Genetics this correlation is termed as heredity. 

Through selection, exploitation of the numerical/ genetic information is thereby achieved.

Through recombination, two parents exchange their characteristics through random 

partial exchange of their numerical/ genetic information. The recombination of the characteristics 

of two parents of high fitness assumes that if a portion of-the numerical/ genetic information 

responsible for high values of fitness recombines with an equivalent parent, then the chances that 

their offspring will have as high of even better or higher fitness values are correspondingly 

increased. Recombination is also referred to as Crossover. Likewise, through mutation, an 

individual undergoes random change in one of its characteristics i.e. in a specific section of the 

structure. Mutation aims at introducing new characteristics to the population that does not 

necessarily exist in the parents, leading thereby to an increase in the variance of the population. 

Exploration of the search space is achieved through the operators of recombination and mutation.

The cornerstone of Evolutionary Algorithm is the iterative procedure in exploring the 

search space while simultaneously exploiting the information that is being accumulated during 

the search. This is in fact, where their functionality lies. Through exploration, a systematic 

sampling of the search space is achieved, while through exploitation the information that has 

been accumulated during exploration is used to search for new areas of interest in which 

exploration can be continued. Unlike exploitation, exploration includes random steps. It should 

be emphasized that random exploration does not mean exploration without direction, since the 

technique focuses on the most promising directions.
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3.2 Why Evolutionary Algorithms?
In general, most real-world optimization problems have several challenging properties. 

Nearly all problems have a significant number of local optima, and the search space can be so 

huge that the exact global optimum cannot be found in reasonable time. Additionally, the 

problems may have multiple conflicting objectives that should be considered simultaneously 

(e.g., cost versus quality). Moreover, there may be a number of non-linear constraints to be 

fulfilled by the final solution. Furthermore, the problem may have dynamic components altering 

the location of the optimum during the optimization process. For some problems, variants of the 

local search approach have-proven to be very efficient, e.g., Lin-Kemighan’s algorithm for the 

Traveling Salesman Problem. However, deterministic local search algorithms, such as steepest 

decent, do not allow a decrease in the solution’s quality during the search. For this reason, these 

algorithms often stagnate at a local optimum, which makes local search less desirable for many 

real-world problems. Valuable alternatives are stochastic search methods such as simulated 

annealing, tabu search, and evolutionary algorithms. Among these techniques,“Evolutionary 

Algorithms- seem to be a particularly promising approach for several reasons. Evolutionary 

Algorithms are very general- regarding the problem types they can be applied to (continuous, 

mixed-integer, combinatorial etc.). Furthermore, these algorithms can easily be combined with 

existing-techniques such-as local search and other exact methods. In addition, it is often 

straightforward to incorporate domain knowledge in the evolutionary operators and in the 

seeding of the population. Moreover, Evolutionary Algorithms can handle problems with any 

combination of the above mentioned challenges in real-world problems (local optima, multiple 

objectives, constraints, and dynamic components). In this connection, the main advantage lies in 

the Evolutionary Algorithm’s population-based approach. For local optima, the genetic diversity 

of the population allows the algorithm to explore several areas of the search space 

simultaneously. This is of course no guarantee against premature convergence to a local 

optimum, but the population improves the Evolutionary Algorithms robustness on such 

problems. In multi objective problems, Evolutionary Algorithms provide a set of trade-off 

solutions to the problem’s conflicting objectives in a single run, whereas traditional approaches 

typically only produce one solution per run. Regarding constraint problems, Evolutionary 

Algorithms typically allow a mix of feasible and infeasible solutions in the population. This 

improves the algorithms capabilities of exploring the boundary between feasible and infeasible
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search space, and the capabilities for “crossing” infeasible regions. Finally, the population gives 

Evolutionary Algorithms an advantage on dynamic problems, because the population is likely, to 

contain a good solution after the problem changes.

Naturally, EAs do also have some disadvantages. Unfortunately, they are rather 

computationally demanding, since many candidate solutions have to be evaluated in the 

optimization process. However, there has been a recent increase in interest in dealing with this 

problem and some techniques have been suggested. Furthermore, EAs should not be applied 

blind foldedly to any problem. Many simpler and faster techniques exist and they should 

typically be tried first. In this context, EAs offer- the possibility to further improve solutions 

found by simpler techniques, which can be done by incorporating them in the start population. In 

addition, EAs typically have a few more algorithmic parameters to tune compared with simpler 

techniques. These parameters are unfortunately problem dependent, but this is also the case for 

-simpler techniques though fewer parameters need to be tuned.

3.3 Basics of-Evolutionary Algorithms
Evolutionary algorithms (EAs) are iterative optimization techniques inspired by concepts 

from Darwinian evolution theory. However, the evolutionary process in EAs is extremely 

simplified compared with the process in nature. Although many terms used in connection with 

EAs have been adopted from biology, only a few modem approaches have implemented 

biological concepts in a realistic manner. Conceptually, an EA maintains a population of 

individuals that are selected and created in an iterative process. An individual consist of a 

genome, a fitness, and possibly a number of auxiliary variables such as age and sex. The genome 

consists of a number of genes that altogether encode a solution to the optimization problem. The 

encoding is the internal representation of the problem, i.e., the data structure holding the genes. 

The fitness represents the quality of the solution encoded in the individual’s genome, and it is 

usually calculated by a so called fitness function. The surface obtained by the fitness landscape is 

the search space in relation to the fitness function.

Regarding the implementation of EAs, there is a great variety in population structures and 

evolutionary operators. However, all EAs have an initialization phase followed by an iteration 

phase that evolves the initial population to a better set of solutions to the problem. Figure 3.2 

illustrates the pseudo code of a simple EA.
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EA Main

t=0
initialize population P(0) 
evaluate population P(0) 
while (l('termination condition))
{

i — t +2
select population P'(t)from P(t-l) 
create population P(t)from P'(t) 
evaluate population P{tJ

}
Figure 3.2 Pseudo Code of Simple EA

In EAs, the population is usually initialized with randomly created individuals that are 

evaluated with respect to the fitness function. After initialization, the iteration phase loops until 

some termination criterion is met. This may be a maximal number of generations, a maximal 

number of fitness evaluations, or that a desired fitness is reached. The loop consists of four parts. 

First, the generation counter t is increased. Next, selection is applied to form the population at 

generation t from the population at generation t-1. Naturally, individuals with better fitness are 

more likely, to be represented in the new population. After selection, a new population is 

typically created by recombination or crossover and mutation of the solutions in the selected 

population P‘(t). The recombination operator creates one or two new solutions by mixing 

(crossing over) the genomes of two or more parents. The mutation operator alters the genome of 

one individual to create a new individual. A typical approach is to add a bit of stochastic noise to 

the existing solution. Finally, the new population is evaluated and the process is repeated.

During the run, the fitness of the best individual improves over time and typically tends 

to stagnate towards the end of the run, refer figure 3.3.

Ideally, the stagnation of the process coincides with the successful discovery of the global 

optimum. However, stagnation also occurs on local optima, which is usually an unwanted result 

and one of the key problems in EAs and other iterative search algorithms. Typically, the 

performance stagnation is caused by genetic convergence of the individuals in one part of the 

search space, i.e., the genes of all individuals have become very similar. At this point, mutation 

is the only way to explore other areas of the search space, which corresponds to random steps 

away from the current location in the search space.
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Performance of GA(best value)

Figure 3.3 Fitness improvement during the GA run.

3.4 Terminology of Evolutionary computation
The terminology of evolutionary computation (EC) is, to a large extent, borrowed from 

biology, but many terms have a different meaning in an EC-context. Unfortunately, there is no 

agreement on a large part of the basic terminology used in connection with EC. In general, 

researchers agree on the meaning of selection, mutation, and recombination, which is as 

described above. However, the terms related to the problem, the objective, and the representation 

are very vaguely, defined and call for more concise and unifying descriptions. A system 

identification problem is used for illustrative purposes. The introduced terms are displayed in 

figure 3.4 for the example.

The given problem is often described in an abstract way, top of figure 3.4. A system 

identification problem may be described as “find a mathematical model describing the measured 

data”. First, the abstract problem description needs to be formalized. This can be done in a 

number of ways. In the system identification for example, a domain expert may derive an n- 

dimensional parameterized model of the process that generated the data (the formalization used 

in figure 3.4). A completely different approach may be to use an artificial neural network to 

approximate the true system.
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Decoding from genotype to phenotype search space

Encoding: Array of doubles 

Genotype search space: S c 91"
Decoding: Identity Mapping

Abstract problem definition
Example: Build a mathematical model 

describing the measured data

Figure 3.4: The problem, the objective and the representation

Assuming that the problem should be solved using a parameterized model, the objective 

is to find the values of the n model parameters that generate a behavior matching the measured 

data in the best possible way. Hence, the search domain is numeric and in this case 91”. The 

actual search space S is usually defined by an interval for each of the n variables, i.e. S cr 9v". 

The search space is called the phenotype search space1 when there is a difference between the 

domain of and the search domain. The next step is then to define the objective function, or fitness 

function. In the system identification example, the objective function could be the sum1 of 

squared error between the simulated and the measured data. Note that there may be several

1 The term “phenotype” (alone) denotes the individual’s solution in the search space and its corresponding fitness as 

well as other traits such as age and gender.

Encoding: Binary string of Length L 
Genotype search space: 2L binary strings

Decoding : Bitstring -> decimal values -> intervals of S

Problem Formalization 
n-dimensional parameterized model

Search Domain: Numeric: 91"
Phenotype search space: S <z 5R”

Optimization goal: Minimization 
Objective function: Sum of squared errors between

simulated data and measured data 
Objective space: 91+
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meaningful functions for a given problem. To this end, a number of important issues arise when 

designing fitness functions. They are discussed in later. The objective function defines the 

objective space, which is the set of possible fitness values. In the case of a single objective, the 

objective space is usually a subset of9i. For multi objective problems, the objective space is a 

subset of91”', where m is the number of objectives. Settling on problem formalization and a 

phenotype search space narrows the number of meaningful representations. A representation 

consists of an encoding data structure and a decoding function. The encoding is used to store the 
actual solution in. The encoding defines the genotype search space2and also the size of this 

search space, i.e., the number of possible solutions. The decoding scheme is a mapping from the 
genotype search space to the phenotype search space. It may be the simple identity mapping3 if 

the search space is a natural subset of the search domain (e.g., an interval in R): In all other 

cases, a decoding scheme must be implemented. In the system identification example, the most 

straight forward approach is to use vectors, which may be represented as arrays of doubles. 

Another possible approach is to use binary strings of length L. Here, the decoding scheme must 

map solutions ffom the search space of X-bit binary strings to 91”. Finally, the choice of encoding 

determines the set of possible evolutionary operators. Encodings and evolutionary operators are 

closely connected because the operators access the data structure of the encoding directly. 

However, it should be mentioned that a great variety exist for each encoding, and that several 

new operators are introduced every year. For a comprehensive survey of the most commonly 

used operators, see [122]. The next sections describe the encodings and operators relevant for 

system identification and control problems. Furthermore, the remaining components of 

evolutionary algorithms are also introduced.

3.5 Encoding, Mutation and Crossover
The optimal type of parameter encoding in the genome of the individual depends on the 

definition of the problem. In principle, any problem parameters can be encoded by a binary 

representation. However, it is often convenient to use a high level problem representation and

2 The term “genotype” is often used in connection with the representation. However, there is no consensus regarding 
what genotype exactly denotes. Some researchers use genotype for the encoding; other researchers use it for both the 
encoding and the decoding scheme.

The phenotype and the genotype search spaces are usually just called “search space” when the identity mapping is 
used.
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implement specialized mutation and recombination operators for the particular encoding. The 

wide variety of EA-applications has created a great variety of encodings and operators. The most 

frequently used are encodings for numeric domains, permutation domains, matrix domains, and 

function domains. It is beyond the scope of this thesis to describe all of them in detail. Here, I 

will focus on the numeric and function domains, which are the two primary domains relevant for 

control applications.

3.5.1. Numeric Search domains

Numeric domains cover problems where the objective is to find a numerical vector. The 

majority of EA-applications originate in this domain and therefore a significant amount of work 

has been devoted to investigate and develop encodings and operators for this domain. The two 

main encodings are the binary string encoding and the real-valued vector encoding. An important 

issue in the representation of numerical problems is the precision of the encoding. A discrete 

encoding of a continuous interval can never be- accurate, since any finite set of numbers leaves 

gaps in a continuous interval. The precision of the representation can be improved by increasing 

the number of bits in the binary representation. However, this improvement in precision also 

increases the size of the search space, which grows exponentially with the number of bits. For 
instance, the size of a search space in a 16-bit problem representation is 216 = 65536. To double 

the precision, the genomes have to consist of 17 bits, which doubles the size of the search space. 

The same consideration applies to real value encoded problems. In high-level programming 

languages, the binary encoding is hidden from the programmer and the precision, and thus the 

size of the search space, is given by the internal representation of the used floating point data 

type.

Binary Strings

Binary encoding is the traditional way to represent parameters in EAs. The data structure 

used for binary encoding is a bit-vector with fixed length X, which corresponds to 2L different 

solutions in the search space. Apart from numerical problems, binary encoding is often used in 

permutation and combinatorial problems, such as the 0-1 knapsack problem. To use binary 

encoding with numeric domains, one has to specify a decoding function that maps the binary 

representation of a gene to a floating-point number. The decoding function converts the binary 

number to a decimal number, and then it is mapped to the real variable’s search interval. Suppose

68



a gene x is encoded by L bits, then the corresponding floating, point value xvaiue is calculated 

according to equation 3.1.

^value ''"min
-1

( L-1

14]. 2
i=0

L-\-i ...(3.1)

where, xvaiUe is the floating-point value, xmin and xmax are the minimal and maximal values of x, 

and x[i] is the i’th bit in the binary encoding. If x is encoded by 8 bits, xmin — -2, and xmax = 2, 

then the binary number 01100111 = 103 is translated as follows:

x value = -2 +
2—2 

255
• 103 » -0.3843 ...(3.2)

Another way to map a binary encoding to a numeric domain is called Gray decoding. The 

advantage of Gray decoding is that similar parameter values in the floating,point representation 

correspond to adjacent numbers in the binary representation. For instance, the binary number 

00011111 =31 is not adjacent to 00100000 =32 in the traditional binary encodings although 31 

and 32 are adjacent jntegers._If .32 is a better solution than 31_then the EA has to change six bits 

in the representation to change the value from 31 to 32. The Gray decoding function solves this 

problem such that neighboring integers are represented by binary numbers that differ in only one 

bit. Figure 3.5 shows a Gray decoding algorithm. However, in both binary decoding techniques 

there is the problem that a small change of the binary genome can lead to very large jumps in the 

floating point search space, such as in 00000001 = 1 and 10000001 = 129.

function Gray Decode(bit-string x) : integer 
ones = 0 
intvalue = 0 
for (i=0;i<|x|;i++) { 

if(x[i] = =l) 
ones++

intvalue = intvalue + (ones mod 2)*2W"1"1

}
return intvalue

Figure 3.5: Pseudo code for Gray decoding in linear time.

Following accepted terminology, the binary string is named a genotype, the decoded 

information the phenotype, while every individual solution is a chromosome. When the

69



optimization problem is multidimensional, then the partial strings are concatenated as shown in 

figure 3.6.

Variable -1 Variable -2 Variable -m
LL o 0 r 0, 0

/
1 0 0 i 0 0

ill 001 0

1 1 U 0 1 0

Figure 3.6: Creation of bitstring in multi dimensional problem of optimization 

Bit-flip mutation

Bit-flip mutation is the most widely used mutation operator for binary encoded problems. 

The operator procedure consists of an iteration over all genes, where the bit in a gene g[i] is 

flipped if a uniform random number u of £7(0,1) is smaller than a certain probability threshold 

pm. The main drawback of this operator is the time complexity, which is 0{L) for bit-strings of 

length L. However, the distance between two changed bits follows the geometric distribution, 

i.e., if pm is the probability of changing a bit then T ~ ge(pm) is a stochastic variable describing 

the distance between changed bits. The number of bits t to skip can be calculated from the 

following function.

t = l + ln(w)
M1-PJ

...(3.3)

where, u is uniformly distributed according to U(0,1). If the position t’ of the next bit flip is not 
in the current genome then the first bit flipped in the next mutated genome should be the (t’-L)111 

bit. Empirical studies[123] have suggested values for pm e [0.001,0.01], Later Back[122] showed 

that the value pm~\ fL is optimal for simple problems. Hence normally 1/L is used as lower 

bound on pm.

N-point and uniform Crossover

A widely used crossover operator for binary and also for real encoding is the n-point 

crossover operator, which recombines the genes of two or more parents in order to create two 

offspring genomes. In one-point crossover, the parent genomes of size n are cut and reassembled 

at a random position p of the genome. The first offspring genome receives its genes between
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gene[l] and gene[p-l] from parent 1 and its remaining, genes genefp] to gene[n] from parent 2. 

The second offspring genome is assembled with the mirror image of the first offspring genome, 

i.e., gene[l] to gene[p-l] are from parent 2 and gene[p] to gene[n] are from parent 1, refer figure 

3.7.

Offspring-2 01110011 00111001

Figure 3.7: One point Crossover Operator

The difference between n-point and one-point crossover is the use of n crossover points 

instead of one. At each crossover point, the source of gene[i] alternates between the two parents. 

Usually n is a value between 1 and 4. Another frequently used crossover operator is the uniform 

crossover. In uniform crossover the offspring is generated by picking, each gene[i] randomly, 

from one of the parent’s gene[i]’s.

Real Valued Vectors

Another popular way to encode numerical domains is to represent the genes directly by 

(pseudo-)real numbers. Here, the search space is a subset of the objective domain. Thus, no 

decoding is necessary. The direct representation of the real values allows the design of mutation 

and crossover operators that are based on arithmetic operations and stochastic distributions. 

Gaussian and uniform mutation

Most mutation operators for real valued vectors alter the solutions by adding a randomly 

generated vector M = (m^ m2,m„) to the solution vector x, i.e., x -x+M . It is important that 

the m, in M are generated from a distribution with zero as mean value, otherwise the solutions 

will drift due to mutation. The common choice for the generation of M is the Gaussian 

distribution N(0,a).
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Figure 3.8 : Decreasing Functions

Arithmetic crossover
Arithmetic crossover is an operator for real encoded genomes in which an offspring 

genome is generated by the weighted mean of each gene in the two parent genomes.

Idea also referred as annealing

0.8

A rather uncommon mutation is based on the uniform distribution U(-a, a),where M is a 

value between - a and a with equal probability. A special case of the uniform mutation is x* = M 

with Me U (geneRangemm, geneRongemia), which can be useful for the encoding of an enumerable 

parameter other than binary.

The performance of the mutation operator strongly depends on the parameter a. If a is set 

to too high, the algorithm has difficulties in fine-tuning the solutions while if set to too low, the 

population might end up in a local optimum. Several techniques have been suggested to control 

a, such as self-adaptation in Evolutionary Strategies [120].

A very simple but effective solution is to define a as a function of the generation number. 

A well-supported hypothesis is that, in general, the population will converge towards a local or 

global optimum. To improve the chances of locating the global optimum the algorithm should 

start with a broad search strategy that gradually narrows as the population converges, i.e., a 
should be calculated from a decreasing function4. Two decreasing functions are displayed in 

figure 3.8.
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X =<B-X, +(l-<0)-X2 ...(3.4)

where, w i& the weight and xi and X2 are the genomes of the parents. If w = 0.5 then arithmetic

crossover calculates the offspring genome as the arithmetic mean of the two parents. The weight 

w is often generated according to the uniform distribution (7(0,1), which will place the offspring

genome numerically between the parent genomes, refer figure 3.9(b).

(a) Uniform & n-point crossover

O 0
Offspring Parent 2

0 O
Parent.1 Offspring

■

xi
fc\ Arithmetic crossover 

with' n Weight

X1

jv-j Arithmetic crossover 
' ' with one Weight

0

-

Parent 2

■ o -

-
^ Offspring

-
Parent 1

•

XI
sa\ Arithmetic, crossover with 3 parents 
' ' & 1 Weight per parent

Figure 3.9 Crossover for real valued vectors

A variant of arithmetic crossover generates a specific weight w, for each gene x,- in the 
genome vector x - (x|, x'2,..., xn)

x] =w, • xu +{l-wi)-x2i ...(3.5)

In this variant, the offspring is placed at a random location inside the hypercube spanned 

by the two parents, refer figure 3.9(c). A third variant of the arithmetic crossover generates the 

offspring of k > 2 parents. The offspring is created by combining the parents according to a 

number of weights, which define the amount of contribution from each of the parents. The 

offspring is created according to equation 3.6.
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...(3.6)
k k

x'= ^ wjxj j where Wj e [0,l], ^ w, =1 
M M

In this setup the offspring is created in the convex hull defined by the k parents, figure

3.9(d).

3.5.2 Function Search domains
In problems with function domains, the objective is to evolve a mathematical expression. 

EAs evolving expressions are usually called Genetic Programming (GP) in the literature. In GP, 

the evolved expressions act as problem solvers rather than particular problem solutions. This idea 

is closely related to the much older idea of Evolutionary Programming [119], which is an 

approach for evolving automata that can leam symbolic patterns.

The key data structure in GP is the parse tree representation. A parse tree consists of 

terminals and non-terminals. The terminals are the leaves of the tree, while the non-terminals are 

the nodes. The terminals may be constants und variables related to the problem. The non

terminals are operators such as T, /, and if-then-else constructs. The difference between terminals 

and non-terminals is that the non-terminals have subtrees under them. For instance, the + 

operator has a left and a right subtree. Non-terminals can have different numbers of subtrees. For 

instance, the unary minus has one subtree, plus has two, while the if-then-else constmct has three 

subtrees (condition, then part, and else part). A tree is evaluated by recursively traversing the 

tree. Naturally, a non terminal cannot be evaluated unless its subtrees have been evaluated.

The choice of terminals and non-terminals is of course dependent on the kind of parse 

trees that shall be evolved. They must be carefully selected to allow just the kind of expressions 

that are needed to represent the problem solution. A too limited set may lead to functions with 

rather poor performance. On the contrary, a large set of operators could make the search difficult 

because the search space grows with the available operators. Another approach to limit the 

search space is to introduce a maximal depth of the evolved trees. Additionally, the choice of 

operators and terminals might introduce some technical problems. For instance, the return type 

of the subtrees of the if-then-else operator are both Boolean and the type of the expression in the 

then and else branch. The evolutionary operators have to ensure that the tree only contains 

syntactically legal expressions. Another kind of problem is illegal arithmetic expressions such as 

division by zero and square-root of negative numbers. This problem is usually handled by letting
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the operator return a fixed value when it would otherwise have rendered an illegal value. For 

instance, the division operator may simply return 1 when a division by zero occurs.

Grow, shrink, switch, and cycle mutation

Mutation operators for function encodings either alter the structure of the parse tree or the 

internal value of nodes and leaves. Angeline defines four forms of mutation called grow, shrink, 

switch, and cycle [124]. The grow operator replaces a random leaf with a new randomly 

generated subtree. The shrink operator selects a random node and replaces it with a random leaf. 

The switch operator exchanges two subtrees of a random node, provided that the selected node 

has two subtrees. Finally, the cycle operator replaces a node’s operator by another operator with 

the same number of subtrees. Figure 3.10 illustrates an example of the four operators.

(c) Switch mutation operator. (d) Cycle mutation operator.

Figure 3.10: Grow, shrink, switch and cycle mutation

Subtree crossover

Crossover in parse trees is surprisingly simple. The most widely used crossover operator 

is the subtree crossover. The operator selects two nodes with the same return type in the parents. 

Two children are created by swapping the subtrees starting at the selected nodes, refer figure 

3.11.

3.6 Population Initialization
The initialization of the population specifies the starting points of the search. The initial 

population can be created in a number of ways, refer figure 3.12.
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Figure 3,11: Subtree crossover

(a) Random Initialization

Random Initialization

•••••*•*•**•*•
****••*•***••*

•••*•********* 
************** 
****** ******** 
•**•**••****•• 
**************
(b): Grid Initialization

* * * * *

* * * * * 
* * * * *

(d) Knowledge based 
Grid Initialization

Figure 3.12 : Initialization Methods.

The most common setup is the random initialization where the chromosomes are 

randomly assigned, preferably using a uniform distribution. The goal is to create a population 

with a good coverage of the search space, and thereby have a gene pool with good potential for 

breeding better solutions. Alternatively, genomes can be evenly scattered over the whole search 

space according to a regular grid-layout. However, deterministically determined search space 

positions can be suboptimal starting points. In particular, a random setup can take advantage of a

76



completely new selection of starting points when runs are repeated. A third approach is to 

incorporate expert knowledge into the initialization. In some cases, it is possible to assign the 

initial search space positions based on specific knowledge about the objective function. Domain 

experts will usually have an idea of what a reasonably good solution is. Furthermore, the current 

best known solution may easily be incorporated in the search by just inserting the solution as one 

of the starting individuals. The remaining individuals could then be randomly scattered or 

arranged in a grid near the best known solution. A problem with such an initialization is that the 

search may be too focused on the area around the special solution. A randomly initialized 

population may allow the EA to discover fundamentally different solutions in comparison with 

what a human would have proposed. Several examples can be found in the literature, e.g., 

Rechenberg’s early and famous tube-bending [120] study. Finally, including solutions created by 

other search techniques seem to be an extremely promising approach, although rarely used.

In summary, the choice of initialization methods depends on the study one is performing. 

Random initialization is used in most general investigations on EAs, because the global optimum 

is usually known for test functions used in this context. For real-world applications, a rale of 

thumb is to incorporate as much expert knowledge as possible in initialization as well as operator 

design.

3.7 Selection Operators
Selection is an essential process in EAs that removes individuals with a low fitness and 

drives the population towards better solutions. In this section, I will describe the four most 

common selection operators and manual selection, which is used when a formal description of 

the fitness is impossible. The selection operator essentially defines how the algorithm updates the 

population from present iteration to the next. In general, selection either replaces the entire 

population or only a fraction of it. The former approach is used in generational EAs whereas the 

latter is employed in steady-state EAs. There are a few major differences between the two 

approaches. First, the selection procedure is stochastic in generational EAs, but deterministic in 

steady-state EAs. Hence, generational EAs may accidentally not select the currently best 

solution. However, it is generally considered a good idea to ensure the survival of the best 

individual. This scheme is referred to as elitism or k--elitism if A' individuals are saved as the elite. 

Second, individuals are cloned in generational EAs whereas steady-state EAs select a
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deterministic subset of the candidate solutions. Steady-state selection is mainly used by the 

Evolution Strategies [120],

An important aspect of selection is the selection pressure, which governs the individual’s 

survival rate. It is important to balance the selection pressure. A too high pressure usually leads 

to convergence to a small area of the search space and thus possibly premature stagnation on a 

suboptimal solution. A too low pressure will result in a very slow convergence.

3.7.1 Tournament selection
Tournament selection creates the next generation by holding a tournament for each slot in 

the population of the next generation. In each tournament, the process picks k random 

individuals, compares their fitnesses, and copies the individual with the best fitness to the slot. 

The tournament size k is usually set to two individuals and rarely above five, since this would 

impose a too strong selection pressure and lead to premature convergence. Figure 3.13 shows the 

pseudo code for tournament selection with a tournament size of two. The “source” population is 

usually fixed during the selection of the next-generation, which allows good individuals to be 

copied multiple-times. - _

tournament selection (P(t)) 
for (i=0;i<|P(t)|;i++){

Pick two random individuals Ki and K2 in P(t)
Compare the fitness of Ki and K2.
Insert a copy of the fitter individual in P(t+1) at position i.

}
Figure 3.13: Pseudo code for Tournament selection with a tournament size of two.

Tournament selection is easy to implement, produces good results within short time, 

requires very little computing time, and is controlled by only a few parameters. For these 

reasons, tournament selection is probably the most commonly used selection operator nowadays. 

The selection pressure in tournament selection can be increased by letting more individuals to 

compete. A tournament size of two will, on average, ensure that the best individual is copied 

twice to the next generation. Increasing the tournament size to three will also increase the better 

individuals’ winning chances, because all individuals on average take part in three tournaments 

instead of two. On the other hand, the selection pressure can be lowered by introducing 

stochastic winners in tournaments with two individuals. Hence, the fittest individual wins with 

probability p > 0.5. Typical values are p = 0.75 or p = 0.8. Setting p = 0.5 is equivalent to 

random selection.
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3.7.2 Proportional selection or Roulette wheel selection

Proportional selection assigns the probability of an individual’s survival according to the 

fitness of the individual. The probability is, calculated by dividing the fitness of the individual by 

the fitness sum of the whole population, i.e., an individual’s chance of survival depends on its 

relative fitness to the other individuals.

PsuniM-p^ess(K) , 1 -(3.7)
2^fiiness(Ki) 1=1
i=1

Each individual is assigned to a “slot” of the interval [0, 1] according to the individual’s 

Psurvivai- An individual is selected if a random number of the interval [0, 1] is within its slot. This 

selection method is often illustrated as a biased roulette wheel, where the interval slots 

correspond to the slots of a roulette wheel and the “winners” are copied to the next generation.

The drawback of proportional selection is that the selection pressure depends on the 

relative fitness of the individuals instead of a parameter such as tournament size. In proportional 

selection, a few very good individuals can quickly take over the entire population, because they 

dominate a large part of the roulette wheel and is therefore frequently copied when the next 

generation is formed. For this reason, proportional selection is not much popular.

3.7.3 Ranking Selection

Ranking selection is a variant of proportional selection that deals with the uncontrolled 

selection pressure. In ranking selection, the selective superiority of an individual is determined 

by a fixed probability pSUrvivai according to its fitness rank. The ranking is obtained by sorting the 

individuals according to their fitness. Each individual is then assigned a probability pSumvai, 

which is determined by. the used ranking scheme. The selection is performed using the roulette 

wheel approach.

Table 3.1: Example of ranking scheme for population size of 20 individuals

Rank Psurvival Rank Psurvjval Rank Psurvivai Rank Psurvival

1 0.100 6 0.075 11 0.045 16 0.020

2 0.095 7 0.070 12 0.040 17 0.015

3 0.090 8 0.065 13 0.035 18 0.010

4 0.085 9 0.060 14 0.030 19 0.005

5 0.080 10 0.055 15 0.025 20 0.000
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The difficult part of applying ranking selection is to determine a good probability psurvival 

for each rank. A scheme that is too generous towards low-fit solutions might slow down the 

convergence, while a scheme favoring the best individuals might lead to a premature loss of 

genetic diversity.

3.7.4 Steady State Selection

Evolutionary algorithms that are based on steady-state selection, also known as steady- 

state EAs, update only a small fraction of the population at every iteration. The evolutionary 

operators create X potential solutions from the parent population with size p. Afterwards the (p + 

X) individuals are sorted and X individual s with the lowest fitness are discarded. Common values 

are p = 100 and X = 15. This approach is fundamentally different from tournament, proportional, 

and ranking selection. In steady-state selection the populations are overlapping and all the 

surviving individuals are deterministically selected, which is only the case for the elite 

individuals in the other three selection techniques.

3.7.5 Manual Selection — r

In some applications,-the quality of a solution is based on a subjective evaluation of 

issues that are hard or impossible to capture mathematically; for instance, the beauty of a design. 

Instead, the selection process can be handled by a human operator. The algorithm displays the 

current solutions and asks the operator to select a subset of the presented solution. The selected 

solutions are then used to create a new population and the process is repeated. Examples of 

manual selection include evolution of robot controllers [125], mixing of food-colors, and more 

experimental applications in evolutionary art [126].

3.8 Use of EA for Design of Intelligent controllers 

3.8.1 Fuzzy Controllers

The traditional design of the fuzzy controllers is based primarily on heuristic techniques. 

The main problem in fuzzy control design is the difficulty in defining a host of parameters, such 

as the number and shape of fuzzy sets of the inputs and outputs, the form of inference engine and 

the defuzzification mechanism. Their choice has considerable influence on the overall behavior 

of the controller. Unfortunately, at present the theoretical foundation determining the optimum 

solutions does not exist and consequently only experience with similar problems can be used in
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their design. Often, the result is acceptable but there is no guarantee that there do not exist a 

better solution.

The flexibility of Evolutionary Algorithms is the principal motivating factor for their use 

in determining the optimum values of the parameters of the fuzzy controllers. As we discussed in 

the previous chapter, the linguistic values of a fuzzy variable are defined by their membership 

functions. When a membership function is triangular, then the three parameters a, (f and y as 

shown in figure 3.14, uniquely specify the fuzzy set. The parameters of every fuzzy set are 

encoded into binary strings of sufficient length to give the desired precision. For n fuzzy sets and 

m variables and encoding with p bits, the total length of the chromosomes is clearly n* m*p bits.

Figure 3.14: Parameters of a Triangular Fuzzy set

If the dynamic behavior of the process is known and there exists a macroscopic model of 

the process, then we may use the single objective function to evaluate the performance of the 

closed system to a step disturbance using familiar ITAE and/or ISE criteria.

3.8.2 Neural Controllers

The performance of a neural controller depends critically on the architecture of the 

Artificial Neural Network (ANN) used, i.e. the number of neurons in every layer, the number of 

the layers and the topology of the network, the form of compression function and the algorithm 

used to train the network.

The determination of these parameters is based on the knowledge and experience of the 

designer and any discussion on optimum design is of no consequence. The determination of the 

parameters of a neural controller can, however, be transformed into an optimization problem for 

which Evolutionary Algorithm, we discussed, is attractive.
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Genetic Algorithms are considered very efficient in rapidly finding the approximate 

optimum solution of an optimization problem, but they are generally slow in finding precise 

solution. For better convergence, Genetic Algorithms can be combined with local search 

techniques such as hill climbing, which is ideally suited for finding out optimum solution in the 
small. For ANN with m layers and tij neurons in the ith layer, the total number of parameters in 

the optimization problem is...
m—1

^ = ...(3.8)
i-Q

If every weight is decoded into a binary string,_with X digits, the total length of the 

chromosome is clearly NL. It is obvious that the use of Genetic Algorithms in problems 

involving ANNs with thousands of neurons becomes, difficult and extremely time consuming and 

hence not suitable for real time control applications. However ANNs, which are used in Neural 

Controllers, usually have a very simple architecture with rarely more than 30 neurons or more 

than one hidden layer, in which case GAs are very efficient.

3.9 Stability and Optimality in GA based control
GAs quickly locates near optimal solutions of complex problems, described by a 

specified fitness or objective functions. This function provides a measure of fitness of an 

individual and directs evolution of the population to the regions of the fittest individuals. 

Because the fitness value is the only information required of the application and because the GA 

consists of a population of many solutions, the GA performs well on nonlinear and discontinuous 

response surfaces, as well as surfaces corrupted with high degree of noise. These features also 

allow the GA locate the global optimum, where as other techniques often converge to local 

optima.

The control research community employ genetic algorithm on many levels. While the 

capabilities of the GA based controllers have been demonstrated in simulation and offline 

analysis using a system model, there remains lack of real on-line applications where model 

information is unavailable. The subject of online control is seldom addressed in past, the reasons 

of this are clear: GA controllers in their present state of research require robust systems that can 

withstand the evaluation procedure for the evolving controllers.
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3.9.1 Convergence of the GA controller Population

Each member of the GA controller population corresponds to an individual controller, 

and each control the system for a specified number of time steps, over which the fitness of that 

individual is evaluated. Therefore, a necessary element to the stability analysis is a guarantee of 

convergence of the GA controllers to a population of stable controllers. Once stability has been 

established, the convergence of the GA controller’s populations towards the optimal controllers 

is considered.

3.9.2 Stability of GA controllers

- A-common assumption in GA-convergence analysis is that the fitness of a particular 

schema will remain above or below average by a constant amount through out the evolution of 

populations.

+ V/ ...(3.9)

Where, f(H,t) is the fitness of schema H over the generation f,/(f) is the total average 

fitness over the" generation t. A schema represents a subset or group of individuals in the solution 

space and corresponds to attributes of those individuals. Goldberg [45] and Holland [121] 

illustrate the effect of genetic operators on schemata represented by a particular population. Let 

the number of schema# in the population Aft) at generation i be given by m(H,t). A fitness value 

can be associated with the schema if by. averaging fitness of each string Aft) representative of H 

at generation t. Under fitness proportionate selection pressure alone (no mutation, no crossover), 

the number of instances of a schema is expected to increase of decrease in accordance with that 

schema’s relative fitness in the current population. Therefore, the expected number of schema H 

in population A(t+1) is

m{H, t +1) = m(H, t) ■ nm
f

...(3.10)

Extrapolating equation 3.9 from equation 3.10, the effect of fitness proportionate 

selection on the expected number of a schema H represented in the population from generation 

can be modeled as
m{H, t + i)—(l + c)-m(H,t) ...(3.11)

or in terms of the expected number of H in the initial population

m(H,t)=(l + c)-m{H,0) ...(3.12)
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neglecting the effects of crossover and mutation. For an average individual (c > 0), the number of 

schema H is expected to increase exponentially, while for below average solutions (c < 0) this 

number will decrease exponentially [45]. Also the expected number of average members of the 

populations (c ~ 0) will be more or less constant. While this assumption greatly simplifies the 

analysis, it has received criticism for its validity and the accuracy of results obtained. An 

alternative approach to facilitate the GA convergence analysis is to examine the behavior of 

specific fitness functions that are of interest with respect to desired objective. For the GA 

controller, the objective may be defined in terms of stable controllers surviving and the unstable 

controllers perishing as quickly as possible.

At a given time, the GA controllers population may be divided into two sets, one of the 

proportionate rs(t) corresponding to the proportion stable individuals in the population and 

represented by Hs, the other, H„, consisting of the unstable members of having proportionate 

ru(t) =l- rs(t). Let fs(t) be the fitness of Hs at generation t calculated as the average of the stable 

members of Aft) and likewise fu(t) be the fitness of H„. Therefore, the average fitness of the Aft)

Where, the stability fitness ratio as >-1. This is a more reasonable assumption then that of 

equation 3.9, since as the generation progress the fitness of stable individuals is more likely to 

remain a constant percentage above the unstable members of the population than to remain a 

constant percentage above the population average [127]. The average fitness in terms of stable 

schemata statistics becomes...

Using the schema theory results to define the effect of proportionate selection on the 

number of stable schema from generation t to t+1, the following relationships is obtained ...

is ...

Let the assumption hold: fs (t) = as-fu (t), Vf

...(3.13)

...(3.14)

‘s
...(3.15)

...(3.16)

...(3.17)

Substituting 3.15 for the average fitness yields :
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...(3.18)*i(f + l) = (a,-l)-rs(0 + l

The Above equation provides the expected proportion of stable individuals in the GA 

population at generation t+1 given as and the proportion of stable individuals at generation t. In 

terms of the initial stable proportion population, the stable proportion at generation t is 

determined as

rs{i) = aj-rs( 0)
(«;-])• rs(0) + l ...(3.19)

The GA controller, under pressure of fitness proportionate selection alone, is expected to 

converge to a population consisting entirely of stable controllers [127].

While the above results are essential to the stability analysis of the control system, the 

analysis should also include the effects of any genetic operators such as crossover and mutation, 

which are employed to evolve the population. In order to include the effects of genetic operator 

on the GA controller, the above analysis is required to be modified accordingly.

Let ps(t) be the probability that a stable controller selected from the GA controller 

population at generation t will remain stable after genetic recombination. The expected 

proportion of stable schema in the population is then given by...

r,(t +1) = •pM ...(3.20){as-\)-rs(t) + Y

If the probability of remaining stable, ps(t), is not allowed approach the one, the GA 

controller is not guaranteed to converge to a population of stable controllers [127]. To have 

guarantee for the same consider ps(t) defined in usual manner for simple crossover and mutation 

[45], the effects of genetic operators must decrease as the population converges in order to have 

ps it) —^ 1. Also, the product as • ps (t) must exceed one to guarantee the convergence, which 

implies that the advantage gained from the stability fitness ratio outweighs the destructive nature 

of probability of survival. The GA controller is then expected to converge to a population of 

stable controllers as shown in [127].

3.9.3 Optimality of the GA controllers

Once the GA controller population has converged to stable controllers, the convergence 

near to optimal controllers becomes the predominant. To understand the optimality issues, let us
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assume that there exists a unique optimal controller, the optimal controller provides the 

maximum value of fitness and the GA controller has stabilized prior to the optimality analysis.
Let n(k*,oy) to be a neighborhood of near optimal controllers about the optimal 

controller, K*, where (7/is less than 1 and represents the degree of optimality, such that... 

f{N{K*,ef))zaff{K*) ...(3.21)

Therefore, the set defined by n{k* ,of) is the set of all controllers having fitness value bounded 

from below by <jff{K*). Also, define the average fitness of the near optimal controllers 

belonging to N{K*,af) to be bounded from below by some value times the average fitness of the 

stable controllers.

~aN(K’,a/) ’fs ...(>.22)

Where,=the-a-.-.-„. --is the optimality fitness ratio and or,,,,.. , > 1
3 N(K ,<?y) * v N(K ,<jf)

The relations defined in section 3.9.2 concerning the proportion of stable controllers, in 

the GA controller population is required to be modified to incorporate the notion of GA 

controller optimality. Let the rW(Jc. (t) represents the proportion of the population that are

members of n(k* ,<yf) at generation t. Therefore, once the GA controller has stabilized, the 

following applies...

i* +1) a r-r—(\'rA'<)('). , Av(.) (0, where, N(-) = N{K\(rf) ...(3.23)
\aN() V’rAr(-)W + i

A set of conditions similar to those place on the stability analysis, must be met for the above 

relation to be converge to one. In particular, the probability of survival ^ j(t), now

dependent upon the degree of convergence, must approach to one and the 

product av(rff/).pjv(A,.^)(0>l.

3.10 Simulation of PID Controller using GA
A numerical simulation for the fine tuning of the gains for the simple PID controller is 

implemented and results are compared with the same derived using Zeigler Nichols Criterion. 

Comparison of the step response for both shows how simple - GA can improve the performance
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of the controllers. I have used MATLAB and MATLAB GAOT V2 GA tool box for 

implementing the said example.

The Transfer function of the system under consideration is ...

T(s) = 1
.s4 +6-53 +15-s2 +6-5 + 1 ...(3.24)

Parameters for the genetic algorithm used are ...

Population Size : 100

Initialization of Population : Random

Fitness function or Evaluation function: ITAE

Termination function : Maximum Generation / Iterations

Maximum Iterations : 100/250;

Selection Criterion : Normal Geometric Selection

_ Crossover : arithmetic Crossover

Mutation : Uniform Mutation
Simulation Time5 : 159.4393 seconds

349.8631 seconds

Proportional Gain Kp, Integral Gain Ki and Derivative Gain Kd are obtained using both 

Zeigler Nichols Criterion and Genetic Algorithm. Their values are

Z-N Criterion GA(100) GA(250)

Proportional Gain Kp 6.00 10.97611 11.00674

Integral Gain Ki 1.91 3.3602 2.9383

Derivative Gain Kd 4.74 14.66842 13.83305

If take a look at step response of the systems under consideration in figure 3.15 & 3.17 

then we can say that the response of the system is getting stable more faster with the gain 

obtained with the help of GA, also we can see that rise time of the system has improved, peak 

overshoot is reduced significantly, settling time is also reduced. Only negative observation with 

the usage of GA is time required to obtain the final solution.. Figure 3.16 & 3.18 shows change 

in different gain values at every generation. We can see the improvement in the gain factors but 

that is at the cost of additional time.

5 on Intel Pentium IV 1.50GHz processor, with 450 MB of RAM
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3.11 Summary
The main characteristic that makes Evolutionary Algorithms attractive for a broad class 

of optimization problems is their robustness because of

• They do not require specific knowledge or derivative information of the objective 

function.

• Discontinuities, noise or other unpredictable phenomena have little impact on the 

performance of the method.

• They perform in parallel in the solution space, exploring the search space with 

simultaneous exploitation of the information derived and they do not become entrapped 

in local optima.

• They have good performance in multidimensional large scale optimization problems.

• They can implement in many different optimization problems without big changes in 

their algorithmic structure.

But the major disadvantages of the GAs are that...

• They face some difficulties in locating the precise global optimum, although it is easy for 

them to locate the vicinity, where the global optimum exists and

• They require a great number of evaluations of the objective function and therefore require 

considerable computational power.

Above discussion also suggests that if a Hybrid approach is adopted to carry out the 

design of real time control system then the best of Neural, fuzzy and GA can give us better 

control system for most of the application but again with the help of reasonably good 

computational power only.
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