


7. Preliminary Analysis

For successful implementation of any control problems, a proper mathematical model is 

prime requirement. The only advantage of designing control systems with evolutionary algorithm 

is that it does not require complex and tedious mathematical manipulations by way of solving 

differential equations. In case of uncertain nonlinear systems these equations are normally too 

complex to handle and representing them into the exact mathematical model is almost 

impossible.

In case of evolutionary algorithms, mathematical models with reasonable complexity, 

also leads to desired performance because of their capability to learn in real time environment. 

We know that it is very difficult to model exact nonlinear model, the uncertainties due to 

external disturbances etc., which attracts the researchers toward the evolutionary algorithms.

7.1 Fuzzy Model Reference Learning Controller (FMRLC)

A “learning system” possesses the capability to improve its performance over time by 

interacting with its environment. A learning control system is designed so that its “learning 

controller” has the ability to improve the performance of the closed loop system by generating 

command inputs to the plant and utilizing feedback information from the plant. The “fuzzy 

model reference learning controller” (FMRLC) is a (direct) model reference adaptive controller 

[197]. The term “learning” is used as opposed to “adaptive” to distinguish it from the approach 

to the conventional model reference adaptive controller for linear systems with unknown plant 

parameters. In particular, the distinction is drawn since the FMRLC will tune and to some extent 

remember the values that it had tuned in the past, while the conventional approaches for linear 

systems simply continue to tune the controller parameters. Hence, for some applications when a 

properly designed FMRLC returns to a familiar operating condition, it will already know how to 

control for that condition. Many past conventional adaptive control techniques for linear systems 

would have to retune each time a new operating condition is encountered.

The functional block diagram for the FMRLC is shown in Figure 7.1 [198]. It has four 

main parts: a. the plant, b. the fuzzy controller to be tuned, c. the reference model, and d. the
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learning mechanism or an adaptation mechanism. Discrete time signals are used to explain the 

operation of the FMRLC for discrete time systems.

The FMRLC uses the learning mechanism to observe numerical data from a fuzzy control 

system (i.e., r{kl) and y{kT) where T is the sampling period). Using this numerical data, it 

characterizes the fuzzy control system’s current performance and automatically synthesizes or 

adjusts the fuzzy controller so that some given performance objectives are met. These 

performance objectives are characterized via the reference model shown in Figure 7.1. The 

learning mechanism seeks to adjust the fuzzy controller so that the closed-loop system (the map 

from r(kT) to y{kT)) acts like the given reference model (the map from r(kT) to ym{kT)). 

Basically, the fuzzy control system loop operates to make y(kT) track r{kT) by manipulating
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u(kT), while the upper-level adaptation control loop seeks to make the output of the plant y(kT) 

track the output of the reference model ym(kT) by manipulating the fuzzy controller parameters. 

Let us discuss each module of the FMRLC, for SISO system.

7.1.1 The Fuzzy Controller

The plant in Figure 7.1 has an input u(kT) and output y(kT). Most often the inputs to the 

fuzzy controller are generated via some function of the plant output y(kT) and reference input 

r(kT). For this, the inputs to the fuzzy controller are the error e(kl) and change in error c(kT), i.e. 

PD Fuzzy controller.

Where,

e(kT) = r{kT) - y(kT) and
...(7.1)

In the figure 7.1 we use scaling gains ge, gc, and g„ for the error e(kT), change in error 

c(kT), and controller output u{kT), respectively. Selection of these gains is done in the heuristic 

way as follows: The gain ge can be chosen so that the range of values that e{kT) typically takes 

on will not make it so that its values will result in saturation of the corresponding outermost 

input membership functions. The gain gc can be determined by experimenting with various 

inputs to the fuzzy control system, without the adaptation mechanism, to determine the normal 

range of values that c(kl) will take on. Taking these range in consideration the gain gc is chosen 

so that normally encountered values of c(kT) will not result in saturation of the outermost input 

membership functions. gu is also chosen the same way, so that the range of outputs that are 

possible is the maximum one possible yet still so that the input to the plant will not saturate. It is 

also possible to tune these gains when we tune the overall FMRLC.

Rule base

The rule base of the fuzzy controller has rules of the form 

If e is EJ and c is C1 then u is Um

where, e and c denote the linguistic variables associated with controller inputs e(kT) and c(kT), 

respectively, u denotes the linguistic variable associated with the controller output u, EJ and C1
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denote the j,h (Ith) linguistic value associated with e (c ), respectively, and Um denotes the 

consequent linguistic value associated with u .

Hence, as an example, one fuzzy control rule could be

If error is positive-large and change-in-error is negative-small 

Then plant-input is positive-big

Standard triangular shaped membership functions are used for all the membership 

function of the inputs of universe of discourse as shown in the figure 7.2, with scaled horizontal 

axis for c(kT). All the possible combinations of rules are used for the rule base.

Figure 7.2: Membership function for input universe of discourse

Rule base Initialization

The input membership functions are defined to characterize the premises of the rales that 

define the various situations in which rales should be applied. The input membership functions 

are left constant and are not tuned by the FMRLC. The membership functions on the output 

universe of discourse are assumed to be unknown. They are what the FMRLC will automatically 

synthesize or tune. Hence, the FMRLC tries to fill in what actions ought to be taken for the 

various situations that are characterized by the premises. Hence, initial values for each of the 

output membership functions are required to be defined.

For example, for an output universe of discourse [-1, 1], triangular shaped membership 

functions with base widths of 0.4 and centers at zero can be taken. This choice represents that the 

fuzzy controller initially knows nothing about how to control the plant so it inputs u = 0 to the 

plant initially. Of course, one can often make a reasonable best guess at how to specify a fuzzy 

controller that is “more knowledgeable” than simply placing the output membership function 

centers at zero. For example, we could pick the initial fuzzy controller to be the best one that we
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can design for the nominal plant. Notice, however, that this choice is not always the best one. 

Really, what you often want to choose is the fuzzy controller that is best for the operating 

condition that the plant will begin in (this may not be the nominal condition). Unfortunately, it is 

not always possible to pick such a controller since you may not be able to measure the operating 

condition of the plant, so making a best guess or simply placing the membership function centers 

at zero are common choices.

Finally, minimum or product can be used to represent the conjunction in the premise and 

the implication. For the application on hand, minimum is used to represent the conjunction. 

Standard center-of-gravity method is used as defuzzification technique. Other methods can also 

be employed.

Learning, Memorization, and Controller Input Choice

The inputs to the fuzzy controller can be either direct or preprocessed. Sometimes the 

same guidelines that are used for the choice of the inputs for a non-adaptive fuzzy controller are 

useful for the FMRLC. It has been observed in many of the cases “that time where it is 

advantageous to replace part of a conventional controller with a fuzzy controller and use the 

FMRLC to tune the same. In such cases the complex preprocessing of inputs to the fuzzy 

controller is achieved via a conventional controller. Sometimes there is also the need for post

processing of the fuzzy controller outputs. Some time, it may happen that choice of the inputs 

itself involves the issues related to the learning dynamics of the FMRLC. As the FMRLC 

operates, the learning mechanism will tune the fuzzy controller’s output membership functions 

i.e. for each different combination of e(kT) and c(kT) inputs, it will try to learn what the best 

control actions are.

In general, there is a close connection between what inputs are provided to the controller 

and the controller’s ability to learn to control the plant for different reference inputs and plant 

operating conditions. The FMRLC is designed such that it will learn and remember different 

fuzzy controllers for all the different plant operating conditions and reference inputs; hence, the 

fuzzy controller needs information about these. Often, however, it is difficult to measure the 

operating condition of the plant, so the FMRLC does not know exactly what operating condition 

it is learning the controller for. Moreover, it then does not know exactly when it has returned to 

an operating condition. Clearly, then, if the fuzzy controller has better information about the
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plant’s operating conditions, the FMRLC will be able to leam and apply better control actions. If 

it does not have good information, it will continually adapt, but it will not properly remember.

For instance, for some plants e{kT) and c{kT) may only grossly characterize the operating 

conditions of the plant. In this situation the FMRLC will not be able to leam different controllers 

for different operating conditions; it will use its limited information about the operating 

condition and continually adapt to search for the best controller. It degrades from a learning 

system to an adaptive system that will not properly remember the control actions.

Generally the inputs to the fuzzy controller specify what conditions, are; we need to leam 

different controllers. A competing objective is, however, to keep the number of fuzzy controller 

inputs low due to concerns about computational complexity. In fact, to help with computational 

complexity, multiple fuzzy controllers are used with fewer inputs to each of them rather than one 

fuzzy controller with many inputs; then we can sum the outputs of the individual controllers.

7.1.2 The Reference Model

Next, important is to decide on what to choose for the reference model that quantifies the 

desired performance. Basically, one has to specify a reasonable desirable performance. Certain 

characteristics of real-world plants place practical constraints on what performance can be 

achieved. It Js not always easy to pick a good reference model and its choice is, purely based on 

the application on hand. In general, the reference model may be discrete or continuous time, 

linear or nonlinear, time-invariant or time-varying, and so on. For example, suppose that we 

would like to have the response track the continuous time model

G{s) = — ...(7.2)
s + 1

For discrete time implementation of same with T=0.1 and using bilinear transformation 

to find discrete equivalent to the continuous time transfer function G(s). Bilinear transformation 

is given by

Substituting eq. 7.3 into eq. 7.2 ...
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...(7.4)

21

Where, ym(z) and R(z) are the Z-transform of ym(kT) and r(kT), respectively. Hence, for 

discrete time implementation of the same will be

This choice would then represent that output y{kT) is to track a smooth, stable, first-order 

type response of ym{kT). A similar approach can be used to, for example, track a second-order 

system with a specified damping ratio Q and undamped natural frequency a>„.

The performance of the overall system is computed with respect to the reference model 

. by the-leaming mechanism by generating an error signal

Given that the reference model characterizes design criteria such as rise-time and 

overshoot and the input to the reference model is the reference input r(kT), the desired 

performance of the controlled process is met if the learning mechanism forces ye(kT) to remain 

very small for all time no matter what the reference input is or what plant parameter variations 

occur.' Hence, the error ye(kT) provides a characterization of the extent to which the desired 

performance is met at time kT. If the performance is met, i.e. ye{kT) is small, then the learning 

mechanism will not make significant modifications to the fuzzy controller. On the other hand if 

ye{kT) is big, the desired performance is not achieved and the learning mechanism must adjust 

the fuzzy controller.

7.1.3 Learning Mechanism

The learning mechanism tunes the rule-base of the direct fuzzy controller so that the 

closed-loop system behaves like the reference model. These rule-base modifications are made by 

observing data from the controlled process, the reference model, and the fuzzy controller. The 

learning mechanism consists of two parts: a “fuzzy inverse model” and a “knowledge-base 

modifier.” The fuzzy inverse model performs the function of mapping ye(kl), representing the

{kT + T) = |}-ym {kT) + j-r(kT + T) + ±r{kT) ...(7.5)

ye{kT) = ym(kT)-y{kT). ...(7.6)
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deviation from the desired behavior, to changes, in the process inputs p(kT) that are necessary to 

force ye{kT) to zero. The knowledge-base modifier performs the function of modifying the fuzzy 

controller’s rule-base to affect the needed changes in the process inputs.

Fuzzy Inverse Model

A fuzzy system is used to map ye(kT) and possibly functions of ye(kT) such as

yc (kT) = yt (kT)—ye (kT - T) to the necessary changes in the process inputs p(kl). This fuzzy

system is sometimes called the “fuzzy inverse model” since information about the plant inverse 

dynamics is used in its specification. Similar to the fuzzy controller, the fuzzy inverse model 

shown in Figure 7.1 contains scaling gains, denoted as gye, gyc, and gp. Selection of these scaling 

gains is also important.

Given that gyeye and gycyc are inputs to the fuzzy inverse model, the rule-base for the 

fuzzy inverse model contains rules of the form

If ye is YJ and yc is Yj then p is Pm

Where, Yj and Yj denote linguistic values and Pm denotes the linguistic value associated

with the mh output fuzzy set. For the application under consideration, the membership functions 

for the input universes of discourse are as shown in Figure 7.2, symmetric triangular-shaped 

membership functions for the output universes of discourse, minimum to represent the premise 

and implication, and COG defuzzification.

Knowledge-Base Modifier

Given the information about the necessary changes in the input, which are represented by 

p{kT), to force the error ye to zero, the knowledge-base modifier changes the rule-base of the 

fuzzy controller so that the previously applied control action will be modified by the amount 

p(kT). Let the previously computed control action u(kT - T), and assume that it contributed to the 

present good or bad system performance i.e., it resulted in the value of y(kT) such that it did not 

match ym{kT). e(kT - T) and c(kT -7) are the error and change in error that were input to the fuzzy 

controller at that time. By modifying the fuzzy controller’s knowledge-base, the fuzzy controller 

will now force to produce a desired output u(kT -T)+ p(kT), which should have put in at time kT 

- T to make ye(kT) smaller. The next time when similar values for the error and change in error
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occur, the input to the plant will be one that will reduce the error between the reference model 

and plant output.

Learning, Memorization, and Inverse Model Input Choice

The changes made to the rule-base are only local ones, i.e. the entire rule-base is not 

updated at every time step, just the rules that needed to be updated to force ye(kT) to zero. This 

local learning is important since it allows the changes that were made in the past to be 

remembered by the fuzzy controller. The type and amount of memory depends critically on the 

inputs to the fuzzy controller. Different parts of the rule-base are “filled in” based on different 

operating conditions for the system and when one area of the rule-base is updated, other rules are 

not affected. Hence, if the appropriate inputs are provided to the fuzzy controller so that it can 

distinguish between the situations in which it should behave differently, the controller adapts to 

new situations and also remembers how it has adapted to past situations.

Just as the choice of inputs to the fuzzy controller has a fundamental impact on learning 

and memorization, so does the choice of inputs to the inverse model e.g. one may want to choose 

the inputs to the inverse model so that it will adapt differently in different operating conditions, 

to adapt more slowly than in another, the direction of adjustment of the output membership 

function centers maybe the opposite of that in another etc. If there are multiple fuzzy controllers, 

it is preferable to have multiple inverse models to adjust them, which may help with 

computational complexity as use of fewer inputs per fuzzy inverse model.

The choice of inputs to the fuzzy inverse model shown in Figure 7.1 indicates that 

different errors and error rates between the reference model and plant output are required to 

adapt differently. The inverse model may be designed so that, for example, if the error is small, 

then the adjustments to the fuzzy controller should be small, and if the error is small but the rate 

of error increase is high, then the adjustments should be larger. It is rules such as these that are 

loaded into the fuzzy inverse model.

Let us now discuss the mathematical models of the application on hand, namely Ship and 

Aircraft dynamics, followed by their design implementations.
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7.2 Ship Dynamics

For proper mathematical representation of ship dynamics, we need to fix the reference 

frame to be used. One can use either earth reference frame or body reference frame. In case of 

earth reference frame, x & y coordinates are defined with reference to true earth ellipsoid, where 

x axis points towards the North and y axis towards the East. Body reference frame is moving 

coordinate system but it is fixed to the ship. The origin coincides with the centre of gravity. The 

axes are defined as: x axis - the longitudinal axis, directed from aft to fore, y axis - the 

transversal, directed towards the starboard.

The-position of the ship, defined by GPS, is normally described by earth reference frame 

but its motion is generally described by a body reference frame, figure 7.3. Ship dynamics are 

obtained by applying Newton’s laws of motion to the ship. For very large ships, the motion in 

the vertical plane may be neglected since the “bobbing” or “bouncing” effects of the ship are 

small for large vessels.

Figure 7.3: Cargo Ship Coordinate System 

A Simple model of ship’s motion is given by

f1 1 ] f 1 1 K f \
Vi 0+ y/(t)+ £(*) + &(*)[r, r2 J

t1t2 /
...(7.7)

Where, y/ is the heading of the ship and 5 is the rudder angle.

Assuming zero initial conditions, we can write transfer function of the system as
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...(7.8)Vis) K-jsr3+1)
Sis) s- (stx +1) • (sr2 +1)

Where, K, rl, r2, and r3 are parameters that are a function of the ship’s constant forward 

velocity u and its length /.

In particular,

K = K0 u
1 and i = 1,2,3 ...(7.9)

In normal steering, a ship often makes only small deviations from a straight-line path. 

Therefore, the model in Equation (7.7) is obtained by linearizing, the equations of motion around 

the zero rudder angle (<5 = 0). As a result, the rudder angle should not exceed approximately 5 

degrees; otherwise the model will be inaccurate. For our proposes, we need a model suited for 
rudder angles that are larger than 5 degrees; hence, we use the model proposed in [208].

The extended model of the ship’s motion is given by

w(t) +

S'+_̂
L Vit) + f 1 ]ffft'W)-—3m+sit)T, T2K 1 1 ) [r,r2 Jr J ...(7.10)

Where, H(yr(t)) is a nonlinear function ofy/(t). The function H(y/(t)) can either be derived 

from the experiment or can be approximated to any n* order equation, while keeping in mind the

relationship between S and y/(t) in steady state such that^ = y =i> = 0. Higher the order, 

performance is better but this will be at the cost of computation time, as far as implementation

with evolutionary algorithm is concerned. To be reasonable, H(y/(t)) is approximated as

H(ij/(t)) = a-l//3 + b-y/. ...(7.11)

Where, a and b are real-valued constants such that a is always positive.

While evaluating the controllers, nonlinear model is used for simulation. Note that to do 

this the nth-order nonlinear ordinary differential equations representing the ship are converted to 

n first-order ordinary differential equations; for convenience, let
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f\ 1'

T, T,V

f 1 '

r.r,v 1 2 y

3 .

t,t2
anrf

</ = 1C
*1*2

...(7.12)

The model is required to be presented in the state space form given as

x(t) = F{x(t),S(t)] ...(7.13)
y(t) = G{x(t),S(t))

Where x(t) = £x, (/), x2 (0, (t)]T and

F = [Fj , F2, F3 ]r for use in nonlinear simulation program.

We need to choose xt (t) so that F{ depend only on x; (t) and S for i—1,2,3. 

We have

y/(t) = -a ■ y/(t) - b ■ H(y/(t)) + c • S(t) + d • 8{t)

T aking x3 (t) = y/(t) - c • S (t)

so that F3 will not depend on c •<!>(/) and x$(t) = y/(t) - c - 8(t)

Take x2 (?) = \j/(t)

so that x2 (/) = y/(t).

Finally take x, (t) = y/(t).

...(7.14)
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This gives...

x, (0 = x2 (0 = Fx (x(0,8{t))

x2 (t) = x3 (0 + c8(t) = F2 (x(t), 8(t)) .. .(7.15)

x3 (0 = -a y/(t) - bH (y/(0) + dS(0

But,

W(0 = x3(0+cS(0,

W(0 = x2 (0 and . ...(7.16)
H{x2) = x32(0 + x2 (0 

So,

x3 (0 = -a(xy(0 + c8(0) - b{x\ (0 + x2 (t))+ dS( 0 = F3 (x(/), 8(0) ...(7.17)

These are the desired equations for the simulation. For discrete time implementation, we 

have to simply discretize the differential equations given above. The initial conditions used for 

the simulation are...

yr(0) = W(Q) = f(0) = 0

which implies that

x, (0) = x2 (0) = 0 and

x3(0) = ^(0)-c<5(0)
= -c8( 0)

7.3 Aircraft Dynamics

The equations of motion relate the forces and moments to the accelerations for the three 

translational and three rotational directions. For a rigid body referenced to a body fixed frame, 

the nonlinear equations of motion are [207]: (Refer Figure 7.4)
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A-

qS Tu = rv — qw — g sin 9 + -—- Cx + — 
m m

v = pw-ni + gcos8sin<f> + — CY
m

w — qu-pv + g cos 9 cos <f> + — Cz
m

Ph ~rlxz =pqlxz ~<F(/Z -/y) + ^Q ...(7.18)

qly = pr(Iz Ix) (p2 >'2)/,vz + 7^',, - r//^

rIz - piXZ = P8(Jx -!y)- 9rlxz _ qSbCm + qHeng

The aerodynamic coefficients in the equations of motion are written as a sum of 

contributing force and moment coefficients, some related to the control surfaces, others to the 

basic aerodynamic properties of the aircraft itself.
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Force Coefficients are given as...

— Cx0 (a’de) +
( - \ qc

2V\ Vt )
Cv

CY = -0.028 + 0.021 — 
20

\ (8 1 {' b "j
+ 0.086 +

) [30 J 2Vr){Cx (a)p + CY (a)r)

Cz — Cz (cx) 1- p7C -0.019
\25J

+ qc
2Vt \ T

Cz(a)

Where as Moment Coefficients are ...

Q0 (a> P)~^ ^'!,Sm=.
20 deg

c,

(S'1UjK—[ioj
+

2Vr
IC,(a)p + C,(a)r)

C. = C„ (a, S')+(%-1c. («) + (*,w )cz

2F\ Vj )

Cja,p)+&C,^_
20deg

c„

fs \
-2- ^C„

,20 y

(L

+

...(7.19)

2Vr

nJS'~3°d«g[30y
fnp (P)P + C„r (a)r}- [j-jkg.re/ -vg rr

...(7.20)

y^Y

The engine model for the F-16 consists of three parts. The first part is the relationship 

between the throttle setting St and the commanded power level Pc, which is a piecewise linear 

function taking into account the military power level:

if ST < 0.77P ((7 ) =A t)~ (217.38-Sr-117.38 if8T>QJl ...(7.21)

The second part of the model is the relationship between the commanded power level Pc 

and the actual power level Pa. This relationship is characterized by the engine power lag Teng:

p =------J----
“ ?e„M-Pa)
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Here, Pc

Pc 
60 

* 40

A

if Pc> 50 and Pa> 50 
if P< 50 and P <50 
if Pr < 50 and P > 50J c a

if Pc < 50 and Pa< 50

...(7.22)

The engine power lag xeBg is itself a function of the commanded power level and the actual power 

level:

5.0 if Pc > 50 and Pa > 50
1 *

if Pc < 50 and Pa < 50
Te"S

5.0 if Pc < 50 and Pa > 50
1 *

Tt eng

if Pc < 50 and Pa < 50

1
' 1.0 if{Pc-Pa)< 25

- 0.1 if{Pc-Pa)>50
1.9-0.036(PC-Pa) if 25<(PC-Pa)<50

...(7.23)

The third and final part of the engine model is the relationship between the actual power 

level Pa and the thrust T:

(p \
P'tdk + mil ~ Pidte 1

x +(t -T jPa
mil \ max mil)

if Pa< 50 

if Pa - 50
...(7.24)

In the complete model of the F-16 there are thirteen states, six for position and attitude, 

six for their derivatives and one for the power level and four control inputs. But the for the 

application of Fault tolerant aircraft, the F-16 aircraft model used is further simplified based on a 

set of five linear perturbation models, extracted from a nonlinear model discussed above at the 

five different operating conditions (Ai,Bi,Ci,Di), where ie{1,2,3,4,5}[209,210], which takes into 

account the six states, three related to position and three of their derivatives, and all four inputs. 

The state space representation of the same is given as...

x = A^ + BiU 
y — CjX + DjU

...(7.25)
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Where the state vector* , input vector u and output vector y are defined as ...

• Inputs it — [Se, Sde ,8a,8rf,

o Se = elevator deflection (in degrees) 

o dde - differential elevator deflection (in degrees) 

o da ~ aileron deflection (in degrees) 

o 8r = rudder deflection (in degrees)

• System state x — [a, q, (/>, p, p,r]T.

o a = angle of attack (in degrees) 

o q — body axis pitch rate (in degrees/second) 

o (j) = Euler roll angle (in degrees) 

o p — sideslip angle (in degrees) 

o p = body axis roll rate (in degrees/second) 

o r = body axis yaw rate (in degrees/second)

• Output y = [xT ,A_]T, where A- is normal acceleration in g.

The nominal control laws for the aircraft are for the lateral channel as well as for the 

longitudinal channel. The inputs to the controller are pilot commands and the system feedback 

signal. Pilot commands for the longitudinal channel is desired pitch Az,t and for lateral channel 

are desired roll rate pd & desired side slip Pd. The controller gains for both the channels are 

function of different dynamic pressures^. Assuming constant speed and altitude of aircraft this 

can be assumed to be as 499.24psf. (23.9 KN/sqm.).

7.4 Helicopter Dynamics

A helicopter is mainly controlled by three operating controls. Those controls are throttle, 

the collective pitch controller and the cyclic pitch controller. The collective pitch angle of a rotor 

blade is the angle between the chord line and a reference plane determined by the rotor hub or 

the plane of rotation, refer Figure 7.5. The cyclic pitch angle is between the rotor disk and the air 

speed caused by tilting the rotor disk either up (positive) or down (negative), refer Figure 7.6. 
[2H] The throttle main purpose is to control the angular speed of the main rotor. A constant 

angular speed is assumed for the implementation.
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Figure 7.5: Collective Pitch angle of Rotor Blade

Figure 7.6: Cyclic pitch angle.

The collective pitch control angles all blades equally and simultaneously and allows the 

aircraft to raise vertically, figure 7.7(a). The cyclic pitch control allows each blade to be angled 

individually and allows the aircraft to move forward or backward, nose upward or downward, 

and roll from side to side, figure 7.7(b). A tail rotor is used to maintain yaw control and 

counteract the torque effect. By changing the pitch of the tail rotor's blades, this rotor will 

produce a side force that turns the helicopter nose left or right, figure 7.7(c).

Figure 7.7 - (a) Collective Pitch, (b) Cyclic Pitch and (c) Tail collective Pitch
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There is also a coupling effect when using the cyclic pitch due to the angled lift that 

consists of vertical and horizontal force components. In this model, the helicopter will be 

controlled by entering four inputs; main rotor collective pitch angle, tail rotor collective pitch 

angle, longitudinal cyclic pitch angle and lateral cyclic pitch angle.

Considering the helicopter equations of motion in nonlinear form given by:

x = F(x,uit) ...(7.26)

In 6 degree of freedom form, the motion states and controls are:

* = {«, w, q, 9,v,p, <j>, r, Iff} 

u ~ {$o > ■> @ic ■> @or I
The basic equation of motion for the helicopter is given in equations

Xii = (rv — qw) +-------gsin#
Ma

Yv = (pw— ru) i----- + g sin<pcos0

Z
w=(qu-pv)-\------- hgcos^cos#

Ma
IXX P ~ i^YY ~ ^Z2 IXZ O' P9)+ L
Irr4 = (lzz-Ixx>P + Ixz{r2 ~p2)+M ...(7.28)

tr/j = {IXX - JYY )p<i -Ixz ti>-qr)+N

yr = q sin (j) sec 0 + r cos 0 sec 9
9 = qcos<p-rsin<p
(j> = p + qsin(/)tm9 + rcos@tw9

The same can be represented in state space representation with six degrees of freedom 

like equation 7.25 of the aircraft with state vector x and input vector u as defined in equation 

7.27. In [211 ] helicopter data of SA330 Puma is given and the same is used for implementing the 

PID controller for the same and then later fine tuning of the same is employed using GA to 

improve its real time performance.
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