List of Figures

+

Figure No.	Description of Figure	Page No.
2.1	Fuzzy Controller	23
2.2	Inverted Pendulum on Cast	30
2.3	Human Controlled Inverted Pendulum on a Cart	30
2.4	Fuzzy Controller for Inverted Pendulum on a Cart	31
2.5	Inverted Pendulum in different positions	35
2.6	Membership Function for possmall	37
2.7	Different possible shapes of Membership Functions	38
2.8	Membership Functions for Inverted Pendulum on a Cart.	39
2.9	Membership Functions of e(t) and d/dt (e(t))	. 41
2.10	Simulink Model of the Inverted Pendulum	45
2.11	Response of Fuzzy controlled Inverted Pendulum	46
3.1	Iterative Cycles in Evolutionary Algorithms	59
3.2	Pseudo Code of Simple EA	64
3.3	Fitness improvement during the GA run.	65
3.4	The problem, the objective and the representation	66
3.5	Pseudo code for Gray decoding in linear time.	69
3.6	Creation of bitstring in multi dimensional problem of optimization	70
3.7	One point Crossover Operator	71
3.8	Decreasing Functions	72
3.9	Crossover for real valued vectors	73
3.10	Grow, shrink, switch and cycle mutation	75
3.11	Subtree crossover	76
3.12	Initialization Methods.	76
3.13	Pseudo code for Tournament selection with a tournament size of two.	78
3.14	Parameters of a Triangular Fuzzy set	81
3.15	Step response of PID controller	88
3.16	Variation of Gain of PID Controller	88
3.17	Step Response of PID Controller	89
3.18	Variation of Gain of PID Controller	89
4.1	The hierarchical evolutionary structure	102
5.1	Characteristics of Pendulum on the state plane	107
5.2	Design Flow of GAFLC	108
5.3	Architecture of GRFLC	110
5.4	FLC with GA	115

-

5.5	MIMO RBF based FLC Network Architecture	119
5.6	Fuzzy Basis functions at hidden layer.	
5.7	Computation of ym for RBF based FLC	121
5.8	Functional block diagram of GA optimization process	121
5.9	Mobile Robot – tracking control and error	123
7.1	FMRLC Architecture	139
7.2	Membership function for input universe of discourse	141
7.3	Cargo Ship Coordinate System	147
7.4	F-16 Aircraft	151
7.5	Collective Pitch angle of Rotor Blade	155
7.6	Cyclic pitch angle	155
7.7	Collective Pitch, Cyclic Pitch and Tail collective Pitch	155
8.1	Grid points to search for best Kp & Kd	161
8.2	Response Surface for selection of best Kp & Kd	162
8.3	PD Control of Cargo ship Kp= -3.1053 , Kd = -500.00 , without Noise	162
8.4	PD Control of Cargo ship Kp= -3.1053 , Kd = -500.00 , with Noise	163
8.5	Fuzzy controller, with scalar ge=2/pi,gc=300,gu=4*pi/18	164
8.6	Fuzzy controller input output mapping	164
8.7	Fuzzy controller, with scalar ge=2/pi,gc=300,gu=8*pi/18	165
8.8	Fuzzy controller, with scalar ge=1/pi,gc=100,gu=8*pi/18	165
8.9	ANN with MLP for ship heading	166
8.10	MLP mapping between inputs and output	166
8.11	Response of RBFN for ship heading Regulation	167
8.12	Grid of Receptive unit Centres for RBFN	168
8.13	Radial Basis Function NN output at grid centers	168
8.14	RBFN controller mapping of input-output	169
8.15	FMRLC with scalar gains ge=1/pi,gc=100,gu=8*pi/18, without Noise	170
8.16	FMRLC Fuzzy Inverse model response & Heading Errors without noise	170
8.17	FMRLC Heading and change in heading error, without noise	171
8.18	FMRLC controller mapping between input and output.	171
8.19	FMRLC with scalar gains ge=2/pi,gc=250,gu=8*pi/18, without Noise	172
8.20	FMRLC Fuzzy Inverse model response & Heading Errors without noise	173

ix

	8.21	FMRLC Heading and change in heading error, without noise	173
	8.22	FMRLC with scalar gains ge=2/pi,gc=250,gu=8*pi/18, with uncertainty	174
	8.23	FMRLC Fuzzy Inverse model response & Heading Errors with uncertainty	174
-	8.24	FMRLC Heading and change in heading error, with uncertainty	175
	8.25	Ship Steering with Embedding Evolutionary Algorithm in FMRLC	175
	8.26	Heading and change in heading error for Evolutionary Algorithm	176
	8.27	Evolution Function.	176
	8.28	Nominal control law for lateral channel.	177
	8.29	FMRLC for F-16 Aircraft.	180
	8.30	Unimpaired F-16 with FMRLC and Nominal Controller	182
	8.31	Impaired FMRLC with aileron struck at 1 second.	182
	8.32	Simulink Model of Longitudinal Dynamics of the Helicopter	183
	8.33	Response of helicopter	184
	8.34	Response of Helicopter with GA tuned PID	185

List of Tables

Table No.	Description of Table	Page No.
2.1	Rule Table for Inverted Pendulum	36
3.1	Example of ranking scheme for population size of 20 individuals	79
8.1	Rule base for Fuzzy Inverse Model	160
8.2	Rule of Fuzzy Controller, after leaning - FMRLC	169

!

x

List of Figures

.

Figure No.	Description of Figure	Page No.
2.1	Fuzzy Controller	23
2.2	Inverted Pendulum on Cast	30
2.3	Human Controlled Inverted Pendulum on a Cart	30
2.4	Fuzzy Controller for Inverted Pendulum on a Cart	31
2.5	Inverted Pendulum in different positions	35
2.6	Membership Function for possmall	37
2.7	Different possible shapes of Membership Functions	38
2.8	Membership Functions for Inverted Pendulum on a Cart.	39
2.9	Membership Functions of e(t) and d/dt (e(t))	41
2.10	Simulink Model of the Inverted-Pendulum	45
2.11	Response of Fuzzy controlled Inverted Pendulum	46
3.1	Iterative Cycles in Evolutionary Algorithms	59
3.2	Pseudo Code of Simple EA	64
3.3	Fitness improvement during the GA run.	65
3.4	The problem, the objective and the representation	66
3.5	Pseudo code for Gray decoding in linear time.	69
3.6	Creation of bitstring in multi dimensional problem of optimization	70
3.7	One point Crossover Operator	71
3.8	Decreasing Functions	72
3.9	Crossover for real valued vectors	73
3.10	Grow, shrink, switch and cycle mutation	75
3.11	Subtree crossover	76
3.12	Initialization Methods.	76
3.13	Pseudo code for Tournament selection with a tournament size of two.	78
3.14	Parameters of a Triangular Fuzzy set	81
3.15	Step response of PID controller	88
3.16	Variation of Gain of PID Controller	88
3.17	Step Response of PID Controller	89
3.18	Variation of Gain of PID Controller	89
4.1	The hierarchical evolutionary structure	102
5.1	Characteristics of Pendulum on the state plane	107
5.2	Design Flow of GAFLC	108
5.3	Architecture of GRFLC	. 110
5.4	FLC with GA	115

viii