Table of contents				
Chapter	Title	Page		
	Certificate	No.		
	Acknowledgments			
	List of figures	i-iii		
	List of plates	iv-v		
	List of tables	vi-vii		
1	Introduction	1-29		
1.1	Background information	1		
1.2	Purpose and scope of the study	7		
1.3	Methodology Otvolve of literature	9 9		
1.3.1	Study of literature			
1.3.2	Geological Study	10		
1.3.3	Seismotectonic studies	10		
1.3.4	Engineering Geological Study	11		
a	Geological mapping	11		
b	Engineering geological mapping	11 12		
C d	Remote sensing techniques	12		
d	Boreholes, excavations and sampling	12		
e f	Laboratory and field testing of foundation media Laboratory testing	13		
	In-situ testing	. 13		
g h	Monitoring of movements in rock mass	16		
1.4	Characterization of the rock mass	16		
1.4.1	Description of rock mass	18		
1.4.2	Geomechanics Classification	22		
a	Rock quality index (RQD)	23		
b	Rock Tunnelling Quality Index (Q)	23		
1.4.3	Estimation of tunnel supports	24		
a	Excavation support ratio and Equivalent dimension	24		
b	Unsupported span	24		
С	Support pressure	25		
d	Estimation of shotcrete capacity ps	25		
e	Estimation of the bolt capacity pb	26		
f	Estimation of rock bolt and cable length	26		
(i)	Arch roof support	26		
(ii)		26		
1.4.4	Use of the rock mass classification in the estimation of	27		

1.5	Salient features of the Narmada and Karjan dams	27
2	Geological Set Up	30-43
2.1 2.2	General Geology of the area Geotectonic setting	30 30
2.2	Post Deccan trap activity in the area	31
2.3	Neotectonism	32
2.5	Seismicity of the area	32
2.6	Geology of Narmada dam site	33
2.6.1 2.6.2	River Channel fault	37 37
2.0.2 2.7	Dykes Geology of the Narmada Underground Powerhouse Site	37
2.8	Geology of the Karjan dam site	38
2.8.1	Nature of Weathered rock seams	38
2.8.2	River channel fault	43
3	Geomechanical Properties of the rocks and stresses	44-57
3.1	Purpose	44
3.2	Physico-engineering properties of the Narmada dam foundation rocks	44
3.2.1	Physical properties of rocks	48
3.2.2	Shear strength of foundation rocks	48
3.2.3	Modulus of deformation values of fault zone and foundations rocks	48
3.2.4	Physico-engineering properties of chloritized and slaked dolerite rock	51
а	Slaking test	51
b	Laboratory shear test	52
3.3	Physico-engineering properties of Karjan dam foundation rocks	52
3.4	State of stresses in the rock mass in the powerhouse	57
	cavern	
4	Engineering Geological study of dam sites, Identification of Geotechnical problems and treatment	58-111
4.1	Engineering geological investigations at Narmada dam site	58
4.2	Engineering geological investigations at Karjan dam site	59

•

٩

4.3	Sliding stability	60
4.3.1	Influence of sub-horizontal to low dipping weak features	60
1	in the sliding stability	
4.3.2	Sliding factor	61
4.3.3	Shear Friction Factor	61
4.3.4	Factors of safety against sliding	62
4.3.5	Sliding stability of Narmada dam	63
а	Treatment for safety against sliding of red bole layer	64
b	Treatment for safety against sliding for sedimentary	64
	rocks	
С	Treatment for safety against sliding of Low dipping	75
	shears	
đ	Alternative measures	76
(i)	Curvature in the axis of dam	76
(ii)	Designing of suitable energy dissipation arrangement	76
4.3.6	Sliding stability of Karjan dam	76
а	Treatment considered to prevent sliding of dam blocks	77
	resting over weathered rock seams	
(i)	Curvature in the alignment of dam	77
, (ii)	Alternative measures	77
b	Treatment of Left non-overflow (LNOF) blocks	79
· C	Treatment of Spillway blocks	79
d	Treatment of Right non-over flow (RNOF) blocks	80
е	Additional treatment	80
4.3.7	Treatment for sliding at other projects	82
4.4	Settlement problem	83
4.4.1	Significance of faults in engineering	83
4.4.2	Treatment of fault	84
4.4.3	Narmada Main River channel fault	85
; a	Rock mass classification of fault zone and foundation	86
	rocks traversed by fault	
b	Geotechnical assessment of the fault zone	86
С	Treatment of Main River channel fault	88
(i)	Two dimension photo elastic studies	88
(ii)	Three dimension photo elastic studies	89
, (iii)	Limitations of photo-elastic studies	89
(iv)	Finite element analysis	89
(V)	Treatment for settlement/ differential settlement	90 ·
(vi)	Details of Hammock reinforcement	90
(vii)	Grouting of the foundation below the plug	90
(viii)	Seismic considerations	91
4.4.4	Karjan River Channel Fault	91
4.4.5	Treatment of minor faults and shears	93
4.5	Weathered rocks/ zones/ seams in the foundation	93
4.5.1	Narmada dam	93

.

-

	Main dom blocko	94
a	Main dam blocks	94 96
b	Left divide wall block-28	96
4.5.2	Karjan dam	100
4.6	Seepage	103
4.6.1	Narmada dam	103
a	Seepage through limestone	
b	Protection against piping of fault zone material	106
4.6.2	Karjan dam	107
4.7	Seismoteconic studies and problem of seismicity	107
4.7.1	Micro-seismicity	107
4.7.2	Consideration of seismotectonics in the aseismic design	109
470	of dam	400
4.7.3	Monitoring of the project sites	109
5	Geotechnical problems and treatment of	112-135
	underground structures	
		440
5.1	Location and layout	112
5.2	Salient features	112
5.3	Machine hall	115
5.3.1	Geology and rock mass characteristics	115
5.3.2	Design support	118
5.3.3	Geotechnical problems	118 ·
a	Rock falls in the crown	121
b	Development of Cracks (fissures) in the upstream and downstream walls	121
5.3.4	Nature of cracks in the upstream and downstream walls	122
5.4.5	Three dimension numerical (FEM and DEC) analysis	122
5.4.6	Geological analysis of the major discontinuities	125
a	Wedge failure analysis	125
b	Plane failure analysis	125
; C	In-situ stresses	126
5.3.7	Review of Supports	125
5.3.8	Mechanism of the rock mass behaviour and	128
0.0.0	development of cracks in the machine hall	120
5.4.9	Remedial measures adopted to stabilise the rock mass	128
0.4.0	in the machine hall	120
5.4	Tunnels	129
5.4.1	Design support	129
, 5.4.2	Geotechnical problems and treatment	131
, J.4.2 a	Access Tunnel	131
b	Draft Tube Tunnels	131
C C	Exit tunnels	131
5.4.3	Behaviour of the rock mass and installation of rib	135
0.4.0	supports in the tunnels	100

:

.

References

140-148

Appendix

- I Paper entitled, "Geotechnical Investigations of Sardar Sarovar (Narmada) Project, India", Eighth International Congress International Association for Engineering Geology and the Environment, Vancouver, Canada, 1998, pp. 377-384 by Indra Prakash and C. Srikarni.
- II Paper entitled, "Geomechanical Properties of The Foundation Rocks at Sardar Sarovar (Narmada) and Karjan Dams, Gujarat", Journal of Engineering Geology, India, Vol. XIX Nos. 3 & 4, 1990, pp.37-52 by Indra Prakash.
- III Paper entitled, "Geotechnical Problems and Treatment of Foundations of Major Dams on Deccan Traps in The Narmada valley, Gujarat, W. India", Sixth International Congress International Association for Engineering Geology, Netherlands, 1990, pp.1921-1927 by P.N. Mehta and Indra Prakash.
- IV Paper entitled, "Geotechnical problems and treatment of weathered rock seams occurring in the foundation of Karjan dam, Western India", Proceedings: Fourth International Conference on Case Histories in Geotechnical Engineering, St. Louis, Missouri, March 9-12, 1998, pp.416-419 by Indra Prakash and A.B. Vyas.
- V Paper entitled, "Experience in Seismotectonic Investigations For The Evaluations of Design Earthquake for major Engineering Structures, W. India", Fourth International Congress International Association for Engineering Geology, New Delhi, India, Vol. VIII, Themes 6 and 7, 1982, pp. 87-96 by P.N. Mehta and Indra Prakash.
- VI Paper entitled, "Geotechnical Problems of The Underground Excavations in the Deccan Basalt of The Sardar Sarovar (Narmada) Project, Gujarat, India, Third International Congress on Case Histories in Geotechnical Engineering, St. Louis, Missouri, 1993, pp.889-894 by Indra Prakash and J.S. Sanganeria.
- VII Paper entitled, "Experience of Excavation for Underground Structures Through Dolerite at Sardar Sarovar (Narmada) Project, Gujarat", Journal of Engineering geology, India, Vol. XXIII Nos. 1 to 4, 1994, Pp.25-37 by Indra Prakash.

-

6