LIST OF FIGURES

Figure No.	TITLE	Page No.
Chapter 1	Review of literature and Introduction	
Figure 1.1	The cycle of metabolic engineering	2
Figure 1.2	The inverse metabolic engineering approach	5
Figure 1.3	The PEP:sugar phosphotransferase system (PTS) and other uptake mechanisms for sugar transport in <i>Escherichia coli</i>	8
Figure 1.4	Glucose metabolism in E. coli	9
Figure 1.5	Improvement in aerobic succinate production with subsequently incorporated genetic mutations in <i>E. coli</i>	14
Figure 1.6	Production of a variety of metabolites and other rhizospheric interactions of fluorescent <i>Pseudomonads</i> spp.	17
Figure 1.7	Carbohydrate metabolism in pseudomonads	24
Figure 1.8	Enzymes and pathways implicated in regulation at the PEP-Pyruvate-OAA node of different aerobic bacteria	26
Figure 1.9	The PEP-Pyruvate-OAA node in aerobic E. coli	28
Figure 1.10	The PEP-Pyruvate-OAA node in <i>Bacillus subtilis</i> and <i>Corynebacterium glutamicum</i>	30
Figure 1.11	PEP-Pyruvate-OAA node in Pseudomonas citronellolis	33
Figure 1.12	Metabolic basis for designing the genetic modifications in fluorescent pseudomonads- Rationale	39
Chapter 2	Materials and Methods	
Figure 2.1	Restriction maps of the plasmids used in this study	44,45
Chapter 3	Effect of constitutive heterologous overexpression of phosphoenolpyruvate carboxylase (<i>ppc</i>) gene of <i>Synechococcus</i> elongatus PCC 6301 on physiology and glucose metabolism of <i>P. fluorescens</i> ATCC 13525.	
Figure 3.1	Lactose utilization of Pseudomonas strains on M9 minimal medium	75
Figure 3.2	pTOL mediated Na-benzoate utilization and GFP expression in <i>Pseudomonas</i> strains	75
Figure 3.3	Schematic representation of the construction of pseudomonad stable vector containing <i>ppc</i> gene of <i>S. elongatus</i> PCC 6301 under <i>lac</i> promoter	77
Figure 3.4	Restriction digestion patterns for pAB1, pAB2, pAB3, pAB4 and pAB5 plasmids	78
Figure 3.5	Complementation of <i>E. coli</i> JWK3928 mutant phenotype by pAB3 and pAB4 plasmids	79
Figure 3.6	SDS PAGE analysis of the <i>E. coli</i> JM101 transformants containing the recombinant plasmids	79
Figure 3.7	Growth and pH profiles of <i>P. fluorescens</i> 13525 transformants on M9 minimal medium with different glucose concentrations	81

Figure No.	TITLE	Page No.
Figure 3.8	Organic acid production from P. fluorescens 13525 ppc transformant	83
Figure 3.9	Activities of PPC, PYC, GDH, G-6-PDH, ICDH and ICL enzymes in <i>P. fluorescens</i> 13525 ppc transformant	84
Chapter 4	Effect of Pi levels on glucose metabolism and organic acid secretion by <i>P. fluorescens</i> ATCC 13525 in the presence and absence of <i>ppc</i> gene overexpression	
Figure 4.1	Growth and organic acid production of $Pf(pAB3)$ and $Pf(pAB4)$ on different Pi and glucose levels	93-94
Figure 4.2	Organic acid production from P. fluorescens 13525 ppc transformant	96
Figure 4.3	Alterations in PYC, GDH G-6-PDH, ICDH and ICL activities in <i>P. fluorescens</i> 13525 ppc transformant	97
Figure 4.4	Summarized Pi-dependent effects of <i>S. elongatus</i> PCC 6301 ppc gene overexpression on glucose catabolism in <i>P. fluorescens</i> 13525	103
Chapter 5	Effect of constitutive heterologous overexpression of <i>E. coli</i> citrate synthase (<i>cs</i>) gene on glucose metabolism of <i>P. fluorescens</i> ATCC 13525	
Figure 5.1	Schematic representation of construction of pseudomonad stable vector containing <i>E. coli cs</i> gene under <i>lac</i> promoter	111
Figure 5.2	Restriction digestion patterns for pAB6, pAB7, pAB8 and pAB9 plasmids	112
Figure 5.3	Complementation of <i>E. coli</i> W620 mutant phenotype by pAB7 and pAB9 plasmids	113
Figure 5.4	Growth and pH profiles of <i>P. fluorescens</i> 13525 cs transformants on M9 minimal medium with 100mM glucose	115
Figure 5.5	Organic acid production from P. fluorescens 13525 cs transformants	117
Figure 5.6	Activities of enzymes PPC, PYC, GDH, G-6-PDH, ICDH and ICL in <i>P. fluorescens</i> 13525 <i>cs</i> transformants	118
Figure 5.7	Summarized effects of <i>E. coli cs</i> gene overexpression on glucose catabolism in <i>P. fluorescens</i> 13525	120
Chapter 6	Effect of simultaneous overexpression of <i>ppc-cs</i> genes on glucose metabolism of <i>P. fluorescens</i> ATCC 13525	
Figure 6.1	Growth and pH profiles of ppc-cs transformants of P. fluorescens 13525	129
Figure 6.2	Organic acid production from <i>P. fluorescens</i> 13525 overexpressing <i>ppc</i> and <i>cs</i> genes	130
Figure 6.3	Activities of enzymes CS, PPC, PYC, GDH, G-6-PDH, ICDH and ICL in <i>P. fluorescens</i> 13525 simultaneously expressing <i>ppc</i> and <i>cs</i> genes	131
Chapter 7	Effect of <i>ppc</i> and <i>cs</i> overexpression on the mineral phosphate solubilizing (MPS) ability of fluorescent pseudomonads	
Figure 7.1	Fluorescence of 10 wheat rhizospheric isolates on Pseudomonas Agar	141
Figure 7.2	Native plasmid in wheat rhizospheric isolates	142
Figure 7.3	Organic acid secretion and media acidification by wheat rhizospheric isolates of fluorescent pseudomonads on TRP medium	142

.

Figure No.	TITLE	Page No.
Figure 7.4a	Growth of <i>P. fluorescens</i> 13525, Fp585, Fp315 and P109 transformant strains of on Koser's medium	143
Figure 7.4b	Fluorescence of transformant pseudomonads on Pseudomonas Agar	143
Figure 7.5	MPS phenotype of <i>P. fluorescens</i> 13525 and native isolates harboring pAB3 plasmid expressing <i>S. elongatus ppc</i> gene	144
Figure 7.6	Growth profile and media acidification of wild type and transformants of P . <i>fluorescens</i> 13525 and selected native isolates on TRP medium	146
Figure 7.7	Fluorescence and MPS ability of cs transformants of P. fluorescens 13525	147
Figure 7.8	Fluorescence and MPS ability of <i>ppc-cs</i> transformants of <i>P. fluorescens</i> 13525	147
Chapter 8	Genetic, phenotypic and biochemical characterization of <i>ppc</i> genomic integrant <i>Pseudomonas</i> P4	
Figure 8.1	Schematic representation of genomic integration event and expected map of the plasmids recovered from <i>Pseudomonas</i> P4 genome	153
Figure 8.2	Characterization of <i>S. elongatus</i> PCC 6301 <i>ppc</i> gene in plasmids recovered from <i>Pseudomonas</i> P4 genome	154
Figure 8.3	Schematic representation of the methodology followed for identifying the sequence of <i>Pseudomonas</i> P4 genomic DNA fragment.	156
Figure 8.4a	Partial 16S rDNA sequence of Pseudomonas P4	158
Figure 8.4b	Homology search result of partial 16S rDNA of <i>Pseudomonas</i> P4 using NCBI-BLAST	159
Figure 8.4c	Homology search result of partial 16S rDNA of <i>Pseudomonas</i> P4 using RDP II	160
Figure 8.5	GenBank accession result of partial 16S rDNA sequence of Pseudomonas P4	160
Figure 8.6	PCR amplification and restriction mapping of pA21, pA22 and pA23	162
Figure 8.7	Size determination of selected 10 clones derived from XbaI and ApaI digested <i>Pseudomonas</i> P4 genomic DNA	163
Figure 8.8	PCR amplification of 10 plasmids derived from <i>Pseudomonas</i> P4 genome to examine the presence of full-length <i>ppc</i> gene	164
Figure 8.9	<i>E. coli</i> JWK3928 complementation phenotype of the plasmids derived from <i>Pseudomonas</i> P4 genome	165
Figure 8.10	Restriction mapping of pA55 plasmid	166
Figure 8.11	DNA sequence of the ~1.1kb Pseudomonas P4 genomic DNA fragment	167
Figure 8.12	Homology search result of 1,244bp <i>Pseudomonas</i> P4 genomic DNA sequence using NCBI-BLAST	168
Figure 8.13	P-solubilizing ability of Pseudomonas P4 and P. fluorescens 13525	169
Figure 8.14	Effect of <i>Pseudomonas</i> P4 inoculations on the growth of mung bean (Vigna radiata) under different experimental conditions	170
Figure 8.15	Effect of Pi levels on growth and pH profile of <i>Pseudomonas</i> P4 and <i>P. fluorescens</i> 13525	172
Figure 8.16	Growth pattern and pH profile of <i>Pseudomonas</i> P4 and <i>P. fluorescens</i> 13525 under Pi-deficient and -sufficient conditions	173
Figure 8.17	Enzyme activities in <i>Pseudomonas</i> P4 and <i>P. fluorescens</i> 13525 on TRP and M9 minimal media	176