WATER QUALITY ANALYSIS AT STRATEGIC POINTS ALONG THE CHANNEL, AT "J" POINT AND AT UPSTREAM AND DOWNSTREAM OF IT.

`

,

CHAPTER - I

# WATER QUALITY ANALYSIS AT STRATEGIC POINTS ALONG THE CHANNEL, AT "J" POINT AND AT UPSTREAM AND DOWNSTREAM OF IT.

Earth is a water planet as over 70% of its surface is covered by water. Most of it is the salt water of oceans, with fresh water upon which many terrestrial forms of animals and plants depend on, constituting only 3% of the total water on the planet. However, the net amount of fresh water is renewed by continuous cycling of water driven by the solar energy. The water evaporated by solar energy or by transpiration by plants is precipitated as rainfall and when it infiltrates the soil, it aids in plant production and recharge of ground water or, it may run off the surface into lakes, streams and rivers. The abundance of water on earth is distributed not evenly as, in many parts limited precipitation, high population density or both make the available fresh water less adequate or create substantial limitation to human needs. The greatest water stress is experienced by Asia and Africa with supply to each Asian country less than half the global average.

Water is very vital for man as it is much needed to feed the growing population, to produce material goods that raise living standards and also to preserve the integrity of natural system on which life sustains. The scarcity of such a fundamental natural resource is bound to have serious consequences and disrupt economic and social activity. The marine and estuarine waters apart from supporting characteristic life are also of great economic value to mankind. The quality of water is of great importance on both these aspects. With population growth and rapid urbanization and industrialisation, environmental pollution especially of the aquatic environment is becoming more critical. In this respect, pollution of coastal and estuarine waters which offer greater hopes of future food supplies to mankind is also not exempt. Pollution problems increase as populations move to the coast in search of amenities and recreational opportunities of the sea shore, as well as, the convenience the advantages to be found there for industrial anđ activities. Apart from fall-out from the atmosphere, large amounts of pollutants and waste reach the oceans through the rivers and run-off from the land. The coastal and estuarine waters are increasingly being used for convenient dumping of industrial and sewage wastes. However, because of the enclosed character of some seas, the waste may not be rapidly diluted and dispersed by natural processes. Depending on nature of the waste and, on transport by currents and the winds, it may drift to the coasts of other nations. By drifting out to sea, it may even adversely affect the open

sea environment of the plants and animals. The problem is further confounded when the wastes are dumped into an estuary and, the river in its upstream is obstructed by a dam for purported developmental activities and water usage. Such a situation causes the prospect of flush back of the wastes discharged into the estuary to greater distances up the river during periods of tidal ingress, posing serious social, economic and hygienic problems to the populace dwelling on the river banks and, also to the domestic animals. The magnitude and severity of this aspect get magnified especially, when the estuary is situated in a Gulf.

This is the situation that is typically exemplified by the Mahi estuary at the Gulf of Cambay, into which collectively discharged through an industrial waste is effluent channel and, the Mahi river in its upstream has a dam obstructing the flow and minimising the flushing potential of the river. As industrialization is the corner stone of development and, pollution is a problem which is to be accepted as a consequence of the same, mankind should be prepared to meet and combat this problem in various ways so as to minimise the potential hazardous effects. To this end, continuous monitoring and appraisal are a must. The huge Nandesari industrial/petrochemical complex situated on the north western limits of Baroda dispose their complex array of

wastes after treatment through a common effluent channel into the Mahi estuary at the Gulf of Cambay. Though the treatment is planned to minimise the quantum and the hazardous nature of the chemical wastes, the basic weakness of human nature and the tendencies of business community can greatly offset the idealized effectiveness of the entire process. Since the effluent channel is of closed conduit type with movable horizontal slabs, running a distance of 56 Km from the Nandesari complex to the Gulf of Cambay, and the populace residing in this entire stretch has developed the practice of pilfering the channel water for irrigative purposes, the effluent water quality and its potential hazardous nature need to be assessed and monitored. Further, the impact of effluent released into the Mahi estuary on the water this quality, at, down and above, the point of discharge need to be also monitored, as there could be deleterious effects on the marine, estuarine and river ecosystems and also may affect the human populace residing along the bank of the river. This is more so because the tidal ingress is reported to extend upto Vasad a distance of about 70 Kms upstream. It is in this context that the water quality assessment of the effluent channel as well as the quality of the water at the point of discharge at Mahi estuary and downstream and up stream of it has been planned and executed in the present study.

ł

69

. .

# METHODOLOGY OF ASSESSMENT

The effluent sample analysis for metal was carried out by collecting samples from 55 points all along the channel (every 01 km), through out the study period. For ease and convenience of handling the data, values of effluent metal content obtained for every 11 km have been clubbed together and mean value calculated. The data is thereby presented under 5 sampling heads all along the channel.

The estuarine water quality assessment has been carried out by collecting samples of water from the estuary at the J-point as well as from 3 Kms downstream and 3 kms upstream of the J.point. The effluent samples have been tested for the metal content, whereas the water samples from estuary were analysised for metal, physico-chemical and biological parameters. Samples were collected and analysied as per the standard methods for examination of water and waste water given in the treatise, prepared and published jointly by the American Public Health Association (APHA), American Water Works Association (AWWA) and the Water Pollution Control Federation (WPCF; 1981).

# **PHYSICO-CHEMICAL PARAMETERS**

TEMPERATURE (<sup>O</sup>C)

. Temperature (<sup>O</sup>C) and total and dissolved solids were

the physical parameters studied. Temperature was measured by using Celsius thermometer. The total solids (TS) was estimated by evaporating to dryness a known quantity of water at a temperature of 103-105 <sup>O</sup>C in a silica crucible. The difference in weight between the empty crucible and after evaporating to dryness the sample, is taken as the total content of TS. In another set up, a known quantity of water was filtered through whatman No.42 filter paper and a known quantity of the filtrate was taken in a silica crucible and was evaporated to dryness as above. The difference in weight in this case is taken as total dissolved solids (TDS). The difference between the values of TS and TDS was then taken to represent the amount of suspended solids (SS). The values are represented as mg/l.

#### pH

The form used to express the intensity of the acidic or alkaline condition of a solution is pH. It is a way of expressing the hydrogen ion concentration or more precisely, the hydrogen-ion activity. In the field of water pollution, it is a factor of significance in chemical coagulation, disinfection of water, water softening, corrosion control and dewatering of sludges. The pH is measured at the site itself by using pH strips as well as with an Orion WTW pH meter. The

basic principle of electrometric pH is, determination of the activity of the hydrogen ions by potentiometeric measurements using a glass electrode and reference electrode. In the present study, xerolyte electrodes were used to measure the pH, by dipping electrodes in the waste water sample. The instrument was precalibrated by using pH buffer of 4, 7 and 9.2 pH.

#### DISSOLVED OXYGEN (DO)

Dissolved oxygen is the oxygen present in water/waste water. It plays a vital role as far as self purification of any water body is concerned. Normally in summer, the DO content in water body is known to be lower than in winter i.e 7-8 ppm as against and 9-12 ppm. Similarly, high dissolved oxygen content is characteristic of fresh water than of sea water. Under no condition the DO should fall below 4 ppm, as it is deleterious for aquatic organisms.

The DO content of natural or waste water depends on the physical, chemical and biochemical activities in the water body. Dissolved oxygen level is measured by the Winklers azide-modification method and, by the electrometeric method using membrane electrodes. Samples were collected in BOD bottles and fixed at the site itself by adding 2ml each of

alkali-azide iodide and manganous sulfate. The bottles were' stored at low temperature and were later subjected to titration, using 100 ml. sample with sodium thiosulfate, after adding 2 ml of concentrated sulfuric acid and shaking it well. Starch was used as the external indicator.

#### BIOCHEMICAL OXYGEN DEMAND (BOD)

The BOD determination is an empirical test in which standardized laboratory procedures are used to determine the relative oxygen requirements of organisms for oxidising organic matter in waste, effluent or polluted water.

oxygen required The test measures the for the biochemical degradation of organic material, unless their oxidation is prevented by inhibitors. The method involves collection of representative samples in BOD bottles and preserving them at low temperature. In the laboratory, samples were diluted according to available COD values (chemical oxygen demand), with dilution water (containing 1 ml each of phosphate buffer, magnesium sulfate and calcium chloride per liter of distilled water along with 2 ml of seed.) Nine dilution bottles involving three dilutions in triplicate and six blank bottles containing only dilution water were taken. Three blank bottles and three diluted sample bottles were fixed with alkali-azide-iodide and manganous sulfate (2ml each) and titrated on the same day for oxygen using sodium thiosulfate with starch as an indicator. Remaining bottles were kept at 20  $^{\circ}$ C. in a BOD incubator for 5 days. After 5 days, same procedure was repeated and the depletion in oxygen was calculated and expressed as mg/l.

BOD plays vital role in assessing biodegradable organic loading, and oxygen influx in water body. With this, the biodegradable organic matter is calculated and stream pollution and self purification can be assessed. Higher organic loading of water bodies would demand more oxygen for biodegradation and hence calculation of BOD serves as an index of the amount of organic matter and, an assement of the degree of pollution and of self purification.

# CHEMICAL OXYGEN DEMAND (COD)

It is the measure of oxygen equivalent of the content of organic matter in a sample that is susceptible to oxidation by strong chemical oxidant. The sample is preserved with 2 ml of concentrated  $H_2SO_4$ .

The dichromate reflux method is used in the present study for measuring COD. For most organic matter, oxidation is 95-100% of the theoretical value. The principle involves

74

boiling (refluxing) the organic matter in strong chromic and sulfuric acids (oxidants) with a known excess of potassium dichromate. After digestion, the remaining unreduced potassium dichromate is titrated with ferrous ammonium sulfate using ferroin as an indicator. The amount of potassium dichromate consumed is determined and the amount of oxidizable organic matter is calculated in terms of oxygen equivalent. Mercuric sulfate (1qm) is added as catalyst to enchance the reaction. The sample mixture with oxidizing agent is refluxed for 2 hrs and the titrations are made in cold condition and the calculated COD value is expressed as mg/l. The COD test helps in finding out the oxidizable organic matter in a short period, thereby helping in treatment facilities. The ratio of COD to BOD gives the feasibility of treatment plant in terms of chemical treatment, biological treatment or both. The COD value reflects the total oxidizable organic loading in the water body.

# CHLORIDE (C1; ARGENTOMETRIC METHOD)

Chlorides occur in all natural water in widely varying concentrations and they increase as the mineral content increases. In the present study, chlorides are analysed by the above mentioned method. A 100ml sample/aliquot made in 100ml is taken and if it is coloured, it is decolourised by using activated charcoal or aluminium hydroxide suspension (AlOH<sub>3</sub>) and the pH is brought to neutral, and titrated with silver nitrate solution using potassium chromate as an indicator. Titration is continued untill the brick red color is constant. A sample blank is also titrated and chlorides are calculated and expressed as mg/l.

Chloride data helps in assessing scaling in water and their feasibility of disposal on land for irrigation.

SULFATE : (SOA; TURBIDITY METHOD)

Sulfate is widely distributed in nature and its concentration is of wide significance as it leads to `crown corrosion along with chloride scale in sewers, pipes etc. Under anaerobic condition, it gives a fouling smell of hydrogen sulfide.

A well mixed de-colorised filtered sample is taken (100ml or aliquot made to 100ml) in a 250 ml conical flask into which is added barium chloride and conditioning reagent (2gm and 5ml respectively) and the total volume is made upto 105 ml. The developed turbidity is measured at 420nm immediately. The amount of  $So_4$  is then calculated and expressed as mg/1.

The principle involved is precipitation of sulfate in

acidic medium (HCl) with barium chloride so as to form barium sulfate crystals of uniform size. Light absorbance of the BaSo<sub>4</sub> suspension is measuered by spectrophotometer at 420nm.

# ALKALINITY

The alkalinity of water is a measure of its capacity to neutralize acids. The alkalinity of natural waters is due to the presence of weak acids. Bicarbonates represent the major form of alkalinity. In polluted or anaerobic water, the alkalinity may be due to the salts of weak acids. Ammonia or hydroxides may also contribute to total alkalinity of water.

Alkalinity is measured titrimeterically by titrating with acid (0.02 N  $H_2SO_4$ ) using phenolphthalein or methyl orange as indicator for end point. The calculated alkalinity value is expressed in terms of mg/l CaCo<sub>3</sub>.

Alkalinity data helps in chemical coagulation, water softening treatment, corrosion control, and to find out the buffering capacity of waste water and sludges.

# HARDNESS - (EDTA TITRIMETRIC METHOD)

Ethylenediamine tetracetic acid and its sodium salts (EDTA) form a chelated soluble complex when added to a solution of metal cations. The divalent ions (Ca++ & Mg++) combine with the dye, Eriochrome-black-T, which is blue in color and imparts wine red color to the samples. Further, on titration with EDTA, Ca++ and Mg++ are complexed and the solution turns from wine red to blue. Here, maintainence of an alkaline pH of  $10.0 \pm 0.1$  is a must along with addition of 1 ml each of buffer and inhibitor. From EDTA readings, hardness as CaCO<sub>3</sub> is calculated and expressed as mg/1. Hardness is an important parameter as far as frothing, and softening of water is concerned.

#### OIL AND GREASE (SOXHLET EXTRACTION METHOD)

In this, soluble metallic soaps are hydrolyzed by acidification; any oils and solids or viscous grease present are separated from the liquid sample by filtration. After extraction with petroleum ether (PE) or trichloro trifluoro ethane (TCTFE) in soxhlet apparatus, the residue remaining after solvent evaporation is weighed to determine the oil and grease content. By definition, any material recovered is oil and grease and any filterable trichloro trifluoro ethane soluble substances, such as elemental sulphur and certain organic dyes, will be extracted as oil and grease.

500 ml of the sample was acidified (5 ml. Hcl.) and filterd in Bookner funnel with whatman filter paper No. 42 and the paper was transferred to thimble placed in the soxhlet apparatus. The round bottom flask was dried and

preweighed and then 150 ml of petroleum ether/TCTFE was taken into the apparatus and heated at 70<sup>O</sup>C and cycles were adjusted to 20 cycles/hr for 4 hr. Finally, all the PE/TCFE gets collected into the thimble holder. The round bottom flask was weighed again. The difference in weight was calculated and oil and grease was expressed as mg/l.

Oil and grease plays very vital role in water as it primarily increases the organic loading in the effluent, and secondarily it forms a thin film over the water body, thereby disrupting the oxygen influx into the water body making it in due course of time anaerobic. Thirdly, it affects the respiratory activity of the aquatic animals.

# PHENOLS (CHLOROFORM EXTRACTION METHOD)

Steam distilled phenol reacts with 4 aminoantipyrine at pH. 7-9  $\pm$  0.1 in the presence of potassium ferricyanide to form a coloured antipyrine dye. This dye is extracted from aqueous solution with CHCl<sub>3</sub> and the absorbance is measured at 460nm.

Sample at site are collected in plastic bottles (500ml) and preserved with  $CuSO_4$  (2gm) +  $H_3PO_4$  (2ml). The sample was distilled and the distillate was transferred to separating funnel containing  $CHCl_3$ , (50 ml),  $NH_4$  buffer (12ml) and 3 ml each of 4-amino antipyrine and potassium ferricyandie. Sample

was shaken well and the chloroform layer was collected in dry tubes containing sodium sulfate and after 10 min reading was taken at 460 nm. The phenol content was calculated and expressed as as mg/l. Phenol is toxic for organisms in aquatic systems.

#### CYANIDE (CN : TOTAL CYANIDE)

The term refers to all the cyanide as CN in compounds that can be determined as the cyanide ion. Sample is preserved with NaOH at site (pH 10-10.5)

Hydrogen cyanide (HCN) is liberated from an acidified sample containing  $MgCl_2$  (20ml) and  $H_2So_4$  1 : 1 (50 ml) by distillation and purging with air. The HCN is collected by passing it through 50 ml of 1N NaOH as scrubbing medium. The cyanide concentration in the scrubbing medium is determined by titrimetric method using autotitrator and the CN content is calculated and expressed as mg/l

Cyanide is very toxic to living systems thus its concentration in effluent should be thoroughly checked so as to sustain life in any water body.

# AMMONICAL-NITROGEN (NH3-N ; TITRIMETRIC METHOD)

Ammonia is measured as ammonical nitrogen in the effluent sample. The sample is preserved with concentrated

 $H_2SO_4$  (2ml). It forms ammonium sulfate. The principle involves the liberation of  $NH_3-N$  (at pH 7-10) from  $(NH_4)_2$ SO4 during distillation and absorption in boric acid converting it into ammonium borate which is again titrated with  $H_2SO_4$  (0.02N). The colour changes from orignal blue to green and end point is marked with reappearance of blue colour. Free ammonia is very toxic to living systems/animals. In estuarine and fresh water systems, the  $NH_3-N$  concentration affects the biota in the water body.  $NH_3-$ N was also analysed by electrometric method by using space head technique.

# TOTAL KJELDAHL NITROGEN (TKN ; MACRO -KJELDAHL METHOD)

In the presence of  $H_2SO_4$ , potassium sulfate ( $K_2SO_4$ ) and mercuric sulfate ( $HgSO_4$ ) as catalyst, amino nitrogen of many organic materials is converted to ammonium sulfate  $[(NH_4)_2, SO_4]$ . Free ammonia and organic nitrogen also are converted to  $(NH_4)_2SO_4$ . During sample digestion, a mercury ammonium complex is formed. After the mercury ammonium complex in the digestate has been decomposed by sodium thiosulfate  $(Na_2S_2O_3)$ , the ammonia is distilled from an alkaline medium and absorbed in boric acid. The ammonia is determined by titration with standard mineral acid  $(0.02N-H_2SO_4)$ . Sample was preserved with 2 ml of concentrated  $H_2SO_4$ (pH 2-4) and 100 ml of the sample was taken for digestion with 10 ml of conentrated  $H_2SO_4$  and 3 mg of digestion mixture  $(K_2SO_4+HgSO_4)$  along with few glass beads and, was boiled till 10 ml residue was left. The sample flasks were cooled and volume was made upto again 100ml (with NH<sub>3</sub>-N free distilled water) and was analysed as per the procedure given for NH<sub>3</sub>-N. TKN was calculated and expressed as mg/l. Total kjeldahl nitrogen gives an overall account of nitrogen present in complexed form.

# BACTERIOLOGY (TOTAL COLIFORM AND FECAL COLIFORM BACTERIA)

Multiple Tube fermentation technique was employed for members of coliform group, expressed as most probable number (MPN).

The coliform group comprises all aerobic and facultative anaerobic gram negative, non-spore forming rod shaped bacteria that ferment lactose with gas formation within 48 hrs at 35°C.

Sample was collected in sterilized glass bottle and autoclaved for 15min at 15 lbs). All the glassware and media were autoclaved/sterilized. Fifteen tubes containing McKonky's broth were taken for each sample of which the first 5 tubes were having medium of double strength and others of single strength. The tubes were inoculated with 10 ml, 1ml or 0.1 ml of the sample in aseptic condition and were incubated for 24-48 hrs for gas formation at  $35 \pm 2^{\circ}$ C. After 48 hr, all the positive tubes showing gas formation in the Durham's tube were inoculated into the brilliant green lactose broth (BGLB) the second media with a platinum loop and were incubated for 48 hrs for gas formation. From this, all the positive results were considered and total coliform were found out from the table.

Positive tubes from total coliform test were taken and inoculated into enterococci (EC) broth and incubated at 44.5  $\pm$  2<sup>O</sup>C for 48 hrs and positive results were noted and, from the table counts were recorded. All the results were expressed as fecal coliform, MPN/100ml.

The coliform count is important in assessing the quality of water.

# METALS

All samples containing metals were collected in plastic bottles and preserved with 2 ml of Conc  $HNO_3$  except for Chromium (Cr) and Mecury(Hg). All the metals were brought into soluble state with  $HNO_3$  and  $H_2SO_4$  (2 ml each) and 100ml of the sample was taken and digested on hot plate except, the sample for mercury and chromium which were just warmed and

taken back for analysis. All other metal containing flasks were subjected for digestion till the sample volume was reduced to 10ml. The volume was readjusted to 100ml and was filtered with whatman filter paper No-40 and aspirated into an Atomic Absorption Spectrophotometer (AAS).

For Calibration of standards, BDH-chemicals were used for all metals. Mercury (Hg) analysis was done by using cold vapour generation hydride system in AAS and results were expressed in mg/l. Metals play very important role in environmental analysis as they form the non-degradable mass in a system, thereby accumulating in the body, and impairing functional integrity of any system.

# RESULTS

The metal content of effluent channel water as mean, under 5 sampling héads (mean of 11 points each) is shown in table 1.

# TEMPERTURE (<sup>O</sup>C)

In general, higher temperatures were recorded between April and October with a maximum of 32 -34<sup>o</sup>C being recorded during April and June. The minimum temperature was consistently during January. The monthly variations in

IRON : MEAN HEAVY METAL CONTENT IN THE EFFLUENT ALONG CADMIUM MERCURY ZINC NICKEL COPPER THE CHANNEL (1ppm) METALS LEAD 1 NO. CHROMIUM 4 T F 4 4 4 7 8 4 4 4 4 TABLE 1

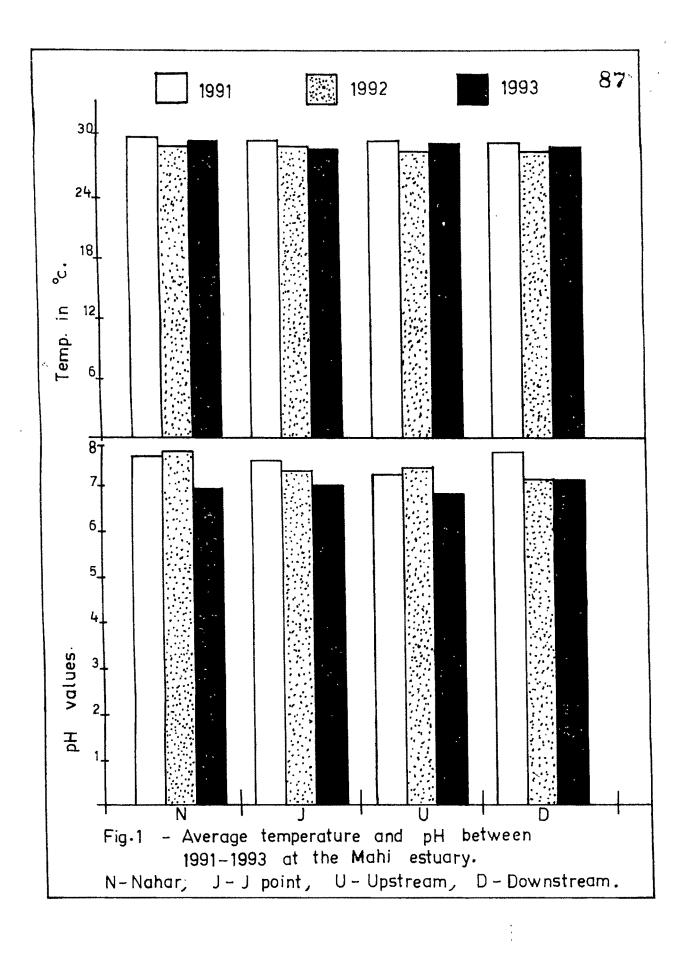
0.068 0.154 0.437 0.092 1.680 0.010.0 0.005 0.001 0.003 100.0 0.075 0.110 0.044 0.047 0.013 0.017 0.052 0.034 0.097 0.124 0.179 0.090 0.117 0.088 0.087 0.041 0.023 0.013 0.101 0.022 0.095 0.230 0.141 0.086 0.233 0.063 0.066 0.107 0.037 0.027 III Ъ Н ⊳ н

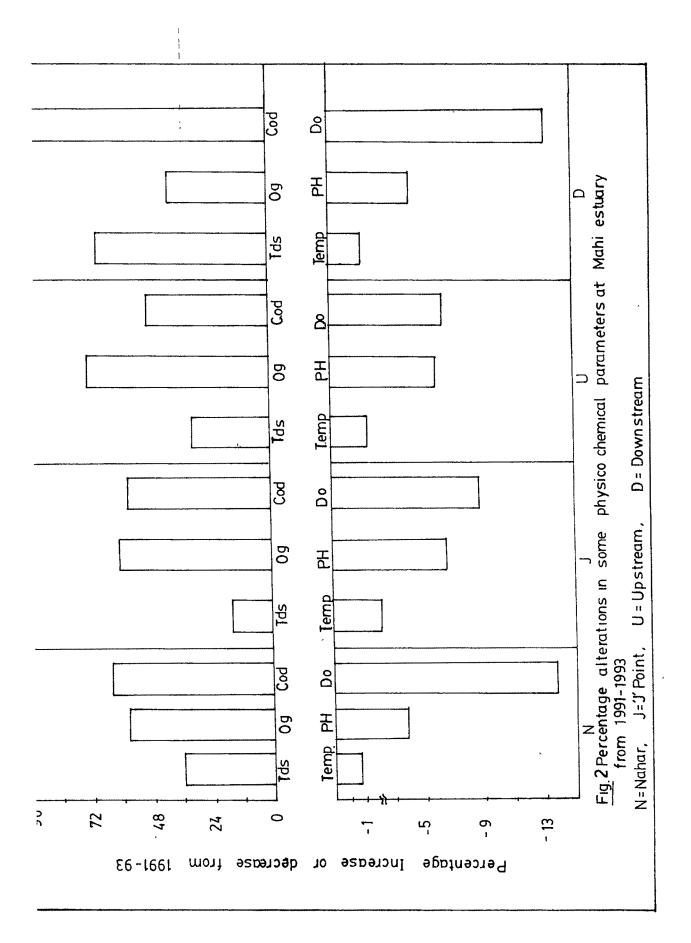
•

84

**₹** 

temperature over the period of 3 years are shown in table 2 and (Figs-1 and 2) . Though there were occasional variation in temperature ranging between 1 to  $2^{\circ}$  C at the 3 points of study, in general, temperature tended to remain the same at the three points.


#### pH


The monthly variation in pH at the 3 points are shown in table 3. The pH has tended to decrease significantly from '91 to '93 at all the 3 points. The minimum pH value came down form 6.9 in 1991 to 6.4 in 1993. The average pH changed from 7.5 in 1991 to 7.3 in 1992 and 7.0 in 1993. These changes in pH at the J-point were reflected in the pH at upstream and downstream. In many months, up stream pH values tended to be even lower than those recorded at the J-point. The changes in average pH value and percentage alterations over the three year period are shown in figures 1 and 2.

TOTAL SOLIDS (TS)

Maximum TS has been found in the downstream area followed by the J-point and up stream. Both at the J-point and upstream, T.S. recorded significant increase from 1991 to 1993 amounting to 17.39% and 73.25% respectively. The monthly recording of TS content in the downstream area showed greater fluctuation while, there was consistent tendency for the

| rABI       | : MONT<br>THE  | MONTHLY VARIATIONS IN<br>THE MAHI ESTUARY FROM | ARIATIONS IN<br>ESTUARY FROM | 19<br>19 | MPERATURE (<br>91-1993 | C) AND, |                   | RANGE, MEAN AND | PERCENTAGE  | E CHANGE  | AT                |             |                          |
|------------|----------------|------------------------------------------------|------------------------------|----------|------------------------|---------|-------------------|-----------------|-------------|-----------|-------------------|-------------|--------------------------|
| YEAR       | -<br>-<br>-    | 6T                                             | 16                           |          |                        | -1      | 992               |                 |             | 61        |                   |             | 1                        |
| PONT'+/    | N              | ħ                                              | D                            | n        | N                      | Ð       | Q                 | D               | N           | L)        | A                 | U           |                          |
| TBM        |                | 75                                             | 25                           | 24       | 23                     | 24      | 23                | 24              | 23          | 22        | 24                | 24          | 1                        |
| FER        | 27             | 200                                            | 26                           |          | 24                     | 24      | 24                | 24              | 28          | 27        | 24                | 25          |                          |
| MAR        | 27             | ()<br>()                                       | 26                           | 26       | 26                     | 25      | 25                | 26              | 31          | 30        | 24                | 25          |                          |
| APR        | (J             | 32                                             | 31                           | 31       | 31                     | 32      | 31                | 31              | 31          | 30        | 33                | 31          |                          |
| MAY        | 33             | 32                                             | 32                           | 32       | 33                     | 32      | 33                | 32              | 32          | 31        | 32                | 33          |                          |
| NUL        | 33             | 30                                             | 31                           | 33       | 34                     | 31      | 33                | 33              | 32          | 31        | 32                | 33          |                          |
| JUL        | 30             | 30                                             | 30                           | ЗI       | 31                     | 31      | 32                | 33              | 32          | 30        | 31                | 30          |                          |
| AllG       | \$             | 32                                             | 33                           | 33       | 31                     | 31      | 31                | 32              | 32          | 30        | 33                | 32          |                          |
| SED        | 32             | 32                                             | 32                           | 32       | 31                     | 31      | 30                | 29              | 30          | 30        | 30                | 31          |                          |
|            | 100            | 20                                             | 31                           | 1.6      | 28                     | 30      | 28                | 27              | 30          | 30        | 29                | 32          |                          |
| NON        | ) C            | 6                                              | 59                           | 62       | 28                     | 28      | 27                | 26              | 28          | 27        | 28                | 29          |                          |
| DEC        | 24             | 57                                             | 26                           | 26       | 25                     | 26      | 24                | 24              | 25          | 26        | 26                | 25          |                          |
|            |                |                                                |                              |          |                        |         |                   |                 |             |           |                   |             |                          |
|            |                |                                                |                              |          |                        |         |                   |                 |             | ,         |                   | (           |                          |
| MEAN       | 29.7           | 29.4                                           | 29.3                         | 29.5     | 28.8                   | 28,8    | 28.4              | 28.4            | 29.5        | 28.7      | 28.8              | 29.2        |                          |
|            | •              | ц                                              | ц                            | V C      | 50                     | 70      |                   |                 | 23          | 22        |                   |             |                          |
| NTW        | 4 0            | n ç                                            | 2 2 6                        | 7 C      | 140                    | 32      | 3 9<br>9 7<br>9 7 | - m<br>- m      | 32          | 31        | 33                | e<br>e<br>e |                          |
| NAM.       | n<br>N         | 4                                              | )<br>)                       | 2        | •<br>}                 |         |                   |                 |             |           |                   |             |                          |
|            |                |                                                | r F.0.0 F                    | 600      |                        |         |                   |                 | -0.89       | -2.18     | -1.6              | -1.12       |                          |
| PERCENTAGE |                | CHANGE FROM                                    | 7 1 7 5 7                    | n        |                        |         |                   |                 |             |           |                   |             |                          |
|            | avav.          | (REFORE                                        | CONFLUENCE)                  | NCE)     |                        |         |                   | р<br>Г          | - AT 'J''   | POINT     | (AFTER CONFLUENCE | NFLUENCE)   | <br> <br> <br> <br> <br> |
| י<br>גים   | DOWN STREAM OF | <u> </u>                                       |                              |          |                        |         |                   | þ               | - UP STREAM | M OF ''J' | TNIO4 '           |             |                          |





88

,

| YEAR          |                                  |          | 1661                |          |     |     | 1992   |        |             |         | E66T        |                               |
|---------------|----------------------------------|----------|---------------------|----------|-----|-----|--------|--------|-------------|---------|-------------|-------------------------------|
| POINT*/       |                                  |          |                     |          | N   |     | ے<br>ا |        | N           |         | C           |                               |
| MONTH         | 3                                |          |                     |          | N   |     |        |        | 2           |         |             |                               |
| JAN           | 7.5                              | 7.5      | 8.0                 |          | 8.1 | 7.8 | 7.8    | 7.9    |             | 7.9     | 8.0         | 7.9                           |
| FEB           | 7.6                              | 7.9      | 8.1                 | 7.7      | 7.9 | 7.5 | 7.2    | 7.8    | 7.0         | 7.6     | 7.2         | 7.7                           |
| MAR           | 6.8                              | 7.7      | 7.8                 |          | 7.6 | 7.1 | 6.9    | 7.2    |             | 7.2     | 7.8         | 6.7                           |
| APR           | 7.7                              | 6.9      | 6.9                 |          | 8.0 | 7.2 | . 7.0  | 7.2    |             | 6.5     | 6.2         | 7.3                           |
| MAY           | 7.8                              | 7.5      | 8.0                 |          | 7.4 | 7.2 | 7.3    | 7.0    |             | 7.1     | 7.1         | 6.9                           |
| JUN           | 7.6                              | 7.2      | 7.5                 |          | 7.4 | 7.1 | 7.3    | 6.9    |             | 7.4     | 7.4         | 6.0                           |
| JUL           | 7.6                              | 7.2      | 7.7                 |          | 7.2 | 6.9 | 7.2    | 7.0    |             | 7.0     | 7.5         | 7.3                           |
| AUG           | 7.8                              | 7.6      | 7.9                 |          | 8.1 | 6.9 | 7.7    | 7.0    |             | 7.0     | 7.0         | 7.0                           |
| SEP           | 7.9                              | 7.6      | -6-1                |          | 7.2 | 7.0 | 7.2    | 6.9    |             | 7.2     | 6.7         | 7.7                           |
| OCT           | 7.8                              | 7.6      | 7.8                 |          | 8.2 | 7.4 | 4.3    | 7.5    |             | 6.4     | 7.0         | 5.9                           |
| NON           | 7.6                              | 7.6      | 7.7                 | 7.5      | 8.1 | 7.7 | T.T    | 7.9    |             | 6.4     | 6.8         | 5.9                           |
| DEC           | 7.6                              | 1.7      | 8.1                 | 7.3      | 8.0 | 7.8 | 7.7    | 7.9    | 6.8         | 6.4     | 7.0         | 6.1                           |
|               |                                  |          |                     |          |     |     |        |        |             |         |             |                               |
|               |                                  |          |                     |          |     |     |        |        |             |         |             |                               |
| MEAN          | 7.6                              | 7.5      | 7.8                 | 7.3      | 7.8 | 7.3 | 7.1    | 7.4    | 7.0         | 7.0     | 7.1         | 6°0                           |
| NIM           | 6.8                              | 6.9      | 6.9                 | . 6.7    | 7.2 | 6.9 | 6.9    | 6.9    | 4.4         | 6.4     | 6.7         | 6.7                           |
| MAX           | 7.9                              | 7.7      | 7.8                 | 7.9      | 8.2 | 7.8 | 7.7    | 7.9    | 8.3         | 7.9     | 7.9         | 7.7                           |
| FERCEN        | PERCENTAGE CHANGE FROM 1991-1993 | NGE FROM | 1991-15             | 193      |     |     |        |        | -3.8        | -6.7    | -6.0        | -4.4                          |
|               |                                  |          |                     |          |     |     |        |        |             |         |             |                               |
| <br>N<br>*    | - NAHAR                          | (BEFORE  | (BEFORE CONFLUENCE) | VCE)     |     |     |        | ب<br>ب |             | POINT ( | AFTER CO    | "J'' POINT (AFTER CONFLUENCE) |
| 1 -<br>1<br>0 | D - DOWN STREAM OF               |          | TNIOU               | <b>e</b> |     |     |        |        | - UP STREAM | AM OFJ  | TNIOG', L'' |                               |

.

TABLE 3 : MONTHLY VARIATIONS IN PH AND, RANGE, MEAN AND PERCENTAGE CHANGE AT THE MAHI ESTUARY FROM 1991-1993

89

•

.

value to be lower during the monsoon months. These changes in the TS. content at the three points over the three year period of study are given in table 4 & figures 3 and 4.

# TOTAL DISSOLVED SOLIDS (TDS)

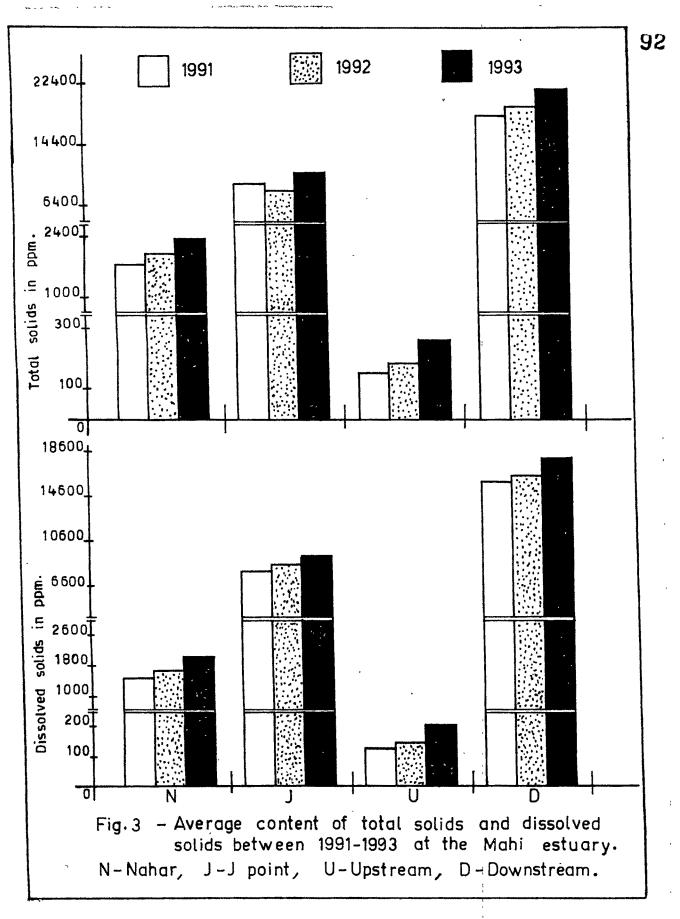
The content of TDS at the J-point, upstream and downstream form 1991-93 is shown in table 5. TDS was also higher at downstream compared to the J-point and upstream. Though the TDS value at downstream tended to remain more or less constant, it increased significantly over the 3 years period at the J-point and upstream. The increase was to the tune of 23% and 85% respectively. (Figs- 2 and 3)

# SUSPENDED SOLIDS (SS)

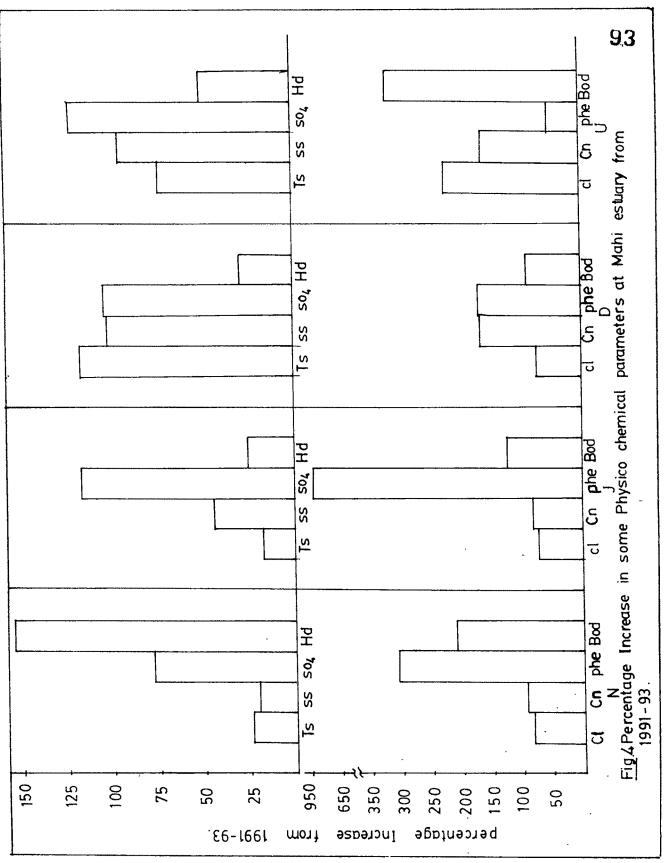
Value of SS, recorded for the 3 year period at the 3 points of study are shown in table 6 and figures 4 and 5. In general, SS recorded a consistent and significant increase at all the three points from 1991 to 1993. The increase at these points was of lesser magnitude as compared to TDS and was to the tune of 78.3% and 24.52% respectively. Both the minimal and maximal values recorded during a year increased from 1991 to 1993.

#### DISSOLVED OXYGEN (DO)

The DO content at the J-Point, downstream and upstream,


| YEAR             |            |                        | 1991                |        |        |                             | 1992     |       |        |              | 1993    |            |
|------------------|------------|------------------------|---------------------|--------|--------|-----------------------------|----------|-------|--------|--------------|---------|------------|
| POINT*/<br>MONTH | N          | ь.                     | Q                   |        |        |                             | <u>а</u> |       |        |              | Q       | D          |
|                  | 1 86       | 15605                  | 31019               | ! m    | 65     | 278                         | 544      | i m   | 2      | 516          | 019     | 5          |
| FEB              | 65         | 559                    | 660                 | 5      | 69     | 73                          | 530      | œ     | 10     | 603          | 188     | σ          |
| MAR              | 1956       | 21                     | 20                  | 210    | 1960   | 1574                        | 29938    | 220   | 1839   | 17057        | 34114   | 233        |
| APR              | 00         | 511                    | 29861               | $\sim$ | 08     | 456                         | 900      | S     | 83     | 558          | 100     | S          |
| MAY              | 83<br>8    | 60                     | 21632               | ŝ      | 70     | 45                          | 478      | 4     | 78     | 557          | 060     | σ.         |
| JUN              | 82         | 630                    | 32300               | ٥J     | 67     | 621                         | 227      | ~     | 03     | 559          | 160     | r1         |
| JUL              | 60         | 16                     | 4121                |        | 57     | 63                          | 16       |       | 11     | 05           | 98      | 0          |
| AUG              | 1582       | 2758                   | 5150                | ŝ      | 80     | 25                          | 30       | ω     | L<br>L | 37           | 56      | 0          |
| SEP              | 44         | œ                      | 5791                | 6      | 69     | 46                          | 76       | ~     | 21     | 69           | 20      | 0          |
| ocr              | 62         | 97                     | 60                  | s o    | 70     | 11                          | 006      | 5     | 06     | 59           | 100     | ŝ          |
| NOV              | 83         | 4149                   | 8011                | 57     | 05     | 13                          | 13       | 6     | 56     | 77           | 37      | œ          |
| DEC              | 61         | Ļ                      | 53                  | ~      | 98     | 07                          | 398      | œ     | 01     | 0            | 421     | 0          |
|                  |            |                        |                     |        |        |                             |          |       |        |              |         |            |
| MEAN             | 1745.8     | 9134.3                 | 18018.7             | 151.3  | 1966.8 | 8526.2                      | 19095.9  | 184.4 | 2331.8 | 10723.3      | 21280.8 | 262.2      |
| NIM              | 44         | 2164                   | 4121                | r      | 57     | 46                          | 5        |       | 70     | 69           | 3209    | 167        |
| MAX              | 2000       | 17216                  | 34200               | 210    | 2709   | 16219                       | 32278    | 270   | 5210   | 17057        | 34114   | 403        |
| PERCEN           | LAGE CHA   | PERCENTAGE CHANGE FROM | 1991-1993           | ~      |        |                             |          |       | +33.5  | +17.5        | +34.8   | +72.9      |
|                  | NAHAR      | NAHAR (BEFORE CONFLUE  | (BEFORE CONFLUENCE) |        |        | *** *** *** *** *** *** *** |          |       | - AT   | POINT        | LETER   | CONFLUENCE |
|                  | AUTA NWICC |                        |                     |        |        |                             |          |       |        | シャック むく シッチン |         |            |

ι


TABLE 4 : MONTHLY VARIATIONS IN TOTAL SOLIDS (TS, mg/1) AND, RANGE, MEAN AND PERCENTAGE CHANGE AT

91

-



• • •



. 1

| MEAN AND                                                          |                                          |
|-------------------------------------------------------------------|------------------------------------------|
| RANGE,                                                            |                                          |
| AND,                                                              |                                          |
| mg/l)                                                             | 63                                       |
| (TDS,                                                             | 91-19                                    |
| SOLIDS                                                            | FROM 19                                  |
| ATIONS IN TOTAL DISSOLVED SOLIDS (TDS, mg/l) AND, RANGE, MEAN AND | IANGE AT THE MAHT ESTUARY FROM 1991-1993 |
| TOTAL ]                                                           | THE MAH                                  |
| NI                                                                | E                                        |
|                                                                   | HUNAHU HUG                               |
| MONTHLY VARIA                                                     | HU HUMLNHUHHA                            |
| TABLE 5 :                                                         |                                          |

| AK                      |                   | 1991         |                       |                                 |                                 | <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> |                  |        |         | 19          |            |
|-------------------------|-------------------|--------------|-----------------------|---------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|---------|-------------|------------|
| HLN:<br>/*LNI           |                   |              | 2<br>2<br>2<br>2<br>3 | 1                               | 1                               | 1<br>1<br>1                                                                                                                                  | Þ                | 1<br>T | 1<br>I  |             | 1          |
| 178                     | 1520              | 3016         | 1<br>1<br>1           | 1436                            | 12289                           | 23923                                                                                                                                        | 96               | 1503   | 14550   |             | 147        |
| 146                     | 1522              | 3000         | 149                   | 45                              | 27                              | 380                                                                                                                                          | 3                | 45     | 44      | 031         | 4          |
| 174                     | 1683              | 3351         | 00                    | 70                              | 453                             | 819                                                                                                                                          | 8                | 5      | 650     | 244         | Ø          |
| 178                     | 1451              | 2897         | 0                     | 8<br>5                          | 402                             | 764                                                                                                                                          | N                | 54     | 497     | 911         | 2          |
| 165                     | 1053              | 2070         | 0                     | 46                              | 192                             | 355                                                                                                                                          | -1               | 55     | 499     | 890         | ഹ          |
| JUN 160                 | 3 15740           |              | N                     | ω                               | 569                             | 037                                                                                                                                          |                  | 66     | 494     | 912         |            |
| 127                     | 163               | 311          | 69                    | 26                              | 33                              | 157                                                                                                                                          | 5                | 5      | 38      | 40          | S          |
| 119                     | 223               | 416          | 98                    | 47                              | 68                              | 51                                                                                                                                           |                  | 92     | 69      | 89          | m          |
| 112                     | 229               | 511          | m                     | 41                              | 86                              | 77                                                                                                                                           | 2                | 94     | 5       | 75          | S          |
| 51                      | 367               | 609          | 150                   | 49                              | 50                              | 06                                                                                                                                           | ŝ                | 40     | 40      | 022         | ω          |
| 162                     | 381               | 712          | 2                     | 84                              | 6                               | 664                                                                                                                                          | m                | 40     | 17      | 30          | S          |
| 151                     | 261               | 445          | S                     | 68                              | 67                              | 17                                                                                                                                           | 4                | 76     | 641     | 192         | S          |
|                         |                   |              |                       |                                 |                                 | -                                                                                                                                            |                  |        |         |             |            |
| MEAN ****               | **8694.0          | 17076.7      | 126.1                 | 1707.8                          | 9122.2                          | 17604.3                                                                                                                                      | ****             | 2064.0 | 10102.3 | 19380.8     | 213.2      |
| MIN 1127                | 7 1632<br>8 16836 | 3110         | 60 r<br>80 r          | 1268                            | 862<br>15600                    | 1578                                                                                                                                         | 71               | 1403   | 1106    | 753         | 128<br>354 |
| )<br>-<br>-             | )<br>)<br>        | +<br>)<br>}  | )                     | р<br>Р                          | 2                               | 200                                                                                                                                          | 1                | n<br>n |         | ቸ<br>ቸ<br>4 | Ô.         |
| PERCENTAGE (            | ANGE              | -1661 MO     | 199                   |                                 |                                 |                                                                                                                                              |                  | ŝ      | 16.1    | +30.        | 8          |
| * N - NAHAI<br>D - DOWN | (BEFOR            | E CONFLUENCE | NCE)                  | 3<br>3<br>5<br>5<br>6<br>6<br>6 | ;<br>;<br>;<br>;<br>;<br>;<br>; |                                                                                                                                              | -<br>#<br>#<br># | U - UP | STREAM  | INT (AFTER) | CON        |

.

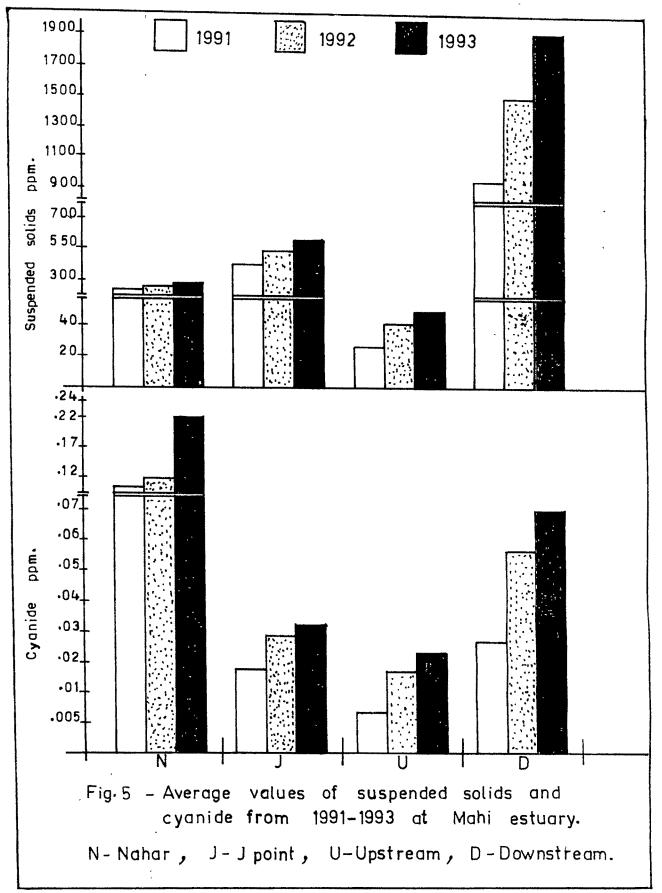

| T <sup>V</sup> N         J         D         U         N         J         D         U           H         N         J         D         U         N         J         D         U         N         J         D         U           H         N         J         D         U         N         J         D         U         J         D         U           200         400         650         22         220         500         1555         36         233         576         1999         40           214         390         687         22         289         525         1741         39         266         11789         48           214         390         687         1316         600         1515         117         399         565         1741         399         566         1399         49           215         565         1011         112         390         689         151         1399         566         49         149         149         141         310         555         2456         569         149         141         310         556         569         569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | YEAR                 |            |                                 | F4               |           |     | 1992                               | 1  |     |            | 1993      | بعد مد مد بد |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|---------------------------------|------------------|-----------|-----|------------------------------------|----|-----|------------|-----------|--------------|--|
| 200     400     650     22     220     500     155     35     250     45       183     375     999     26     235     535     1741     39     266     549     1560     45       214     380     687     25     251     535     1741     39     266     549     1669     44       212     500     888     22     221     540     1356     45     216     1999     40       212     500     888     22     236     1336     45     255     551     1789     49       215     532     1011     41     310     600     1599     40     39       216     532     561     1789     47     199     666     259     56       317     500     155     999     37     666     549     786     53       211     330     169     15     209     461     149     33     158     566     59       3112     300     1079     15     209     461     149     33     158     566     59       3112     300     1079     15     291     104     34 <th></th> <th></th> <th>7<br/>1<br/>1<br/>1<br/>1<br/>1<br/>1</th> <th>2<br/>2<br/>1<br/>1</th> <th>N</th> <th>ъ</th> <th>Q</th> <th>D</th> <th>N</th> <th>ŋ</th> <th>Q</th> <th>n</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |            | 7<br>1<br>1<br>1<br>1<br>1<br>1 | 2<br>2<br>1<br>1 | N         | ъ   | Q                                  | D  | N   | ŋ          | Q         | n            |  |
| 183       375       999       26       236       525       1500       45       254       589       1568       48         214       380       687       25       251       535       1741       39       266       549       1669       44         215       565       789       325       1316       535       1711       39       39         215       565       789       32       289       535       1789       49       39       39         225       565       789       32       289       539       199       666       2589       56       49       56         387       522       987       31       561       1789       49       49       56       58       56       59       56       53       56       59       56       59       56       53       56       53       56       53       56       53       56       53       56       53       56       53       56       53       56       53       56       53       56       53       56       53       56       53       56       53       56       53       56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | 40         |                                 | 22               | .! N      | 500 | 52                                 | 36 | 10  | ; <u>-</u> | 50        | 45           |  |
| 214       380       687       25       251       535       1741       39       266       549       1669       44         212       500       888       22       221       536       1355       45       289       611       1890       39         215       565       789       322       221       540       1355       557       1999       49         225       553       511       41       310       600       1589       47       199       666       259       56         325       552       987       32       555       551       1789       49       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56 <td< td=""><td>9 1 1</td><td>37</td><td>50</td><td>56</td><td>1 0</td><td>525</td><td>50</td><td>45</td><td>ŝ</td><td>æ</td><td>56</td><td>48</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9 1 1                | 37         | 50                              | 56               | 1 0       | 525 | 50                                 | 45 | ŝ   | æ          | 56        | 48           |  |
| 212       500       688       22       221       540       1356       45       289       611       1890       39         225       555       789       32       289       500       501       1789       40         225       555       789       32       310       560       1789       49       49         325       522       901       41       199       666       259       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       56       53       56       53       56       53       56       53       56       53       56       53       56       53       56       53       56       53       56       53       56       53       56       53       56       53       56       53       56       53       53       56       53       53       53       53       53       56       53       53       53       53       56       53       53       53       53       53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21                   | 38         | 68                              | 25               | ທ         | 535 | 74                                 | 39 | Q   | 4          | 66        | 44           |  |
| 189       380       932       27       246       536       1222       36       233       576       1999       40         225       565       789       322       289       529       1899       56       1789       49         325       532       1011       41       310       600       1589       47       199       666       2589       56         321       500       1515       19       211       555       999       37       666       549       786       59         321       500       1515       19       211       555       999       37       666       549       786       56         211       330       889       15       209       467       1499       33       158       5659       169       46         211       330       889       15       209       467       1499       33       158       566       585       466       59       46         211       330       160       1701       401       1804       34       241       787       2296       48         31       50       611       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21                   | 50         | 88                              | 22               | 2         | 540 | 35                                 | 45 | ω   |            | 89        | 39           |  |
| 225       565       789       32       289       529       1899       56       51       1789       49         325       532       1011       41       310       600       1589       47       199       666       2589       56         321       500       677       599       987       45       1789       49         321       500       677       599       987       45       585       2456       49         321       500       1515       19       211       559       987       45       666       533       786       53         211       330       1895       15       299       467       1489       33       158       599       166       53         211       300       1079       15       291       401       1804       34       241       787       2296       48         91       300       1079       15       291       401       1804       34       241       787       296       48         91       300       1781       1804       34       241       787       200.0       40.0         91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18                   | 38         | 63                              | 27               | <b>ST</b> | 536 | 22                                 | 36 | 3   | -          | 66        | 40           |  |
| 325 532 1011 41 310 600 1589 47 199 666 2589 56<br>387 522 987 32 331 561 1789 48 187 678 2669 69<br>3112 300 1515 19 211 555 999 37 666 549 796 53<br>211 330 889 15 209 467 1489 33 158 599 1589 48<br>213 300 1079 15 209 467 1489 33 158 599 1589 48<br>211 330 809 15 209 467 1489 33 158 599 1589 48<br>211 330 809 15 229.0 1491.7 41.3 267.0 621.0 1900.0 49.0<br>91 300 678 15 209 401 987 33 158 549 786 39<br>91 300 678 15 209 401 987 33 158 549 786 39<br>213 387 600 1515 41 331 600 1899 50 666 787 2669 69<br>200 1899 50 666 78.7 1401.7 +94.7<br>200 1515 41 331 600 1899 50 666 78.7 +101.7 +94.7<br>200 500 1515 500 1500 1500 1500 1500 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22                   | 56         | 78                              | 32               | 8         | 529 | 89                                 | 50 | S   | ഹ          | 78        | 49           |  |
| 387       522       987       32       331       561       1789       48       187       678       2669       69         321       600       678       26       287       599       987       45       256       585       2456       49         112       300       1515       19       211       555       999       37       666       549       786       53         211       330       1899       15       209       467       1489       33       158       599       186       53         211       330       1079       15       209       467       1489       33       158       599       1589       48         21       300       1079       15       297       401       1804       34       241       787       2296       48         91       300       678       15       291       401       1804       34       267.0       621.0       1900.0       49.0         91       300       678       16       17       41.3       267.0       621.0       190.0       49.0         91       30       670       1491.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32                   | 53         | , 101                           | 41               | -         | 600 | 58                                 | 47 | σ   | Q          | 58        | 56           |  |
| 321       600       678       26       287       599       987       45       256       585       2456       49         112       300       1515       19       211       555       999       37       666       549       786       53         211       330       889       15       209       467       1489       33       158       599       1589       48         211       300       1079       15       297       401       1804       34       241       787       2296       48         21       300       1079       15       297       401       1804       34       241       787       2296       48         4       222.5       432.0       942.0       259.0       1491.7       41.3       267.0       621.0       1900.0       49.0         91       300       678       15       401       987       33       158       549       786       59       39         387       600       1515       41       331       600       1899       50       666       787       2669       69       39         SENTAGE FRAMGE FROM 1991-1993 <td>38</td> <td>52</td> <td>96</td> <td>32</td> <td>3</td> <td>561</td> <td>78</td> <td>48</td> <td>ω</td> <td>-</td> <td>66</td> <td>69</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38                   | 52         | 96                              | 32               | 3         | 561 | 78                                 | 48 | ω   | -          | 66        | 69           |  |
| 112       300       1515       19       211       555       999       37       666       549       786       53         211       330       889       15       209       467       1489       33       158       599       1589       48         211       330       1079       15       209       467       1489       33       158       599       1589       48         21       300       1079       15       207       0       1491.7       41.3       267.0       621.0       1900.0       49.0         4       222.5       432.0       549.0       1491.7       41.3       267.0       621.0       1900.0       49.0         91       300       678       15       41       331       600       1899       50       666       786       69       69       59         91       300       678       15       41       331       600       1899       50       666       786       69       69       50       50       666       786       50       50       50       50       667       69       50       50       50       666       78       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32                   | 60         | 67                              | 26               | œ         | 599 | œ                                  | 45 | ŝ   | œ          | 45        | 49           |  |
| 211 330 889 15 209 467 1489 33 158 599 1589 48<br>91 300 1079 15 297 401 1804 34 241 787 2296 48<br>8 222.5 432.0 942.0 25.2 259.0 529.0 1491.7 41.3 267.0 621.0 1900.0 49.0<br>91 300 678 15 209 401 987 33 158 549 786 39<br>387 600 1515 41 331 600 1899 50 666 787 2669 69<br>2ENTAGE CHANGE FROM 1991-1993 - 200 1899 50 666 787 2669 69<br>- NAHAR (BEFORE CONFLUENCE) - NAHAR (BEFORE CONFLUENCE) - NAHAR (BEFORE CONFLUENCE) - NAHAR (BEFORE CONFLUENCE) - DOWN STREAM OF ''1' FOINT (AFTER CONFLUENCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                   | 30         | 151                             | 19               | r-1       | 555 | σ                                  | 37 | Ś   | 4          | θ         | 53           |  |
| 91 300 1079 15 297 401 1804 34 241 787 2296 48<br>722.5 432.0 942.0 25.2 259.0 529.0 1491.7 41.3 267.0 621.0 1900.0 49.0<br>91 300 678 15 209 401 987 33 158 549 786 39<br>387 600 1515 41 331 600 1899 50 666 787 2669 69<br>50 666 787 2669 69<br>- NAHAR (BFFORE TONFLUENCE)<br>- NAHAR (BFFORE CONFLUENCE)<br>- NAHAR (BFFORE CONFLUENCE)<br>- NAHAR (BFFORE CONFLUENCE)<br>- NAHAR (D1 191-1993<br>- | 21                   | 33         | 88                              | 15               | 0         | 467 | 48                                 | 33 | ŝ   | σ          | 58        | 48           |  |
| <pre>1 222.5 432.0 942.0 25.2 259.0 529.0 1491.7 41.3 267.0 621.0 1900.0 49.0<br/>91 300 678 15 209 401 987 33 158 549 786 39<br/>387 600 1515 41 331 600 1899 50 666 787 2669 69<br/>50 506 666 787 4101.7 494.7<br/>- NAHAR (BEFORM 1991-1993<br/>- NAHAR (BEFORE CONFLUENCE)<br/>- NAHAR (BEFORE CONFLUENCE)<br/>- NAHAR (BEFORE CONFLUENCE)<br/>- NAHAR (BEFORE CONFLUENCE)<br/>- NAHAR (BEFORE CONFLUENCE)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | σ                    | 30         | 101                             | 15               | σ         | 401 | 80                                 | 34 | 5   | œ          | 29        | 48           |  |
| <pre>4 222.5 432.0 942.0 25.2 259.0 529.0 1491.7 41.3 267.0 621.0 1900.0 49.0<br/>91 300 678 15 209 401 987 33 158 549 786 39<br/>387 600 1515 41 331 600 1899 50 666 787 2669 69<br/>50 F66 787 2669 69<br/>- NAHAR (BEFORM 1991-1993<br/>- NAHAR (BEFORE CONFLUENCE)<br/>- NAHAR (BEFORE CONFLUENCE)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |            |                                 |                  |           |     |                                    |    |     |            |           |              |  |
| 91 300 678 15 209 401 987 33 158 549 786 39<br>387 600 1515 41 331 600 1899 50 666 787 2669 69<br>ENTAGE CHANGE FROM 1991-1993 +20.0 +43.7 +101.7 +94.7<br>- NAHAR (BEFORE CONFLUENCE) J - AT ''J'' POINT (AFTER CONFLUENCE)<br>- DOWN STREAM OF ''J'' POINT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                   | .5 43      | .0 942                          | 0 25.            | 59.       | о   | 491.                               | -  | 67. | ÷.         | 900.      | <u>.</u>     |  |
| 387 600 1515 41 331 600 1899 50 666 787 2669 69<br>CENTAGE CHANGE FROM 1991-1993<br>- NAHAR (BEFORE CONFLUENCE)<br>- NAHAR (BEFORE CONFLUENCE)<br>- DOWN STREAM OF '.1' POINT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | თ                    | 30         | 67                              | 15               | 0         | 401 | æ                                  | 33 | 158 | 4          | œ         |              |  |
| FROM 1991-1993<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38                   | 60         | 151                             | 41               | 3         | 600 | 6<br>8                             | 50 | 666 | 8          | 66        |              |  |
| N - NAHAR (BEFORE CONFLUENCE)<br>D - DOWN STREAM OF ''J''POINT<br>D - DOWN STREAM OF ''J''POINT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ERCENTAGE            | CHANGE     | 199                             | -199             |           |     |                                    |    | 0   | +43.7      | 101+      | +94.7        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N - NAHZ<br>D - DOWN | LR<br>STRF | EE :                            | LUENCE)          |           |     | u and and line had and and the set |    | ATA | POINT      | (AFTER CO | VFLUENCE)    |  |

TABLE 6 : MONTHLY VARIATIONS IN SUSPENDED SOLIDS (SS, mg/l) AND, RANGE, MEAN AND PERCENTAGE CHANGE AT THE MAHI ESTUARY FROM 1991-1993

-

96

, ) .



from 1991 to 1993 is shown in Table No. 7 and figures 2 and 6. The DO content at downstream tended to remain at 7.0 mg/l during the 3 year period of study. But the DO value decreased from 7.1 mg/l to 6.16 mg/l from 1991 to 1993 at up stream. At the same time, the DO value at the J-Point decreased to 7.18 mg/l or less. Both the highest and lowest DO values recorded for the 3 years at the J-point tended to decrease over the 3 years.

# CHEMICAL OXYGEN DEMAND (COD)

The average yearly COD increased from 249 mg/l to 373.25 mg/l at downstream, 139 mg/l to 217 mg/l at the Jpoint and from 31.1 mg/l to 62.2 mg/l at the upstream, an increase of 50%, 56% and 100% respectively at downstream at J-point and at upstream respectively. The data of COD is recorded in table 8 and figures 2 and 7.

# BIOLOGICAL OXYGEN DEMAND (BOD)

The BOD values recorded for the 3 year period as shown in table 9 and figures 2 and 7 reveal significant increase at all the 3 points. Whereas the annual average BOD value increased from 23.89 mg/l to 53.2 mg/l at the J-point, it increased from 41.29 mg/l to 78.0 mg/l at the downstream and from 6.5 mg/l to 28.4 mg/l at the upstream. The overall increase was 122.68%, 89% and 337% respectively at the 3 points.

| AND                                                                    |                                 |
|------------------------------------------------------------------------|---------------------------------|
| RANGE, MEAN                                                            |                                 |
| AND,                                                                   |                                 |
| mg/1)                                                                  |                                 |
| (DO,                                                                   |                                 |
| OXYGEN                                                                 |                                 |
| LVED                                                                   | .993                            |
| DISSO                                                                  | 1991-1                          |
| OSSIG NI                                                               | "ROM 1991-1                     |
| VARIATIONS IN DISSO                                                    | ESTUARY FROM 1991-1             |
| 4LY VARIATIONS IN DISSO                                                | MAHI ESTUARY FROM 1991-1        |
| MONTHLY VARIATIONS IN DISSOLVED OXYGEN (DO, mg/l) AND, RANGE, MEAN AND | THE MAHI ESTUARY FROM 1991-1993 |
| : MONTHLY VARIATIONS IN DISSO                                          | THE MAHI ESTUARY FROM 1991-1    |
| TABLE 7 : MONTHLY VARIATIONS IN DISSO                                  | THE MAHI ESTUARY FROM 1991-1    |

| YEAR    |                   |                     | 1991                                                   |      |     |     | 1992 |     |                                   |      | 1993         |                          |
|---------|-------------------|---------------------|--------------------------------------------------------|------|-----|-----|------|-----|-----------------------------------|------|--------------|--------------------------|
| HLNOW   |                   |                     | A                                                      | n    | N   | ъ   | A    | n   | N                                 | ы    | Q            | D                        |
|         | 6.0               | •                   | 8.2                                                    | : -  |     | 7.5 | 7.9  |     |                                   |      |              |                          |
| FEB     | 6.9               |                     | 9,1                                                    | •    |     | 7.8 |      |     |                                   |      | -            |                          |
| AR      | 5.4               | 5.9                 | 8.2                                                    | 7.7  | 4.0 | 6.0 | 6.8  | 7.0 | 4.5                               | 7.0  | 6.8          | 7.0                      |
| Ч<br>Ц  | 4.8               |                     | 7.3                                                    | ٠    |     | 7.3 |      |     |                                   |      |              |                          |
| MAY     | 6.5               |                     | 6.6                                                    | •    |     | 7.5 |      | -   |                                   |      | -            |                          |
| NUL     | 6.0               |                     | 6.2                                                    |      |     | 7.7 |      | -   |                                   |      |              |                          |
| JUL     | 6.0               |                     | 6.0                                                    | •    |     | 7.8 |      | -   |                                   |      |              |                          |
| AUG     | 6.7               |                     | 6.8                                                    | •    |     | 6.5 |      |     |                                   |      |              |                          |
| SEP     |                   |                     | 4.3                                                    | •    |     | 6.8 |      | -   |                                   |      |              |                          |
| OCT     |                   |                     | 6.7                                                    | •    |     | 7.0 |      |     |                                   |      |              |                          |
| NOV     | 2.5               | 6.5                 | 6.8                                                    | •    |     | 6.5 |      | -   |                                   |      |              |                          |
| DEC     |                   | 6.5                 | 6.0                                                    | •    |     | 6.3 |      |     |                                   |      |              |                          |
| MEAN    | 5,6               | 7.1                 | 6.9                                                    | 7.1  | 5.4 | 7.1 | 7.1  | 7.0 | 4.7                               | 6.5  | 6.6          | 6.2                      |
| NIM     | 4.0               | с.<br>О             | 4.3                                                    |      |     |     |      | 6.0 |                                   | 6.0  |              | 4.0                      |
| MAX     | 7.9               | 7.0                 | 8.2                                                    | 7.7  | 6.8 | 7.8 | 8.0  | 7.9 | 6.3                               | 7.3  | 7.9          | 7.8                      |
| ERCENTA | PERCENTAGE CHANGE | IGE FROM            | 1991-1993                                              | 63   |     |     |      |     | -13.7                             | -8.8 | -6.5         | -13.2                    |
|         | NAHAR             | (BEFORE<br>AM OF `` | NAHAR (BEFORE CONFLUENCE)<br>DOWN STREAM OF '''' POINT | ICE) |     |     | 3    | D D | - AT ''J'' FOII<br>- UP STREAM OF | . 5  | NT (AFTER CO | POINT (AFTER CONFLUENCE) |

.

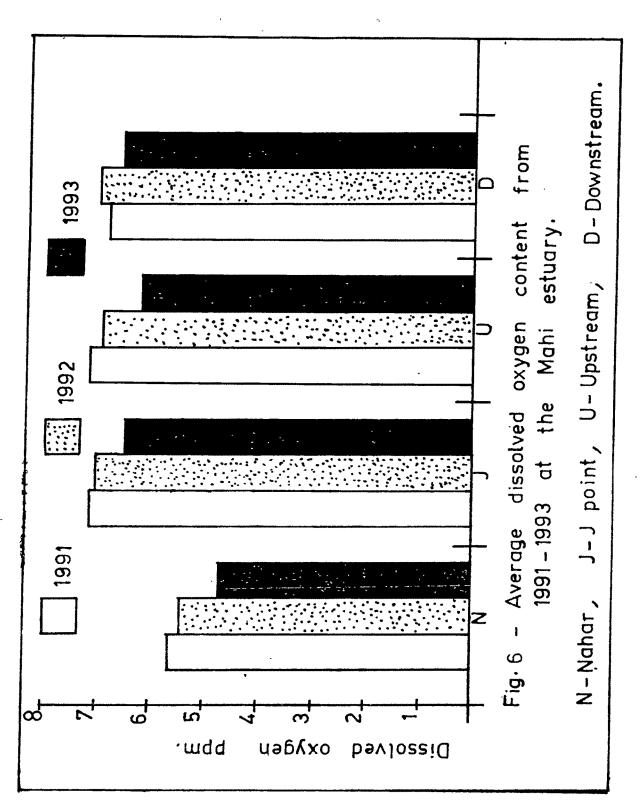



TABLE 8 : MONTHLY VARIATIONS IN CHEMICAL OXYGEN DEMAND (COD, mg/l) AND, RANGE, MEAN AND PERCENTAGE CHANGE AT THE MAHI ESTUARY FROM 1991-1993

s.

| EAR                      |                                  | 1991         |          |                                     |                                            | 1992                                       |          |            |              | 1993       |           |
|--------------------------|----------------------------------|--------------|----------|-------------------------------------|--------------------------------------------|--------------------------------------------|----------|------------|--------------|------------|-----------|
| /*:                      |                                  |              |          |                                     |                                            |                                            |          |            | 1            |            |           |
| N HTNOM                  |                                  |              |          | N                                   |                                            | Ω                                          | n        | N          | Þ            | Q          | Ð         |
| 204                      | 160                              | 368          | 37       | 400                                 | 107                                        | 594                                        | 22       | 6          | 129          | (m         | 25        |
| 371                      | 171.6                            | 174          | е<br>С   | 232                                 | 98                                         | 440                                        | 29       | 0          | 109          |            | 32        |
| 195                      | 100                              | 149          | 90<br>90 | 228                                 | 127                                        | 384                                        | 32       | 192        | 147          | 400        | 29        |
| 397                      | 96                               | 257          |          | 400                                 | Q                                          | 300                                        | 37       | 0          | 98.6         | ဖ          | 22        |
| 132                      | 150                              | 303          |          | 200                                 | 2                                          | 267                                        | 40       | 0          | 85.04        | ဖ          | 29        |
| 127                      | 133                              | 105          |          | 228                                 | ŝ                                          | 303                                        | 40       | S, S       | 87           | ന          | 32        |
| 400                      | 147                              | 201          |          | 607                                 | Q                                          | 353                                        | 47       | ဖ          | 193          | 0          | 80        |
| 170                      | 102                              | 200          | 29       | 403                                 | 147                                        | 309                                        | 32       | 0          | 207          | ഹ          | · • • • • |
| 700                      | 98                               | 80           |          | 403                                 | ŝ                                          | 79                                         | 37       | m          | 333          | ິ          | 233       |
| 327                      | 102                              | 68           |          | 457                                 | ω                                          | 611                                        | 40       | ന          | 461          | 0          | <b>v</b>  |
| 343                      | 275                              | 914          | 30       | 531                                 | ø                                          | 9 <i>6</i>                                 | 37       | 0          | 286          | . ന        | 1.0       |
| 102                      | 142                              | 94           | 30       | 309                                 | æ                                          | 309                                        | 47       | 0          | 373          | 5          | 41        |
|                          |                                  |              |          |                                     |                                            |                                            |          |            |              |            |           |
| MEAN 289.0               | 139.9                            | 242.8        | 31.2     | 366.5                               | 187.8                                      | 337.3                                      | 36.7     | 393,5      | 217.4        | 373.3      | 60.5      |
| 102<br>700               | 98<br>275                        | 68<br>914    | 29<br>39 | 200<br>607                          | 98<br>462                                  | 79<br>594                                  | 22<br>47 | 100<br>608 | 85.04<br>461 | 233<br>477 | 25<br>233 |
| ENTAGE CI                | PERCENTAGE CHANGE FROM 1991-1993 | I-1661 M     |          |                                     |                                            |                                            |          |            | 48610        | 144.6      | 4100      |
| N - NAHAR<br>D - DOWN ST | D - DOWN STREAM OF '.J'' POINT   | E CONFLUENCE |          | راست المر (بعالية الم الم مرابع الم | ક્ષ માંગ મંત્રો વડી ઉપયોગ મેળે કેટલ જેલ્યુ | e a se |          | - NT '.J'' | POINT<br>OF  | J' POINT   | NFLUENCE) |

ţ

100



| YEAR                        |           | 1991        |            |             |                            | 1992    |      |            |          | 1993                    |            |
|-----------------------------|-----------|-------------|------------|-------------|----------------------------|---------|------|------------|----------|-------------------------|------------|
| POINT*/<br>MONTH N          | ъ         | Q           | D          | Z           | Þ                          | р       | D    | N          | ъ        | Ð                       | n          |
| JAN 40                      | 37        | 5           | 4          | 88          |                            | 4.5     | 9    | 86         | 61       | 66                      | 11         |
| Υ<br>Π                      | 22        | 6.96        | 4          | 50          | 0,3                        | -       | 9    | 111        | 62       | 87                      | 19         |
|                             |           | 5.2         | 7          | 101         | ີ<br>ເບ                    | ß       | 7    | 00 C       | 57       | 33                      | 17         |
|                             |           | 40          | 7          | 150         | 27.3                       | 37      | 11   | 140        | 30.4     | 80                      | 12         |
|                             | 27        | 4.9         | ሻ          | 179         | ы.<br>С                    | 42      | 12   | 140        | 30       | 32                      | 13         |
| JUN 47                      | 29        | 2.7         | L          | 130         | 27                         | 42      | 12   | 160        | 62       | 37                      | 19         |
| с 60                        |           | 16          | 7          | 110         | 33                         | 97      | 18   | 139        | 47       | 149                     | 42         |
|                             |           | ო           | 2          | 180         | 29                         | 96      | 11   | 133        | 50       | 06                      | 60         |
|                             |           | 14          | 9          | 180         | 40                         | 99<br>8 | 12   | 110        | 39       | 63                      | 96         |
|                             |           | 6.4         | ٢          | 210         | 37                         | 35      | 11   | 254        | 53       | 97                      | 13         |
| +-4                         | 0         | 386         | თ          | 210         | 9.1                        | 187     | 11   | 400        | 78       | 101                     | 20         |
|                             |           | 5.4         | σ          | 139         | б                          | 37      | 17   | 473        | 69       | 101                     | 17         |
|                             |           |             |            |             |                            | •       |      |            |          |                         |            |
| MEAN 61 1                   | 0 60      | 5 LV        | ม<br>บ     | 143 0       | 7 18                       | 50 0    | c [] | 1 88 2     | БЗ 2     | 7 B C                   | 28.4       |
| H D                         | •         |             | •          | •<br>><br>r | -                          | 1       | •    | •          | •<br>>   |                         | 5          |
| MIN 37                      | 13.32     | m           | 4          | 50          | •                          | 4.5     | 9    | 48         | 30       | 32                      | 11         |
| MAX 191                     | 37        | 386         | ი          |             | 45.1                       | 187     | 18   | 217        |          | 149                     | 98         |
| PERCENTAGE CHANGE FROM 1991 | ANGE FROM | 11991-199   | <b>6</b> 3 |             |                            |         |      | +208.0     | +122.6   | +88.9                   | +337.0     |
| * N - NAHAR                 | (BEFORE   | CONFLUENCE) |            | 11111       | )<br>)<br>)<br>]<br>]<br>] |         |      | · AT ''J'' | 1        | POINT (AFTER CONFLUENCE | VFL(JENCE) |
| 1                           |           |             |            |             |                            |         |      | all        | LII GO W |                         |            |

MONTHLY VARIATIONS IN BIOCHEMICAL OXYGEN DEMAND (BOD, mg/l) AND, RANGE,MEAN AND PERCENTAGE CHANGE AT THE MAHI ESTUARY FROM 1991-1993 TABLE 9 :

-

102

.

CHLORIDE (C1<sup>-</sup>)

The Cl<sup>-</sup> content was the highest at downstream and it tended to fluctuate significantly during the 3 years. However, the average Cl<sup>-</sup> content at the J-point and up stream recorded a consistent and significant increase. Whereas the Cl<sup>-</sup> content at the J-point increased from 31.31 mg/l to 54.44 mg/l, it increased from 30.41 mg/l to 97.41 mg/l at the upstream. The overall increase at the 2 points being 74% and 221% respectively. These changes in Cl<sup>-</sup> content are shown in table 10 and figures 4 and 8.

# SULPHATE $(SO_4)$

The So<sub>4</sub> content at the 3 points from 1991 to 93 is shown in table 11 and figures 4 and 8. Overall, the So<sub>4</sub> content increased form 1991 to 1993 at all the three points. The increase in So<sub>4</sub> content at the 3 points was to the extent of 117% at the J-point, 122% at upstream and 104% at downstream.

# ALKALINITY

The alkalinity as shown in table 12 and figures 9 and 10 shows reduction over the three year period. Whereas the alkalinity decreased from 152.29 mg/l to 89.49 mg/l at the TABLE 10 : MONTHLY VARIATIONS IN CHLORIDE (C1, mg/1) AND, RANGE, MEAN AND PERCENTAGE CHANGE AT THE MAHI ESTUARY FROM 1991-1993

| а,                     |              | 1661               |          |           |                 | 1992         |          |                                       |                 | 1993                 |           |
|------------------------|--------------|--------------------|----------|-----------|-----------------|--------------|----------|---------------------------------------|-----------------|----------------------|-----------|
| POINT*/<br>N HTNOM     |              |                    |          | z         | Ъ               | Q            | D        | N                                     | 5               | Q                    | n         |
| JAN 950                | 2217         | 11000              | 38       | 524       |                 | 15900        | 36       | 600                                   | 03              | 57                   | 95        |
| 47                     | 535          | 2936               | 30       | 510       | σ               | 8800         | 20       | 520                                   | 039.            | 16700                | 66        |
|                        | 621          | 13032              | 37       | 600       | 6798            | 1600         | 7        | 430                                   | 10353.5         | 1600                 | 88        |
|                        | 631          | 9600               | 29       | 60        | ŝ               | ~            | 33       | 620                                   | 48              | 18200                | 52        |
| 51                     | 519          | 11300              | 30       | 72        | 45              | 12000        | ო        | 282                                   | 33              | 69                   | 0         |
| 48                     | 832          | 8632               | 30       | 57        | 27              | Q.           | 37       | 650                                   | 73              | 7000                 | 123       |
| 51                     | N            | 668                | 17       | 603       | 67              | 668          | 57       | 403                                   | œ               | 967                  | ŝ         |
| 40                     | 0            | 1                  | 20       | 709       | ŝ               | 650          | 47       | 51                                    | ω               | 1463                 |           |
| ~                      | ß            | σ                  | 30       | 537       | ŝ               | 970          | 43       | 3316                                  | 132             | 1372                 | 87        |
| 37                     | 23           |                    | 39       | 483       | 86              | 5100         | 37       | 783                                   | ŝ               | 6130                 | 06        |
|                        | 410          | 4113               | 32       | 800       |                 | 3200         | 60       | 579                                   | 8.387           | 710000               | 88        |
| DEC 460                | თ            | 31110              | 33       | 807       | 3994.24         | 6400         | 57       | 730                                   | 3022            | 6502                 | 51        |
|                        |              |                    | ,        | 1         | • 1             |              |          | (<br>1                                |                 |                      | ſ         |
| MEAN 516               | .3 3130.7    | 6231.0             | 30.4     | 625.9     | 4725.5          | 9409.9       | 40.6     | 952,0                                 | 5443.9          | 10790.3              | 97.5      |
| MIN 28<br>MAX 950      | 2197<br>3410 | 899<br>13032       | 17<br>39 | 57<br>807 | 3994.24<br>5430 | 650<br>17000 | 17<br>60 | 282<br>3316                           | 4039.42<br>6739 | 967<br>19300         | 43<br>219 |
| PERCENTAGE CHANGE FROM | HANGE FROM   | 1991-1993          |          |           |                 |              |          | +84.3                                 | +73.8           | +73.1                | +220.6    |
| * N - NAHAR            |              | (BEFORE CONFLUENCE | 日)       |           |                 |              | D 1      | · · · · · · · · · · · · · · · · · · · | POINT           | NT (AFTER CONFLUENCE | TUENCE)   |

.

,

1

.

ر. ۲۰۰۰



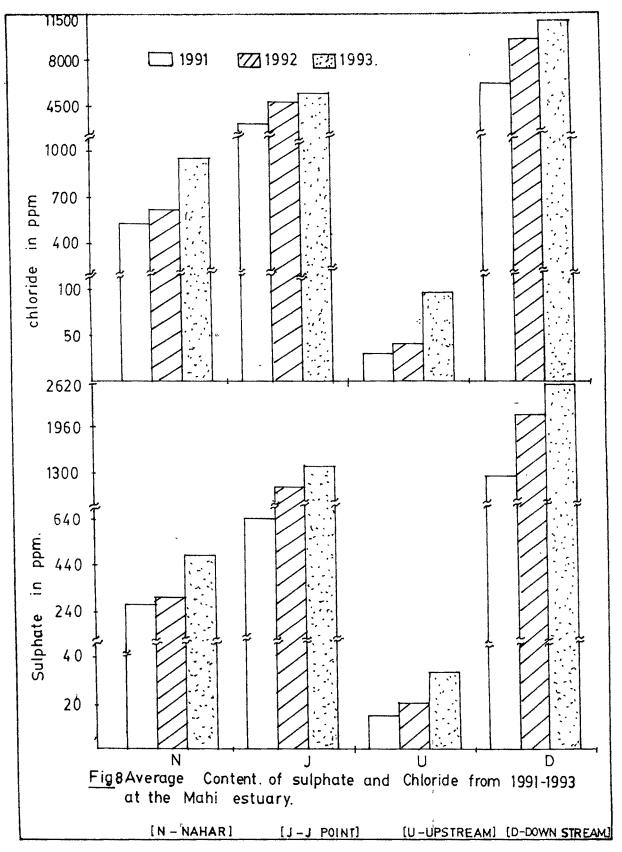
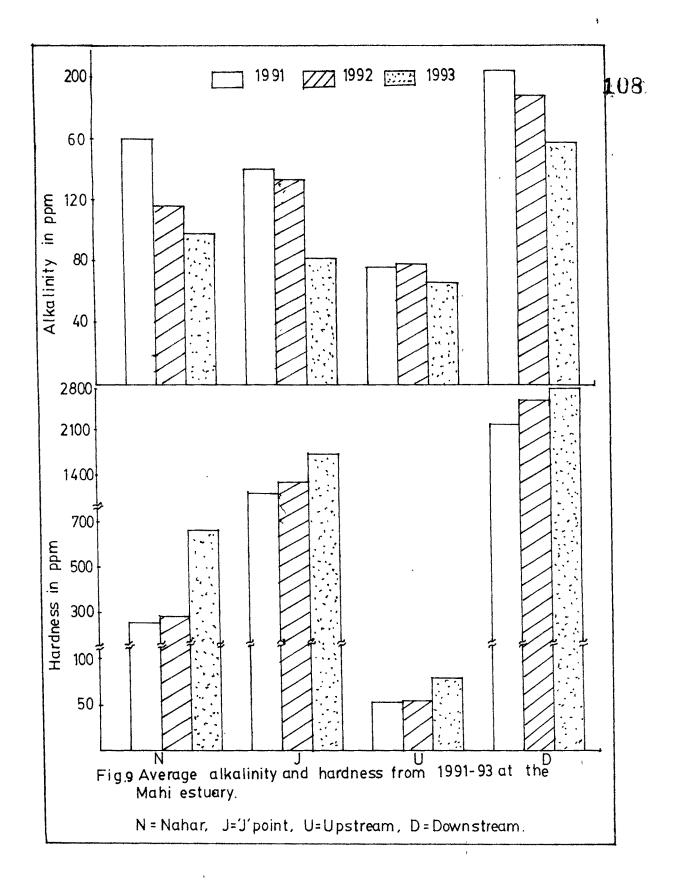
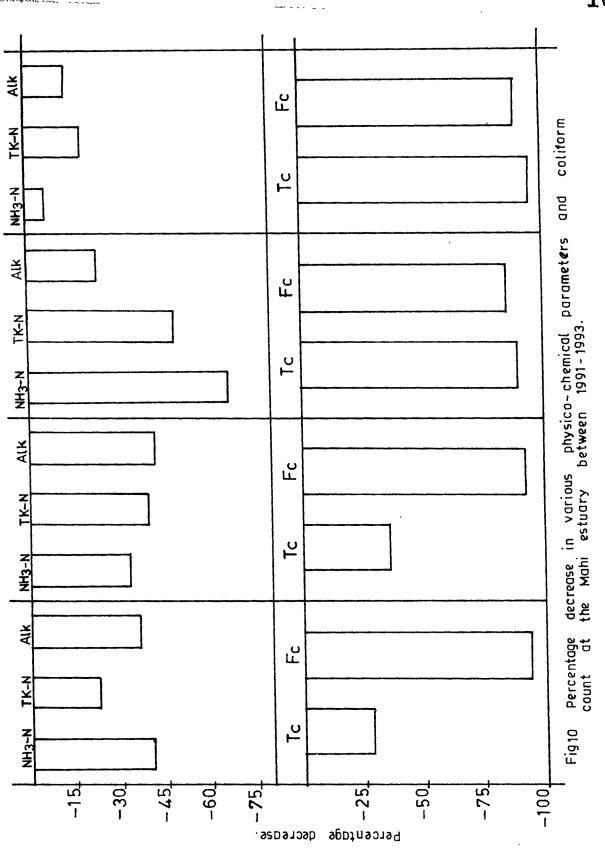



TABLE 11 : MONTHLY VARIATIONS IN SULFATE (SO4, mg/1) AND, RANGE, MEAN AND PERCENTAGE CHANGE AT THE MAHI ESTUARY FROM 1991-1993

| YEAR             |                       | •                                                    | 1991                                 |        |                 |             | 1992       |                                |               |              | 1993          |             |
|------------------|-----------------------|------------------------------------------------------|--------------------------------------|--------|-----------------|-------------|------------|--------------------------------|---------------|--------------|---------------|-------------|
| HTNOM<br>/*TNIOQ | N                     |                                                      |                                      |        | N               | ъ           | Q          | ņ                              | N             | Ŀ            | Q             | n           |
|                  |                       | 000                                                  |                                      |        | 1 0             | 28          | 16         | 20                             | 1 4           | 19           | 8             | 28          |
| 5F.B             | 518<br>618            | 809.65                                               | រហ                                   | 10     | 378             | 1177        | 2052       | 17                             | 399           | 2087         | 1872          | 42          |
| MAN<br>AAM       | 600                   |                                                      | က                                    | L L    | œ               | 62          | m.         | 20                             | 5             | 12           | 00            | 42          |
| APR              | 330                   | 1273                                                 | g                                    | 18     |                 | 48          | δ          | 21                             |               | 22           | ů0            | 54          |
| MAY              | 330                   | 593                                                  | ഹ                                    | 17     |                 | 20          | 6          | 27                             | $\mathcal{C}$ | σ            | 00            | 54          |
| JUN              | 430                   | 327                                                  | 78                                   | 17     |                 | ω           | σ          | 16                             | r-i           | S            | $\sigma$      | 47          |
| JUL              | 61                    | 285                                                  | 169                                  | თ      |                 | 0           | 0          | 11                             | 4             | 9            | 0             | 12          |
| AUG              | 200                   | 5<br>0                                               | ന                                    | 11     | 9               | σ           | 0          | 22                             | σ             | -            | <b></b>       | 60          |
| SEP              | - <del></del>         | 688                                                  | 4                                    | 10     | 4               |             | 2          | 17                             | 0             | ω            | 1             | 60          |
| ocr              | 4                     | 703.41                                               |                                      | 19     | σ               | თ           | 2          | 6T                             |               | 2            | З             | 27          |
| NON              | 64                    | 688.1                                                | 2268                                 | 20     |                 | Q           | 01         | 61                             | 0             | 20           | 91            | 17          |
| DEC              | 69                    | 673                                                  | 864                                  | 23     | 0               | ~           | -          | 27                             | æ             | 1400         | 124           | 80<br>r-1   |
| N L DY           | ע<br>ע<br>ר<br>ר<br>ר | 67 079 F.                                            | 1066 167                             | 15 157 | 9 400           | 666671091 3 | 7 21 63.08 | 3 19 667                       | 485.25        | 1389.243     | 2578.167      | 33.667      |
| LICTOR           |                       |                                                      |                                      | 4<br>* | •<br>• •<br>• • |             |            | •<br>• •                       |               |              |               |             |
| NTW              | 57                    | ŋ                                                    | -1                                   | ת      |                 |             | 2          | 77                             | 011           |              |               | 4 4         |
| MAX              | 618                   | 809.65                                               | 2450                                 | 23     |                 |             | 11011      | 27                             |               | N            | 0006          | 6()         |
| PEPCENT          | AGE CHAN              | PEPCENTAGE CHANGE FROM 1                             | 1991-1993                            |        |                 |             |            |                                | +77.9         | +116.9       | +103.6        |             |
|                  | NAHAR                 | NAHAR (BEFORE CONFLUE<br>DOWN STREAM OF ''.I'' POINT | (BEFORE CONFLUENCE<br>M OF 'T' POINT |        | 1               |             |            | יין<br>קיי<br>ו<br>ו<br>ו<br>ו | - AT 'J''     | POIN<br>M OF | T (AFTER CONF | CONFLUENCE) |
| í                |                       | > 3> 50                                              |                                      |        |                 |             |            |                                | 4             |              | + : + ) +     |             |

.


-


\*\*\*\*\*\*\*\*

•

| 1993 |        | 7 92 88 124 | 3 40 97 136 60 | 2 118 99 156 | 7 178 109 197 | 0 160 69.22 171 | 2 154 98 128 | 0 68 67 150 | 0 66 101 208 | 6 98 83 148 | 0 104 97 147 | 2 98 101 148 | 7 100 64.66 332 · | 3.8 106.3 89.5 170.4 72.4 | 40 64,66 124 3 | 178 109 | -36.5 -41.2 -22.7 -12.7 |
|------|--------|-------------|----------------|--------------|---------------|-----------------|--------------|-------------|--------------|-------------|--------------|--------------|-------------------|---------------------------|----------------|---------|-------------------------|
| 1992 | D      | 64 8        | 180 7          | 52 7         | 07 12         | 09 13           | 02 13        | 67 5        | 09 60        | വ           | 00 0         | 9            | 21 8              | 203.8 8                   | 7              | 437 132 |                         |
|      | ц      | 193         | 164            | 175          | 189           | 188             | 107          | 101         | 111          | 121         | 107          | 140.5        | •                 | 143.3                     | 0              | 189     |                         |
|      | N      | 112         | 164            | 167          | 138           | 164             | 100          | 178         | 148          | 60          | 20           | 88           | 168               | 125.6                     | 20             | 178     |                         |
|      | n      | 110         | 4              | 73           | 119           | 96              | 87           | 47          | 55           | 65          | 68           | 60           | 73                | 82.9                      | 47             | 140     | 993                     |
| 1991 | Ω      | 230         | 332            | 333          | 280           | 432             | 602          | 69          | 97           | 71          | 46           | 93           | 64                | 220.8                     | 46             | 602     | 1991-1                  |
|      | ħ      | 173         | 165            | 166          | 189           | 137             | 120          | 119         | 133          | 149         | 129          | 178          | 169.84            | 152.3                     | 119            | 189     | ANGE FROM               |
|      | N<br>/ | 340         | 377            | 319          |               | 107             | 128          | 78          | 98           | 104         | 94           |              | 158               | 167.1                     | 78             | 377     | PERCENTAGE CHANGE       |
| YEAR | FOINT* | JAN         | FEB            | MAR          |               | MAY             | NUC          | JUL         | AUG          | SEP         | ocT          | NOV          | DEC               | MEAN                      | NIM            | MAX     | PERCEN                  |

TABLE 12 : MONTHLY VARIATIONS IN ALKALINITY (mg/l) AND, RANGE, MEAN AND PERCENTAGE CHANGE AT THE MAHI ESTUARY FROM 1991-1993





ł

The surger and the second of the second

109

. . J-point, at the upstream, it decreased from 838 mg/l to 72.4 mg/l and at downstream from 210 mg/l to 170.00 mg/l.

#### HARDNESS

The hardness of the water at all the 3 points increased consistently from 1991 to 1993. Both at the J-point and upstream, the hardness showed a very pronounced increase between 1991 and 1993. The overall increase at the 3 points from 1991 to 1993 was 1243 mg/l to 1552 mg/l (J-point), 58.2 mg/l to 87.2 mg/l (upstream) and 2427.9mg/l to 3017.1 mg/l (downstream). The changes in the hardness of water over the 3 year period at the 3 points is represented in table 13 and figures 4 and 9.

## AMMONICAL NITROGEN (NH3-N)

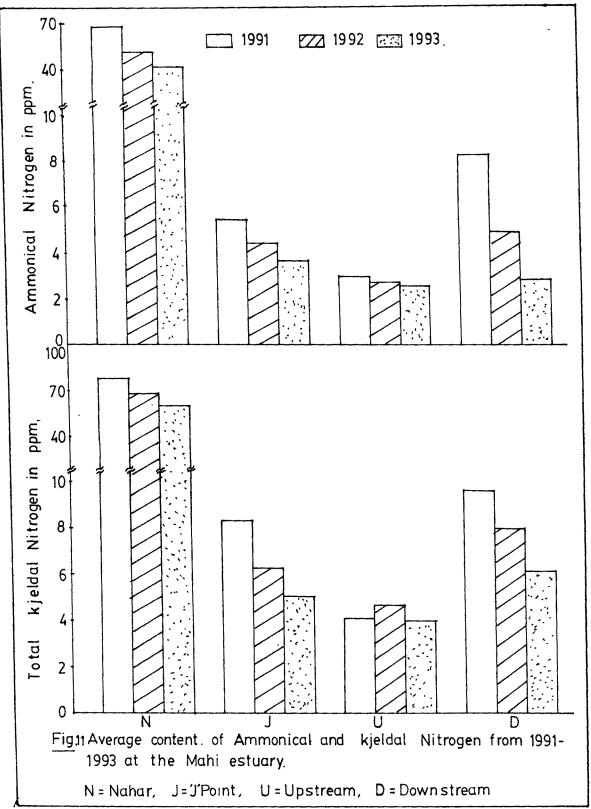
The  $NH_3$ -N showed a steady decrease between 1991 to 1993 at all the 3 points. The decrease at the J-point was from 5.46 mg/l to 3.67 mg/l and from 2.6mg/l to 2.5 mg/l at upstream and from 8.3 mg/l 2.84 mg/l at the downstream. The data is represented in table 14 and figures 10 and 11.

### TOTAL KJELDAHL NITROGEN (TKN)

The TKN, like  $NH_3$ -N, also showed decreasing trend over the years. The values were decreased from 8.35 mg/l to 5.07 MONTHLY VARIATIONS IN HARDNESS (mg/l) AND, RANGE, MEAN AND PERCENTAGE CHANGE AT THE MAHI ESTUARY FROM 1991-1993 TABLE 13 :

| 13<br> | Ŋ               | 42<br>32                                                                                    |       |       |       |       |      |      |              |         |       |      | .2 87.3    | 29<br>392          | .13 +49.6   |
|--------|-----------------|---------------------------------------------------------------------------------------------|-------|-------|-------|-------|------|------|--------------|---------|-------|------|------------|--------------------|-------------|
| 199    | رط<br>ا         | 50 4770<br>5270                                                                             | 2 490 | 1 407 | 5 392 | 2 343 | 7 30 | 8 40 | 9 60         | 5.4 112 | 0 631 | 7 1  | 52.2 3017. | 18 309<br>92 5270  | 24.8 +28    |
|        | N               | 588 160                                                                                     | ++    | 16    | 17    | 19    | 13   | 11   | , <b>1</b> 3 | 17      | Ч     | 15   | 718.3 155  | 447 114<br>900 199 | +155.2 +    |
|        | n               | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |       |       |       |       |      |      |              |         |       |      | 59.8       | 30<br>97           |             |
| 1992   | Q               | 4040                                                                                        | 30    | 81    | 4300  | 60    | 261  | 280  | 380          | 65      | 4500  | 03   | 2800.0     | 261<br>5600        |             |
|        | ĿJ              | 1661<br>1562                                                                                | ი ი   | 4     | Q     | 4     | ŝ    | 4    | 1607         | 0       | 006   | 1421 | 1429.8     | 900<br>1661        |             |
|        | N               | 172<br>172<br>980                                                                           | 640   | 110   | 152   | 108   | 487  | 122  | 178          | 520     | 129   | 180  | 314.8      | 108<br>980         |             |
|        | D               | 31<br>31<br>47                                                                              |       | 38    | 42    | 61    | 68   | 77   | 83           | 97      | 70    | 62   | 58.3       | 23<br>97           | 993         |
| 1991   | Q               | 3798<br>5233                                                                                | 31    | 4000  | 4332  | 4500  | 208  | 309  | 107          | 42      | 300   | 117  | 2354.8     | 42<br>5311         | 1-1991-N    |
|        | Ъ               | 1321                                                                                        | n m   | 56    | 0     | N     |      | 1081 | 60           | 25      |       | 1250 | 1243.0     | 1067<br>1568       | CHANGE FROM |
|        | N               | 312                                                                                         | 4 0   | 299   | σ     | 0     | ŝ    | 0    | 5            | 158     | 97    | 198  | 281.5      | 97<br>630          |             |
| YEAR   | +TNIO4<br>MONTH | JAN                                                                                         | MAR   | APR   | МАУ   | NUL   | JUL  | AUG  | SEP          | OCT     | NOV   | DEC  | MEAN       | MIN<br>MAX         | PERCENTAGE  |

111


•

| BLE 14 : MONTHLY VARIATIONS IN AMMONICAL NITROGEN (NH3-N, mg/l) A<br>PERCENTAGE CHANGE AT THE MAHI ESTUARY FROM 1991-1993 | ND, RANGE, MEAN AND                                                                 |      |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------|
| 8                                                                                                                         | LE 14 : MONTHLY VARIATIONS IN AMMONICAL NITROGEN (NH3-N, mg/1) AND, RANGE, MEAN AND | MA S |

.

| 1 5 5<br>1 6 2<br>1 6 1<br>1 7 1 |
|----------------------------------|
| 4<br>2.24                        |
| 0.2<br>0.2<br>0.0                |
|                                  |
| 3.7                              |
| 5.1                              |
| .3                               |
| .7 22                            |
| m<br>N                           |
| 2.2 33                           |
| 2.7 50                           |
| 1.7<br>4                         |
| 199                              |
| confluence)<br>"J"POINT          |

. 112



mg/l at the J-point, from 4.96 mg/l to 4.0 mg/l at the upstream and from 11.7 mg/l to 6.1 mg/l at the downstream. The values are represented in table 15 and figures 10 and 11.

# OIL AND GREASE

The data recorded in table 16 and figures 2 and 12 shows definite increase of oil and grease content at all the 3 points over the 3 years of study. The content which was 1.8 mg/l at the J-point, 1.75 mg/l at the upstream and 1.84 mg/l at the downstream in 1991 increased to 2.75 mg/l, 2.4 mg/l and 3.18 mg/l respectively in 1993.

#### PHENOL

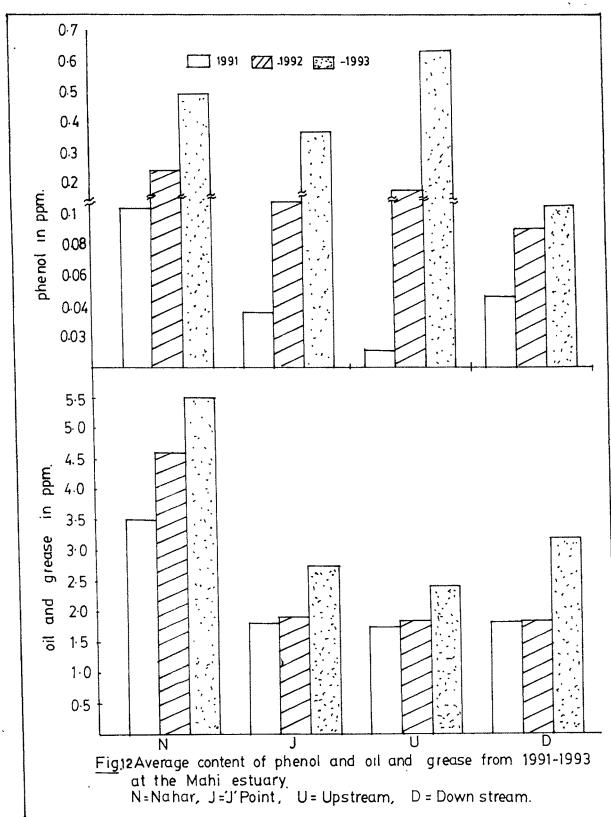
The phenol content at both the J-point and the upstream showed perceptible increase of over 909% and 3678% respectively from 1991 to 1993. The values recorded were 0.039mg/l in 1991 and 0.397 mg/l in 1993 at the J-point and, 0.018 mg/l in 1991 and 0.68 mg/l in 1993 at the upstream. The increase at the downstream was of lesser magnitude (from 0.06 mg/l to 0.11mg/l.) These changes are shown in table 17 and figures 4 and 12.

MONTHLY VARIATIONS IN TOTAL KJELDAHL NITROGEN (TKN, mg/l) AND, RANGE, MEAN AND PERCENTAGE CHANGE AT THE MAHI ESTUARY FROM 1991-1993 TAELE 15 :

|                                       |                |                            | 1661                                     |      |      |              | 1992                  |     |                            |        | 1993                                       |           |
|---------------------------------------|----------------|----------------------------|------------------------------------------|------|------|--------------|-----------------------|-----|----------------------------|--------|--------------------------------------------|-----------|
| POINT*/                               |                |                            | Ω                                        | n    | N    | Ь            | A                     | Þ   | N                          | Ċ      | Ð                                          | C         |
|                                       | 147            | 10.12                      | 3.7                                      | · ·  | 83.  | 1 7          |                       | 4   | 62                         | 8.1    | 6.96                                       | 4.3       |
| FEB                                   | N              | 9.3                        | 3.7                                      | •    | 96   | 2            | 15                    |     | 67                         | 6.84   | 7.06                                       | 4.2       |
| MAR                                   | 111            | 9,89                       | 2.7                                      | •    | 120  |              | ณ                     | 4.3 | 57                         | 6.12   | 6.96                                       | 5.7       |
| <b>L</b> PR                           | 60             | 9.87                       | а <b>.</b> З                             | 4.1  | 101  | 8.45         | 4                     | ß   | 52.2                       | 5.88   | 5.96                                       | 4.3       |
| MAY                                   | 27             | S                          | 2.3                                      | •    | 69   | -            | 4                     | 5.2 | 47                         | B      | 4.46                                       | ი         |
| NUL                                   | 30             | 7                          | 22                                       | -    | 44.8 | . ი          | ഹ                     | 5.2 | 33                         | 4      | 4.26                                       | 2         |
| JUL                                   | 40             | თ                          | 13                                       | •    | 42   | -            | 19                    | 4.6 | 54                         | 3.7    | 4.26                                       | 2         |
| AUG                                   |                | 11                         | 19                                       | •    | 52   | 8            | 16                    | 3.2 | 46                         | 2.4    | 6.26                                       | 3.5       |
| SEP                                   | 51             | 9.01                       | 13                                       | •    | 27   | <del>ر</del> | 9                     | 4.4 | 82                         | 3.9    | 4.96                                       | 1.7       |
| OCT                                   |                | 8.8                        | 13                                       |      | 29   | 8            | Q                     | ß   | 62                         | 3.7    |                                            | 2.7       |
| NOV                                   | 120            |                            | 5.1                                      |      | 98   | ~            | თ                     | ល   | 63                         | $\sim$ | 10.26                                      | 6         |
| DEC                                   | 140            | 5.12                       | 15.14                                    | 4.6  | 69   | ω.           | 7                     | 9   | 96                         | 4.03   | 7.26                                       | 9         |
|                                       |                |                            |                                          |      |      |              |                       |     |                            |        |                                            |           |
| MEAN                                  | 77.4           | 8.4                        | 9.7                                      | 4.1  | 69.4 | 6.3          | 8.0                   | 4.6 | 60.1                       | 5.1    | 6.1                                        | 4.0       |
| NIM                                   | 27             | ഹ                          | 2.3                                      | 2.9  | 6.94 | 2.19         | ო                     | 3.2 | 33                         | •      | 4.26                                       | 1.7       |
| MAX                                   | 143            | 10.12                      | 22                                       | •    | 120  | 10.17        | 19                    | 9   | 96                         | 8.11   | 10.26                                      | თ         |
| ERCENT                                | AGE CHA        | PERCENTAGE CHANGE FROM     | 1991-1                                   | 663  |      |              |                       |     | -22.4                      | -39.4  | -48.0                                      | -18.8     |
| N N N N N N N N N N N N N N N N N N N | NAHAR<br>NAHAR | DOWN STREAM OF '.''' POINT | (BEFORE CONFLUENCE)<br>AM OF ''J'' POINT | (CE) |      |              | 4<br>8<br>8<br>8<br>8 | - D | - AT 'J''  <br>- UP STREAM |        | POINT (AFTER CONFLUENCE)<br>OF ''J'' POINT | NFLUENCE) |

115

•


TABLE 16 : MONTHLY VARIATIONS IN OIL AND GREASE (OG, mg/l) AND, RANGE, MEAN AND PERCENTAGE CHANGE AT THE MAHI ESTUARY FROM 1991-1993

.

|      | D                | 2.2 | 1.8                    |             | 1 -1 | 1.4              | 3.4 | 4            | 4.1     | 2   | n m | 2.8    | 2.4  | ę           | 4.1 | 406.4                          | FLUENCE)                                                          |
|------|------------------|-----|------------------------|-------------|------|------------------|-----|--------------|---------|-----|-----|--------|------|-------------|-----|--------------------------------|-------------------------------------------------------------------|
| 1993 | Δ                | 3.2 | 2.4                    |             | 4    | 1.2              | 3.2 | 8.2          | 2       | 2.9 | 2   | 1.2    | 3.2  | 1.2         | 8.2 | 444 . W                        | (AFFER CONFLUENCE<br>1' POINT                                     |
|      | <del>ر</del> ا   | 2.5 | 11<br>-<br>-<br>-<br>- | )<br>•<br>• | 3°2  | 7                | ~   | 4            | 2.5     | -1  | 2.5 | 3,5    | 2.8  | Ч           | 4   | 163, 6                         | POINT (A<br>M OF 'J'                                              |
|      | N                | 9   | <i>د</i> د             | ) ସଂ        | 4.2  | ю                | 4   | 3 <b>.</b> 9 | 4.9     | 8   | თ   | 7      | 5.5  | m           | 6   | 4187 ; 1.                      | · AT 'J' POINT ()<br>· UP STREAM OF 'J'                           |
|      | n                | 0   | 7 7                    | . –         | 7    | 2                |     | 2            |         | 2   | 7   | 7      | 1.7  | <b></b> i   | 2   |                                | 11                                                                |
| 1992 | D                | 5   | . 1                    | 1 01        | 0    | <del>, - 1</del> | 2   | H            | 7       | 2   | 2   | 4      | 6.T  | <b>-</b> -4 | 4   |                                |                                                                   |
|      | t,               | 2.5 | 2.5<br>1.5             | 1.5         | 2.5  | 1                | 1   |              | 1.5     | 2.5 | 2.5 | 2.5    | 1.9  | F-7         | 2.5 | · Si utantitara)               |                                                                   |
|      | z                | 9   | <del>ل</del> ه 10      | 4           | 4    | 3.2              | 3.8 | 4.7          | 5.2     | 6.3 | 4   | 5      | 4.6  | 3.2         | 6.3 | و بالمالية المالية في الم      |                                                                   |
|      | n                | 8.  | 20                     | r-1         | 2    | <b>r</b> →       | 1.2 | 0            |         | -   | 4   | 2      | 1.8  | -1          | Ą   | ,                              | CE)                                                               |
| 1661 | Q                | 0.4 | 7.                     | ~           | 1.6  | 1.2              | 7   | 2            | 1.6     | 7   | 1.6 | 1.7    | 1.7  | 0.4         | Q   |                                | CONFLUEN                                                          |
|      | Ð                | 2.5 | ~~~~                   | 1.5         | -1   |                  | Ч   | 2.5          | 2       | 2.5 | 2.5 | 0      | 1.8  |             | 2.5 | Percentrge Chânge From 1991-19 | * N - NAHAR (BEFORE CONFLUENCE)<br>D - DOWN STREAM OF ''J'' POINT |
|      | N                | 4.8 | 4.2<br>1.6             | v           | 4    | 7                | 0   | ഗ            | 2.5     | 4   | ŋ   | 4      | 3.8  | 1.6         | 9   | AGE CHAN                       | NAHAR<br>JWN STRE                                                 |
| YEAR | POINT*/<br>MONTH | JAN | FEB<br>MAR             | X i         | MAY  | MC               | JL  | ц<br>Б       | сц<br>Ц | E.  | NOV | с<br>С | MEAN | NIM         | MAX | ERCENTA                        | N + DG - D                                                        |

,

.



MONTHLY VARIATIONS IN PHENOL (Phe, mg/l) AND, RANGE,MEAN AND PERCENTAGE CHANGE AT THE MAHI ESTUARY FROM 1991-1993 TABLE 17 :

.

.

| POINT*/ N J<br>MONTH N J<br>JAN 0.250 0.050<br>FEB 0.250 0.060<br>MAR 0.250 0.060<br>MAY 0.110 0.041<br>MAY 0.124 0.041<br>JUN 0.200 0.002<br>JUL 0.021 0.010<br>SEP 0.022 0.017<br>OCT 0.022 0.017<br>OCT 0.022 0.013<br>DEC 0.213 0.155                                                                     | D<br>0.010<br>0.020<br>0.010<br>0.010<br>0.100<br>0.100<br>0.100 | U<br>0.050<br>0.010<br>0.050<br>0.010 | N<br>0.130<br>0.1130<br>0.113<br>0.113 |        | c     |                 |                             |        |                     |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------|----------------------------------------|--------|-------|-----------------|-----------------------------|--------|---------------------|----------|
| 0.250     0.050       0.250     0.050       0.300     0.030       0.110     0.041       0.124     0.041       0.124     0.041       0.200     0.001       0.201     0.001       0.021     0.010       0.022     0.017       0.022     0.013       0.025     0.013       0.025     0.013       0.025     0.013 | 0.010<br>0.020<br>0.010<br>0.010<br>0.100                        |                                       | 51112                                  |        | L     | n               | N                           | Ċ      | Д                   | C        |
| 0.250     0.060       0.300     0.030       0.110     0.041       0.124     0.041       0.220     0.021       0.021     0.017       0.022     0.017       0.025     0.013       0.025     0.013       0.213     0.155                                                                                         | 0.020<br>0.010<br>0.200<br>0.200                                 |                                       | 24040                                  | 5      | 0.030 |                 | .72                         |        | 10.                 |          |
| 0.300 0.030<br>0.110 0.041<br>0.124 0.040<br>0.200 0.002<br>0.007 0.001<br>0.021 0.010<br>0.022 0.017<br>0.025 0.013<br>0.213 0.155                                                                                                                                                                           | 0.020<br>0.010<br>0.200<br>0.100<br>0.100                        |                                       | 1010                                   | 0.0823 | 0.010 | 0.011           | 0.213                       | 0.132  | 0.105               | 0.080    |
| 0.110 0.041<br>0.124 0.040<br>0.200 0.002<br>0.007 0.001<br>0.021 0.010<br>0.022 0.017<br>0.050 0.053<br>0.213 0.155                                                                                                                                                                                          | 0.020<br>0.010<br>0.200<br>0.100                                 |                                       | 101.10                                 | .04    | 0.010 | 0.001           | .11                         | •      | .25                 | •        |
| 0.124 0.040<br>0.200 0.002<br>0.007 0.001<br>0.021 0.010<br>0.022 0.017<br>0.060 0.053<br>0.025 0.013<br>0.213 0.155                                                                                                                                                                                          | 0.010<br>0.010<br>0.200<br>0.100                                 |                                       | 101                                    | 0      | 0.010 |                 | . 66                        | •      | .04                 | •        |
| 0.200 0.002<br>0.007 0.001<br>0.021 0.010<br>0.022 0.017<br>0.060 0.053<br>0.025 0.013<br>0.213 0.155                                                                                                                                                                                                         | 0.010<br>0.200<br>0.100                                          | 0.001                                 | <b>C</b><br>T                          | .16    | 0.110 |                 | .51                         |        | . 63                |          |
| 0.007 0.001<br>0.021 0.010<br>0.022 0.017<br>0.060 0.053<br>0.025 0.013<br>0.213 0.155                                                                                                                                                                                                                        | 0.200                                                            | 0.001                                 | 77.                                    | 8.     | 0.110 |                 | .31                         | •      | .01                 |          |
| 0.021 0.010<br>0.022 0.017<br>0.060 0.053<br>0.025 0.013<br>0.213 0.155                                                                                                                                                                                                                                       | 0.100                                                            | 0.010                                 | .02                                    | 5.     | 0.050 |                 | . 05                        | •      | .03                 | •        |
| 0.022 0.017<br>0.060 0.053<br>0.025 0.013<br>0.213 0.155                                                                                                                                                                                                                                                      |                                                                  | 0.010                                 | .12                                    | .02    | 0.700 |                 | .15                         | •      | .01                 | •        |
| 0.060 0.053<br>0.025 0.013<br>0.213 0.155                                                                                                                                                                                                                                                                     | 0.100                                                            | I                                     | .20                                    | 60.    | 0.050 |                 | .20                         | •      | .02                 | ٠        |
| 0.025 0.013<br>0.213 0.155                                                                                                                                                                                                                                                                                    | 0.100                                                            | ł                                     | .81                                    | ະ 55   | 0.020 |                 | .15                         |        | .12                 | •        |
| 0.213 0.155                                                                                                                                                                                                                                                                                                   | 0.020                                                            | 1                                     | .42                                    | .05    | 0.040 |                 | .14                         | •      | .25                 | •        |
|                                                                                                                                                                                                                                                                                                               | 0.030                                                            | 0.010                                 | .81                                    | .61    | 0.020 |                 | . 20                        | •      | .11                 | 0        |
|                                                                                                                                                                                                                                                                                                               | -                                                                |                                       |                                        | ÷      |       |                 |                             |        |                     |          |
| MEAN 0.132 0.039 (                                                                                                                                                                                                                                                                                            | 0.050                                                            | 0.013                                 | 0.265                                  | 0.150  | 0.097 | 0.187           | 0.536                       | 0.397  | 0.133               | 0.680    |
| 0.007 0.001                                                                                                                                                                                                                                                                                                   | 0.010                                                            | 0,001                                 | .02                                    | .01    | 0.010 | -               | .03                         | 10     | 01                  |          |
| 0.155                                                                                                                                                                                                                                                                                                         | 0.200                                                            | 0.050                                 | 0.813                                  | 0.617  | 001.0 | 0.700           | 2.111                       | 1.211  | 0.255               | 2.100    |
| PERCENTAGE CHANGE FROM 19                                                                                                                                                                                                                                                                                     | 1991-1991                                                        | £                                     |                                        |        |       |                 | +305.7                      | +919.4 | +167.3              | +51,33   |
| * N - NAHAR (BEFORE CONFLUENCE<br>D - DOWN STREAM OF ''J''POINT                                                                                                                                                                                                                                               | POINT                                                            | E)                                    | * * * * *                              |        |       | ן ו<br>ק ל<br>ו | AT 'J'' POI<br>UP STREAM OF | EN:    | T (AFTER CONFLUENCE | FLUENCE) |

٠

**118** 

The CN content at the J-point varied from 0.018 to 0.032 mg/l from 1991 to 1993. In turn, the content at the upstream increased from 0.007 mg/l in 1991 to 0.022 mg/l in 1993 and at the downstream from 0.0285 mg/l to 0.0759 mg/l. The recorded values are shown in table 18 and figures 4 and 5).

### TOTAL AND FECAL COLIFORM (TC AND FC)

Both TC and FC counts showed decline over the three year period from 1991 to 1993 by 36% and 92% respectively at the J-point. The total coliform count at the J-point, at upstream and at downstream was 1283.33, 7117.5 and 11683.3 MPN Count /100ml respectively, which decreased to 811.66, 375.0 and 1250.0 MPN count /100 ml in 1993. Similarly, the FC count in 1991 was 606.45, 487.5 and 725.4 MPN/100ml respectively which decreased to 48.33, 55.0 and 102.08 MPN /100 ml respectively in 1993. The data of both the total and fecal count is represented in table 19 and 20 and figures 10 and 13.

## METALS

### CHROMIUM (Cr) AND IRON (Fe)

The chromium and iron content increased over the 3 year period of study from 1991 to 1993. The Cr content at the J-

:

TABLE 18 : MONTHLY VARIATIONS IN CYANIDE (CN, mg/l) AND, RANGE, MEAN AND PERCENTAGE CHANGE AT THE MAHI ESTUARY FROM 1991-1993

.

| YEAR                        |          | . •               | 1991      |        |       |        | 1992  |       |             |                             | 1993     |          |
|-----------------------------|----------|-------------------|-----------|--------|-------|--------|-------|-------|-------------|-----------------------------|----------|----------|
| POLINT*/                    | N        |                   | Ω         |        |       |        | A     | Þ     | N           | b                           | Q        | n        |
| JAN                         | 0.231    | 0.052             | 0.06      | ; 0    | 0.042 | 0.032  | 0.072 | 0.001 | 0.269       | 0.0341                      | 0.06     | 0.2      |
| FEB                         | 0.046    | 0.031             | 0.09      | 0      | 0.1   | 0.07   | 0.1   | 100.0 | 0.272       | 0.0721                      | 0.01     | 0.01     |
| MAR                         | 0.051    | 0.0416            | 0.1       | 0.001  | 0.036 | 0.027  | 0.184 | 0.001 | 0.241       | 0.0271                      | 0.05     | 0.002    |
| APR                         | 0.022    |                   | 0.001     | 0      | 0.211 | 0.0046 | 0.017 | 0.001 | 0.073       | 0.057                       | 0.002    | 0.001    |
| MAY                         | 0.0438   |                   | 0.02      | 0      | 0.266 | 0.073. | 0.17  | 0.002 | 0.123       | 0.062                       | 0.002    | 0.001    |
| JUN                         | 0.02     |                   | 0.001     | 0      | 0.222 | 0.0502 | 0.01  | 0.001 | 0.124       | 0.04                        | 0.001    | 0.001    |
| JUL                         | 0.023    |                   | 0.001     | 0      | 0.061 | 0.002  | 0.1   | 0.001 | 0.12        | 0.0102                      | 0.001    | 0.001    |
| AUG                         | 0.023    | 0.004             | 0.01      | 0      | 0.032 | 0.012  | 0.001 | 0.02  | 0.0696      | 0.002                       | 0.001    | 0.002    |
| SEP                         | 0.301    | 0.013             | 0.01      | 0      | 0.123 | 0.005  | 0.001 | 100.0 | 0.366       | 0.015                       | 0.07     | 0.003    |
| ocT                         | 0.303    | 0.019             | 0.01      | 0      | 0.095 | 0.004  | 0.01  | 0.1   | 0.369       | 0.022                       | 0.1      | 0.02     |
| NOV                         | 0.3      | 0.018             | 0.01      | 0      | 0.07  | 0.05   | 0.002 | 0.02  | 0.262       | 0.032                       | 0.128    | 0.02     |
| DEC                         | 0.019    | 0.016             | 0.01      | 0      | 0.2   | 0.02   | 0.005 | 0.05  | 0.4         | 0.02                        | 0.41     | 0.01     |
|                             |          |                   |           |        |       |        |       |       |             |                             |          |          |
| MEAN                        | 0.115    | 0.018             | 0.027     | 0.007  | 0.122 | 0.029  | 0.056 | 0.017 | 0.224       | 0.033                       | 0.070    | 0.023    |
|                             |          |                   | 100 0     | c      | 130 0 |        |       | 100 0 | 0090 0      |                             | 100 0    |          |
| MAX                         | 0.231    | 0.05              | 100°0     | 0.03   | 0.266 | 0.73   | 0.184 | 0.1   | 0.472       | 0.0721                      | 0.41     | 0.2      |
| PERCENTAGE CHANGE FROM 1991 | SE CHANG | E FROM 1          | 661-166   | 5<br>S |       |        |       |       | +94.7       | +80.1 +                     | +165.9   | +159.3   |
|                             | NAHAR (F | BEFORE CONFLIENCE | JNFT UENC | .E.)   |       |        |       | ( )   | рт 1,711 ПД | POTNT (AF                   | TTER CON | FLIENCE) |
|                             | ЧR<br>Н  |                   | TINTOR ,  |        |       |        |       |       |             | C + OAM + AN + HA COM HOURS |          |          |

~

120

TABLE 19 : MONTHLY VARIATIONS IN TOTAL COLIFORM (TC, MPN/100 ml) AND, RANGE, MEAN AND PERCENTAGE CHANGE AT THE MAHI ESTUARY FROM 1991-1993

.

-

.

|         |                  | •                                                    | 1661                |          |                            |        | 1992   | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, |                            |       | 1993    |                    |
|---------|------------------|------------------------------------------------------|---------------------|----------|----------------------------|--------|--------|---------------------------------------------------------------------------------------------|----------------------------|-------|---------|--------------------|
| POINT*, | N                |                                                      | Ω                   | P        | N                          | 'n     | Q      | D                                                                                           |                            | ъ     | Q       | D                  |
| JAN 2   | 24000            | 460                                                  | 300                 | 11000    | 460                        | ഹ      | 10     | 150                                                                                         | Q<br>Q                     | 460   | 0       | 75                 |
| ~       | $\cap$           | 11000                                                | 11000               | 24000    | 460                        | ഗ      | 2100   | 460                                                                                         | 460                        | 300   | 0       | 150                |
|         | 2                | 2400                                                 | 24000               | 11000    | 1100                       |        | 10     | 1100                                                                                        |                            | 750   | 0       | 150                |
| Ŕ       | 750              | 1100                                                 | 24000               | 11000    | 75                         | 1100   | 750    | 750                                                                                         | 1100                       | 460   | 2100    | 150                |
| Ж       |                  | 24000                                                | 24000               | 11000    | 1100                       |        | 0      | 2400                                                                                        |                            | 750   | S       | 150                |
| JUN     | 0                | 24000                                                | 2400                | 11000    | 460                        | 7      | 0      | 1100                                                                                        |                            | 1100  | 0       | 10                 |
| ŗ       |                  | 11000                                                | 2400                | 0011     | 1100                       | ഹ      | 0      | 1100                                                                                        |                            | 2400  | 0       | 0                  |
| U       | 750              | 24000                                                | 24000               | 1100     | 750                        | 750    | 0      | 750                                                                                         | 75                         | 1100  | 0       | 50                 |
| ۵.      | 750              | 11000                                                | 1500                | 1500     | 480                        |        | 1100   | 1100                                                                                        | 4                          | 750   | $\circ$ | 150                |
| E4      | 0011             | 2400                                                 | 1100                | 1500     | 150                        | 1500   | 0      | 1500                                                                                        | ŝ                          | 750   | 0       | ຽ                  |
| NOV     | 460              | 1500                                                 | 1500                | 750      | 150                        | -      | 0      | 1100                                                                                        | <b>1500</b>                | 460   | 0       | ŝ                  |
| DEC     | 150              | 300                                                  | 2400                | 460      | 75                         | 750    | 0      | 1100                                                                                        | 4                          | 460   | 150     | 75                 |
|         |                  |                                                      |                     |          |                            |        |        |                                                                                             |                            |       |         |                    |
| MEAN    | 4667.5           | 5 9430.0                                             | 9883.               | 3 7117.5 | 530.0                      | 1283.3 | 1437.5 | 1050.8                                                                                      | 467.9                      | 811.7 | 1250.0  | 375.0              |
| NIM     | 150              | 300                                                  | 300                 | 460      | 75                         | 750    | 750    | 15                                                                                          | 75                         | 300   | 15      | 75                 |
| MAX 2   | 24000            | 24000                                                | 24000               | 24000    | 1100                       | 0      | 0      | 2400                                                                                        | 1100                       | 2400  |         | 1100               |
| RCEN    | TAGE CI          | PERCENTAGE CHANGE FROM 1991-199                      | -1661 WC            | -1993    |                            |        |        |                                                                                             | -29.1                      | -36.8 | -89.3   | -94.7              |
|         | NAHAR<br>DOWN ST | NAHAR (BEFORE CONFLUEN<br>DOWN STRFAM OF ''J'' POINT | (BEFORE CONFLUENCE) | UENCE)   | 5<br>1<br>1<br>1<br>1<br>1 |        |        | ר ל<br>ו<br>ו                                                                               | - AT 'J'' I<br>- UP STREAM | - IO  |         | (AFTER CONFLUENCE) |

•

121

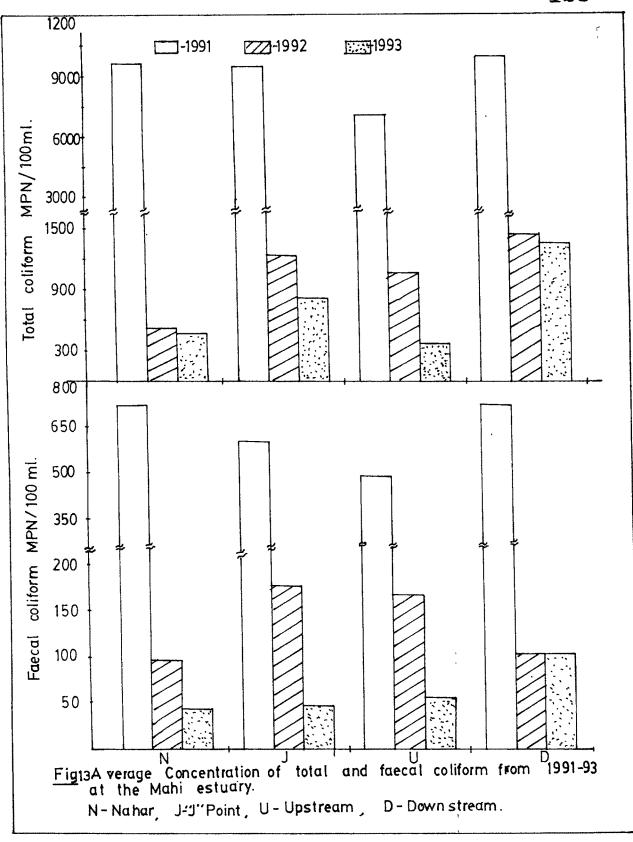
•

24

` t i

| YEAR                       |                  |                | σ                                                      |              |               |           | 1992                       |       |           |           |                       | * ** ** ** ** ** ** ** ** ** **            |
|----------------------------|------------------|----------------|--------------------------------------------------------|--------------|---------------|-----------|----------------------------|-------|-----------|-----------|-----------------------|--------------------------------------------|
| POINT*/<br>MONTH           |                  |                | Ω                                                      | n            | N             | ъ         | A                          | Ω     | z         | b         | D                     | D -                                        |
| JAN 3(                     |                  | 50             | . m                                                    |              | cω            | 4         | S<br>2                     | 75    | 70        | 70        |                       | 75                                         |
| 7                          | 0 11             | 00             | 150                                                    | 240          | 110           | 150       | 150                        | 75    | 35        | 75        | ഹ                     | 75                                         |
| 28                         | 0                | 60             | 0                                                      | ŗ            | - <b>-</b> -1 | 5         | 5                          | 75    | 30        | 35        |                       | 75                                         |
| 15                         | 0                | 50             | 0                                                      |              | 30            | 4         | 75                         | 75    | 35        | 30        |                       | 70                                         |
| MAY 3(                     | 0                | v              | 930                                                    | 70           | 30            | 240       | 75                         | 75    | 70        | 30        |                       | 30                                         |
| 240                        | CN               | 40             | 930                                                    |              | 75            | ŝ         | 75                         | ŝ     | 35        | 30        |                       | 30                                         |
| 24                         | 4                | 60             |                                                        | 2400         | 70            | 4         | 150                        |       | 30        | 75        |                       | 150                                        |
| 24                         | 6                | 50             | 100                                                    | 2400         | 35            | S         | 5                          | S     | 35        | 70        | 5                     | 30                                         |
| 11                         | 11 0             | 00             | 400                                                    | 70           | 350           | 75        | 150                        | 240   | 75        | 70        | 150                   | 30                                         |
| m                          | 0 11             | 00             | ω                                                      | 75           | 30            | 75        | 110                        | S     | 35        | 35        |                       | 30                                         |
| 28                         | 0 11             | 00             | 110                                                    | 75           | 30            | 4         | 75                         | 70    | 30        | 30        |                       | 30                                         |
| 43                         | 0                | .50            | 75                                                     | 150          | 30            | 240       | 75                         | 70    | 30        | 30        |                       | 35<br>35                                   |
|                            |                  |                |                                                        |              |               |           |                            |       |           |           |                       |                                            |
| MEAN 717                   | ഹ                | 601.7          | 725.4                                                  | 487.5        | 98.3          | 176.3     | 102.1                      | 167.9 | 42.5      | 48.3      | 102.1                 | 55.0                                       |
| E NIM                      | 30               | 1100           | 110                                                    | 0,7<br>0,400 | 30<br>350     | 75<br>240 | 70<br>150                  | 750   | 30<br>75  | 30        | 70                    | 30<br>150                                  |
|                            |                  | NOGA AT        |                                                        | ι σ          | )             | ۲         | >                          | }     |           |           | ) (0                  | ) at                                       |
| aper Naper                 |                  |                | +                                                      | 5            |               |           |                            |       |           |           |                       |                                            |
| * N - NAHAR<br>D - DOWN ST | LAR (1<br>STREAU | BEFORE<br>M OF | NAHAR (BEFORE CONFLUENCE)<br>DOWN STREAM OF '''' POINT | NCE)<br>T    |               | -<br>1    | f<br>3<br>5<br>6<br>7<br>1 | כל    | - AT 'J'' | AM OF ''C | (AFTER CC<br>J' POINT | POINT (AFTER CONFLUENCE)<br>OF ''J'' POINT |

TABLE 20 : MONTHLY VARIATIONS IN FECAL COLIFORM (FC, MPN/100 ml) AND, RANGE, MEAN AND PERCENTAGE CHANGE AT THE MAHI ESTUARY FROM 1991-1993


122

•

•

•

• 、



point, at upstream and at downstream was 0.048 mg/l, 0.0145 mg/l and 0.0188 mg/l respectively in 1991 which increased to 0.1422, 0.1329 and 0.1028 mg/l respectively in 1993, an increase of 195% at J-point, 816% at upstream and 27% at downstream. Similarly, the Fe content was 0.0127 mg/l, 0.018 mg/l and 0.0045 mg/l in 1991 which increased to 0.3875 mg/l, 0.720 mg/l and 0.0183 mg/l respectively in 1993, an increase of 2884.6% at J Point, 3333.33% at up stream and 307% at downstream. The data is shown in tables 21 and 22 and figures 14 - 16).

### NICKEL (Ni) AND COPPER (Cu)

The data on Ni and Cu for the 3 years period of study is represented in tables 23 and 24 and figures 14, 16 and 17. The Ni content at the J-point, at upstream and at downstream was 0.01666, 0.0144, 0.0183 mg/l in 1991 which increased to 0.18424, 0.2961 and 0.0755 mg/l in 1993, an increase of 995.9% at the J-point, 1476% at upstream and 312.5% at downstream. Similarly, the Cu content was 0.0449 at the J-point, 0.0535 at upstream and 0.08083 mg/l at downstream in 1991 which increased to 0.199, 0.2012 and 0.1932 mg/l respectively in 1993, an increase of 201.5% at the J-point, 282% at up stream and 139% at downstream.

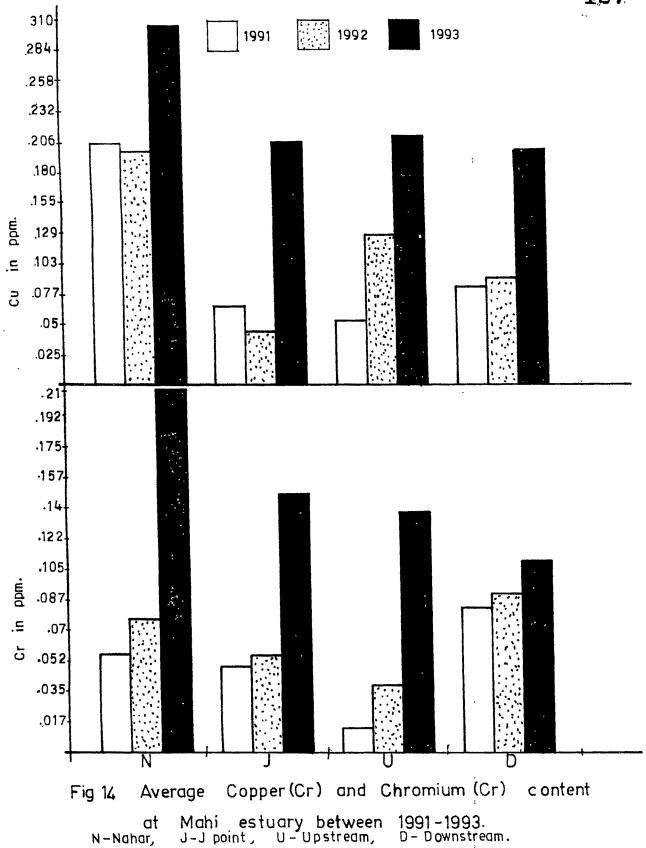
124

TABLE 21 : MONTHLY VARIATIONS IN CHROMIUM (Cr; mg/l) AND; RANGE, MEAN AND PERCENTAGE CHANGE AT THE MAHI ESTUARY FROM 1991-1993

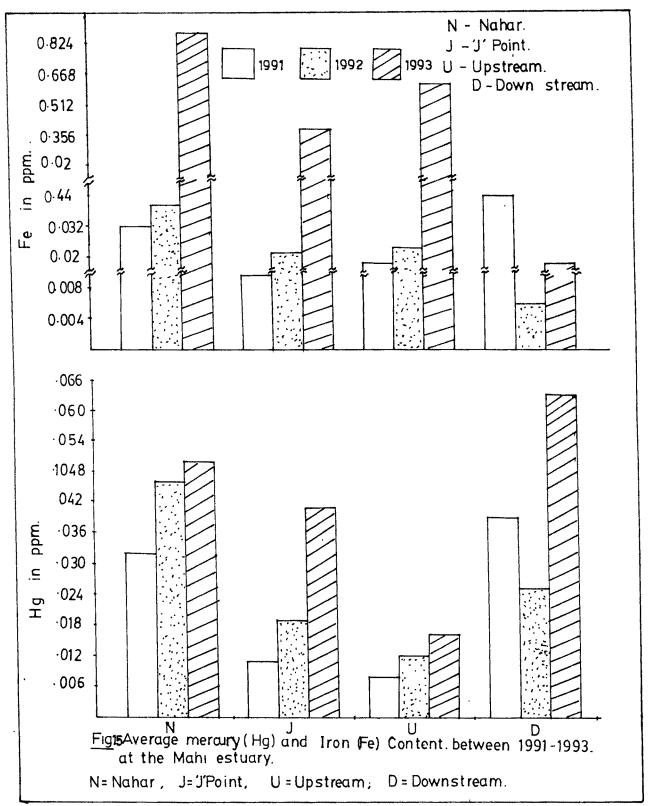
| POINT*/ N J<br>MONTH JAN 0.117 0.107<br>JAN 0.117 0.107<br>FEB 0.02 0.013<br>MAR 0.06 0.057<br>APR 0.04 0.038<br>MAY 0.088 0.077<br>JUN 0.002 0.001<br>JUL 0.006 0.003 | D<br>0.003<br>0.003<br>0.097<br>0.06 |       |       |                 |       |                      |           |                         |          |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------|-------|-----------------|-------|----------------------|-----------|-------------------------|----------|-------|
| 0.117<br>0.012<br>0.02<br>0.06<br>0.04<br>0.088<br>0.002<br>0.002<br>0.006<br>0.006                                                                                    | 0.003<br>0.003<br>0.097<br>0.06      | D     | Z     | ر               | A     | a                    | N         | ۲.<br>۱                 | Ω        | n     |
| 0.02<br>0.06<br>0.06<br>0.03<br>0.003<br>0.002<br>0.002                                                                                                                | 0.003<br>0.097<br>0.06               | 0.004 | 0.103 | 0.101           |       | 0.002                | 0.413     | 0.311                   | •        | 0.11  |
| 0.06<br>0.04<br>0.088<br>0.002<br>0.002<br>0.006                                                                                                                       | 0.097<br>0.06                        | 0.002 | 0.163 | 0.124           | 0.383 | 0.002                | 0.311     | 0.152                   | 0.148    | 0.2   |
| 0.04 0.<br>0.088 0.<br>0.002 0.<br>0.006 0.                                                                                                                            | 0.06                                 | -     | 0.064 | 0.043           | .07   | 0.011                | 0.4316    |                         | .04      | ٠     |
| 0.088 0.<br>0.002 0.<br>0.006 0.                                                                                                                                       |                                      | •     | 0.083 | 0.06            |       | 0.03                 | 0.101     |                         | 4.2      | •     |
| 0.002 0.006 0.                                                                                                                                                         | 0.403                                | 0.03  | 0,099 | 0.048           |       | 0.03                 | 0.389     |                         | 4        | •     |
| 0.006 0.                                                                                                                                                               | 0.006                                | •     | 0:025 | 0.02            |       | 0.09                 | 0.414     |                         | .05      | •     |
|                                                                                                                                                                        | 0.001                                |       | 0.009 | 0.004           |       | 0.02                 | 0.008     | •                       | .03      | •     |
| 0.006                                                                                                                                                                  | 0.01                                 | •     | 0.005 | 0.003           |       | 0.07                 | 0.01      | •                       | •        |       |
| 0.004 0.                                                                                                                                                               | 0.048                                | -     | 0.012 | 0.009           |       | 0.09                 | 0.062     |                         | °.       | •     |
|                                                                                                                                                                        | 0.168                                | •     | 0.025 | 0.019           |       | 0.07                 | 0.123     |                         | °,       |       |
| 0.182 0.                                                                                                                                                               | 0.145                                | •     | 0,099 | 0.09            | 00.   | 0.03                 | 0.072     | •                       | •        | •     |
| DEC 0.089 0.072                                                                                                                                                        | 0.03                                 |       | 0.198 | 0.129           |       | 0.002                | 0.147     |                         |          | •     |
|                                                                                                                                                                        |                                      |       |       |                 |       |                      |           |                         |          |       |
| MEAN 0.055 0.048                                                                                                                                                       | 0.081                                | 0.015 | 0.074 | 0.054           | 0.089 | 0.037                | 0.207     | 0.142                   | 0.105    | 0.133 |
|                                                                                                                                                                        |                                      |       |       |                 |       |                      |           |                         |          |       |
| MIN 0.002 0.001                                                                                                                                                        | 0.001                                | 0.001 | 0.005 | 0.003           | 0.003 | 0.002                | 0.011     | 0.003                   | 0.03     | 0.001 |
| MAX 0.182 0.173                                                                                                                                                        | 0.168                                | 0.09  | .19   | •               | .38   | 0.09                 | 4.        | .36                     |          | 0.31  |
|                                                                                                                                                                        |                                      |       |       | * * * * * * * * |       | #* ** ** ** ** ** ** |           |                         |          |       |
| PERCENTAGE CHANGE FROM 1991-                                                                                                                                           | -1993                                |       |       |                 |       |                      | +279.4    | +195.3                  | +27      | +810  |
| <ul> <li>N - NAHAP (BEFORE CONFLUENCE)</li> <li>D - DOWN STDEAM OF ''T' DOTUT</li> </ul>                                                                               | FLUENCE)                             |       |       |                 |       |                      | AT 'J'' P | POINT (AFTER CONFLUENCE | ER CONFL | UENCE |

| MONTHLY VARIATIONS IN IRON (Fe, mg/1) AND, RANGE, MEAN AND PERCENTAGE CHANGE AT |                              |
|---------------------------------------------------------------------------------|------------------------------|
| PERCENTAG                                                                       |                              |
| AND                                                                             |                              |
| RANGE, MEAN                                                                     |                              |
| AND,                                                                            |                              |
| mg/1)                                                                           |                              |
| (Fe,                                                                            | 1003                         |
| IRON                                                                            | 1001                         |
| NI                                                                              | 2000                         |
| VARIATIONS                                                                      | 2001 - 1001 TOUR VOLUME 1003 |
| MONTHLY                                                                         |                              |
| ••                                                                              |                              |
| 2                                                                               |                              |
| TABLE 2                                                                         |                              |

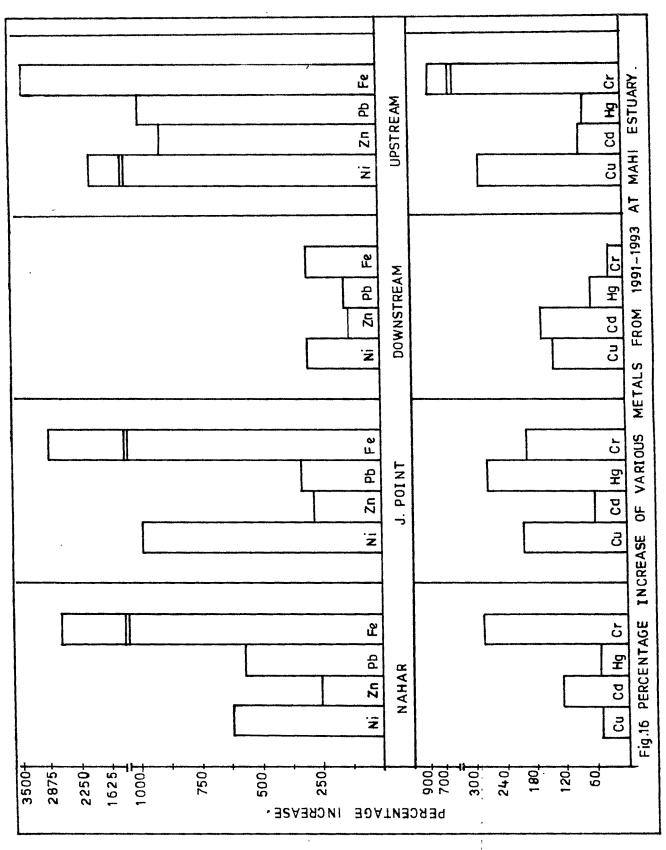
.


•

| 1991-1993 |
|-----------|
| FROM      |
| ESTUARY   |
| MAHI      |
| THE       |
|           |
|           |


· .

| YEAR              |                                                  |           | 1661                |       |   |        | ά.<br>Τ                                                                                     | 222                                                                                                   |       |              |           |                         |        |
|-------------------|--------------------------------------------------|-----------|---------------------|-------|---|--------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------|--------------|-----------|-------------------------|--------|
| POINT*/           |                                                  |           | ρ                   | e     | z | Ċ      | Ω                                                                                           | n                                                                                                     | N     | Ъ            | Ð         | D                       |        |
|                   | 0.049                                            | 600.0     | 0.01                | 0.003 |   | 0.141  |                                                                                             | I *                                                                                                   | 0.002 |              | $\sim$    | 0.004                   | 0.009  |
| TEB.              | 0.082                                            | 00        | 0.001               | 0     | 2 | 0.023  |                                                                                             | •                                                                                                     | 0.002 |              | ~         | 0.002                   |        |
| MAR               | 0.022                                            | 0,013     |                     | 0     |   | 0.073  |                                                                                             |                                                                                                       | 0.003 |              |           | 0.003                   | .03    |
| <b>APR</b>        | 0.017                                            | 0.009     |                     | •     |   | 0.089  | •                                                                                           |                                                                                                       | 0,003 |              |           | 0.003                   | 1.111  |
| MAY               | 0.075                                            | 0.017     | 0.003               | 0.037 | ~ | 0.031  | 0.029                                                                                       | 0.003                                                                                                 | 0.041 | 0.627        | 0.03      | 0.013                   | .1.027 |
| JUN               | 0.332                                            | 0.021     | 0.004               | ō     | - | 0.029  |                                                                                             |                                                                                                       | 0.034 |              |           | 0.041                   | •      |
| זטנ               | 0.009                                            | 0.008     | 0.005               | ò     | - | 0.012  | •                                                                                           | •                                                                                                     | 0.033 |              | -         | 0.033                   | •      |
| AUG               | 0.004                                            | 0.002     | 0.006               | •     | ~ | 0.009  | •                                                                                           | -                                                                                                     | 0.037 |              | •         | 0.047                   |        |
| SEP               | 0.019                                            | 0.017     | 0.006               | 0     | - | 0.021  |                                                                                             |                                                                                                       | 0.029 |              |           | 0.028                   | 0.011  |
| OCT               | 0.022                                            | 0.013     | 0.007               |       | 2 | 0.027  |                                                                                             |                                                                                                       | 0.031 |              | ਼         | 01                      |        |
| NOV               | 0.029                                            | 0.023     | 0.007               | 0     | 2 | 0.031  | •                                                                                           | 0.011                                                                                                 | 0.033 |              | 5         | 0.011                   | 0.999  |
| DEC               | 0.028                                            | 0.012     | 0.009               | 0.037 | ~ | 0.021  | •                                                                                           | .01                                                                                                   | 0.033 |              |           | 0.017                   |        |
|                   |                                                  |           |                     |       |   |        |                                                                                             |                                                                                                       | -     |              |           |                         |        |
| MEAN              | 0.032                                            | 0.013     | 0.005               | 0.018 | ) | 0.042  | 0.022                                                                                       | 0.006                                                                                                 | 0.023 | 0.880        | 0.388     | 0.018                   | 0.618  |
| NIM               | 0.004                                            | 0.002     | 0.001               | 0.002 | 0 | 000.00 | 0.003                                                                                       | 0.002                                                                                                 |       |              | 0.04      | 0.002                   | 0.021  |
| MAX               | 0.082                                            | 0.023     | 0.009               | 0.041 | - | 0.141  | 0.1                                                                                         | 0.011                                                                                                 | 0.037 | 1.97         | 1.76      | 0.047                   | 1.111  |
| PERCENTAGE CHANGE | E CHANGE                                         | FROM      | 1991-1993           |       |   |        |                                                                                             |                                                                                                       |       | +2650        | +2884.6   | +306.6+3333             | 3333.3 |
|                   | NAHAR (BEFORE CONFLUE<br>DOWN STREED OF '' POINT | BEFORE CC | (BEFORE CONFLUENCE) |       | 1 |        | #<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br>#<br># | 3<br>4<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |       | AT ''J'' POI | POINT (AF | POINT (AFTER CONFLUENCE | UENCE) |


.











| POINT+/         N         J         D         U         N         J         D         U         N         J         D         U         N         J         D         U         N         J         D         U         N         J         D         U         J         D         U         N         J         D         U         J         D         U         J         D         U         J         D         U         J         D         U         J         D         U         J         D         U         J         D         U         J         D         U         J         D         U         J         D         U         J         D         U         J         D         U         J         D         U         J         D         U         J         D         U         J         D         U         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J </th <th>YEAR</th> <th></th> <th>. 19</th> <th>1661</th> <th></th> <th></th> <th>199</th> <th>92</th> <th></th> <th></th> <th>19</th> <th>93</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | YEAR      |          | . 19      | 1661      |       |        | 199  | 92    |       |          | 19       | 93           |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|-----------|-----------|-------|--------|------|-------|-------|----------|----------|--------------|--------|
| 0.063       0.02       0.01       0.013       0.107       0.073       0.1       0.041       0.012       0.11       1         0.065       0.017       0.011       0.013       0.011       0.009       0.039       0.11       1       1         0.065       0.017       0.013       0.011       0.005       0.013       0.013       0.029       0.013       0.029       0.013       0.029       0.029       0.022       0.013       0.013       0.013       0.012       0.011       1.033       0.012       0.013       0.025       0.013       0.022       0.013       0.012       0.013       0.012       0.013       0.012       0.013       0.012       0.013       0.012       0.013       0.025       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013       0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | POINT*/   | N        | بر<br>ا   |           |       |        | Ω    | n     | N     | ŋ        | Ω        | D            |        |
| 0.062       0.017       0.011       0.009       0.099       0.1       0.02       0.039       0.039       0.011       1         0.059       0.019       0.056       0.03       0.013       0.022       0.113       0.023       0.013       0.022       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.032       0.011       0.022       0.011       0.022       0.011       0.022       0.013       0.013       0.013       0.013       0.013       0.013       0.011       0.013       0.013       0.013       0.012       0.012       0.012       0.012       0.012       0.012       0.013 <th>TAN</th> <th>0.083</th> <th>0.02</th> <th>0.01</th> <th></th> <th></th> <th></th> <th>0.1</th> <th></th> <th>i •</th> <th></th> <th>0.11</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TAN       | 0.083    | 0.02      | 0.01      |       |        |      | 0.1   |       | i •      |          | 0.11         |        |
| R         0.055         0.019         0.026         0.021         0.021         0.021         0.023         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.022         0.021         0.022         0.021         0.022         0.021         0.022         0.021         0.022         0.021         0.022         0.021         0.022         0.021         0.022         0.021         0.023         0.011         0.023         0.011         0.023 <th0.01< th="">         0.023         0.012</th0.01<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FER       | 0.062    | 0.017     | 0.07      |       |        | •    | 0.1   |       |          | •        | 0.11         | -1     |
| R         0.069         0.024         0.04         0.022         0.011         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.022         0.021         0.022         0.021         0.022         0.021         0.022         0.021         0.022         0.001         0.022         0.001         0.022         0.001         0.022         0.001         0.022         0.001         0.022         0.001         0.022         0.001         0.022         0.001         0.022         0.001         0.022         0.001         0.022         0.001         0.022         0.001         0.022         0.001         0.022         0.001         0.022         0.001         0.022         0.001         0.022         0.011         0.022         0.011         0.022         0.011         0.022         0.011         0.022         0.012         0.023         0.011         0.023         0.011         0.023         0.012         0.023         0.013         0.023         0.013         0.023         0.013         0.023         0.013         0.023         0.013         0.023         0.013 <th0.033< th="">         0.013         0.013</th0.033<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MAR       | 0.059    | 0.019     | 0.056     | •     |        | •    | 0.07  |       |          | ٠        | 0.229        | 0.03   |
| N         0.071         0.035         0.001         0.666         0.079         0.01         0.022         0.217         0.032         0.037         0.035         0.037         0.035         0.037         0.035         0.037         0.035         0.037         0.035         0.037         0.035         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.037         0.033         0.011         0.037         0.037         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033 <th0.033< th="">         0.034         0.03&lt;</th0.033<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | APR       | 0.069    | 0.024     | 0.04      | •     |        |      | 0.01  | •     | .831     | ٠        | 0.02         | 0.011  |
| N         0.013         0.001         0.002         0.001         0.025         0.025         0.025         0.025         0.025         0.025         0.025         0.025         0.025         0.027         0.025         0.027         0.025         0.027         0.025         0.027         0.025         0.027         0.025         0.001         0.025         0.001         0.025         0.001         0.025         0.001         0.025         0.011         0.025         0.011         0.023         0.011         0.023         0.011         0.023         0.013         0.023         0.013         0.023         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.011         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAY       | 0.071    | 0.035     | 0,003     |       |        | •    | 0.01  | •     |          | ٠        | 0.032        | 0.311  |
| II       0.014       0.001       0.002       0.001       0.005       0.005       0.01       0.027       0.01       0.027       0.01       0.027       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01 <td>NIII</td> <td>0.013</td> <td>0.001</td> <td>0.002</td> <td></td> <td></td> <td></td> <td>0.03</td> <td>•</td> <td></td> <td></td> <td>0.025</td> <td>0.03</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NIII      | 0.013    | 0.001     | 0.002     |       |        |      | 0.03  | •     |          |          | 0.025        | 0.03   |
| 1       0.021       0.002       0.001       0.058       0.005       0.017       0.017       0.019       0.013       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | 0.014    | 0.001     | 0.002     | •     |        | •    | 0.02  | •     |          |          | 0.02         | 0.003  |
| Image: Distribution of the image of the | AllG      | 0.021    | 0.002     | 0.002     | •     | •      | -    | 0.03  | •     | •        | ٠        | 0.01         | 0.005  |
| TT       0.083       0.011       0.013       0.002       0.213       0.019       0.066       0.092       0.032       0.03       0.         C       0.107       0.033       0.011       0.002       0.109       0.027       0.01       0.03       0.12       0.         C       0.107       0.035       0.011       0.107       0.217       0.118       0.004       0.0768       0.5       0.12       0         AN       0.060       0.017       0.101       0.107       0.217       0.118       0.004       0.0786       0.481       0.15       0         AN       0.060       0.017       0.018       0.014       0.284       0.049       0.033       0.438       0.186       0.074       0         AN       0.061       0.001       0.001       0.001       0.056       0.107       0.822       0.118       0.1       0.022       0.004       0.022       0.004       0.022       0.004       0.022       0.022       0.022       0.223       1.         A       0.107       0.035       0.107       0.822       0.118       0.1       0.101       0.022       0.004       0.229       1.         A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 250       | 110.0    | 0.002     | 100.0     |       |        |      | 03    |       | •        |          | 0.03         | 10.0   |
| W       0.107       0.033       0.011       0.002       0.109       0.027       0.01       0.03       0.125       0.12       0         AN       0.092       0.035       0.01       0.107       0.217       0.118       0.004       0.07       0.768       0.5       0.125       0         AN       0.060       0.017       0.018       0.014       0.284       0.049       0.040       0.033       0.186       0.074       0         AN       0.060       0.017       0.018       0.014       0.284       0.049       0.0433       0.438       0.186       0.074       0         N       0.013       0.001       0.001       0.001       0.058       0.006       0.013       0.186       0.022       0.074       0.02       0         N       0.107       0.035       0.056       0.107       0.822       0.118       0.1108316       0.707       0.229       1         N       0.107       0.035       0.056       0.107       0.822       0.118       0.1108316       0.707       0.229       1         N       NAMAF       (BEFORE CONFLUENCE)       1091       0.107       0.10       0.11108316       0.707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 170       | 0.083    | 0.011     | 0.013     | •     | •      | •    | 0.06  |       |          | •        | 0.03         | 0.012  |
| C       0.092       0.035       0.01       0.107       0.217       0.118       0.004       0.076       0.481       0.15       0         AN       0.060       0.017       0.018       0.014       0.284       0.049       0.040       0.033       0.438       0.186       0.074       0         AN       0.060       0.017       0.018       0.014       0.284       0.049       0.033       0.438       0.186       0.074       0         N       0.107       0.035       0.001       0.001       0.058       0.0066       0.01       0.022       0.004       0.02       0         X       0.107       0.035       0.056       0.107       0.822       0.118       0.1       0.1108316       0.707       0.229       1         RCENTAGE       FROM 1991-1993       F629.6       F995.9       F312.5       F14         N - NAHAP       (BEFORE CONFLUENCE)       J - AT ''J'' FOINT (AFTER CONFLUENCE)       J - AT ''J'' FOINT (AFTER CONFLUENCE)       J - AT ''J'' FOINT (AFTER CONFLUENCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NON       | 0.107    | 0.033     | 0.011     |       |        | -    | 0.01  |       | •        | ٠        | 0.12         | 0.012  |
| LAN       0.056       0.017       0.018       0.014       0.284       0.049       0.040       0.033       0.186       0.074       0.         LAN       0.060       0.017       0.018       0.014       0.284       0.049       0.040       0.033       0.186       0.074       0.         N       0.013       0.001       0.001       0.058       0.058       0.006       0.01       0.022       0.004       0.02       0.         X       0.107       0.035       0.056       0.107       0.822       0.118       0.1       0.11108316       0.707       0.229       1.         RCENTAGE CHANGE FROM 1991-1993       *       *       0.1108316       0.1108316       0.707       0.229       1.         N - NAHAP       (BEFORE CONFLUENCE)       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       * <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>S</td> <td></td> <td></td> <td></td> <td>0.15</td> <td>0,09</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |          |           |           |       |        |      | S     |       |          |          | 0.15         | 0,09   |
| Image: Second | DEC       | 0.092    | 50.       | •         | •     | •      | •    | 2     | •     | •        | •        | ).<br>•<br>• |        |
| IN       0.000       0.011       0.014       0.014       0.014       0.014       0.014       0.014       0.014       0.014       0.014       0.014       0.014       0.014       0.014       0.022       0.004       0.012       0.01       0.022       0.014       0.022       0.014       0.022       0.014       0.022       0.014       0.022       0.022       0.014       0.022       0.022       0.022       0.014       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.022       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |          |           |           |       | c<br>c | č    |       |       | C V      | α<br>Γ   | V 074        |        |
| N         0.013         0.001         0.001         0.0058         0.006         0.004         0.01         0.022         0.004         0.02         0.00           X         0.107         0.035         0.056         0.107         0.822         0.118         0.1         0.1108316         0.707         0.229         1.21           RCENTAGE         CHANGE         FROM         1991-1993         +629.6         +995.9         +312.5         +1476           N - NAHAP         (BEFORE         CONFLUENCE)         J - AT ''J'' POINT (AFTER CONFLUENCE)         J - AT ''J'' POINT (AFTER CONFLUENCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MEAN      | 0.060    | / 10.0    | 0.UL8     | •     | 87.    | - C4 | U.U4U | 0.033 | • •<br>• | •        | r<br>        | •      |
| X 0.107 0.035 0.056 0.107 0.822 0.118 0.1 0.11108316 0.<br>RCENTAGE CHANGE FROM 1991-1993<br>N - NAHAP (BEFORE CONFLUENCE) J - AT '.J'' POINT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NIM       | 0,013    | 0.001     | 0.001     | 0.001 | . 05   | . 00 | 00    | •     | 0.022    | <u> </u> | 0.02         | 0.005  |
| RCENTAGE CHANGE FROM 1991-1993<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MAX       | 0.107    | 0.035     | 0.056     | 0.107 | .82    | .11  | 0.1   | .1110 | 31       | 5        | 0.229        | 1.2r   |
| N - NAHAP (BEFORE CONFLUENCE)<br>N - NAHAP (BEFORE CONFLUENCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PERCENTAG | E CHANGE | FROM      | 91-1993   |       |        |      |       |       | +629.6   | 995.     | •            | +1476  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | HAP (E   | JEFORE CO | NFLUENCE) |       |        |      |       |       |          | LNIOd    | TER CONFL    | UENCE) |

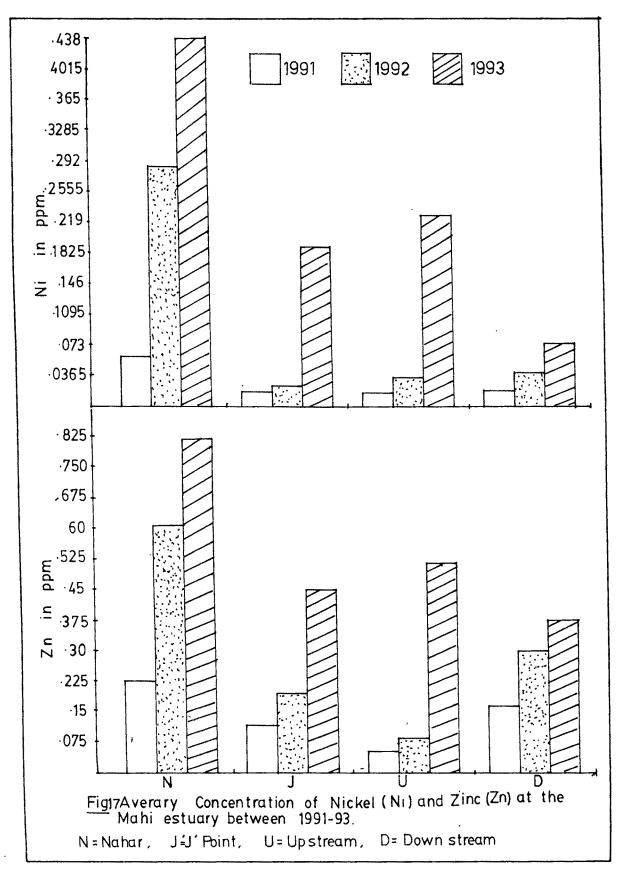
TABLE 23 ; MONTHLY VARIATIONS IN NICKEL (Ni, mg/l) AND, RANGE, MEAN AND PERCENTAGE CHANGE AT

130

,

.

•


| : MONTHLY VARIATIONS IN COPPER (Cu, mg/l) AND, RANGE, MEAN AND PERCENTAGE CHANGE AT |                             |
|-------------------------------------------------------------------------------------|-----------------------------|
| RANGE, MEAN AND                                                                     |                             |
| , mg/l) AND,                                                                        |                             |
| N COPPER (Cu                                                                        | M 1991-1993                 |
| VARIATIONS I                                                                        | WANT FETTADY FROM 1991-1993 |
| 24 : MONTHLY                                                                        | HAN GAU                     |
| TABLE                                                                               |                             |

THE MAHI ESTUARY FROM 1991-1993

.

| POINT*/         N         J         D         U         N         J           JAN         0.307         0.1         0.128         0.113         0.427           JAN         0.307         0.1         0.128         0.111         0.319           JAN         0.271         0.169         0.17         0.111         0.319           JAN         0.271         0.169         0.17         0.111         0.319           MAR         0.093         0.052         0.082         0.013         0.411           APR         0.097         0.012         0.01         0.359           JUN         0.2395         0.012         0.01         0.368           JUN         0.027         0.012         0.033         0.033           JUL         0.5395         0.025         0.01         0.033           JUL         0.5395         0.025         0.01         0.033           JUL         0.321         0.025         0.01         0.033           JUL         0.321         0.025         0.01         0.033           JUL         0.321         0.025         0.01         0.027           SEP         0.037 | D<br>0.061<br>0.057<br>0.058<br>0.068<br>0.068<br>0.029 | U<br>0.158<br>0.09<br>0.089<br>0.038                               | N<br>0.107<br>0.311<br>0.01<br>0.03<br>0.21 | 9                    |                |       |                                                     |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------|----------------------|----------------|-------|-----------------------------------------------------|---|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 050.006                                                 | 0.0000000000000000000000000000000000000                            |                                             | b                    | Q              | n     | 3<br>3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 055.055.055.055.055.055.055.055.055.055                 | .03                                                                |                                             | 10                   |                | 0.139 | •                                                   |   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .05.00                                                  | 60.<br>60.<br>60.<br>60.<br>60.<br>60.<br>60.<br>60.<br>60.<br>60. |                                             | 0.412                | 0.219          | 0.405 | 1.2                                                 |   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .06.002                                                 | .03<br>.03<br>.03                                                  |                                             | .04                  | •              | 0.63  | •                                                   |   |
| 0.182       0.099       0.04       0.01       0.38         0.027       0.012       0.09       0.01       0.03         0.5395       0.025       0.01       0.022       0.02         0.5395       0.005       0.01       0.022       0.02         0.099       0.005       0.01       0.005       0.01         0.0875       0.009       0.014       0.003       0.02         0.321       0.025       0.09       0.061       0.03         0.203       0.178       0.1       0.03       0.03         0.162       0.178       0.1       0.09       0.03         0.162       0.13       0.215       0.03       0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 02.00                                                   | .03                                                                | •                                           | .04                  | •              | 0.107 |                                                     |   |
| 0.027 0.012 0.09 0.01 0.03<br>0.5395 0.025 0.01 0.002 0.02<br>0.099 0.005 0.01 0.005 0.01<br>0.0875 0.009 0.04 0.003 0.02<br>0.321 0.025 0.09 0.061 0.04<br>0.200 0.178 0.1 0.09 0.03<br>0.215 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02                                                      | 0.0,                                                               |                                             | 0.21                 | •              | 0.209 | •                                                   |   |
| 0.5395       0.025       0.01       0.002       0.02         0.099       0.005       0.01       0.005       0.01         0.0875       0.009       0.04       0.003       0.02         0.321       0.025       0.09       0.061       0.03         0.225       0.09       0.061       0.03       0.03         0.225       0.178       0.1       0.09       0.03         0.162       0.178       0.1       0.09       0.03         0.162       0.099       0.13       0.215       0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00                                                      | 0,                                                                 |                                             | 51                   |                | 0.011 |                                                     |   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         | (                                                                  | •                                           | .21                  | •              | 0.003 | •                                                   |   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00.                                                     | •                                                                  |                                             | 4                    | •              | 0.001 | •                                                   |   |
| 0.321 0.025 0.09 0.061 0.04<br>0.255 0.178 0.1 0.09 0.03<br>0.162 0.099 0.13 0.215 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .00                                                     | °.                                                                 | •                                           | .09                  |                | 0.02  | •                                                   |   |
| 0.255 0.178 0.1 0.09 0.03<br>0.162 0.099 0.13 0.215 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                       | °.                                                                 | •                                           | .11                  | •              | 0.258 | •                                                   | ŧ |
| 0.162 0.099 0.13 0.215 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                       |                                                                    |                                             | .09                  | •              | 0.227 |                                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .11                                                     |                                                                    | •                                           | . 67                 | •              | 0.309 |                                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         |                                                                    |                                             |                      |                |       |                                                     |   |
| MEAN 0.199 0.068 0.081 0.054 0.192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.045                                                   | 0.087                                                              | 0.124                                       | 0.302                | 0.199          | 0.193 | 0.204                                               |   |
| 7 0.005 0.01 0.002 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00.                                                     | •                                                                  | .00                                         | .04                  | .03            | 0.001 | •                                                   |   |
| 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.118                                                   | 0.158                                                              | 0.311                                       | 1.211                | 0.801          | 0.309 | 1.2                                                 |   |
| PERCENTAGE CHANGE FROM 1991-1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         |                                                                    |                                             | +52                  | +201.5         | ÷130  | +282                                                |   |
| D - DOWN STREAM OF ''J'' POINT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         |                                                                    |                                             | AT 'J''<br>UP STREAM | POINT<br>OF '' | ONE   | T UENCE )                                           |   |

**ï**31



### ZINC (Zn) AND CADMIUM (Cd)

Both Zn and Cd content increased in the 3 year study period, as represented in table 25 and 26 and figures 16-18. The Zn content at the J-point, at upstream an at downstream was 0.115, 0.0516 and 0.1787 mg/l respectively in 1991 which increased to 0.4477, 0.5164 & 0.3776 mg/l respectively in 1993, an increase of 289% at the J-point, 900% at upstream and 111.7% at downstream. Similar trend was shown by Cd, which increased from 0.01625 at the J-point, 0.01266 at upstream and 0.01958 mg/l at downstream in 1991 to 0.02652, 0.02366 and 0.02975 mg/l respectively in 1993. There was an increase of 64.3% at the J-point, 81.18% at upstream and 73.33% at downstream.

LEAD (Pb) AND MERCURY (Hg)

. .

**,** , ,

There was significant increase in the content of Pb and Hg over the three year period of study which is depicted in tables 27 and 28 and figures 15,16 and 18. The Pb content at the J-point, at upstream and at downstream was 0.0952, 0.0431 and 0.1421 mg/l respectively in 1991 which increased to 0.41266, 0.4694 & 0.3555 mg/l respectively in 1993, indicating an increase of 346% at the J-point, 989% at upstream and 150% at downstream. Similarly, Hg showed increase from 0.01108 mg/l at the J-Point, 0.0095mg/l at up

· · ·

TABLE 25 : MONTHLY VARIATIONS IN ZINC (Zn, mg/l) AND, RANGE, MEAN AND PERCENTAGE CHANGE AT THE MAHI ESTUARY FROM 1991-1993

ı

4

,

----

| YEAR                                                                                             |                                                  | 1661 .              | 16        |       |                                | 195   | 992   |       |            | 1         | 1993                    |       |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------|-----------|-------|--------------------------------|-------|-------|-------|------------|-----------|-------------------------|-------|
| PONT+/                                                                                           | N                                                | 1<br>1<br>1         |           |       | *<br> <br> <br> <br> <br> <br> |       | Ω     | D     | N          | 'n        | D                       | D     |
| TAN                                                                                              | 0.421                                            | 0.21                | 0.102     | 0.123 | 0.721                          | 0.215 | 0.314 | 0.11  | 0.998      | 0.461     | 1.11                    | 1.37  |
| FER.                                                                                             | 0.513                                            | 0.147               | 0.1       | 0.054 | 0.673                          | 0.209 | 0.1   | 0.11  | 0.926      | 0.622     | 0.51                    | 0.22  |
| MAR                                                                                              | 0.417                                            | 0.236               | 0.1       | 0,009 | 0.499                          | 0.012 | 0.26  | 0.09  | 1.213      | 0.57      | 0.731                   | 0.01  |
| APR                                                                                              | 0.462                                            | 0.198               | 0.11      | 0.014 | 0.673                          | 0.114 | 0.104 | 0.09  | 0.868      | 0.79      | 0.607                   | 0.07  |
| MAY                                                                                              | 0.409                                            | 0.291               | 0.021     | 0.015 | 0.541                          | 0.201 | 0.11  | 0.031 | 0.9262     | 0.68      | 0.186                   | 0.03  |
| NDL                                                                                              | 0.048                                            | 0.029               | 0.1       | 0.001 | 0.763                          | 0.207 | 0.32  | 0.09  | 0.523      | 0.29      | 0.02                    | 0.0   |
| TUL                                                                                              | 0.018                                            | 0.004               | 0.11      | 0.001 | 1.21                           | 0.6   | 0.05  | 0.01  | 0.11       | 0.05      | 0.086                   | 0.56  |
| AUG                                                                                              | 0.013                                            | 0.005               | 0.2       | 0.004 | 0.213                          | 0.072 | 0.01  | 0.035 | 0.123      | 0.06      | 0.012                   | 0.99  |
| 4<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 0.041                                            | 0.002               | 0.21      | 0.017 | 0.021                          | 0.004 | 0.219 | 0.036 | 0.723      | 0.08      | 0.038                   | 0.12  |
| ocr                                                                                              | 0.031                                            | 0.007               | 0.22      | 0.153 | 0.124                          | 0.041 | 0.63  | 0.09  | 1.213      | 0.22      | 0.012                   | 0.21  |
| NON                                                                                              | 0,098                                            | 0.053               | 0.269     | 0.119 | 0.367                          | 0.136 | 0.264 | 0.11  | 0.917      | 0.36      | 0.1                     | 1.3   |
| DEC                                                                                              | 0,217                                            | 0.198               | 0.414     | 0.11  | 1.511                          | 0.52  | 1.211 | 0.21  | 1.313      | 1.19      | 1.12                    | 1.23  |
|                                                                                                  |                                                  |                     |           |       |                                |       |       |       |            |           |                         |       |
| MEAN                                                                                             | 0.224                                            | 0.115               | 0.163     | 0.052 | 0.610                          | 0.194 | 0.299 | 0.084 | 0.821      | 0.448     | 0.378                   | 0.516 |
| MIN                                                                                              | 0.013                                            | 0.002               | 0.102     | 0.001 | 0.021                          | 0.004 | 0.01  | 0.01  | 0.11       | 0.05      | 0.012                   | 0.02  |
| MAX                                                                                              | 0.513                                            | 0.291               | 0.414     | 0.153 | 1.511                          | 0.6   | 1.211 | 0.36  | 1.313      | 1.19      | 1.12                    | 1.37  |
| PERCENTA                                                                                         | PERCENTAGE CHANGE                                | FROM 1991-1993      | 1-1993    |       |                                |       |       |       | +266.5     | +289.3    | +111.7                  | 006+  |
|                                                                                                  | NAHAR (B                                         | (BEFORE CONFLUENCE) | NFLUENCE) |       |                                |       |       |       | AT '.J'    | POINT (AF | POINT (AFTER CONFLUENCE | UENCI |
|                                                                                                  | WIND THIS AN | 11111 90            | 10 T T T  |       |                                |       |       |       | Mudumo dii | Ę         |                         |       |

ï

.

**13**4

-

TABLE 26 : MONTHLY VARIATIONS IN CADMIUM (Cd, mg/l) AND, RANGE,MEAN AND PERCENTAGE CHANGE AT THE MAHI ESTUARY FROM 1991-1993

÷

•

··· .

.

| YEAR        |                                  | 1661.              | 16        |       |                                                                                                 | 195                                  | 992                                                                                             |       |            | 199      | 993             |        |
|-------------|----------------------------------|--------------------|-----------|-------|-------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------|-------|------------|----------|-----------------|--------|
| POINT + /   | N                                |                    | Ω         | D     | N                                                                                               |                                      |                                                                                                 | þ     | N          | ħ        | Q               | D      |
| MONTH       |                                  |                    |           | :     |                                                                                                 |                                      |                                                                                                 | E E   |            | 0.0512   |                 | 0.034  |
| JAN         | 0.0234                           | 0.02               | 0.029     | ٠     | co.o                                                                                            | ; c                                  |                                                                                                 |       | •          |          | •               | •      |
| FEB         | 0.03                             | 0.023              | 0.02      |       | 0.037                                                                                           |                                      |                                                                                                 |       | •          | ້        | •               | •      |
| MARCH       | 0.027                            | 0.017              | 0.039     | 0.018 | 0.029                                                                                           | 0.023<br>0                           | 0.030                                                                                           | 0.027 | 121.0      | 0.000    | 0.041           | 0.036  |
| APR         | 0.03                             | 0.022              | 0.03/     | •     | 50°0                                                                                            | ; c                                  | •                                                                                               |       | •          | 58       |                 |        |
| MAY         | 0.04                             | 0.024              | 0.002     | •     |                                                                                                 | o c                                  | *                                                                                               | •     | •          | 58       |                 |        |
| NUC         | 0.004                            | 200.0              | 0.002     | •     |                                                                                                 | ; c                                  | •                                                                                               |       | •          |          |                 | •      |
| JUL         | 0.003                            | 100.0              | 0.002     | •     |                                                                                                 | <b>,</b> c                           | *                                                                                               | •     | •          |          |                 |        |
| AUG         | 0.003                            | 0.002              | 0.002     |       | 600.0                                                                                           | 5 0                                  |                                                                                                 |       | •          |          | •               | •      |
| SEP         | 0.005                            | 0.002              | 0.004     | ٠     | 0.083                                                                                           | 0                                    | ٠                                                                                               |       | ٠          | 6.004    | ٠               | •      |
| ocT         | 0.059                            | 0.03               | 0.007     | •     | 0.042                                                                                           | 0                                    | ٠                                                                                               |       | •          | 0.032    | •               | •      |
| NOV         | 0.039                            | 0.02               | 0.041     |       | 0.086                                                                                           | 0                                    |                                                                                                 |       | ٠          | 0.024    | •               |        |
| DEC         | 0.051                            | 0.032              | 0.03      |       | 0.041                                                                                           |                                      |                                                                                                 |       | -          | 0.033    |                 | 0.033  |
|             |                                  |                    |           |       |                                                                                                 |                                      |                                                                                                 |       |            |          |                 |        |
| MEAN        | 0.022                            | 0.014              | 0.015     | 0.011 | 0.033                                                                                           | 0.019                                | 0.042                                                                                           | 0.016 | 0.050      | 0.023    | 0.026           | 0.020  |
| NTN         |                                  | 0.001              | 000       | 0.001 | 0.003                                                                                           |                                      |                                                                                                 | 0.003 | 00.        | 0.003    |                 | 0.003  |
| MAX         | 0.059                            | 0.032              | 0.041     | 0.23  | 0.086                                                                                           | 0.045                                | 0.037                                                                                           | 0.027 | 0.121      | 0.0512   | 0.091           | ٠      |
| PERCENTA    | PERCENTAGE CHANGE FROM 1991-1993 | FROM 195           | 1-1993    |       |                                                                                                 |                                      |                                                                                                 |       | +127.3     | +64.3    | +73.33          | +81.1  |
| A N - NAHAR | NHAR (B                          | (BEFORE CONFLUENCE | NFLUENCE) |       | -<br> <br> | 5<br>5<br>1<br>1<br>1<br>1<br>2<br>1 | T<br> <br> |       | AT 'J'' TA | POINT (A | FTER CONFLUENCE | UENCE) |
|             | D - DOWN STREAM OF               |                    | J.ATO.    |       |                                                                                                 |                                      |                                                                                                 |       |            | 5        | TNTO            |        |

-

.

135

۰ ۱

•

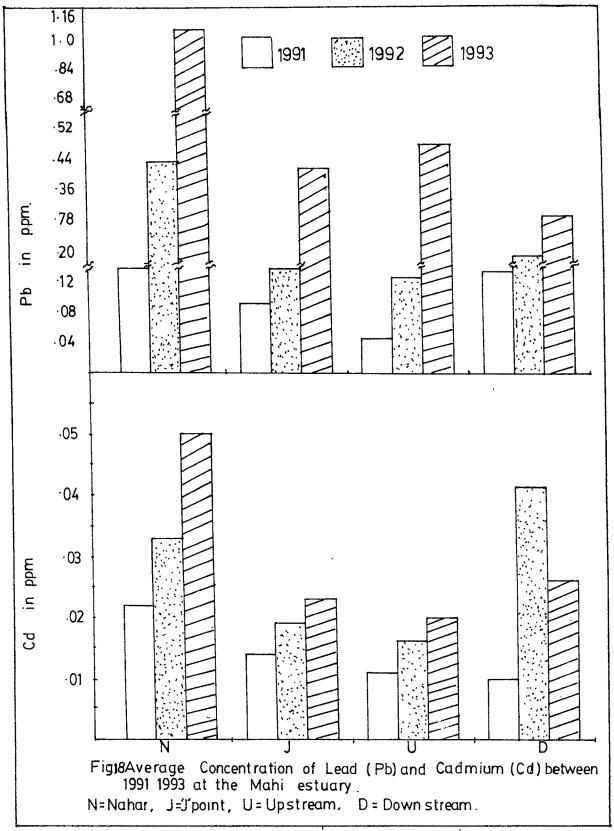



TABLE 27 : MONTHLY VARIATIONS IN LEAD (Pb, mg/l) AND, RANGE, MEAN AND PERCENTAGE CHANGE AT

| 1991-1993 |
|-----------|
| FROM      |
| ESTUARY   |
| MAHI      |
| THE       |
|           |
|           |

| YEAR              |          | . 1991                                                  | 16        |       |        | 1992  | 92    |       |                   |             | ч.<br>                   |        |
|-------------------|----------|---------------------------------------------------------|-----------|-------|--------|-------|-------|-------|-------------------|-------------|--------------------------|--------|
| HTNOM<br>/*TNIO9  | N        |                                                         | Ω         | D     | N      | Ь     | A     | Þ     | Z                 | b           | ρ                        | D      |
| JAN               | 0.153    | 0.101                                                   | 0.137     | : •   | 0.417  |       | 0.356 | 0.101 | 1                 | •           | ς.                       | 1.27   |
| FEB               | 0.164    | 0.117                                                   | 0.185     | •     | 0.631  | •     | 0.301 | 0.112 | œ.                | •           |                          | 1.27   |
| MAR               | 0.312    | 0.213                                                   | 0.366     |       | 0.319  |       | 0.31  | 0.131 | ເກ<br>•           |             | ٠                        | 1.5    |
| APR               | 0.354    | 0.168                                                   | 0.113     |       | 0.339  | •     | 0.12  | 0.146 | •                 | •           |                          | 0.075  |
| MAY               | 0.427    | 0.286                                                   | 0.36      |       | 1.213  | -     | 0,099 | 0.1   | œ.                | •           |                          | 0.035  |
| NUC               | 0.051    | 0.026                                                   | 0.003     |       | 1.296  | -     | 60°0  | 0,098 | <u>.</u>          | •           | •                        | 0.09   |
| JUL               | 0.005    | 0.003                                                   | 0.003     | *     | 0.019  | -     | 0.21  | 0.087 | <u>o</u> ,        | ٠           |                          | 0.07   |
| AUG               | 0.013    | 0.005                                                   | 0.001     | •     | 0.21   | •     | 0.11  | 0.063 | <i>с</i> .        |             |                          | 0.022  |
| SEP               | 0.009    | 0.003                                                   | 0.004     |       | 0,009  |       | 0.103 | 0.067 | ~                 |             |                          | 0.021  |
| OCT               | 0.012    | 0.007                                                   | 0.02      |       | 0.017  |       | 0.11  | 0.029 | <u>م</u>          |             | •                        | 0.031  |
| NOV               | 0.121    | 0.051                                                   | 0.173     | 0.002 | 0.413  | 0.203 | 0.15  | 0.29  | 0.869             | 0.225       | 0.5                      | 0.069  |
| DEC               | 0.241    | 0.131                                                   | 0.34      | 0.11  | 0.3139 |       | 0.21  | 0.33  | ~                 | •           |                          | 1.23   |
|                   |          |                                                         |           |       |        |       |       |       |                   |             |                          |        |
| MEAN              | 0.155    | 0.093                                                   | 0.142     | 0.043 | 0.433  | 0.155 | 0.181 | 0.130 | 1.050             | 0.413       | 0.289                    | 0.474  |
| MIN               | 600.0    | 0.003                                                   | 0.09      | 0.001 | .00    | .00   | · ·   | 0     |                   | •           | 0.04                     |        |
| MAX               | 0.427    | 0.213                                                   | 0.356     | 0.213 | 1.296  | 0.309 | 0.356 | 0.33  | 11.535            | 0.807       | 0.88                     | 1.5    |
| PERCENTAGE CHANGE | E CHANGE | FROM                                                    | 1991-1993 |       |        |       |       |       | +576              | +346.1      | +150                     | 686+   |
| NOU - U *         | NAHAR (B | NAHAR (BEFORE CONFLUENCE)<br>DOWN STREAM OF ''J'' FOINT | IFLUENCE) |       |        |       |       | 11    | AT 'J'' UP STREAM | POINT<br>OF | (AFTER CONFL<br>J' POINT | UENCE) |

TABLE 28 : MONTHLY VARIATIONS IN MERCURY (Hg, mg/l) AND, RANGE, MEAN AND FERCENTAGE CHANGE AT THE MAHI ESTUARY FROM 1991-1993

| 1992 | 1991                            | ск<br>Г  |
|------|---------------------------------|----------|
|      |                                 |          |
| 5    | THE MAHI ESTUARY FROM LEAT-1993 | THE MAHI |

•

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | YEAR             |                 | . 1991    | 16        |       |                                                                                           | τ     | 992                                |       |                        |                         | 1993<br>           |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|-----------|-----------|-------|-------------------------------------------------------------------------------------------|-------|------------------------------------|-------|------------------------|-------------------------|--------------------|--------|
| 0.0202       0.02       0.39       0.01       0.057       0.03       0.01         0.029       0.004       0.036       0.01       0.069       0.007       0.01         0.123       0.01       0.036       0.01       0.036       0.01       0.035         0.123       0.01       0.03       0.01       0.02       0.018       0.018       0.01         0.031       0.01       0.01       0.01       0.01       0.01       0.018       0.01       0.01         0.031       0.01       0.01       0.01       0.01       0.01       0.01       0.01         0.031       0.01       0.001       0.001       0.001       0.01       0.01       0.01         0.031       0.01       0.001       0.001       0.001       0.01       0.02       0.01         0.033       0.011       0.001       0.001       0.001       0.011       0.02       0.01         0.033       0.031       0.033       0.011       0.021       0.02       0.01         0.033       0.033       0.011       0.033       0.011       0.025       0.01                                                                                                                                                                                         | HLNOW<br>/*LNICd | N               | 5         | <u>а</u>  | n     | N                                                                                         | ъ     | A                                  | Þ     | N                      | Ъ                       | Ω                  | n      |
| 0.099         0.004         0.036         0.01         0.069         0.007         0.01           0.123         0.01         0.03         0.01         0.03         0.01         0.035         0.01           0.033         0.01         0.02         0.01         0.02         0.018         0.01           0.005         0.001         0.01         0.01         0.01         0.01         0.01           0.031         0.01         0.01         0.01         0.01         0.01         0.01           0.031         0.01         0.01         0.01         0.01         0.02         0.01           0.031         0.01         0.001         0.001         0.001         0.02         0.01           0.033         0.01         0.001         0.001         0.001         0.01         0.01           0.002         0.001         0.001         0.001         0.002         0.01         0.01           0.033         0.001         0.001         0.001         0.002         0.01         0.01           0.033         0.033         0.011         0.033         0.011         0.025         0.01           0.0323         0.011         0.033                                                          | TAN              | 0.0202          | 0.02      | 0.39      | 0.01  | 0.057                                                                                     | 0.03  | 0.01                               |       | 0.037                  | 0.033                   | 0.224              | 0.013  |
| 0.123       0.01       0.03       0.01       0.032       0.018       0.035         0.005       0.003       0.01       0.01       0.01       0.01       0.01         0.005       0.003       0.01       0.01       0.01       0.01       0.01         0.005       0.001       0.01       0.01       0.01       0.01       0.01         0.003       0.01       0.002       0.001       0.01       0.02       0.01         0.003       0.01       0.001       0.001       0.003       0.01       0.01         0.003       0.001       0.001       0.001       0.004       0.01       0.01         0.003       0.001       0.001       0.001       0.001       0.002       0.01         0.03       0.023       0.001       0.001       0.011       0.025       0.011         0.03       0.021       0.033       0.001       0.021       0.025       0.011         0.022       0.033       0.001       0.033       0.011       0.025       0.011         0.032       0.031       0.033       0.031       0.031       0.031       0.031       0.031         0.123       0.023                                                                                                                                      | FEB              | 0.099           | 0.004     | 0.036     | 0.01  | 0.069                                                                                     | 0.007 | 0.01                               | 0.01  | 0.021                  | 0.012                   | 0.28               | 0.017  |
| 0.033       0.02       0.01       0.02       0.016       0.01         0.005       0.003       0.01       0.01       0.01       0.06       0.01         0.031       0.01       0.022       0.001       0.07       0.05       0.003         0.031       0.01       0.002       0.001       0.07       0.02       0.01         0.031       0.01       0.001       0.003       0.01       0.03       0.01         0.003       0.001       0.004       0.001       0.004       0.003       0.01         0.003       0.001       0.004       0.001       0.004       0.001       0.002         0.003       0.001       0.004       0.001       0.004       0.002       0.01         0.03       0.023       0.007       0.03       0.011       0.025       0.011         0.03       0.023       0.001       0.03       0.011       0.025       0.011         0.012       0.031       0.033       0.001       0.011       0.025       0.011                                                                                                                                                                                                                                                                          | MAR              | 0.123           | 0.01      | 0.03      | 0.01  | 0.0706                                                                                    | 0.02  | 0,035                              | 0.093 | 0.05                   | 0.03                    | 0.003              | 0.011  |
| 0.005       0.003       0.01       0.01       0.01       0.06       0.01         0.031       0.01       0.002       0.001       0.07       0.02       0.003         0.021       0.01       0.002       0.001       0.07       0.02       0.003         0.023       0.01       0.001       0.001       0.003       0.01       0.003         0.003       0.011       0.001       0.001       0.001       0.003       0.01         0.003       0.001       0.001       0.001       0.001       0.002       0.002         0.003       0.001       0.001       0.001       0.001       0.002       0.012         0.03       0.023       0.007       0.033       0.021       0.022       0.011         0.03       0.023       0.003       0.001       0.033       0.025       0.011         0.03       0.023       0.001       0.033       0.034       0.025       0.012         0.012       0.033       0.039       0.031       0.001       0.019       0.025       0.014                                                                                                                                                                                                                                         | APR              | 0.033           | 0.02      | 0.01      | 0.02  | 0.069                                                                                     | 0.018 | 0.01                               | 0.013 | 0.023                  | 0.019                   | 0.003              | 0.0411 |
| 0.031       0.01       0.002       0.001       0.002       0.003       0.003       0.001         0.003       0.011       0.002       0.001       0.003       0.01       0.003         0.003       0.011       0.001       0.001       0.001       0.003       0.01         0.003       0.001       0.001       0.001       0.001       0.002       0.003         0.003       0.001       0.004       0.001       0.002       0.002       0.002         0.003       0.001       0.004       0.001       0.002       0.002       0.002         0.003       0.003       0.003       0.003       0.001       0.002       0.01         0.03       0.023       0.007       0.03       0.011       0.025       0.011         0.03       0.021       0.003       0.001       0.033       0.025       0.011         0.032       0.011       0.033       0.001       0.016       0.012       0.025         0.123       0.023       0.039       0.031       0.031       0.031       0.031       0.031                                                                                                                                                                                                                   | MAY              | 0.005           | 0.003     | 0.01      | 0.01  | 0.08                                                                                      | 0.06  | 0.01                               | 0.003 | 0.013                  | 0,009                   | 0.01               | 0.0305 |
| 0.021       0.01       0.002       0.003       0.01       0.003       0.01         0.003       0.011       0.001       0.001       0.001       0.001       0.002         0.003       0.001       0.001       0.001       0.001       0.002       0.002         0.003       0.001       0.004       0.001       0.002       0.002       0.002         0.003       0.001       0.004       0.001       0.002       0.002       0.002         0.051       0.003       0.004       0.002       0.01       0.002       0.01         0.03       0.023       0.007       0.03       0.051       0.022       0.01         0.03       0.023       0.007       0.03       0.051       0.025       0.214         0.032       0.011       0.039       0.008       0.046       0.019       0.025         0.123       0.023       0.001       0.001       0.001       0.001       0.002         0.123       0.023       0.039       0.033       0.031       0.031       0.031       0.031                                                                                                                                                                                                                                  | NUL              | 0.031           | 0.01      | 0.002     | 0.001 | 0.07                                                                                      | 0.02  | 0.003                              | 0.004 | 0.018                  | 0,03                    | 0.01               | 0.006, |
| 0.003       0.01       0.001       0.001       0.001       0.001       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.001       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.002       0.001       0.002       0.001       0.002       0.001       0.002       0.001       0.002       0.001       0.002       0.011       0.002       0.011       0.002       0.011       0.011       0.011       0.011       0.012       0.011       0.012       0.011       0.012       0.011       0.012       0.011       0.011       0.025       0.214       0.025       0.214       0.025       0.025       0.025       0.025       0.025       0.025       0.025       0.025       0.025       0.025       0.025       0.2144       0.002       0.0124       0.0025       0.2144       0.0124       0.0255       0.2144       0.2144       0.2144       0.2144       0.2144       0.2144       0.2144       0.2144       0.2144       0.2144       0.2144       0.2144       0.2144       0.2144       0.2144       0.2144       0.2144       0.2144       < | IUL              | 0.021           | 0.01      | 0.002     | 0.003 | 0.05                                                                                      | 0.03  | 0.01                               | 0.003 | 0.018                  | 0.015                   | 0.01               | 0.007  |
| 0.003       0.001       0.004       0.002       0.002       0.002         0.002       0.001       0.004       0.002       0.002       0.001         0.051       0.03       0.006       0.002       0.001       0.01         0.03       0.007       0.001       0.071       0.02       0.01         0.03       0.007       0.03       0.051       0.02       0.01         0.03       0.007       0.03       0.051       0.02       0.01         0.03       0.023       0.007       0.03       0.051       0.025       0.214         0.032       0.011       0.039       0.008       0.046       0.019       0.025       0.214         0.0123       0.039       0.039       0.031       0.001       0.001       0.002         0.123       0.023       0.039       0.031       0.031       0.025       0.2144                                                                                                                                                                                                                                                                                                                                                                                                   | AUG              | 0,003           | 0.01      | 0.001     | 0.001 | 0.004                                                                                     | 0.01  | 0.002                              | 0.005 | 0.017                  | 0.002                   | 0.001              | 0.003  |
| 0.002       0.001       0.004       0.002       0.002       0.01         0.051       0.03       0.006       0.01       0.071       0.02       0.01         0.03       0.007       0.007       0.03       0.007       0.01       0.01         0.03       0.023       0.007       0.03       0.051       0.025       0.01         0.032       0.011       0.039       0.008       0.046       0.019       0.025         0.0123       0.039       0.001       0.001       0.001       0.001       0.002         0.123       0.023       0.039       0.031       0.031       0.031       0.025       0.2144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SEP              | 0,003           | 0.001     | 0.004     | 0.001 | 0.004                                                                                     | 0.002 | 0.002                              | 0.003 | 0.023                  | 0.001                   | 0.003              | 0.004  |
| 0.051         0.03         0.006         0.01         0.071         0.02         0.01           0.03         0.023         0.007         0.03         0.051         0.025         0.214           N         0.032         0.011         0.039         0.008         0.046         0.019         0.025           N         0.032         0.011         0.039         0.008         0.046         0.019         0.025           0.0123         0.031         0.039         0.001         0.001         0.001         0.025         0.025           0.123         0.023         0.039         0.03         0.031         0.025         0.2144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OCT              | 0.002           | 0.001     | 0.004     | 0.002 | 0.006                                                                                     | 0.002 | 0.01                               | 0.003 | 0.021                  | 0.003                   | 0.02               | 0.021  |
| 0.03         0.023         0.007         0.03         0.051         0.025         0.214           N         0.032         0.011         0.039         0.008         0.046         0.019         0.025           0.002         0.001         0.001         0.001         0.001         0.002         0.0123           0.123         0.023         0.039         0.03         0.031         0.031         0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NON              | 0.051           | 0.03      | 0.006     | 0.01  | 0.071                                                                                     | 0.02  | 0.01                               | 0.009 | 0.213                  | 0.199                   | 0.025              | 0.017  |
| 0.032 0.011 0.039 0.008 0.046 0.019 0.025<br>0.002 0.001 0.001 0.001 0.004 0.001 0.002<br>0.123 0.023 0.039 0.03 0.081 0.025 0.2144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DEC              | 0.03            | 0.023     | 0.007     | 0.03  | 0.051                                                                                     | 0.025 | 0.214                              | 0.002 | 0.199                  | 0.174                   | 0.23               | 0.031  |
| 0.032 0.011 0.039 0.008 0.046 0.019 0.025<br>0.002 0.001 0.001 0.001 0.004 0.001 0.002<br>0.123 0.023 0.039 0.03 0.081 0.025 0.2144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                 |           |           |       |                                                                                           |       |                                    |       |                        |                         |                    |        |
| 0.002 0.001 0.001 0.001 0.004 0.001 0.002<br>0.123 0.023 0.039 0.03 0.081 0.025 0.2144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MEAN             | 0.032           | 0.011     | 0.039     | 0.008 | 0.046                                                                                     | 0.019 | 0.025                              | 0.012 | 0.050                  | 0.041                   | 0.063              | 0.016  |
| 0.123 0.023 0.039 0.03 0.081 0.025 0.2144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MTN              | 000             | 100 0     | 0.001     | 0.001 | 0.004                                                                                     | 0.001 | 0.002                              | 0,002 | 0.013                  | 0.001                   | 0.001              | 0.003  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MAX              | 0.123           | 0.023     | 0.039     | 0.03  | 0.081                                                                                     | 0.025 | 0.2144                             | 0.093 | 0.213                  | 0.199                   | 0.28               | 0.0411 |
| CHANGE FROM 1991-199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PERCENTAGE       | CHANGE          |           | 1-1993    |       |                                                                                           |       |                                    |       | +56.3                  | +272.7                  | +61.5              | +76.8  |
| D - DOWN STREAM OF ''J'' POINT U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | LF (3<br>STREAM | EFORE CON | VELUENCE) |       | <br> |       | <br> <br> <br> <br> <br> <br> <br> |       | AT 'J'' I<br>UP STREAM | POINT (AFTER CONFLUENCE | TER CONFI<br>POINT | UENCE) |

•

138

stream and 0.01258 mg/l at downstream in 1991 to 0.0425 mg/l, 0.0168mg/l and 0.0682 mg/l respectively in 1993, an increase of 272.72% at J-point 76.84% at upstream and 61.53% at downstream.

#### DISCUSSION

The river and estuarine water are being increasingly global scale а due to urbanization, polluted on industrialisation and recreational activities besides, the natural means. River water has proved to be the most ideal and convenient sink for sewage waste and industrial effluents. Mushrooming of industrial units, in the vicinity of rivers has become a common phenomenon world wide. Industrialisation of Baroda during the 1960's and 1970's was marked by establishment of industrial complexes in the north- western part of Baroda, involving Chhani, Nandesari, Bajwa, and Koyli on the banks of the river Mahi and its tributary the Mini. Unloading of Industrial effluents on a large scale into both Mini and Mahi posed serious problems to the populace and animal life in the downstream areas of river Mahi. This problem was further compounded by the construction of Kadana Dam in the year 1984, about approximately 160km. upstream of Mahi. This not only prevented flushing away of pollutants in the post monsoon lean months, but even aggravated the problem

139

<u>۱</u>

Figure 19 Common effluent treatment plant at Nandesari.

. .

.

.

•

-

.

.

.

•



by the movement of the effluents further up stream during periods of sea ingress. As a remedial step, the commissioning of a common treatment plant (Fig- 19) and the 56 Km long for the purpose of effluent channel (Figs-20a-i) transporting the effluent from the Nandesari Industrial complex to the Mahi estuary at the Gulf of Cambay was planned and executed in 1983. Since the commissioning of the treatment plant and the effluent channel, there have been frequent reports of breakdown of the treatment plant and even of its total non functioning as of now. Ironically, there have been no attempts to monitor and assess the impact of effluent channel on the water quality of the estuary. The present study is an exercise in this direction and has tried to assess the pollutant load of the effluent channel and also the water quality in the estuary, in the area where the channel effluent gets, mixed, as well as upstream and downstream of it.

The above mentioned aspect is well reflected by the values of various physico-chemical parameters of the effluent water before its confluence into the estuary at the Nahar point (Fig- 21) and, consequent effects on the water quality at the "J" point (confluence area) (Fig- 22) as well as at Sarod, upstream of "J" point (Fig- 23) and at Shiv temple, downstream of "J" point (Fig- 24) from 1991 to 1993. There

cum Figure 200: Main pumping station\_collection wells at Dhanora for collecting effluents from industries

.

.

.

-

.

.

.

.

Figure 20b: Koyli collection center, part of the effluent from GSFC is brought here for outlet into the effluent channel.

-

Figure 20 c: The collection wells at Koyli

•

.



Figure 20d: The peripheral cement channel through which the effluent from the tanks flows into the central distribution tank.

-

•

-

.

.

Figure 20 e: The central distribution tank from a here the effluent is conducted into the effluent channel.

•

.

··· ·

.

.

,

Figure 20f: The pipe above is the conduct ng structure for effluent into the koyli collection well and below is by pass channel to Mini.

-

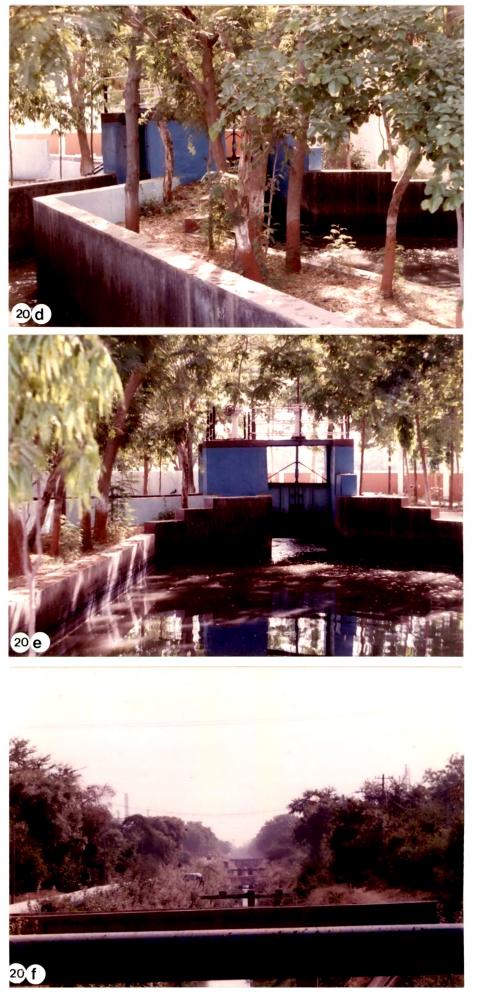



Figure 20**g**:The by-pass channel from Koyli coursing towards Mini river.

.

з

Figure 20**h**: Emergency by-pass sluice along the channel for conducting effluent into Mini river.

.

Figure 20: The road towards "J" point with the channel on the left (arrow)

.

.

•.



Figure 21 A peep into the channel and the effluent.

.

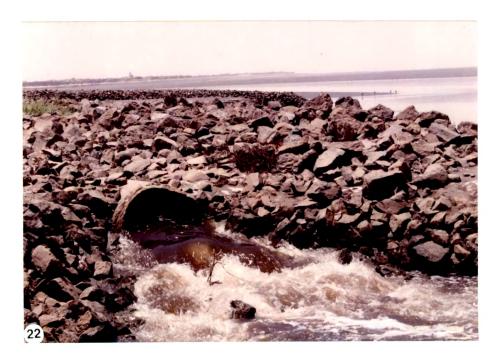
.

.

•

.

.


Figure 22 The terminus of effluent channel (Nahar point in the present study) into the estuary at the Gulf of Cambay.

•

.

-





· · · · · · · · · · · ·

Figure 23 The "J" point at which channel effluent gets mixed with the estuarine water.

.

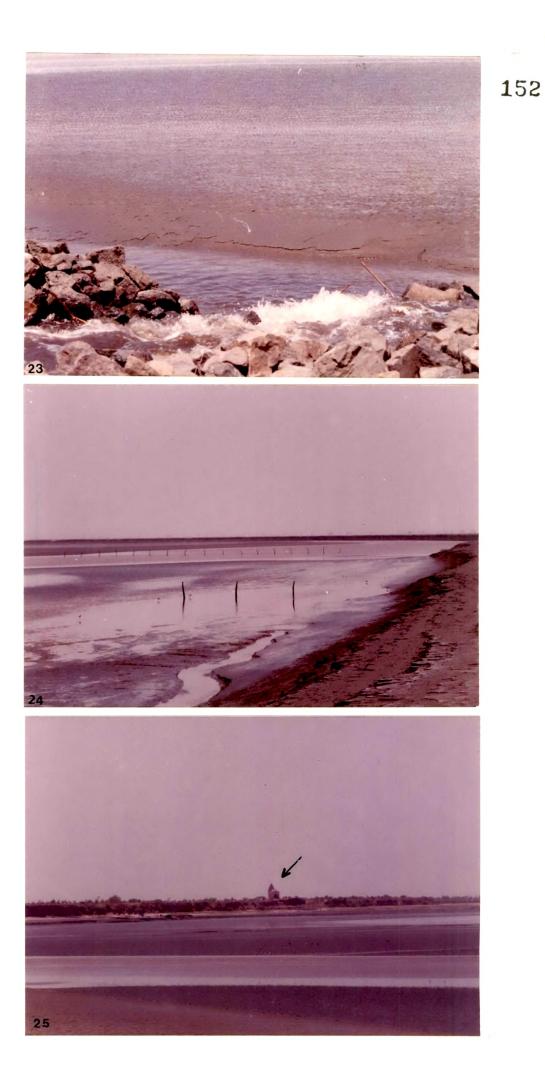

Figure 24 A view of the upstream area towards Mahi opening from the "J" point.

Figure 25 A view of the down stream area towards the sea from the "J" point Note the Shiv temple in the background (arrow)

,

•

• •



are alarming trends of increase in TS, TDS, SS, COD, BOD, CI, SO4, Hardness, Oil & grease, Phenol, and CN and decrease in pH, DO, Alkalinity, NH3-N, TKN, TC & FC respectively at all the three points from 1991 to 1993. Though there is but definite alteration in the water quality subtle downstream of "J" point, the magnitude of change is no doubt resisted and attenuated by the diluting influence of the sea water. However, the water quality at the "J" point and at at the upstream point is the true reflection of the Sarod, inefficient flushing capacity of the river and the increasing upward movement of the pollutants during times of tidal ingress (Barodawala-1990). It is estimated that during every tidal ingress, water is moved up the river mouth to as 70 km extending up to vasad, from where drinking much as water is supplied to parts of Baroda city collected by French wells (Barodawala-1990). The above work had suggested the imminent risk of contamination of drinking water by the pollutant load of the river. A cursory glance at table 3 and figures 1 and 2 shows that the pH of the effluent water decreased consistently during the three year period from 7.6 to 6.9, consequently the pH at the "J" point and Sarod fell from 7.5 to 7.0 and from 7.2 to 6.9 respectively. Even the downstream pH value of 7.7 in 1991 decreased to 7.3 in 1993. These changes in pH are paralled by decrease in alkalinity by 48% at Nahar by 41% at the "J" Point by 22.7% at downstream

153

1 ' 1

and by 12.67% at upstream. The increasing pollution load is well indicated by the increase in TS, inclusive of both TDS and SS, as well as COD and BOD values. Though many of the parameters of effluent channel water are much above the permissible levels according to international standards and World Health Organisation (WHO) standards, some of the parameters are much above the highly inflated permissible levels suggested by the Indian Pollution Control Board table 29-32 (Gujarat Pollution Control Board Guidelines, 1988). The DO content shows consistent decrease in channel water well below the value of 6 mg/l. Consequently the DO content of the estuary at the J-point, at up stream and at downstream decreased from 7.0 to 6.0 ppm. during 1991 to 1993.

Both the Cl<sup>-</sup> and So<sub>4</sub> content showed significant increase, with the increase ranging from 84% and 77.96% respectively at Nahar, 74% and 116.92% at the J point,73% and 104% at downstream and 221% and 122% at upstream respectively. Accordingly the hardness increased by 28% at J-point, by 24% at downstream and by 50% at up stream, while there was an actual increase of hardness of channel water by 155%. Though the oil and grease and phenol contents appeared to be within the prescribed limits, the increasing trend was of very high magnitude ranging from 57% at Nahar, 54% at the

#### TABLE 29: STANDARDS FOR DISPOSAL OF EFFLUENTS INTO BARODA EFFLUENT CHANNEL, BARODA \*.

PARAMETER

MAXIMUM PERMISSIBLE CONCENTRATION

-

| Temperature45° CpH5.5 - 9.0Total Suspended solids100 | mg/l.      |
|------------------------------------------------------|------------|
| (Flotable 3 mm, non-flotable 850 micron)             |            |
| Total Dissolved solids 5000                          | 57         |
| B.O.D. (5 days 20° C) 100                            | 99         |
| Oil & Grease 10                                      | 11         |
| Phenolic Compounds 1                                 | Ħ          |
| Cyanide 0.2                                          | 11         |
| Sulphide 1.0                                         | 81         |
| Fluoride 10                                          | 87         |
| Insecticides Traces                                  |            |
| Arsenic 0.2                                          | 97         |
| Barium 1.0                                           | H          |
| Cadmium 2.0                                          | 6          |
| Copper 3.0                                           | 34         |
| Chromium 6 0.1                                       | Ħ          |
| Nickel 3.0                                           | n          |
| Lead 0.1                                             | 11         |
| Mercury 0.01                                         | 11         |
| Selemium absent                                      |            |
| Zinc 10                                              | **         |
| Sulphate 1000                                        | H          |
| Chloride 1000                                        | <b>5</b> 1 |
| Radioactivity :                                      |            |
| Alpha emitters/uc/ml $10^{-7}$                       |            |
| Beta Emitters /uc/ml 10 <sup>-6</sup>                |            |
| Ammonical Nitrogen 100                               | mg/l.      |
| C.O.D. 250                                           | mg/l.      |

\* Guidelines for Environmental Pollution Control, Gujarat - 1988

-

-

ß

# TABLE 30: STANDARDS FOR DISPOSAL OF EFFLUENTS INTO LAND SURFACE WATERS AND INTO OPEN LAND FOR PERLCOLATION

#### PARAMETER

•

-

,

## MAXIMUM PERMISSIBLE CONCENTRATION

•

-

| Temperature<br>pH<br>Colour<br>Total Suspended solids<br>Oil & Grease<br>Biochemical Oxygen Demand<br>(5 days at 20° C) | 40 <sup>°</sup> C<br>5.5 - 9.0<br>100 units<br>100 mg/1.<br>10 "<br>30 " |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Chemical Oxygen Demand<br>Ammonical Nitrogen                                                                            | 100 "<br>50 "                                                            |
| Free Ammonia (as NH3)                                                                                                   | 5 "                                                                      |
| Total Kjeldahl Nitrogen (asN)                                                                                           | 100 "                                                                    |
| Total Residual Chlorine                                                                                                 | 1 "                                                                      |
| Phenolic Compounds                                                                                                      | 1 "                                                                      |
| Total dissolved solids                                                                                                  | 2100 "                                                                   |
| Cyanides (as CN)                                                                                                        | 0.2 "                                                                    |
| Fluorides (Total as F)                                                                                                  | 1.5. "                                                                   |
| Phosphates (as P)                                                                                                       | 5 "                                                                      |
| Sulphides (as S)                                                                                                        | 2 "<br>2 "                                                               |
| Boron (as B)                                                                                                            |                                                                          |
| Arsenic (as AS)                                                                                                         | 0.2 "                                                                    |
| Mercury (as Hg)                                                                                                         | 0.01 "                                                                   |
| Lead (as Pb)                                                                                                            | 0.1 "                                                                    |
| Cadmium (as Cd)                                                                                                         | 1.0 "                                                                    |
| Hexavalent Chromium (as Cr <sup>+6</sup> )                                                                              | 0.1 "                                                                    |
| Total Chromium (as Cr)                                                                                                  | 2 "                                                                      |
| Copper (as Cu)                                                                                                          | ` 3 "                                                                    |
| Zinc (as Zn)                                                                                                            | 0.05 <sup>"</sup>                                                        |
| Selenium (as Se)                                                                                                        | 3 "                                                                      |
| Pesticides                                                                                                              | Absent                                                                   |

\* Guidelines for Environmental Pollution Control, Gujarat - 1988

# TABLE 31: STANDARDS FOR DISPOSAL OF EFFLUENTS INTO LAND FOR IRRIGATION \*

| PARAMETER | $\mathbf{p}_{i}$ | AR | A | ME | TE | ĸ |
|-----------|------------------|----|---|----|----|---|
|-----------|------------------|----|---|----|----|---|

.

### MAXIMUM PERMISSIBLE

\*

.

| Temperature<br>pH<br>Total Suspended solids<br>Oil & Grease<br>Biochemical Oxygen Demand | 40oC<br>5.5 . 9.0<br>200<br>10 | mg/l<br>" |
|------------------------------------------------------------------------------------------|--------------------------------|-----------|
| (5 days at 20 C)                                                                         |                                |           |
| Total Dissolved solids                                                                   | 2100                           | 87        |
| Cyanides (as CN)                                                                         | 0.2                            | 97        |
| Boron (as B)                                                                             | 0.75                           | 89        |
| Arenic (as As)                                                                           | 0.1                            | HT.       |
| Mercury (as Hg)                                                                          | 0.01                           | н         |
| Hexavalent Chromium (as Cr +6)                                                           | 0.1                            | <b>83</b> |
| Total Chromium (as Cr)                                                                   | 1.0                            | H         |
| Copper (as Cu)                                                                           | 0.2                            | 67        |
| Zinc (as Zn)                                                                             | 2.0                            | 87        |
| Selenium (as Se)                                                                         | 0.02                           | ff        |
| Nickel (as Ni)                                                                           | 0.2                            | 11        |
| Pesticides                                                                               | AbsenT                         |           |
| Percent Sodium                                                                           | 60                             | •         |

\* Guidelines for Environmental Pollution Control, Gujarat - 1988

1

.

•

#### TABLE 32: STANDARDS FOR DISPOSAL OF EFFLUENTS INTO MARINE AND ESTUARINE ZONE \*

| PARAMETER                                   | MAXIMUM PER<br>CONCENTRATI |     |
|---------------------------------------------|----------------------------|-----|
| Temperature                                 | 45 C                       |     |
| рН                                          | 5.5 - 9.0                  |     |
| Colour                                      | 100 units                  |     |
| Total Suspended solids                      | 100 m                      | g/1 |
| Oil & Grease                                | 20 "                       |     |
| Biochemical Oxygen Demand                   | 100 "                      |     |
| $(5 \text{ days at } 20^{\circ} \text{ C})$ |                            |     |
| Chemical Oxygen Demand                      | 250 "                      |     |
| Ammonical Nitrogen                          | 50 "                       |     |
| Free Ammonia (as NH3)                       | 5 *                        |     |
| Total Kjeldahl Nitrogen(as N)               | 100 "                      |     |
| Rotal Residual Chlorine                     | 1 "                        |     |
| Phenolic Compunds                           | 5 "                        |     |
| Cyanides (as CN)                            | C.2 "                      |     |
| Fluorides (Total as F)                      | 10 "                       |     |
| Phosphates (as P)                           | 5 "                        |     |
| Sulphyides (as S)                           | 5~ "                       |     |
| Arsenic (as As)                             | 0.2 "                      |     |
| Mercury (as Hg)                             | 0.01 "                     |     |
| Lead (asPb)                                 | 1.0 "                      |     |
| Cadmium (as Cd)                             | 2.0 "                      |     |
| Hexavalent Chromium (as Cr+6)               | 2.0 "                      |     |
| Total Chromium (as Cr)                      | 2 *                        |     |
| Copper (as Cu)                              | 3 "                        |     |
| Zink (as Zn)                                | 12 "                       |     |
| Selenium (as Se)                            | 0.05 - "                   |     |
| Nickel (as Ni)                              | 5 "                        |     |
| Pesticides                                  | Absent                     |     |
|                                             |                            |     |

\* Guidelines for Environmental Pollution Control, Gujarat - 1988

•

.

-

J-point, 72% at downstream and 39% at up stream with respect to oil and grease and by 306% at Nahar, 919% at the J-point and 167% at downstream and 5133% at upstream with respect to phenol content. The most serious increment was of SS, BOD, COD and CN, well surpassing the very high permissible levels effluents to be discharged into the estuarine system set in by the Gujarat Pollution Control Board guide lines. While the SS content exceeded the GPCB limit by 52% to 134% between 1991-to 1993, the COD value exceeded by 16% to 89% during the same period. The BOD content was higher by 44% in 1992 and by 88% in 1993, while the CN content crossed the fixed limit by 12% in 1993. In relation to this, all the above parameters showed continuously increasing trend at all the three estuarine points of study. The magnitude of increasing pollution load is revealed by the significant decrease in the TC and FC counts. Whereas the TC content decreased from 4067 MPN/100ml to 467 MPN/100ml at Nahar, from 1283 to 811 at the J-point, 11683 to 1250 at downstream and 7117 to 375 at up stream, the fecal coliform count decreased from 717 to 42 MPN/100ml at Nahar, 606 to 48 MPN/100ml at the J-point, 725 to 102 MPN/100ml at downstream and from 487 to 55 MPN/100ml at up stream.

The term heavy metal is a loose one and includes transition metals like chromium (Cr), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), mercury (Hg),

۱ -

lead (Pb), arsenic (As), antimony (Sb) and bismuth (Bi). The most toxic metallic pollutants are mercury, lead, zinc and copper. In fact all metals are toxic at high concentrations but, some are highly toxic even at lower concentrations. Metals like Cu, Hq, Pb, Cd, Zn and Cr are very toxic (Wood-1974). Except for Cu and Zn, others are non-essential and toxic. Heavy metals occur naturally in the marine environment. In addition, these heavy metals enter the river and estuarine water by direct discharge via industrial and urban effluents, surface runoff and indirectly from aerial fallout (Schutz and Turekain, 1965). Metal contamination of estuarine and sea water is a global phenomenon and many workers have measured the concentrations of various metals in the Indian ocean, Arabian sea and the Bay of Bengal. Monitoring of Indian Ocean has shown concentrations of Cd, Cu, Fe and Ni to vary between 0.07 to 0.64 ug/1 0.2 to 0.63 ug/l; 0.46 to 12.0 ug/l and 0.3 to 1.1 ug/l respectively (Saager et. al, 1992) Monitoring of metal contaminants of Arabian sea has shown average (ug/l) concentration of Cu, Fe, Zn, Co and Ni to be 4.9, 20, 19.2, 2.2 and 3.2 respectively (Sengupta et al., 1978). The relative concentrations of Cu, Fe, Zn, Ni and Co in the Bay of Bengal were found to be in the range of 22 to 37.2 ug/1, 6.2 to 131.5 ug/1, 2.4 to 20 ug/l, 1.2 to 1.7 ug/l and 1.0 to 7.9 ug/l respectively (Braganca and Sanzgiry, 1980). In comparison to these, the

average metal concentration of the esturine water at the Jpoint in the Gulf of Cambay in 1993 was, Fe-38.75 ug/l, Ni-184.2 ug/l, Cu-2.388 ug/l, Zn-447 ug/l, Cd-26.52 ug/l, Pb 412 ug/1, Hg 42.5 ug/1 and Cr 142.2 ug/1. Corresponding values for these metals at downstream (D) and at upstream (U) of Jpoint were, Fe- 18.3 and 721 ug/l, Ni- 75.5 and 296.1 ug/l, Cu- 193.2 and 202 ug/l, Zn 377.6 and 516.4 ug/l, Cd- 29.75 and 23.6 ug/l, Pb- 355.5 and 469.9 ug/l, Hg- 68.2 and 16.8 ug/l and Cr- 102.8 and 132.9 ug/l respectively. When compared with the reported values in the sea waters of India, these values are incomparably higher and denote the magnitude of unmindful and unchecked contamination of the Mahi estury by human activity. This is well corrborated by the levels of these metals in the effluent water at Nahar which were Fe-81.2 ug/l, Ni- 437.8 ug/l, Cu- 302.2 ug/l, Zn- 821.1 ug/l, Cd- 57.4 ug/l, Pb- 1.049 ug/l, Hg- 54.5 ug/l and Cr- 206.8 ug/1. The concentration of various metals measured annually from 1991 to 1993 indicates an alarming trend of increase ranging from a minimum of 27% for Cr to a maximum of 445.6% for Hg at downstream and from a minimun 76.8% for Hg to a maximum of 3883% for Fe in the upstream, (tables 21-28 and Fig- 16). This amply proves that unchecked discharge of effluent into the Mahi estuary is bound to have serious consequences in the foreseeable future. Cases of high metal concentration at upstream than even at the J-point for Fe,

161

1'

Ni, Pb and Zn suggest direct effluent discharge other than through the channel, probably through the Mini. The consequence of such high metal and organic pollutant contamination in the estuarine system is difficult to fathom as the physico-chemical behaviour, deep water processes, sedimentation processes and modes of degradation of the pollutants are not completely understood. It is necessary that caution should be exercised in the discharge of industrial effluents into the estuary or open sea due to following points.

- The chemical behaviour of many pollutants and the way in which they may be altered or taken up by marine organisms in many cases are only partially understood.
- It is not possible to accurately predict either the physical behaviour or the chemical or biological fate of a pollutant in the deep waters of ocean.
- 3. There is incomplete information regarding deep sea `organisms' which might concentrate certain chemicals. Hence the need for waste disposal has to be properly weighed against the possible capacity of the ocean to accept waste of different kinds.
- 4. Many of the pollutants may become locked in the sediment and may lead to long term problems in an area.

Since the benthic population may be drastically altered. Alternatively, biochemical decomposition may lead to release of noxious materials such as sulfides or in special cases biologically hazardous forms.

5. The low rate of decomposition of organic pollutants in the sea would be particulary important in consideration of the quantities and materials which can be safely dumped into the estuary and sea water.

A close and careful consideration of the environs of the Mahi estuary at the Gulf of Cambay reveals, rapid erosion in the quality of estuarine flora and fauna. If caution is not exercised at this juncture it is likely to have serious socio-economic and medical problems to the populace and a complete anhilation of all biotic forms.

163