
Chapter 1

Introduction

1.1 Introduction

An inlier in a set of data is an observation or subset of observations not 

necessarily all zeros, which appears to be inconsistent with the remaining data set. 

For example: consider the following example as a natural occurrence of a physical 

phenomenon: 0, 0, 0, 0, 0.01, 0.05, 0.06, 0.71, 1.91, 1.2, 1.76, 2.54, 2.72, 3.07, 3.91 

and 3.99. Here the first four observations are instantaneous failures, next three 

observations may be treated as early failures (by specifying delta 5=0.06 or 0.08) and 

others may be treated as coming from any positive distribution F. The observations 

which are identified as instantaneous and early failures together are called inliers, 

introduced first time by Muralidharan and Kale (2002). In outlier's concept, they may 

be termed as spurious observations, but unlike outlier concept, we don't discard 

such observations from analysis and inferences. An outlying observation, or outlier, 

is one that appears to deviate markedly from other members of the sample in which 

it occurs. In many cases outliers exist in the form of errors of observation or mis- 

recording due to human errors. Outliers are the surprisingly extreme values 

occurring on both sides of the distribution whereas inliers occur on left hand side of 

the distribution. Inliers are integral part of the data and cannot be neglected. For an
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exhaustive survey and theory of outliers one may refer to Barnett and Lewis (1994) 

and Rousseeuw and Leroy (1987) the references contained therein. Outlier detection 

methods have been suggested for numerous applications, such as credit card fraud 

detection, clinical trials, voting irregularity analysis, data cleansing, network 

intrusion, severe weather prediction, geographic information systems, athlete 

performance analysis, and other data-mining tasks. Most of the earliest univariate 

methods for outlier detection rely on the assumption of an underlying known 

distribution of the data, which is assumed to be identically and independently 

distributed (i.i.d.). Moreover, many discordance tests for detecting univariate 

outliers further assume that the distribution parameters and the type of expected 

outliers are also known (Barnett and Lewis, 1994). In real world for data-mining 

applications these assumptions are often violated. In some of the examples 

discussed above, the in[ier observation also becomes a part of outlier observations.

In literature some authors have defined inliers as those observations which 

are not outliers (Barnett and Lewis, 1994). One can refer Akkaya and Tiku (2005) for 

this.

Some specific real life situations, where inlier observations are natural 

occurrences can be described by the following examples:

> In auditing some population elements contain no errors, whereas other 

population elements contain errors of varying amounts. The distribution of 

errors can, therefore, be viewed as a mixture of two distinguishable 

distributions, one with a discrete probability mass at zero and the other a 

continuous distribution of non-zero positive and/or negative error amounts. 

The main statistical objective in this auditing problem is to provide a 

statistical bound for the total error amount in the population.

> In the mass production of technological components of hardware, intended 

to function over a period of time, some components may fail on installation
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and therefore have zero life lengths. A component that does not fail on 

installation will have a life length that is a positive random variable whose 

distribution may take different forms. Thus, the overall distribution of 

lifetimes, which includes the duds, is a nonstandard mixture.

> In the study of tumor characteristics, two variates may be recorded. The first 

is the absence (0) or presence (1) of a tumor and the second is tumor size 

measured on a continuous scale. In this problem, it is sometimes of interest 

to consider a marginal tumor measurement that is 0 with nonzero probability 

and the other a continuous distribution.

> In studies of genetic birth defects, children can be characterized by two 

variates, a discrete or categorical variable to indicate if one is not affected, 

affected and born dead, or affected and born alive and a continuous variable 

measuring the survival time of affected children born alive. The conditional 

distribution of survival time given, this first variable is undefined for children 

who are not affected and born dead, and nontrivial for children who are born 

alive. In some cases it may be necessary to consider the conditional survival 

time distribution for affected children as a mixture of a mass point at 0 and a 

nontrivial distribution.

> In measurements of physical performances scores of patients with a 

debilitating disease such as multiple sclerosis, there will be frequent zero 

measurements from those giving no performance and many observations 

with graded positive performance.

> In studies of methods for removing certain behaviors (e.g. predatory behavior 

or salt consumption), the amount of the behavior which is exhibited at a 

certain point in time may be measured. In this context, complete absence of 

the target behavior may represent a different result than would a reduction
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from a baseline level of the behavior. Thus, one would model the distribution 

of activity levels as a mixture of a discrete value of zero and a continuous 

random level.

> Time until remission is of interest in studies of drug effectiveness for 

treatment of certain diseases. Some patients respond and some do not. The 

distribution is a mixture of a mass point at 0 and a nontrivial continuous 

distribution of positive remission times. The problem can be considered for 

instantaneous failure.

> In a quite different context, important problems exist in time-series analysis 

in which there are mixed spectra containing both discrete and continuous 

components.

> The data recorded for a rainy season can be seen as a combination of zeros 

(no rainfall) and positive observations (days having nominal or marginal rain 

reported) etc.

From the above examples, it is seen that the values including zeroes and 

close to zeroes are important as well as significant in most of the cases. Thus inliers 

are more natural than the outliers, where most of the time after the detection of 

outlier(s), the observation(s) may not be considered for further analysis. As a 

consequence, the modeling of inliers distribution is more important than the 

detection. Below we discuss some possible models treated in this thesis for 

detection, estimation and testing.

1.2 Models

Various inlier prone models and their statistical significances are studied in 

this thesis'. We have considered the following models in various chapters. They are 

used for analysis of mixture distribution of inliers and target observations, and for 

estimating the parameters of mixture distribution. Comparison of models are also 

been done to know which model fits well to the data.
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1.2.1 Instantaneous failure model

Consider a model 3 = {f(x,0),x>O,0>o} where F(x,9)is a continuous 

failure time distribution function (df) with F(0)=0. To accommodate a real life 

situation, where instantaneous failures are observed at the origin, the model 3 is 

modified to § ={G(x,0,ar),x>O,0en,0<£Z<l} by using a mixture in the

proportion 1-aand a respectively of a singular random variable Z at zero and with a 

random variable X with distribution function Fe3. Thus the modified failure time 

distribution has the pdf

This model has been studied by many authors. The problem of inference 

about (a,0) has received considerable attention particularly when X is exponential 

with mean 8. Some of the early references are Aitchison (1955), Kleyle and Dahiya 

(1975), Jayade and Prasad (1990), Vannman (1991), Muralidharan (1999, 2000), Kale 

and Muralidharan (2000) and references contained therein.

Aitchson (1955) stated the problem of determining efficient estimates of the 

mean and variance of a distribution specified by (i) non zero probability that the 

variables assumes a zero value and (ii) a conditional distribution for the positive 

values of the variable. The estimation problem was analyzed and its implications for 

the Pearson type-ill, exponential, lognormal and Poisson series conditional 

distribution were investigated. Kleyle and Dahiya (1975) have considered estimation 

of parameters of mixture distribution of binomial and exponential population. The 

exact bias and mean square error (MSE) of the estimator is derived and computed 

for different values of parameters. They had also shown the exact MSE approaches 

to asymptotic MSE as n increases. Jayade and Prasad (1990) studied the problem of 

estimation of parameters of a mixture of degenerate and exponential distribution. A 

new sampling scheme was proposed and the exact bias and MSE of the MLE of the 

parameters was derived. Moment estimators and their approximate bias and MSE

(1.2.1)
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were also obtained. Muralidharan (1999), (2000) obtained tests for the mixing 

proportion in the mixture of a degenerate rate and exponential distribution. The 

UMVUE and Bayes estimator of the reliability for some selective prior when the 

mixing proportion is known and unknown are derived. Muralidharan and Kale (2002) 

considered the case where F is a two parameter Gamma distribution with shape 

parameter j5 and scale parameter 6 and obtained confidence interval for $=af3d 

assuming a known and unknown respectively. Singh (2008) obtained UMVUE for 

mixture of instantaneous and positive observation from exponential families.

1.2.2 Early failure model

To accommodate early failures, the family 3 is modified to new distribution 

§t ={61(x,^,a),x>0,^e fl,0<«<l] where the d.f. corresponding to gje is 

given by

Gj(x,<?,a) = (l-a)H(x) + aF(x,0)

where H{x) is a d.f. with W(<5)=1 for S sufficiently small and assumed known and 

specified in advance. The corresponding pdf is then given by

0,
g1(x,a,0) = - l-a+a/:(5,9),

a/(x,9),

x<8 

x = 8 

x>8
(1.2.2)

Some of the references which treat early failure analysis with exponential 

distributions are Kale and Muralidharan (2000), Kale (2001) and Muralidharan 

(2002), wherein they have treated early failures as inliers using the sample 

configurations. Muralidharan (2005) has presented in his paper, estimation of 

parameters in presence of early failures. Kale and Muralidharan (2007) obtained MLE 

for parameter 6 of the target distribution F and parameter <p of the contaminating 

population § assuming number of inliers is known. Muralidharan and Lathika (2008) 

studied analysis of instantaneous and early failures in Weibull distribution.
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Kale and Muralidharan (2008) studied inlier detection using Schwarz information 

criterion. The estimation of mixture density of inliers and target observation can be 

viewed as special case of mixture distribution.

1.2.3 Nearly instantaneous failure model

As seen in the data set discussed above, if the observations are closed to 

zeroes, they can be termed as nearly instantaneous failures. Although the model 

described in (1.2.2) incorporates inliers for a specified value of 6, there are some 

drawbacks for the model (1.2.2). This is rectified in the following model as a 

complete mixture of two distributions. Thus, the nearly instantaneous gives the 

modification, the density function is given by:

f(x)=(l-p)f1(x)+pf2(x) (1.2.3)

where

/i(*) = $i(x-*0) x0 <x<x0+d 

otherwise

and f2(x) can be considered as any other lifetime distribution of target population. 

A mixture distribution involving two-parameter Weibull distributions has been 

thoroughly studied by Lai, Khoo, Muralidharan and Xie (2007). The importance of the 

model is that we can obtain the reliability function and hazard function in closed 

form. The characteristics of the model, such as survival rate, hazard rate and mean 

residual life, are studied for various distributions in various chapters for particular 

cases of f2[x).

1.2.4 M/t inliers Models and 1* inliers Models

Suppose that n units are put on test and n0 units fail instantaneously and 

(n-n0) failure time are available. Out of these positive observations we have to 

determine which are inliers or early failures. Before the start of the experiment we
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are unaware of which unit fail instantaneously or will produce early failures. These 

experimental conditions are to be modeled in Mk iniier model for given k. Let us

denote failure times of these {n-n0) unit as |Xj,X2,.....X ). Then in Mk iniier

model, (n- n0 - k) are considered from target population with pdf /e 3 and k

observations are from iniier population g e (#. Thus the joint pdf of (x^Xj,..... Xn_n<>)

can be written as

L(xi,x2,...xn_„o | f,g,v)=j rig(x') J"J/(x;,0)k/e3,veV and ge § (1.2.4)

where v is the new parameter representing set of inliers and ranges over V, the set 

of integers ..... /*)chosen out of (l,2,....[n~ na]) and therefore with cardinality

(n/° )-This is so far similar to the model Mk for k outlier. The main difference in Mk

iniier model is that *P(x)=~c~='^~ is assumed to be strictly decreasing function
oF /(*)

of X. The theorem stated below is used to write the likelihood function under Mk 

and Lk reproduced from Muralidharan (2010), for continuity.

Theorem 1,2.1: Let X,,, < X(,» <.....<X, > be the order statistics observations and
• v {1> {2i (""o);

^/?j,/?2,)be the corresponding rank order statistics then Maxf{rltr2,....rk) =

<p( 1,2,..... k)and X(X),x(2)..... have the maximum probability of being inliers.

Here we give only the important outline of the theorem. Assume that model 

contains n-n0 positive observations. Then for one iniier model considered is

Proof: Consider and P R\~ri>X(r j= Xfri I x(>i,g -<p{rx). Then

n-n0-l
\ ^ ,

|J[f(x)T"[i-f(x)P''‘^(x)

now
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therefore,

?{ri) Jy1 1 [l—y]"~"° ri (yj^jy

1 (1.2.5)
n-n.'0

Now yr is a beta random variable with parameters^,n-n0 -rx +l). Note 

that, r1-l,2,...n-n0 is stochastically ordered sequence, since h is such that

a—V— which is strictly increasing function of y over (0,1). 'PfF_1 (y)l is 
h{yr) 1-y

decreasing function of y by as per our assumption. Therefore, from the result of 

Lehman (1959) it follows that ^(l}>^>(2)>.... ><p{n) and x(i) has maximum

probability of being an inlier. Let ^(r1,r2) = Probability that X^and X^are inliers 

for 1 < rx < r2 < n. for model M2, where

Then one can show Max^^<p(r1,r7) = y>(l,2) and x{1} and x(2. have

maximum probability of being inliers.

Generalizing the above result we can show that

[l-f(y)]n 2 dG(x)dG(y)

f{rltr2.....r*) = f( 1,2,......k) and hence x(1),x(2)......x{k)
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have the maximum probability of being intiers.

For other detailed proof of the theorem, one may refer to the paper by 

Muralidharan (2010). Thus the generalized form of (p{-) with k inliers is

cpU r r)= (n-nn~k)\k\r ......
u j' (fi -i)|(r2-rx -1)1.... (n-n0~-k)'0<v/i<w2< -wk<1'-

F'l{wx) ..... ¥ F ’ (wk) }dw2dw2.....dwk

Now fixing (r2, r3,...,rk) and (w2,w3,...,w*) we can show that 0{rur2, ...,rk) as 

decreasing function of r2 for l<r2<r2.

Thus the model for Mk inlier is

f( n-nQ
Ux|g,/,v)=fjg(xw)f[/(xw),/€3#ge G, (1.2.6)

i=i /=<t+i

But l(x|g,/,v) is likelihood and not joint pdf of x(1),x(2)..... x^ y

The model for Lk inlier is therefore 

(n-n0)\k\
L(x\g,f)=- A(F'G) \mxw)n/(xw)'/e3'ffe^ (1.2.7)

where pk[F,G) = <p(r1,r2,...,rk) is the normalizing constant to make Lk a pdf. The 

model is called as labeled slippage model and it can be derived as model from Mk 

with {YltY2,...,Yk) are i.i.d.as §, and (l/1,V',...,V'n_„Jas i.i.d from 3 and with the

additional condition Max(Y1,Y2,...,Yk)<Min^V1,V2,...,V„-no)-

1.3 Information criteria for inliers

The most important use of information criterion is, that it helps us in model 

selection, from the set of different models which all fit the data. These criterion are
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suitable when the underlying distribution and inlier distribution are available. It is an 

exploratory data analysis approach as no formal statistical inference is performed. 

The Akaike information criterion is a measure of the relative goodness of fit_of a 

statistical model. It was developed by Hirotsugu Akaike, under the name of "an 

information criterion" (AIC), and was first published by Akaike (1974). It is grounded 

in the concept of information entropy, in effect offering a relative measure of the 

information lost when a given model is used to describe reality. It can be said to 

describe the tradeoff between bias and variance in model construction, or loosely 

speaking between accuracy and complexity of the model. In statistics, the Bayesian 

information criterion (BIC) or Schwarz criterion (also SBC, SBIC) is a criterion for 

model selection among a class of parametric models with different numbers of 

parameters. Choosing a model to optimize BIC is a form of regularization. When 

estimating model parameters using maximum likelihood estimation, it is possible to 

increase the likelihood by adding parameters, which may result in overfitting. The 

BIC resolves this problem by introducing a penalty term for the number of 

parameters in the model. This penalty is larger in the BIC than in the related AIC. The 

BIC was developed by Gideon E. Schwarz (1978), who gave a Bayesian argument for 

adopting it. It is closely related to the Akaike information criterion (A/C). In fact, 

Akaike was so impressed with Schwarz's Bayesian formalism that he developed his 

own Bayesian formalism, now often referred to as the ABIC for "a Bayesian 

Information Criterion" or more casually "Akaike's Bayesian Information Criterion". 

The BIC is an asymptotic result derived under the assumptions that the data 

distribution is in the exponential family.

Given any two estimated models, the model with the lower value of BIC is the 

one to be preferred. The BIC is an increasing function of <7* (variance) and an 

increasing function of p, where p is number of parameters of population under 

study. That is, unexplained variation in the dependent variable and the number of 

explanatory variables increase the value of BIC. Hence, lower BIC implies either 

fewer explanatory variables, better fit, or both. The BIC generally penalizes free 

parameters more strongly than does the Akaike information criterion, though it 

depends on the size of n and relative magnitude of n and k. It is important to keep in
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mind that the BIC can be used to compare estimated models only when the 

numerical values of the dependent variable are identical for all estimates being 

compared. The models being compared need not be nested, unlike the case when 

models are being compared using an For likelihood ratio test.

The following information criteria are used in all the chapters. The Schwarz's 

information criterion as given by SIC = -2\n L(0) + plnn, Schwarz's Bayesian

, . 0.5(plnn)
Information criterion as obtained by BIC=-\nL(0) + —1------- - and Hannan-

n
Quinn criterion as given by HQ--lnL(6>) + pln(ln(«)) to detect the inliers, where

L{0) the maximum likelihood function and p is the number of free parameters that 

need to be estimated under the model.

Before discussing the tests of hypothesis we provide another theorem, again 

reproduced from Kale and Muralidharan (2007), which will help to understand the 

inlier distribution from among the other distributions. If F and G are respectively 

given by

F(x,0) = l-exp(~x#), x>0, f?>0,

and

G(x,0) = l-exp(-x^), x>0,^>0 where <j>-X$, X>0

Using theorem (1.2.1), the labeled slippage alternative of r>l are 

discordant observation Hr, the joint distribution of the ordered statistics is given by

.... xw|H')=^(iexp{~a§X(/i
> xM (1.3.1)

where the normalizing factor is given by

^(l,2,...r) = ^B r +1,-n—r ,l>0,r>l.

Then we have the following theorem
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Theorem 1.3.1: Under the labeled slippage alternative, Hr (1*....- >0 as X -> oo,
' *(0

for /=r + l,r+2,.... n.

Proof: From (1.3.1) the joint density of X(1) and X(r+1) can be obtained as

f(x x U.-'l M' ('•+!)/ y>(l,2,.... r
(n-r)r/1 -ax^.

Q
eAxm _e“*W +i) (1.3.2)

where 0<x^<Xj2j

_(n-r)re^rVl)^/ -ix(1) _ -*vd\*

k(p{ 1,2,....r) \ J

f(x |x )=__^______ 1---------------------- '—' (1> (r+1)’ k<p(l,2,....r) /ii)_g-V))*

hence for all oe (0,l), we get

'(i)
<a\Hr 

\ 'V+1) )

(n-r)rA (-1) (r^)
<P^1,2....r),=0 [A(r-l-/) + (/j-l)]|i[A(r-l-i) + (n-r)]+A(/ + l)J

One gets

0<^iL<
x(.)

XM
X(r+i)

X(D ,
X{r+1)

> 0 ss A

X(Ml)<X(i)>

oo. which proves the theorem given the condition 

/ = r + 2,....n.

1.4 Testing of hypothesis

The main objective of this thesis is to detect (estimate) number of inliers in a 

given data. After detecting the number of inliers, using some model, we subjected
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the finding to test whether our results are true in light of a random sample. For 

which we have used various test to do this. Some Traditionally used tests are 

discussed below: In most of the test procedure, our main objective is to test the 

hypothesis:

H0: X(1),X(2)...X(n) are from F(x, Q) and

Hx: X(1),X(2)...X(f) are from G{x, 0) and X(r+1),X(f+2)...X(n) are from F(x, 0 ), (1.4.1)

For a hypothesis of the form in equation (1.4.1) one can construct likelihood 

ratio test for testing inliers in the usual way. For example the underlying density is 

exponential, then the likelihood ratio test for one inlier by Kale and Muralidharan 

(2007) is obtained as

Reject Ho if

where T = ^Xj.j . And the value.of c=---------------j—1.
Ml l-(l -ocf^

Also the power of the test for one inlier is given by

^ = 1-

-n + l'l
C-hA

where A- e (1.4.3)

Specifically if Xx,X2,..... X„ are independent and identically distributed r.v's having

mixture distribution with likelihood is

L(x,<l>,0,p)=Y[{{l-p)g{xi) + pf(xl)} (1.4.4)

then the objective is to test

H0:p=1 against Ht:p<l

for which we can have the following tests:
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1.4,1 Locally most powerful test

The LMP test critical region for equation (1.4.4) is given by

x
dL(x,0,0,p)

(1.4.5)

where C is such that

pi x I—(X>^|tf0 <c\ = a, the size of test.
dp

1.4.2 A Large sample test

A large sample test for the hypothesis (1.4.4) can be constructed using the 

asymptotic binomial distribution of the parameter of p: The large sample test for the 

hypothesis

H0:p>p0 against H1:p<p0 , p0 specified.

The test statistics is given by

and we reject Ha if Zcal < Za where a is level of significance, p denotes 

proportion of observations from target population.

1.5 Inlier estimation through Sequential Probability Ratio Test (SPRT)

inliers population with pdf g(x,0) against hypothesis that it belongs to target 

population with pdf f(x,0).

(1.4.6)

Here first we want to test the hypothesis whether an observation belongs to
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r r

That is if = EH*, ,0) and t0 = denote likelihood function
i=i 1=1

under target and inlier population respectively, then the SPRT is the likelihood ratio 
4 is given by

or equivalently

In4 = ]Ttn
/=!

f(xW0)
g(x(,r#) r = l,2,....n (1.5.1)

For deciding number of inliers r we continue to take additional observations till we 

reject H0. That is

r
if 22(f) - I*1® accept H0and take the next observation.

and

r
if £z(„ > \r\A reject H0 and stop.

/=i

The corresponding r represents the first observation from /|x(;),#j and the 

previous (r-1) observations from g(x(;),^). Thus the number of inliers will be r-1.

1.6 Most powerful test for detection of inliers when underlying parameters 

are specified

If we are interested in testing Ha: g(xw,^j against H1: f(x(l),0j (i.e. whether

data is from inlier population against data is from target population) a MPT can be

constructed for£ the common parameter of interest, then the hypothesis can be 
/

equivalently written as

H0:^ = ((> against Wj:^=0. (1.6.1)
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In the above frame, both H0 and Ht are simple and hence the most powerful test 

according to NP lemma is

yr(x) = <

where the constant C« can be obtained using the size condition. For specific 

distributional model, the value of C« can be numerically computed.

In chapters to follow, we have studied many other test procedures and 

interesting properties of ,the models. For situation specific, we have changed the 

notation and theoretical development to establish proper continuity. We now 

provide the chapter wise summary of the thesis, in brief.

Chapter 1 gives a detailed introduction of the study and its need. An 

exhaustive literature survey on study of inliers is discussed. The utility and 

applicability of inlier distributions are also discussed in length and breadth. Various 

real life examples and their application areas are discussed in this chapter.

Chapter 2 discusses Pareto distribution as a inlier model for file sizes on the 

internet, insurance losses, and financial behavior of the stock market and in 

telecommunication systems. The proposed study is a further look at suitability of 

Pareto distributions in the context of life testing experiments where data involves 

instantaneous and early failures. We provide the inferences on parameters of 

modified forms of Pareto type distributions involving one and two parameters. The 

methods are illustrated on simulated data sets and on a real life data. We have 

discussed different criteria for detection of inliers and studied the sensitivity of 

various distributions with respect to different hypothesis. Through many other 

characteristics, we have shown that the Pareto distribution is much better than that 

of the Weibull distribution, in identifying inliers, and inlier models

1,

0,

pM
Po(*)

M*)
P0(x)

> Ca

<Ca

(1.6.2)
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In Chapter 3, we study the estimation of inliers in Normal distribution. The 

masking effect problem for correctly identifying the inliers is discussed with respect 

to various test procedures. Test for detecting a single inlier, H0 against Hi is based on 

symmetric functions of observations or on functions of order statistics. In the k-inlier 

model, the joint distribution of order statistics X^yX^y....X^ is same as that under

the exchangeable model introduced by Kale (1998) where it is assumed that any set 

X! ,Xi2,....Xit has priori equal probability of being independent and identically

distributed as Gx and the remaining (n-k) observation are distributed as F, the 

distribution function of target population.

The study of inliers in Weibull models is the content of chapter 4. Apart from 

the regular estimation of inliers, we have also discussed the model specific 

estimation when the total realizations are assumed to be from either Model-1 or

Modei-2. If we assume, the data X=(xi, X2,..... x„) whose joint distribution is

unknown, and if we have two competing models with parametric density 

fj(x;0j,a), @;, where ©y is the Parametric space. Model-1 is selected with

inliers and target population both having Weibull distribution with same shape 

parameter whereas other model-2 has Weibull with same scale parameter. We have 

also used predictive approach to model selection using exponential model. The SPRT 

test is conducted to detect number of inliers in both the models. Conditional test 

and Predictive method are also incorporated to detect inliers in exponential models.

In chapter 5 we study the usefulness of mixture distribution and modified 

distribution for inlier study. Mixture distributions have been extensively used in a 

wide variety of important practical situations where data can be viewed as arising 

from two or more populations mixed in varying proportions. Mixture of distribution 

refers to the situation in which ith distribution out of k underlying distribution is 

chosen with probability p,- ,i=l,2,....k. Mixture distribution having k=2 components 

are extensively studied in literature. For example a probability model for the life of a 

electronic product can be described as the mixture of two unimodel distribution, one

• -18-



representing the life of inliers and other for target observations. We have listed 

down the methods which will be useful in detecting inliers present in the sample 

data. The graphs representing mixture of inliers and target populations, for 

exponential families are also plotted.

The inlier detection in generalized distribution is included in chapter 6. A 

generalized treatment for estimation and detection of inliers is discussed in this 

chapter. We also studied estimation of parameters of mixture distribution for 

particular cases. Apart from this we have derived the test for one inlier in the data 

set.

At the end we have given an exhaustive and extensive bibliography. As an 

output of the thesis, two articles have been published and couple of papers is on the 

way for publication. About three papers are ready for communication.
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